1
|
Klimczak P, Alcaide J, Gramuntell Y, Castillo-Gómez E, Varea E, Perez-Rando M, Nacher J. Long-term effects of a double hit murine model for schizophrenia on parvalbumin expressing cells and plasticity-related molecules in the thalamic reticular nucleus and the habenula. Transl Psychiatry 2024; 14:450. [PMID: 39448557 PMCID: PMC11502763 DOI: 10.1038/s41398-024-03166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
The exposure to aversive experiences during early-life affects brain maturation and induces changes in behavior. Additionally, when these experiences coincide with subtle neurodevelopmental alterations, they may contribute to the emergence of psychiatric disorders, such as schizophrenia. Studies in patients and animal models have identified changes in parvalbumin (PV) expressing inhibitory neurons, highlighting their significance in the etiology of this disorder. Most studies have been focused on the cortex, but PV+ neurons also provide inhibitory input to diencephalic regions, particularly to the thalamus (through cells in the thalamic reticular nucleus, TRN) and the habenula. Remarkably, alterations in both nuclei have been described in schizophrenia. Some of these changes in PV+ cells may be mediated by perineuronal nets (PNN), specialized regions of the extracellular matrix that often surround them and regulate their synaptic input and activity. Interestingly, the physiological maturation and integration of PV+ neurons, which involves the assembly of PNN, occurs during early postnatal life. Plasticity molecules associated to inhibitory neurons, such as PSA-NCAM, or NMDA receptors (NMDAR) can also influence the structure and function of these cells. Growing evidence also indicates that glial cells regulate the physiology of PV+ neurons by influencing their maturation and modulating their synaptic connectivity. To explore the impact of early-life aversive experiences and concomitant subtle neurodevelopmental alterations on diencephalic PV+ cells, we analyzed adult male mice subjected to a double-hit model (DHM) of schizophrenia, combining a single injection of an NMDAR antagonist at P7 and post-weaning social isolation. We observed that exploratory behavior, PV+ neurons and their associated PNN, as well as PSA-NCAM and NMDAR expression and glial cells, in the TRN and the habenula were affected by the DHM or one of its factors. To our knowledge, this is the first report on such alterations in these diencephalic structures in an animal model combining neurodevelopmental alterations and early-life stress during adolescence. Our findings complement previous work on PV+ neurons in cortical regions and underscore the importance of studying diencephalic inhibitory networks and their intricate interactions with aversive experiences and neurodevelopmental alterations during early life in the context of schizophrenia.
Collapse
Affiliation(s)
- Patrycja Klimczak
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain
| | - Julia Alcaide
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain
| | - Esther Castillo-Gómez
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Valencia, Spain
| | - Emilio Varea
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain.
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain.
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain.
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain.
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain.
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain.
| |
Collapse
|
2
|
Zimmerman EC, Grace AA. Prefrontal cortex modulates firing pattern in the nucleus reuniens of the midline thalamus via distinct corticothalamic pathways. Eur J Neurosci 2018; 48:3255-3272. [PMID: 30107061 PMCID: PMC6237082 DOI: 10.1111/ejn.14111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/12/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
The thalamus has long been recognized for its role in relaying sensory information from the periphery, a function accomplished by its "first-order" nuclei. However, a second category of thalamic nuclei, termed "higher-order" nuclei, have been shown instead to mediate communication between cortical areas. The nucleus reuniens of the midline thalamus (RE) is a higher-order nucleus known to act as a conduit of reciprocal communication between the medial prefrontal cortex (mPFC) and hippocampus. While anatomical and behavioural studies of RE are numerous, circuit-based electrophysiological studies, particularly those examining the impact of cortical input and the thalamic reticular nucleus (TRN) on RE neuron firing, are sparse. To characterize RE neuron firing properties and dissect the circuit dynamics of the infralimbic subdivision of the mPFC (ilPFC), the TRN and RE, we used in vivo, extracellular, single-unit recordings in male Sprague Dawley rats and manipulated neural activity using targeted pharmacological manipulations, electrical stimulation and a projection-specific implementation of designer receptors exclusively activated by designer drugs (DREADDs). We show that ilPFC inhibition reduces multiple burst firing parameters in RE, whereas ilPFC stimulation drives burst firing and dampens tonic firing. In addition, TRN inhibition reduces the number of spontaneously active neurons in RE. Finally, inhibition of ilPFC terminals in RE selectively enhances a subset of burst firing parameters. These findings demonstrate that ilPFC input, both via direct projections and via the TRN, can modulate RE neuron firing pattern in nuanced and complex ways. They also highlight the ilPFC-TRN-RE circuit as a likely critical component of prefrontal-hippocampal interactions.
