1
|
Burtscher J, Pepe G, Maharjan N, Riguet N, Di Pardo A, Maglione V, Millet GP. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog Lipid Res 2023; 90:101224. [PMID: 36898481 DOI: 10.1016/j.plipres.2023.101224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| | | | - Alba Di Pardo
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
2
|
Sandhoff R, Sandhoff K. Neuronal Ganglioside and Glycosphingolipid (GSL) Metabolism and Disease : Cascades of Secondary Metabolic Errors Can Generate Complex Pathologies (in LSDs). ADVANCES IN NEUROBIOLOGY 2023; 29:333-390. [PMID: 36255681 DOI: 10.1007/978-3-031-12390-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glycosphingolipids (GSLs) are a diverse group of membrane components occurring mainly on the surfaces of mammalian cells. They and their metabolites have a role in intercellular communication, serving as versatile biochemical signals (Kaltner et al, Biochem J 476(18):2623-2655, 2019) and in many cellular pathways. Anionic GSLs, the sialic acid containing gangliosides (GGs), are essential constituents of neuronal cell surfaces, whereas anionic sulfatides are key components of myelin and myelin forming oligodendrocytes. The stepwise biosynthetic pathways of GSLs occur at and lead along the membranes of organellar surfaces of the secretory pathway. After formation of the hydrophobic ceramide membrane anchor of GSLs at the ER, membrane-spanning glycosyltransferases (GTs) of the Golgi and Trans-Golgi network generate cell type-specific GSL patterns for cellular surfaces. GSLs of the cellular plasma membrane can reach intra-lysosomal, i.e. luminal, vesicles (ILVs) by endocytic pathways for degradation. Soluble glycoproteins, the glycosidases, lipid binding and transfer proteins and acid ceramidase are needed for the lysosomal catabolism of GSLs at ILV-membrane surfaces. Inherited mutations triggering a functional loss of glycosylated lysosomal hydrolases and lipid binding proteins involved in GSL degradation cause a primary lysosomal accumulation of their non-degradable GSL substrates in lysosomal storage diseases (LSDs). Lipid binding proteins, the SAPs, and the various lipids of the ILV-membranes regulate GSL catabolism, but also primary storage compounds such as sphingomyelin (SM), cholesterol (Chol.), or chondroitin sulfate can effectively inhibit catabolic lysosomal pathways of GSLs. This causes cascades of metabolic errors, accumulating secondary lysosomal GSL- and GG- storage that can trigger a complex pathology (Breiden and Sandhoff, Int J Mol Sci 21(7):2566, 2020).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Konrad Sandhoff
- LIMES, c/o Kekule-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Li H, Liu Y, Wang Z, Xie Y, Yang L, Zhao Y, Tian R. Mass spectrometry-based ganglioside profiling provides potential insights into Alzheimer's disease development. J Chromatogr A 2022; 1676:463196. [PMID: 35716462 DOI: 10.1016/j.chroma.2022.463196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 01/01/2023]
Abstract
Gangliosides are a family of glycosphingolipids which are particularly enriched in the nervous system. They play crucial roles in neuroprotection and neurological diseases. Alzheimer's disease (AD) is a neurodegenerative disease with cognitive, judgment and memory dysfunction. In this study, a mass spectrometry-based data-dependent acquisition method assisted with fragmentation characteristics screening by computer algorithm was developed for qualitative and quantitative analysis of gangliosides at low concentration. The developed method was applied to obtain detailed ganglioside species content in hippocampus of model mice (APPswe/PS1dE9 transgenic mice) with AD at 3- to 8-month-old. Up-regulated acetylated and N-acetylgalactosaminylated ganglioside species, and the down-regulated major gangliosides were observed with the development of AD from early to late stage. We speculated that deterioration of AD may be related to the acetylation/N-acetylgalactosaminylation transformation of complex gangliosides due to the inhibition of GD3 synthase activity. Moreover, the ganglioside species di-O-Ac-GT1a (d36:1), O-Ac-GD1b (d36:1) and O-Ac-GD1b (d36:0) were considered as the time-coursed biomarkers, and O-Ac-GT1a (d36:2) could be a candidate for early diagnosis of AD.
Collapse
Affiliation(s)
- Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yilian Liu
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Zhe Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yuping Xie
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206 China
| | - Lijun Yang
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055 China; Department of Oncology, The First Affiliated Hospital of SUSTech and Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Yanni Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055 China.
| |
Collapse
|
4
|
Brodsky VY. Gangliosides in Orchestration of Intercellular Communication, Development, Neuronal Pathology and Carcinogenesis. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Abreu CA, Teixeira-Pinheiro LC, Lani-Louzada R, da Silva-Junior AJ, Vasques JF, Gubert F, Nascimento-Dos-Santos G, Mohana-Borges R, Matos EDS, Pimentel-Coelho PM, Santiago MF, Mendez-Otero R. GD3 synthase deletion alters retinal structure and impairs visual function in mice. J Neurochem 2021; 158:694-709. [PMID: 34081777 DOI: 10.1111/jnc.15443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
Gangliosides are glycosphingolipids abundantly expressed in the vertebrate nervous system, and are classified into a-, b-, or c-series according to the number of sialic acid residues. The enzyme GD3 synthase converts GM3 (an a-series ganglioside) into GD3, a b-series ganglioside highly expressed in the developing and adult retina. The present study evaluated the visual system of GD3 synthase knockout mice (GD3s-/- ), morphologically and functionally. The absence of b- series gangliosides in the retinas of knockout animals was confirmed by mass spectrometry imaging, which also indicated an accumulation of a-series gangliosides, such as GM3. Retinal ganglion cell (RGC) density was significantly reduced in GD3s-/- mice, with a similar reduction in the number of axons in the optic nerve. Knockout animals also showed a 15% reduction in the number of photoreceptor nuclei, but no difference in the bipolar cells. The area occupied by GFAP-positive glial cells was smaller in GD3s-/- retinas, but the number of microglial cells/macrophages did not change. In addition to the morphological alterations, a 30% reduction in light responsiveness was detected through quantification of pS6-expressing RGC, an indicator of neural activity. Furthermore, electroretinography (ERG) indicated a significant reduction in RGC and photoreceptor electrical activity in GD3s-/- mice, as indicated by scotopic ERG and pattern ERG (PERG) amplitudes. Finally, evaluation of the optomotor response demonstrated that GD3s-/- mice have reduced visual acuity and contrast sensitivity. These results suggest that b-series gangliosides play a critical role in regulating the structure and function of the mouse visual system.
Collapse
Affiliation(s)
- Carla Andreia Abreu
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Leandro Coelho Teixeira-Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Rafael Lani-Louzada
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Almir Jordão da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Juliana F Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Fernanda Gubert
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ronaldo Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo de Souza Matos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Marcelo Felippe Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Desplanque M, Bonte MA, Gressier B, Devos D, Chartier-Harlin MC, Belarbi K. Trends in Glucocerebrosides Research: A Systematic Review. Front Physiol 2020; 11:558090. [PMID: 33192552 PMCID: PMC7658098 DOI: 10.3389/fphys.2020.558090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/17/2020] [Indexed: 01/26/2023] Open
Abstract
Glucocerebrosides are sphingolipid components of cell membranes that intervene in numerous cell biological processes and signaling pathways and that deregulation is implicated in human diseases such as Gaucher disease and Parkinson's disease. In the present study, we conducted a systematic review using document co-citation analysis, clustering and visualization tools to explore the trends and knowledge structure of glucocerebrosides research as indexed in the Science Citation Index Expanded database (1956-present). A co-citation network of 5,324 publications related to glucocerebrosides was constructed. The analysis of emerging categories and keywords suggested a growth of research related to neurosciences over the last decade. We identified ten major areas of research (e.g., clusters) that developed over time, from the oldest (i.e., on glucocerebrosidase protein or molecular analysis of the GBA gene) to the most recent ones (i.e., on drug resistance in cancer, pharmacological chaperones, or Parkinson's disease). We provided for each cluster the most cited publications and a description of their intellectual content. We moreover identified emerging trends in glucocerebrosides research by detecting the surges in the rate of publication citations in the most recent years. In conclusion, this study helps to apprehend the most significant lines of research on glucocerebrosides. This should strengthen the connections between scientific communities studying glycosphingolipids to facilitate advances, especially for the most recent researches on cancer drug resistance and Parkinson's disease.
Collapse
Affiliation(s)
- Mazarine Desplanque
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Lille, France.,Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | | | - Bernard Gressier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Lille, France.,Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - David Devos
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Lille, France.,Département de Pharmacologie Médicale, I-SITE ULNE, LiCEND, Lille, France
| | | | - Karim Belarbi
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Lille, France.,Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| |
Collapse
|
7
|
Vilcaes AA, Garbarino-Pico E, Torres Demichelis V, Daniotti JL. Ganglioside Synthesis by Plasma Membrane-Associated Sialyltransferase in Macrophages. Int J Mol Sci 2020; 21:ijms21031063. [PMID: 32033474 PMCID: PMC7043224 DOI: 10.3390/ijms21031063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
Gangliosides are constituents of the mammalian cell membranes and participate in the inflammatory response. However, little is known about the presence and enzymatic activity of ganglioside sialyltransferases at the cell surface of macrophages, one of the most important immune cells involved in the innate inflammatory process. In the present study, using biochemical and fluorescent microscopy approaches, we found that endogenous ST8Sia-I is present at the plasma membrane (ecto-ST8Sia-I) of murine macrophage RAW264.7 cells. Moreover, ecto-ST8Sia-I can synthetize GD3 ganglioside at the cell surface in lipopolysaccharide (LPS)-stimulated macrophages even when LPS-stimulated macrophages reduced the total ST8Sia-I expression levels. Besides, cotreatment of LPS with an inhibitor of nitric oxide (NO) synthase recovered the ecto-ST8Sia-I expression, suggesting that NO production is involved in the reduction of ST8Sia-I expression. The diminution of ST8Sia-I expression in LPS-stimulated macrophages correlated with a reduction of GD3 and GM1 gangliosides and with an increment of GD1a. Taken together, the data supports the presence and activity of sialyltransferases at the plasma membrane of RAW264.7 cells. The variations of ecto-ST8Sia-I and ganglioside levels in stimulated macrophages constitutes a promissory pathway to further explore the physiological role of this and others ganglioside metabolism-related enzymes at the cell surface during the immune response.
Collapse
Affiliation(s)
- Aldo A. Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET. Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (E.G.-P.); (V.T.D.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Correspondence: (A.A.V.); (J.L.D.)
| | - Eduardo Garbarino-Pico
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET. Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (E.G.-P.); (V.T.D.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Vanina Torres Demichelis
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET. Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (E.G.-P.); (V.T.D.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Jose L. Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET. Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (E.G.-P.); (V.T.D.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Correspondence: (A.A.V.); (J.L.D.)