Collapse
Affiliation(s)
- Eric C Zimmerman
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Abo hagar A, Ashour Y, Abd El-Razek R, Elsamahy M, Shehab O. Quantitative electroencephalographic changes and hippocampal atrophy in diabetic patients with mild cognitive impairment in Ismailia region. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2018; 54:15. [PMID: 29899657 PMCID: PMC5982437 DOI: 10.1186/s41983-018-0018-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/04/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cognitive decline could start or get worse among elderly patients with diabetes mellitus more than elderly without diabetes mellitus. So, those diabetic elderly patients have more risk to develop Alzheimer's disease and vascular dementia. PATIENTS AND METHODS This study included 48 elderly, grouped into three equal groups. First group included patients with diabetes mellitus and cognitive impairment. Second group included patients with diabetes mellitus and no cognitive impairment. The last group included the controls. Evaluation through Mini Mental State Examination, MRI brain, and Quantitative Electroencephalography (QEEG) recording was done for every studied elderly. RESULTS MRI finding revealed that hippocampal atrophy was significantly more prevalent among diabetic patients with mild cognitive impairment (MCI) (37.5%). The QEEG showed increase in the distribution of alpha 1 (low alpha) waves among control and diabetic patients without MCI groups, while there was an increase in the distribution of alpha 2 (high alpha) among diabetic patients with MCI. The QEEG results revealed increased alpha 2/alpha 1 ratio among patients with hippocampal atrophy. CONCLUSIONS Type 2 DM was suggested to increase the risk of cognitive impairment. The cognitive impairment in patients with diabetes mellitus was associated with changes in hippocampal volume and QEEG changes.
Collapse
Affiliation(s)
- Ahmed Abo hagar
- Department of Neuropsychiatry, Suez Canal University, Ismailia, Egypt
| | - Yossri Ashour
- Department of Neuropsychiatry, Suez Canal University, Ismailia, Egypt
| | - Reda Abd El-Razek
- Department of Neuropsychiatry, Suez Canal University, Ismailia, Egypt
- Department of Neurology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Elsamahy
- Department of Neuropsychiatry, Suez Canal University, Ismailia, Egypt
| | - Osama Shehab
- Department of Neuropsychiatry, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Abstract
The majority of 20th century investigations into anesthetic effects on the nervous system have used electrophysiology. Yet some fundamental limitations to electrophysiologic recordings, including the invasiveness of the technique, the need to place (potentially several) electrodes in every site of interest, and the difficulty of selectively recording from individual cell types, have driven the development of alternative methods for detecting neuronal activation. Two such alternative methods with cellular scale resolution have matured in the last few decades and will be reviewed here: the transcription of immediate early genes, foremost c-fos, and the influx of calcium into neurons as reported by genetically encoded calcium indicators, foremost GCaMP6. Reporters of c-fos allow detection of transcriptional activation even in deep or distant nuclei, without requiring the accurate targeting of multiple electrodes at long distances. The temporal resolution of c-fos is limited due to its dependence upon the detection of transcriptional activation through immunohistochemical assays, though the development of RT-PCR probes has shifted the temporal resolution of the assay when tissues of interest can be isolated. GCaMP6 has several isoforms that trade-off temporal resolution for signal to noise, but the fastest are capable of resolving individual action potential events, provided the microscope used scans quickly enough. GCaMP6 expression can be selectively targeted to neuronal populations of interest, and potentially thousands of neurons can be captured within a single frame, allowing the neuron-by-neuron reporting of circuit dynamics on a scale that is difficult to capture with electrophysiology, as long as the populations are optically accessible.