| |
Collapse
|
8
|
Sandhoff R, Sandhoff K. Emerging concepts of ganglioside metabolism. FEBS Lett 2018; 592:3835-3864. [PMID: 29802621 DOI: 10.1002/1873-3468.13114] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/12/2022]
Abstract
Gangliosides (GGs) are sialic acid-containing glycosphingolipids (GSLs) and major membrane components enriched on cellular surfaces. Biosynthesis of mammalian GGs starts at the cytosolic leaflet of endoplasmic reticulum (ER) membranes with the formation of their hydrophobic ceramide anchors. After intracellular ceramide transfer to Golgi and trans-Golgi network (TGN) membranes, anabolism of GGs, as well as of other GSLs, is catalyzed by membrane-spanning glycosyltransferases (GTs) along the secretory pathway. Combined activity of only a few promiscuous GTs allows for the formation of cell-type-specific glycolipid patterns. Following an exocytotic vesicle flow to the cellular plasma membranes, GGs can be modified by metabolic reactions at or near the cellular surface. For degradation, GGs are endocytosed to reach late endosomes and lysosomes. Whereas membrane-spanning enzymes of the secretory pathway catalyze GSL and GG formation, a cooperation of soluble glycosidases, lipases and lipid-binding cofactors, namely the sphingolipid activator proteins (SAPs), act as the main players of GG and GSL catabolism at intralysosomal luminal vesicles (ILVs).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group (G131), German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
9
|
Alpaugh M, Galleguillos D, Forero J, Morales LC, Lackey SW, Kar P, Di Pardo A, Holt A, Kerr BJ, Todd KG, Baker GB, Fouad K, Sipione S. Disease-modifying effects of ganglioside GM1 in Huntington's disease models. EMBO Mol Med 2018; 9:1537-1557. [PMID: 28993428 PMCID: PMC5666311 DOI: 10.15252/emmm.201707763] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive and psychiatric problems. Previous studies indicated that levels of brain gangliosides are lower than normal in HD models and that administration of exogenous ganglioside GM1 corrects motor dysfunction in the YAC128 mouse model of HD In this study, we provide evidence that intraventricular administration of GM1 has profound disease-modifying effects across HD mouse models with different genetic background. GM1 administration results in decreased levels of mutant huntingtin, the protein that causes HD, and in a wide array of beneficial effects that include changes in levels of DARPP32, ferritin, Iba1 and GFAP, modulation of dopamine and serotonin metabolism, and restoration of normal levels of glutamate, GABA, L-Ser and D-Ser. Treatment with GM1 slows down neurodegeneration, white matter atrophy and body weight loss in R6/2 mice. Motor functions are significantly improved in R6/2 mice and restored to normal in Q140 mice, including gait abnormalities that are often resistant to treatments. Psychiatric-like and cognitive dysfunctions are also ameliorated by GM1 administration in Q140 and YAC128 mice. The widespread benefits of GM1 administration, at molecular, cellular and behavioural levels, indicate that this ganglioside has strong therapeutic and disease-modifying potential in HD.
Collapse
Affiliation(s)
- Melanie Alpaugh
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Danny Galleguillos
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Juan Forero
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | - Preeti Kar
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Alba Di Pardo
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Andrew Holt
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kathryn G Todd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Simonetta Sipione
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Abstract
Gangliosides are sialic acid containing glycosphingolipids, which are abundant in mammalian brain tissue. Several fatal human diseases are caused by defects in glycolipid metabolism. Defects in their degradation lead to an accumulation of metabolites upstream of the defective reactions, whereas defects in their biosynthesis lead to diverse problems in a large number of organs.Gangliosides are primarily positioned with their ceramide anchor in the neuronal plasma membrane and the glycan head group exposed on the cell surface. Their biosynthesis starts in the endoplasmic reticulum with the formation of the ceramide anchor, followed by sequential glycosylation reactions, mainly at the luminal surface of Golgi and TGN membranes, a combinatorial process, which is catalyzed by often promiscuous membrane-bound glycosyltransferases.Thereafter, the gangliosides are transported to the plasma membrane by exocytotic membrane flow. After endocytosis, they are degraded within the endolysosomal compartments by a complex machinery of degrading enzymes, lipid-binding activator proteins, and negatively charged lipids.
Collapse
Affiliation(s)
- Bernadette Breiden
- LIMES Institute, Membrane Biology & Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
| | - Konrad Sandhoff
- LIMES Institute, Membrane Biology & Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
| |
Collapse
|
11
|
Lopez PH, Báez BB. Gangliosides in Axon Stability and Regeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:383-412. [DOI: 10.1016/bs.pmbts.2018.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Ruggiero FM, Vilcaes AA, Yuki N, Daniotti JL. Membrane binding, endocytic trafficking and intracellular fate of high-affinity antibodies to gangliosides GD1a and GM1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:80-93. [DOI: 10.1016/j.bbamem.2016.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022]
|
13
|
Sibille E, Berdeaux O, Martine L, Bron AM, Creuzot-Garcher CP, He Z, Thuret G, Bretillon L, Masson EAY. Ganglioside Profiling of the Human Retina: Comparison with Other Ocular Structures, Brain and Plasma Reveals Tissue Specificities. PLoS One 2016; 11:e0168794. [PMID: 27997589 PMCID: PMC5173345 DOI: 10.1371/journal.pone.0168794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022] Open
Abstract
Gangliosides make a wide family of glycosphingolipids, highly heterogeneous in both the ceramide moiety and the oligosaccharide chain. While ubiquitously expressed in mammalian tissues, they are particularly abundant in the brain and the peripheral nervous system. Gangliosides are known to play a crucial role in the development, maintenance and functional integrity of the nervous system. However, the expression and roles of gangliosides in the retina, although often considered as a window on the brain, has been far less studied. We performed an in-depth analysis of gangliosides of the human retina, especially using powerful LC/MS methods. We compared the pattern of ganglioside classes and ceramide molecular species of this tissue with other ocular structures and with brain and plasma in elderly human individuals. About a hundred of ganglioside molecular species among 15 distinct classes were detected illustrating the huge structural diversity of these compounds. The retina exhibited a very diverse ganglioside profile and shared several common features with the brain (prominence of tetraosylgangliosides, abundance of d20:1 long chain base and 18:0 fatty acid…). However, the retina stood out with the specific expression of GD3, GT3 and AcGT3, which further presented a peculiar molecular species distribution. The unique ganglioside pattern we observed in the human retina suggests that these ganglioside species play a specific role in the structure and function of this tissue. This lipidomic study, by highlighting retina specific ganglioside species, opens up novel research directions for a better understanding of the biological role of gangliosides in the retina.
Collapse
Affiliation(s)
- Estelle Sibille
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Lucy Martine
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Alain M. Bron
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
- Department of Ophthalmology, University Hospital, Dijon, France
| | - Catherine P. Creuzot-Garcher
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
- Department of Ophthalmology, University Hospital, Dijon, France
| | - Zhiguo He
- Laboratory for Biology, Imaging, and Engineering of Corneal Grafts, EA2521, Faculty of Medicine, University Jean Monnet, Saint-Etienne, France
| | - Gilles Thuret
- Laboratory for Biology, Imaging, and Engineering of Corneal Grafts, EA2521, Faculty of Medicine, University Jean Monnet, Saint-Etienne, France
- Institut Universitaire de France, Paris, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Elodie A. Y. Masson
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
- * E-mail:
| |
Collapse
|
14
|
Yamaji T, Horie A, Tachida Y, Sakuma C, Suzuki Y, Kushi Y, Hanada K. Role of Intracellular Lipid Logistics in the Preferential Usage of Very Long Chain-Ceramides in Glucosylceramide. Int J Mol Sci 2016; 17:ijms17101761. [PMID: 27775668 PMCID: PMC5085785 DOI: 10.3390/ijms17101761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 11/16/2022] Open
Abstract
Ceramide is a common precursor of sphingomyelin (SM) and glycosphingolipids (GSLs) in mammalian cells. Ceramide synthase 2 (CERS2), one of the six ceramide synthase isoforms, is responsible for the synthesis of very long chain fatty acid (C20–26 fatty acids) (VLC)-containing ceramides (VLC-Cer). It is known that the proportion of VLC species in GSLs is higher than that in SM. To address the mechanism of the VLC-preference of GSLs, we used genome editing to establish three HeLa cell mutants that expressed different amounts of CERS2 and compared the acyl chain lengths of SM and GSLs by metabolic labeling experiments. VLC-sphingolipid expression was increased along with that of CERS2, and the proportion of VLC species in glucosylceramide (GlcCer) was higher than that in SM for all expression levels of CERS2. This higher proportion was still maintained even when the proportion of C16-Cer to the total ceramides was increased by disrupting the ceramide transport protein (CERT)-dependent C16-Cer delivery pathway for SM synthesis. On the other hand, merging the Golgi apparatus and the endoplasmic reticulum (ER) by Brefeldin A decreased the proportion of VLC species in GlcCer probably due to higher accessibility of UDP-glucose ceramide glucosyltransferase (UGCG) to C16-rich ceramides. These results suggest the existence of a yet-to-be-identified mechanism rendering VLC-Cer more accessible than C16-Cer to UGCG, which is independent of CERT.
Collapse
Affiliation(s)
- Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Aya Horie
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan.
| | - Yuriko Tachida
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Chisato Sakuma
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Yusuke Suzuki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan.
| | - Yasunori Kushi
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan.
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
15
|
Gangliosides of the Vertebrate Nervous System. J Mol Biol 2016; 428:3325-3336. [PMID: 27261254 DOI: 10.1016/j.jmb.2016.05.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/11/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022]
Abstract
Gangliosides, sialylated glycosphingolipids, found on all vertebrate cells and tissues, are major molecular determinants on the surfaces of vertebrate nerve cells. Composed of a sialylated glycan attached to a ceramide lipid, the same four structures-GM1, GD1a, GD1b, and GT1b-represent the vast majority (>90%) of gangliosides in the brains of all mammals and birds. Primarily found on the outer surface of the plasma membrane with their glycans facing outward, gangliosides associate laterally with each other, sphingomyelin, cholesterol, and select proteins in lipid rafts-the dynamic functional subdomains of the plasma membrane. The functions of gangliosides in the human nervous system are revealed by congenital mutations in ganglioside biosynthetic genes. Mutations in ST3GAL5, which codes for an enzyme early in brain ganglioside biosynthesis, result in an early-onset seizure disorder with profound motor and cognitive decay, whereas mutations in B4GALNT1, a gene encoding a later step, result in hereditary spastic paraplegia accompanied by intellectual deficits. The molecular functions of brain gangliosides include regulation of receptors in the same membrane via lateral (cis) associations and regulation of cell-cell recognition by trans interaction with ganglioside binding proteins on apposing cells. Gangliosides also affect the aggregation of Aβ (Alzheimer's disease) and α-synuclein (Parkinson's Disease). As analytical, biochemical, and genetic tools advance, research on gangliosides promises to reveal mechanisms of molecular control related to nerve and glial cell differentiation, neuronal excitability, axon outgrowth after nervous system injury, and protein folding in neurodegenerative diseases.