Collapse
|
5
|
Embedding a Panoramic Representation of Infrared Light in the Adult Rat Somatosensory Cortex through a Sensory Neuroprosthesis. J Neurosci 2016; 36:2406-24. [PMID: 26911689 DOI: 10.1523/jneurosci.3285-15.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Can the adult brain assimilate a novel, topographically organized, sensory modality into its perceptual repertoire? To test this, we implemented a microstimulation-based neuroprosthesis that rats used to discriminate among infrared (IR) light sources. This system continuously relayed information from four IR sensors that were distributed to provide a panoramic view of IR sources, into primary somatosensory cortex (S1). Rats learned to discriminate the location of IR sources in <4 d. Animals in which IR information was delivered in spatial register with whisker topography learned the task more quickly. Further, in animals that had learned to use the prosthesis, altering the topographic mapping from IR sensor to stimulating electrode had immediate deleterious effects on discrimination performance. Multielectrode recordings revealed that S1 neurons had multimodal (tactile/IR) receptive fields, with clear preferences for those stimuli most likely to be delivered during the task. Neuronal populations predicted, with high accuracy, which stimulation pattern was present in small (75 ms) time windows. Surprisingly, when identical microstimulation patterns were delivered during an unrelated task, cortical activity in S1 was strongly suppressed. Overall, these results show that the adult mammalian neocortex can readily absorb completely new information sources into its representational repertoire, and use this information in the production of adaptive behaviors.
Collapse
|
6
|
Neural Mechanism of Corticofugal Modulation of Tuning Property in Frequency Domain of Bat’s Auditory System. Neural Process Lett 2015. [DOI: 10.1007/s11063-015-9425-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Thomson E, Lou J, Sylvester K, McDonough A, Tica S, Nicolelis MA. Basal forebrain dynamics during a tactile discrimination task. J Neurophysiol 2014; 112:1179-91. [PMID: 24920019 DOI: 10.1152/jn.00040.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleus basalis (NB) is a cholinergic neuromodulatory structure that projects liberally to the entire cortical mantle and regulates information processing in all cortical layers. Here, we recorded activity from populations of single units in the NB as rats performed a whisker-dependent tactile discrimination task. Over 80% of neurons responded with significant modulation in at least one phase of the task. Such activity started before stimulus onset and continued for seconds after reward delivery. Firing rates monotonically increased with reward magnitude during the task, suggesting that NB neurons are not indicating the absolute deviation from expected reward amounts. Individual neurons also encoded significant amounts of information about stimulus identity. Such robust coding was not present when the same stimuli were delivered to lightly anesthetized animals, suggesting that the NB neurons contain a sensorimotor, rather than purely sensory or motor, representation of the environment. Overall, these results support the hypothesis that neurons in the NB provide a value-laden representation of the sensorimotor state of the animal as it engages in significant behavioral tasks.