Collapse
|
16
|
Klokk TI, Kavaliauskiene S, Sandvig K. Cross-linking of glycosphingolipids at the plasma membrane: consequences for intracellular signaling and traffic. Cell Mol Life Sci 2016; 73:1301-16. [PMID: 26407609 PMCID: PMC11108300 DOI: 10.1007/s00018-015-2049-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022]
Abstract
Glycosphingolipids (GSLs) are predominantly found in the outer leaflet of the plasma membrane, where they play a role in important processes such as cell adhesion, migration and signaling. However, by which mechanisms GSLs regulate these processes remains elusive. In this study, we therefore took advantage of the fact that some GSLs also serve as receptors for certain protein toxins, which rely on receptor binding for internalization and intoxication. Here, we demonstrate that Shiga and cholera toxins, which both possess multivalent GSL-binding capacity, induce dissociation of the cytosolic cPLA2α-AnxA1 complex in HeLa and HMEC-1 cells. The dissociation is mediated through an increase in cytosolic calcium levels and activation of the tyrosine kinase Syk. Ricin, a protein toxin that does not cross-link surface molecules, has no effect on the same complex. Importantly, we find that antibody-mediated cross-linking of Gb3 and GM1, the GSL receptors for Shiga and cholera toxin, respectively, also induces dissociation. These data demonstrate that cross-linking of GSLs at the plasma membrane mediates the intracellular signaling events resulting in dissociation of the complex. After dissociation, cPLA2α and AnxA1 are translocated to intracellular membranes where they are known to function in regulating membrane transport processes. In conclusion, we have characterized a novel mechanism for cell surface-induced initiation of intracellular signaling and transport events.
Collapse
Affiliation(s)
- Tove Irene Klokk
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379, Oslo, Norway.
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0316, Oslo, Norway.
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0316, Oslo, Norway
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0316, Oslo, Norway
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
17
|
Daniotti JL, Lardone RD, Vilcaes AA. Dysregulated Expression of Glycolipids in Tumor Cells: From Negative Modulator of Anti-tumor Immunity to Promising Targets for Developing Therapeutic Agents. Front Oncol 2016; 5:300. [PMID: 26779443 PMCID: PMC4703717 DOI: 10.3389/fonc.2015.00300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022] Open
Abstract
Glycolipids are complex molecules consisting of a ceramide lipid moiety linked to a glycan chain of variable length and structure. Among these are found the gangliosides, which are sialylated glycolipids ubiquitously distributed on the outer layer of vertebrate plasma membranes. Changes in the expression of certain species of gangliosides have been described to occur during cell proliferation, differentiation, and ontogenesis. However, the aberrant and elevated expression of gangliosides has been also observed in different types of cancer cells, thereby promoting tumor survival. Moreover, gangliosides are actively released from the membrane of tumor cells, having a strong impact on impairing anti-tumor immunity. Beyond the undesirable effects of gangliosides in cancer cells, a substantial number of cancer immunotherapies have been developed in recent years that have used gangliosides as the main target. This has resulted in successful immune cell- or antibody-responses against glycolipids, with promising results having been obtained in clinical trials. In this review, we provide a general overview on the metabolism of glycolipids, both in normal and tumor cells, as well as examining glycolipid-mediated immune modulation and the main successes achieved in immunotherapies using gangliosides as molecular targets.
Collapse
Affiliation(s)
- Jose Luis Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Ricardo D Lardone
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute at Providence Saint John's Health Center , Santa Monica, CA , USA
| | - Aldo A Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| |
Collapse
|
18
|
Ledeen RW, Wu G. The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 2015; 40:407-18. [PMID: 26024958 DOI: 10.1016/j.tibs.2015.04.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/19/2022]
Abstract
GM1 ganglioside occurs widely in vertebrate tissues, where it exhibits many essential functions, both in the plasma membrane and intracellular loci. Its essentiality is revealed in the dire consequences resulting from genetic deletion. This derives from its key roles in several signalosome systems, characteristically located in membrane rafts, where it associates with specific proteins that have glycolipid-binding domains. Thus, GM1 interacts with proteins that modulate mechanisms such as ion transport, neuronal differentiation, G protein-coupled receptors (GPCRs), immune system reactivities, and neuroprotective signaling. The latter occurs through intimate association with neurotrophin receptors, which has relevance to the etiopathogenesis of neurodegenerative diseases and potential therapies. Here, we review the current state of knowledge of these GM1-associated mechanisms.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA.
| | - Gusheng Wu
- Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
19
|
Abstract
Lysosomes are cellular stomachs. They degrade macromolecules and release their components as nutrients into the cytosol. Digestion of sphingolipids and other membrane lipids occurs at luminal intraendosomal vesicles and IMs (intraendosomal membranes). Sphingolipid and membrane digestion needs catabolic hydrolases with the help of lipid-binding proteins [SAPs (sphingolipid activator proteins)] and anionic lipids such as BMP [bis(monoacylglycero)phosphate]. Inherited defects of hydrolases or SAPs or uptake of cationic amphiphilic drugs cause lipid accumulation, eventually leading to death, especially in inherited sphingolipid storage diseases. IMs are formed during endocytosis and their lipid composition is adjusted for degradation. Their cholesterol content, which stabilizes membranes, decreases and the level of negatively charged BMP, which stimulates sphingolipid degradation, increases. At the level of late endosomes, cholesterol is transported out of the luminal vesicles preferentially by cholesterol-binding proteins, NPC (Niemann-Pick type C)-2 and NPC-1. Their defects lead to an endolysosomal accumulation of cholesterol and sphingolipids in Niemann-Pick type C disease. BMP and ceramide stimulate NPC-2-mediated cholesterol transfer, whereas sphingomyelin inhibits it. Anionic membrane lipids also activate sphingomyelin degradation by ASM (acid sphingomyelinase), facilitating cholesterol export by NPC-2. ASM is a non-specific phospholipase C and degrades more than 23 phospholipids. SAPs are membrane-perturbing proteins which solubilize lipids, facilitating glycolipid digestion by presenting them to soluble catabolic enzymes at acidic pH. High BMP and low cholesterol levels favour lipid extraction and membrane disintegration by saposin A and B. The simultaneous inherited defect of saposins A-D causes a severe membrane and sphingolipid storage disease, also disrupting the water permeability barrier of the skin.
Collapse
|
20
|
Platt FM. Sphingolipid lysosomal storage disorders. Nature 2014; 510:68-75. [PMID: 24899306 DOI: 10.1038/nature13476] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/14/2014] [Indexed: 12/18/2022]
Abstract
Lysosomal storage diseases are inborn errors of metabolism, the hallmark of which is the accumulation, or storage, of macromolecules in the late endocytic system. They are monogenic disorders that occur at a collective frequency of 1 in 5,000 live births and are caused by inherited defects in genes that mainly encode lysosomal proteins, most commonly lysosomal enzymes. A subgroup of these diseases involves the lysosomal storage of glycosphingolipids. Through our understanding of the genetics, biochemistry and, more recently, cellular aspects of sphingolipid storage disorders, we have gained insights into fundamental aspects of cell biology that would otherwise have remained opaque. In addition, study of these disorders has led to significant progress in the development of therapies, several of which are now in routine clinical use. Emerging mechanistic links with more common diseases suggest we need to rethink our current concept of disease boundaries.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
21
|
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94:461-518. [PMID: 24692354 DOI: 10.1152/physrev.00033.2013] [Citation(s) in RCA: 531] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system.
Collapse
|
22
|
Lakshminarayan R, Wunder C, Becken U, Howes MT, Benzing C, Arumugam S, Sales S, Ariotti N, Chambon V, Lamaze C, Loew D, Shevchenko A, Gaus K, Parton RG, Johannes L. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat Cell Biol 2014; 16:595-606. [PMID: 24837829 DOI: 10.1038/ncb2970] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/15/2014] [Indexed: 12/17/2022]
Abstract
Several cell surface molecules including signalling receptors are internalized by clathrin-independent endocytosis. How this process is initiated, how cargo proteins are sorted and membranes are bent remains unknown. Here, we found that a carbohydrate-binding protein, galectin-3 (Gal3), triggered the glycosphingolipid (GSL)-dependent biogenesis of a morphologically distinct class of endocytic structures, termed clathrin-independent carriers (CLICs). Super-resolution and reconstitution studies showed that Gal3 required GSLs for clustering and membrane bending. Gal3 interacted with a defined set of cargo proteins. Cellular uptake of the CLIC cargo CD44 was dependent on Gal3, GSLs and branched N-glycosylation. Endocytosis of β1-integrin was also reliant on Gal3. Analysis of different galectins revealed a distinct profile of cargoes and uptake structures, suggesting the existence of different CLIC populations. We conclude that Gal3 functionally integrates carbohydrate specificity on cargo proteins with the capacity of GSLs to drive clathrin-independent plasma membrane bending as a first step of CLIC biogenesis.
Collapse
Affiliation(s)
- Ramya Lakshminarayan
- 1] Institut Curie-Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] CNRS UMR3666, 75005 Paris, France [3] INSERM U1143, 75005 Paris, France [4] [5]
| | - Christian Wunder
- 1] Institut Curie-Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] CNRS UMR3666, 75005 Paris, France [3] INSERM U1143, 75005 Paris, France [4] [5]
| | - Ulrike Becken
- 1] Institut Curie-Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] CNRS UMR3666, 75005 Paris, France [3] INSERM U1143, 75005 Paris, France [4] [5]
| | - Mark T Howes
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Carola Benzing
- Centre for Vascular Research, Australian Centre for Nanomedicine and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Senthil Arumugam
- 1] Institut Curie-Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] CNRS UMR3666, 75005 Paris, France [3] INSERM U1143, 75005 Paris, France
| | - Susanne Sales
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Valérie Chambon
- 1] Institut Curie-Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] CNRS UMR3666, 75005 Paris, France [3] INSERM U1143, 75005 Paris, France [4]
| | - Christophe Lamaze
- 1] CNRS UMR3666, 75005 Paris, France [2] INSERM U1143, 75005 Paris, France [3] Institut Curie-Centre de Recherche, Membrane Dynamics and Mechanics of Intracellular Signaling group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [4]
| | - Damarys Loew
- Institut Curie-Centre de Recherche, Proteomics and Mass Spectrometry Laboratory, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Katharina Gaus
- Centre for Vascular Research, Australian Centre for Nanomedicine and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ludger Johannes
- 1] Institut Curie-Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] CNRS UMR3666, 75005 Paris, France [3] INSERM U1143, 75005 Paris, France [4]
| |
Collapse
|
23
|
Yamaji T, Hanada K. Establishment of HeLa cell mutants deficient in sphingolipid-related genes using TALENs. PLoS One 2014; 9:e88124. [PMID: 24498430 PMCID: PMC3912166 DOI: 10.1371/journal.pone.0088124] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/06/2014] [Indexed: 12/27/2022] Open
Abstract
Sphingolipids are essential components in eukaryotes and have various cellular functions. Recent developments in genome-editing technologies have facilitated gene disruption in various organisms and cell lines. We here show the disruption of various sphingolipid metabolic genes in human cervical carcinoma HeLa cells by using transcription activator-like effector nucleases (TALENs). A TALEN pair targeting the human CERT gene (alternative name COL4A3BP) encoding a ceramide transport protein induced a loss-of-function phenotype in more than 60% of HeLa cells even though the cell line has a pseudo-triploid karyotype. We have isolated several loss-of-function mutant clones for CERT, UGCG (encoding glucosylceramide synthase), and B4GalT5 (encoding the major lactosylceramide synthase), and also a CERT/UGCG double-deficient clone. Characterization of these clones supported previous proposals that CERT primarily contributes to the synthesis of SM but not GlcCer, and that B4GalT5 is the major LacCer synthase. These newly established sphingolipid-deficient HeLa cell mutants together with our previously established stable transfectants provide a ‘sphingolipid-modified HeLa cell panel,’ which will be useful to elucidate the functions of various sphingolipid species against essentially the same genomic background.