Collapse
Affiliation(s)
- Eric Thomson
- Department of Neurobiology, Duke University, Durham, North Carolina; Edmond and Lily Safra International Institute for Neuroscience of Natal, Natal, Brazil
| | - Jason Lou
- Department of Neurobiology, Duke University, Durham, North Carolina
| | | | - Annie McDonough
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Stefani Tica
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Miguel A Nicolelis
- Department of Neurobiology, Duke University, Durham, North Carolina; Department of Biomedical Engineering, Duke University, Durham, North Carolina; Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Center for Neuroengineering, Duke University, Durham, North Carolina; and Edmond and Lily Safra International Institute for Neuroscience of Natal, Natal, Brazil
| |
Collapse
|
8
|
Pearce PS, Friedman D, LaFrancois JJ, Iyengar SS, Fenton AA, MacLusky NJ, Scharfman HE. Spike-wave discharges in adult Sprague-Dawley rats and their implications for animal models of temporal lobe epilepsy. Epilepsy Behav 2014; 32:121-31. [PMID: 24534480 PMCID: PMC3984461 DOI: 10.1016/j.yebeh.2014.01.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 01/07/2014] [Accepted: 01/12/2014] [Indexed: 01/02/2023]
Abstract
Spike-wave discharges (SWDs) are thalamocortical oscillations that are often considered to be the EEG correlate of absence seizures. Genetic absence epilepsy rats of Strasbourg (GAERS) and Wistar Albino Glaxo rats from Rijswijk (WAG/Rij) exhibit SWDs and are considered to be genetic animal models of absence epilepsy. However, it has been reported that other rat strains have SWDs, suggesting that SWDs may vary in their prevalence, but all rats have a predisposition for them. This is important because many of these rat strains are used to study temporal lobe epilepsy (TLE), where it is assumed that there is no seizure-like activity in controls. In the course of other studies using the Sprague-Dawley rat, a common rat strain for animal models of TLE, we found that approximately 19% of 2- to 3-month-old naive female Sprague-Dawley rats exhibited SWDs spontaneously during periods of behavioral arrest, which continued for months. Males exhibited SWDs only after 3 months of age, consistent with previous reports (Buzsáki et al., 1990). Housing in atypical lighting during early life appeared to facilitate the incidence of SWDs. Spike-wave discharges were often accompanied by behaviors similar to stage 1-2 limbic seizures. Therefore, additional analyses were made to address the similarity. We observed that the frequency of SWDs was similar to that of hippocampal theta rhythm during exploration for a given animal, typically 7-8 Hz. Therefore, activity in the frequency of theta rhythm that occurs during frozen behavior may not reflect seizures necessarily. Hippocampal recordings exhibited high frequency oscillations (>250 Hz) during SWDs, suggesting that neuronal activity in the hippocampus occurs during SWDs, i.e., it is not a passive structure. The data also suggest that high frequency oscillations, if rhythmic, may reflect SWDs. We also confirmed that SWDs were present in a common animal model of TLE, the pilocarpine model, using female Sprague-Dawley rats. Therefore, damage and associated changes to thalamic, hippocampal, and cortical neurons do not prevent SWDs, at least in this animal model. The results suggest that it is possible that SWDs occur in rodent models of TLE and that investigators mistakenly assume that they are stage 1-2 limbic seizures. We discuss the implications of the results and ways to avoid the potential problems associated with SWDs in animal models of TLE.
Collapse
Affiliation(s)
- Patrice S. Pearce
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA,The Sackler Institute of Biomedical Sciences, New York University Langone Medical Center, New York, NY 10016 USA
| | - Daniel Friedman
- Department of Neurology, New York University Langone Medical Center, New York, NY 10016 USA
| | - John J. LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA
| | - Sloka S. Iyengar
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA
| | - André A. Fenton
- Center for Neural Science, 4 Washington Place, New York University, New York, NY 10003
| | - Neil J. MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Physiology & Neuroscience, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
9
|
How can we identify ictal and interictal abnormal activity? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:3-23. [PMID: 25012363 DOI: 10.1007/978-94-017-8914-1_1] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The International League Against Epilepsy (ILAE) defined a seizure as "a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain." This definition has been used since the era of Hughlings Jackson, and does not take into account subsequent advances made in epilepsy and neuroscience research. The clinical diagnosis of a seizure is empirical, based upon constellations of certain signs and symptoms, while simultaneously ruling out a list of potential imitators of seizures. Seizures should be delimited in time, but the borders of ictal (during a seizure), interictal (between seizures) and postictal (after a seizure) often are indistinct. EEG recording is potentially very helpful for confirmation, classification and localization. About a half-dozen common EEG patterns are encountered during seizures. Clinicians rely on researchers to answer such questions as why seizures start, spread and stop, whether seizures involve increased synchrony, the extent to which extra-cortical structures are involved, and how to identify the seizure network and at what points interventions are likely to be helpful. Basic scientists have different challenges in use of the word 'seizure,' such as distinguishing seizures from normal behavior, which would seem easy but can be very difficult because some rodents have EEG activity during normal behavior that resembles spike-wave discharge or bursts of rhythmic spiking. It is also important to define when a seizure begins and stops so that seizures can be quantified accurately for pre-clinical studies. When asking what causes seizures, the transition to a seizure and differentiating the pre-ictal, ictal and post-ictal state is also important because what occurs before a seizure could be causal and may warrant further investigation for that reason. These and other issues are discussed by three epilepsy researchers with clinical and basic science expertise.