Collapse
Affiliation(s)
- Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- * E-mail: (TY); (KH)
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- * E-mail: (TY); (KH)
| |
Collapse
|
24
|
Seyfried TN, Rockwell HE, Heinecke KA, Martin DR, Sena-Esteves M. Ganglioside storage diseases: on the road to management. ADVANCES IN NEUROBIOLOGY 2014; 9:485-99. [PMID: 25151393 DOI: 10.1007/978-1-4939-1154-7_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although the biochemical and genetic basis for the GM1 and GM2 gangliosidoses has been known for decades, effective therapies for these diseases remain in early stages of development. The difficulty with many therapeutic strategies for treating the gangliosidoses comes largely from their inability to remove stored ganglioside once it accumulates in central nervous system (CNS) neurons and glia. This chapter highlights advances made using substrate reduction therapy and gene therapy in reducing CNS ganglioside storage. Information obtained from mouse and feline models provides insight on therapeutic strategies that could be effective in human clinical trials. In addition, information is presented showing how a calorie-restricted diet might facilitate therapeutic drug delivery to the CNS. The development of multiple new therapeutic approaches offers hope that longer-term management of these diseases can be achieved. It is also clear that multiple therapeutic strategies will likely be needed to provide the most complete management.
Collapse
|
25
|
Daniotti JL, Vilcaes AA, Torres Demichelis V, Ruggiero FM, Rodriguez-Walker M. Glycosylation of glycolipids in cancer: basis for development of novel therapeutic approaches. Front Oncol 2013; 3:306. [PMID: 24392350 PMCID: PMC3867695 DOI: 10.3389/fonc.2013.00306] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/03/2013] [Indexed: 12/18/2022] Open
Abstract
Altered networks of gene regulation underlie many pathologies, including cancer. There are several proteins in cancer cells that are turned either on or off, which dramatically alters the metabolism and the overall activity of the cell, with the complex machinery of enzymes involved in the metabolism of glycolipids not being an exception. The aberrant glycosylation of glycolipids on the surface of the majority of cancer cells, associated with increasing evidence about the functional role of these molecules in a number of cellular physiological pathways, has received considerable attention as a convenient immunotherapeutic target for cancer treatment. This has resulted in the development of a substantial number of passive and active immunotherapies, which have shown promising results in clinical trials. More recently, antibodies to glycolipids have also emerged as an attractive tool for the targeted delivery of cytotoxic agents, thereby providing a rationale for future therapeutic interventions in cancer. This review first summarizes the cellular and molecular bases involved in the metabolic pathway and expression of glycolipids, both in normal and tumor cells, paying particular attention to sialosylated glycolipids (gangliosides). The current strategies in the battle against cancer in which glycolipids are key players are then described.
Collapse
Affiliation(s)
- Jose L Daniotti
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Aldo A Vilcaes
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Vanina Torres Demichelis
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Fernando M Ruggiero
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Macarena Rodriguez-Walker
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| |
Collapse
|
26
|
Schulze H, Sandhoff K. Sphingolipids and lysosomal pathologies. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:799-810. [PMID: 24184515 DOI: 10.1016/j.bbalip.2013.10.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 01/12/2023]
Abstract
Endocytosed (glyco)sphingolipids are degraded, together with other membrane lipids in a stepwise fashion by endolysosomal enzymes with the help of small lipid binding proteins, the sphingolipid activator proteins (SAPs), at the surface of intraluminal lysosomal vesicles. Inherited defects in a sphingolipid-degrading enzyme or SAP cause the accumulation of the corresponding lipid substrates, including cytotoxic lysosphingolipids, such as galactosylsphingosine and glucosylsphingosine, and lead to a sphingolipidosis. Analysis of patients with prosaposin deficiency revealed the accumulation of intra-endolysosmal vesicles and membrane structures (IM). Feeding of prosaposin reverses the storage, suggesting inner membrane structures as platforms of sphingolipid degradation. Water soluble enzymes can hardly attack sphingolipids embedded in the membrane of inner endolysosomal vesicles. The degradation of sphingolipids with few sugar residues therefore requires the help of the SAPs, and is strongly stimulated by anionic membrane lipids. IMs are rich in anionic bis(monoacylglycero)phosphate (BMP). This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Heike Schulze
- LIMES, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53115 Bonn, Germany
| | - Konrad Sandhoff
- LIMES, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53115 Bonn, Germany.
| |
Collapse
|
27
|
Mlinac K, Fabris D, Vukelić Z, Rožman M, Heffer M, Bognar SK. Structural analysis of brain ganglioside acetylation patterns in mice with altered ganglioside biosynthesis. Carbohydr Res 2013; 382:1-8. [PMID: 24140892 DOI: 10.1016/j.carres.2013.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 12/29/2022]
Abstract
Gangliosides are sialylated membrane glycosphingolipids especially abundant in mammalian brain tissue. Sialic acid O-acetylation is one of the most common structural modifications of gangliosides which considerably influences their chemical properties. In this study, gangliosides extracted from brain tissue of mice with altered ganglioside biosynthesis (St8sia1 null and B4galnt1 null mice) were structurally characterized and their acetylation pattern was analyzed. Extracted native and alkali-treated gangliosides were resolved by high performance thin layer chromatography. Ganglioside mixtures as well as separated individual ganglioside fractions were further analyzed by tandem mass spectrometry. Several O-acetylated brain ganglioside species were found in knockout mice, not present in the wild-type mice. To the best of our knowledge this is the first report on the presence of O-acetylated GD1a in St8sia1 null mice and O-acetylated GM3 species in B4galnt1 null mice. In addition, much higher diversity of abnormally accumulated brain ganglioside species regarding the structure of ceramide portion was observed in knockout versus wild-type mice. Obtained findings indicate that the diversity of brain ganglioside structures as well as acetylation patterns in mice with altered ganglioside biosynthesis, is even higher than previously reported. Further investigation is needed in order to explore the effects of acetylation on ganglioside interactions with other molecules and consequently the physiological role of acetylated ganglioside species.