Collapse
|
10
|
Correlated activation of the thalamocortical network in a simple learning paradigm. Behav Brain Res 2013; 252:293-301. [PMID: 23791933 DOI: 10.1016/j.bbr.2013.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/14/2013] [Accepted: 06/16/2013] [Indexed: 11/27/2022]
Abstract
The thalamocortical loop is a key player in sensory processing. We examined the functional interactions among its elements, expressed as cross-correlations between metabolic activity of the barrel cortex, somatosensory thalamic nuclei and posterior parietal cortex, in classical conditioning. In the training stimulation of vibrissae in mice was paired with a tail shock. [14C]-2-Deoxyglucose brain mapping was performed during the first and the final sessions of conditioning (conditioned stimulus+unconditioned stimulus; CS+UCS), in groups that received only the stimulation of vibrissae (conditioned stimulus; CS-only) and in nonstimulated controls (NS). In the CS-only group, the CS evoked the correlated activity of the examined structures during the first session, but in the third session these structures did not act in a correlated manner. Conversely, in the CS+UCS condition correlations among the thalamocortical loop structures activities became stronger during the course of the training. Particularly, the posterior parietal cortex, which controls voluntary deployment of attention, together with the barrel cortex becomes involved in the network of structures with the correlated activity. The results suggest a predominant role for bottom-up processing in the somatosensory pathway at the beginning of conditioning followed by top-down processing. This is consistent with the idea that the thalamocortical loop plays a crucial role in attentional processes.
Collapse
|
11
|
León-Domínguez U, Vela-Bueno A, Froufé-Torres M, León-Carrión J. A chronometric functional sub-network in the thalamo-cortical system regulates the flow of neural information necessary for conscious cognitive processes. Neuropsychologia 2013; 51:1336-49. [DOI: 10.1016/j.neuropsychologia.2013.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/13/2013] [Accepted: 03/21/2013] [Indexed: 01/28/2023]
|
12
|
Cannabis, psychosis and the thalamus: A theoretical review. Neurosci Biobehav Rev 2013; 37:658-67. [DOI: 10.1016/j.neubiorev.2013.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/21/2013] [Accepted: 02/19/2013] [Indexed: 11/18/2022]
|
13
|
Vukadinovic Z, Rosenzweig I. Abnormalities in thalamic neurophysiology in schizophrenia: could psychosis be a result of potassium channel dysfunction? Neurosci Biobehav Rev 2011; 36:960-8. [PMID: 22138503 DOI: 10.1016/j.neubiorev.2011.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/11/2011] [Accepted: 11/20/2011] [Indexed: 10/14/2022]
Abstract
Psychosis in schizophrenia is associated with source-monitoring deficits whereby self-initiated behaviors become attributed to outside sources. One of the proposed functions of the thalamus is to adjust sensory responsiveness in accordance with the behavioral contextual cues. The thalamus is markedly affected in schizophrenia, and thalamic dysfunction may here result in reduced ability to adjust sensory responsiveness to ongoing behavior. One of the ways in which the thalamus accomplishes the adjustment of sensory processing is by a neurophysiological shift to post-inhibitory burst firing mode prior to and during certain exploratory actions. Reduced amount of thalamic burst firing may result from increased neuronal excitability secondary to a reported potassium channel dysfunction in schizophrenia. Pharmacological agents that reduce the excitability of thalamic cells and thereby promote burst firing by and large tend to have antipsychotic effects.
Collapse
Affiliation(s)
- Zoran Vukadinovic
- Montefiore Medical Center, Albert Einstein College of Medicine, Department of Psychiatry and Behavioral Sciences, 111 E 210th Street, Bronx, NY 10467, USA.
| | | |
Collapse
|
14
|
Devonshire IM, Dommett EJ, Grandy TH, Halliday AC, Greenfield SA. Environmental enrichment differentially modifies specific components of sensory-evoked activity in rat barrel cortex as revealed by simultaneous electrophysiological recordings and optical imaging in vivo. Neuroscience 2010; 170:662-9. [PMID: 20654700 DOI: 10.1016/j.neuroscience.2010.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
Environmental enrichment of laboratory animals leads to multi-faceted changes to physiology, health and disease prognosis. An important and under-appreciated factor in enhancing cognition through environmental manipulation may be improved basic sensory function. Previous studies have highlighted changes in cortical sensory map plasticity but have used techniques such as electrophysiology, which suffer from poor spatial resolution, or optical imaging of intrinsic signals, which suffers from low temporal resolution. The current study attempts to overcome these limitations by combining voltage-sensitive dye imaging with somatosensory-evoked potential (SEP) recordings: the specific aim was to investigate sensory function in barrel cortex using multi-frequency whisker stimulation under urethane anaesthesia. Three groups of rats were used that each experienced a different level of behavioural or environmental enrichment. We found that enrichment increased all SEP response components subsequent to the initial thalamocortical input, but only when evoked by single stimuli; the thalamocortical component remained unchanged across all animal groups. The optical signal exhibited no changes in amplitude or latency between groups, resembling the thalamocortical component of the SEP response. Permanent and extensive changes to housing conditions conferred no further enhancement to sensory function above that produced by the milder enrichment of regular handling and behavioural testing, a finding with implications for improvements in animal welfare through practical changes to animal husbandry.
Collapse
Affiliation(s)
- I M Devonshire
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | | | | | | | | |
Collapse
|
15
|
Wiest MC, Thomson E, Pantoja J, Nicolelis MAL. Changes in S1 neural responses during tactile discrimination learning. J Neurophysiol 2010; 104:300-12. [PMID: 20445033 DOI: 10.1152/jn.00194.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In freely moving rats that are actively performing a discrimination task, single-unit responses in primary somatosensory cortex (S1) are strikingly different from responses to comparable tactile stimuli in immobile rats. For example, in the active discrimination context prestimulus response modulations are common, responses are longer in duration and more likely to be inhibited. To determine whether these differences emerge as rats learned a whisker-dependent discrimination task, we recorded single-unit S1 activity while rats learned to discriminate aperture-widths using their whiskers. Even before discrimination training began, S1 responses in freely moving rats showed many of the signatures of active responses, such as increased duration of response and prestimulus response modulations. As rats subsequently learned the discrimination task, single unit responses changed: more cortical units responded to the stimuli, neuronal sensory responses grew in duration, and individual neurons better predicted aperture-width. In summary, the operant behavioral context changes S1 tactile responses even in the absence of tactile discrimination, whereas subsequent width discrimination learning refines the S1 representation of aperture-width.
Collapse
Affiliation(s)
- Michael C Wiest
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
16
|
Grossberg S, Versace M. Spikes, synchrony, and attentive learning by laminar thalamocortical circuits. Brain Res 2008; 1218:278-312. [PMID: 18533136 DOI: 10.1016/j.brainres.2008.04.024] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 04/01/2008] [Accepted: 04/04/2008] [Indexed: 11/19/2022]
Abstract
This article develops the Synchronous Matching Adaptive Resonance Theory (SMART) neural model to explain how the brain may coordinate multiple levels of thalamocortical and corticocortical processing to rapidly learn, and stably remember, important information about a changing world. The model clarifies how bottom-up and top-down processes work together to realize this goal, notably how processes of learning, expectation, attention, resonance, and synchrony are coordinated. The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single-cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current source densities and local field potentials; and single-cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. In particular, the model predicts how laminar circuits of multiple cortical areas interact with primary and higher-order specific thalamic nuclei and nonspecific thalamic nuclei to carry out attentive visual learning and information processing. The model simulates how synchronization of neuronal spiking occurs within and across brain regions, and triggers STDP. Matches between bottom-up adaptively filtered input patterns and learned top-down expectations cause gamma oscillations that support attention, resonance, learning, and consciousness. Mismatches inhibit learning while causing beta oscillations during reset and hypothesis testing operations that are initiated in the deeper cortical layers. The generality of learned recognition codes is controlled by a vigilance process mediated by acetylcholine.
Collapse
Affiliation(s)
- Stephen Grossberg
- Department of Cognitive and Neural Systems, Center for Adaptive Systems, Center of Excellence for Learning in Education, Science, and Technology, Boston University, 677 Beacon Street, Boston, MA 02215, USA.
| | | |
Collapse
|
17
|
Li L, Ebner FF. Cortical modulation of spatial and angular tuning maps in the rat thalamus. J Neurosci 2007; 27:167-79. [PMID: 17202484 PMCID: PMC6672283 DOI: 10.1523/jneurosci.4165-06.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/20/2006] [Accepted: 11/28/2006] [Indexed: 11/21/2022] Open
Abstract
The massive feedback projections from cortex to the thalamus modulate sensory information transmission in many ways. We investigated the role of corticothalamic feedback projections on the directional selectivity (angular tuning) of neurons in the rat ventral posterior medial (VPM) nucleus to stimulation of their principal whisker. The angular tuning properties of single VPM neurons were compared before and after epochs of electrical stimulation of layer VI feedback neurons in the ipsilateral cortex under urethane anesthesia. Microstimulation of layer VI in "matched" (homologous) barrel columns sharpens the angular tuning curves of single VPM neurons that are tuned to the same direction as the stimulation site in the cortex. Further, microstimulation rotates the angular preference of VPM neurons initially tuned to a different direction toward the direction that cortical neurons prefer. Stimulation in "mismatched" (nonhomologous) barrel columns suppresses responses without consistent effects on angular tuning. We conclude that the primary sensory cortex exerts a significant influence on both spatial and angular tuning maps in the relay nuclei that project to it. The results suggest that the tuning properties of VPM cells in the behaving animal are continually modified to optimize perception of the most salient incoming messages.
Collapse
Affiliation(s)
- Lu Li
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203
| | - Ford F. Ebner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203
| |
Collapse
|
18
|
Scaglione A, Moxon KA. Behaviorally modulated filter model for the thalamic reticular nucleus. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2006; 2006:595-598. [PMID: 17945989 DOI: 10.1109/iembs.2006.260583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Incoming sensory information is first processed in the thalamocortical network. Previous studies showed that the responses generated in the nuclei of this network are behaviorally modulated, suggesting that the processing of the somatosensory information could be state dependent. Most theories, proposed to describe this response modulation have postulated that the thalamic reticular nucleus (TRN) plays a role in this response modulation. We suggest that the TRN acts as a bandpass filter whose bandwidth increases or decreases depending on the state of the animal. To test this idea, we used multineuron recordings and demonstrate, for the first time, that the responses of single neurons in the reticular nucleus are modulated by the behavior of the animal. This result, taken together with the anatomy of the thalamocortical network and previous studies on anesthetized rats, suggests that the modulation of the responses in the thalamus and cortex could be at least partially due to the TRN through a mechanism that is similar to that of a behavioral modulated filter.
Collapse
Affiliation(s)
- Alessandro Scaglione
- School of Biomedical Engineering, Scinence and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
19
|
Ramcharan EJ, Gnadt JW, Sherman SM. Higher-order thalamic relays burst more than first-order relays. Proc Natl Acad Sci U S A 2005; 102:12236-41. [PMID: 16099832 PMCID: PMC1189315 DOI: 10.1073/pnas.0502843102] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is a strong correlation between the behavior of an animal and the firing mode (burst or tonic) of thalamic relay neurons. Certain differences between first- and higher-order thalamic relays (which relay peripheral information to the cortex versus information from one cortical area to another, respectively) suggest that more bursting might occur in the higher-order relays. Accordingly, we recorded bursting behavior in single cells from awake, behaving rhesus monkeys in first-order (the lateral geniculate nucleus, the ventral posterior nucleus, and the ventral portion of the medial geniculate nucleus) and higher-order (pulvinar and the medial dorsal nucleus) thalamic relays. We found that the extent of bursting was dramatically greater in the higher-order than in the first-order relays, and this increased bursting correlated with lower spontaneous activity in the higher-order relays. If bursting effectively signals the introduction of new information to a cortical area, as suggested, this increased bursting may be more important in corticocortical transmission than in transmission of primary information to cortex.
Collapse
Affiliation(s)
- E J Ramcharan
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | | | | |
Collapse
|
20
|
Steriade M. Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci 2005; 28:317-24. [PMID: 15927688 DOI: 10.1016/j.tins.2005.03.007] [Citation(s) in RCA: 308] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 01/17/2005] [Accepted: 03/14/2005] [Indexed: 11/18/2022]
Abstract
Thalamic reticular neurons release the potent inhibitory neurotransmitter GABA and their main targets are thalamocortical neurons in the dorsal thalamus. This article focuses on two topics: (i) the role of thalamic reticular neurons in the initiation of spindles, a hallmark oscillation during early sleep stages; and (ii) the reticular-induced inhibition of thalamocortical neurons during cortically generated spike-wave seizures. Although hotly debated during the past decade, the idea of spindle generation by a network of GABAergic reticular neurons was recently supported by in vivo and in computo studies demonstrating interactions between inhibitory reticular neurons that lead to spindle sequences. During spike-wave seizures and electrical paroxysms of the Lennox-Gastaut type, which arise in the neocortex, reticular neurons are powerfully excited through corticofugal projections and they produce prolonged inhibitory postsynaptic potentials in thalamocortical neurons. Thus, GABAergic reticular neurons are crucial in the generation of some sleep rhythms, which produce synaptic plasticity, and in inhibiting external signals through thalamocortical neurons, which leads to unconsciousness during absence epilepsy.
Collapse
Affiliation(s)
- Mircea Steriade
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec, Canada G1K 7P4.
| |
Collapse
|
21
|
Rowe DL. A FRAMEWORK FOR INVESTIGATING THALAMOCORTICAL ACTIVITY IN MULTISTAGE INFORMATION PROCESSING. J Integr Neurosci 2005; 4:5-26. [PMID: 16035138 DOI: 10.1142/s0219635205000707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 02/21/2005] [Indexed: 11/18/2022] Open
Abstract
A framework for investigating information processing in cortico-thalamocortical (cortico-TC) networks is presented, that in part can be used to model and interpret individual changes in electroencephalographic spectra and event-related potentials such as those from the Brain Resource International Database. Scientific work covering neurophysiology, TC firing modes, and TC models are explored in the framework to explain how the brain might process complex information in a multistage process. It is proposed that the thalamus and the cortico-TC system have unique ionic properties and transmission delays (in humans), which are suited to the function of taking "snapshots" or samples of complex environmental stimuli, rather than continuous data streams. This leads to careful and sequential coordination of stimulus and response processes, and increases the probability of information transfer and the resulting information complexity in higher cortical regions. Given the scope of this framework, the multidimensional and standardized Brain Resource International Database provides a pertinent set of measures for both testing hypotheses generated from the model, and for fitting the model to experimental data to investigate mechanisms underlying information processing.
Collapse
Affiliation(s)
- Donald L Rowe
- The Brain Dynamics Center, University of Sydney and Westmead Hospital, NSW 2145, Australia.
| |
Collapse
|
22
|
Abstract
Although nearly half of the synaptic input to neurons in the dorsal thalamus comes from the cerebral cortex, the role of corticothalamic projections in sensory processing remains elusive. Although sensory afferents certainly establish the basic receptive field properties of thalamic neurons, increasing evidence indicates that feedback from the cortex plays a crucial role in shaping thalamic responses. Here, we review recent work on the corticothalamic pathways associated with the visual, auditory, and somatosensory systems. Collectively, these studies demonstrate that sensory responses of thalamic neurons result from dynamic interactions between feedforward and feedback pathways.
Collapse
Affiliation(s)
- Henry J Alitto
- Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA 95616, USA
| | | |
Collapse
|