Collapse
Affiliation(s)
- Kristina Mlinac
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Gangliosides are the main glycolipids of neuronal plasma membranes. Their surface patterns are generated by coordinated processes, involving biosynthetic pathways of the secretory compartments, catabolic steps of the endolysosomal system, and intracellular trafficking. Inherited defects in ganglioside biosynthesis causing fatal neurodegenerative diseases have been described so far almost exclusively in mouse models, whereas inherited defects in ganglioside catabolism causing various clinical forms of GM1- and GM2-gangliosidoses have long been known. For digestion, gangliosides are endocytosed and reach intra-endosomal vesicles. At the level of late endosomes, they are depleted of membrane-stabilizing lipids like cholesterol and enriched with bis(monoacylglycero)phosphate (BMP). Lysosomal catabolism is catalyzed at acidic pH values by cationic sphingolipid activator proteins (SAPs), presenting lipids to their respective hydrolases, electrostatically attracted to the negatively charged surface of the luminal BMP-rich vesicles. Various inherited defects of ganglioside hydrolases, e.g., of β-galactosidase and β-hexosaminidases, and of GM2-activator protein, cause infantile (with tetraparesis, dementia, blindness) and different protracted clinical forms of GM1- and GM2-gangliosidoses. Mutations yielding proteins with small residual catabolic activities in the lysosome give rise to juvenile and adult clinical forms with a wide range of clinical symptomatology. Apart from patients' differences in their genetic background, clinical heterogeneity may be caused by rather diverse substrate specificities and functions of lysosomal hydrolases, multifunctional properties of SAPs, and the strong regulation of ganglioside catabolism by membrane lipids. Currently, there is no treatment available for neuronal ganglioside storage diseases. Therapeutic approaches in mouse models and patients with juvenile forms of gangliosidoses are discussed.
Collapse
|
29
|
Kolter T. Ganglioside biochemistry. ISRN BIOCHEMISTRY 2012; 2012:506160. [PMID: 25969757 PMCID: PMC4393008 DOI: 10.5402/2012/506160] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/21/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized.
Collapse
Affiliation(s)
- Thomas Kolter
- Program Unit Membrane Biology & Lipid Biochemistry, LiMES, University of Bonn, Gerhard-Domagk Straße 1, 53121 Bonn, Germany
| |
Collapse
|
30
|
Nagahori N, Yamashita T, Amano M, Nishimura SI. Effect of ganglioside GM3 synthase gene knockout on the glycoprotein N-glycan profile of mouse embryonic fibroblast. Chembiochem 2012; 14:73-82. [PMID: 23225753 DOI: 10.1002/cbic.201200641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Indexed: 12/18/2022]
Abstract
The structural and clinical significance of cellular glycoproteins and glycosphingolipids (GSLs) are often separately discussed. Considering the biosynthetic pathway of glycoconjugates, glycans of cell-surface glycoproteins and GSLs might partially share functions in maintaining cellular homeostatis. The purpose of this study is to establish a general and comprehensive glycomics protocol for cellular GSLs and N-glycans of glycoproteins. To test the feasibility of a glycoblotting-based protocol, whole glycans released both from GSLs and glycoproteins were profiled concurrently by using GM3 synthase-deficient mouse embryonic fibroblast GM3(-/-). GM3(-/-) cells did not synthesize GM3 or any downstream product of GM3 synthase. Instead, expression levels of o-series gangliosides involving GM1-b and GD1-α increased dramatically, whereas a-/b-series gangliosides were predominantly detected in wild-type (WT) cells. We also discovered that glycoprotein N-glycan profiles of GM3(-/-) cells are significantly altered as compared to WT cells, although GM3 synthase is responsible only for GSLs synthesis and is not associated with glycoprotein N-glycan biosynthesis. The present approach allows for high-throughput profiling of cellular glycomes enriched by different classes of glycoconjugates, and our results demonstrated that gene knockout of the enzymes responsible for GSL biosynthesis significantly influences the N-glycans of glycoproteins.
Collapse
Affiliation(s)
- Noriko Nagahori
- Graduate School of Advanced Life Science, and Frontier Research Center for the Post-Genome Science and Technology, Hokkaido University, N21, W11, Sapporo 001-0021, Japan
| | | | | | | |
Collapse
|
31
|
Abstract
Cell entry of rotaviruses is a complex process, which involves sequential interactions with several cell surface molecules. Among the molecules implicated are gangliosides, glycosphingolipids with one or more sialic acid (SA) residues. The role of gangliosides in rotavirus cell entry was studied by silencing the expression of two key enzymes involved in their biosynthesis--the UDP-glucose:ceramide glucosyltransferase (UGCG), which transfers a glucose molecule to ceramide to produce glucosylceramide GlcCer, and the lactosyl ceramide-α-2,3-sialyl transferase 5 (GM3-s), which adds the first SA to lactoceramide-producing ganglioside GM3. Silencing the expression of both enzymes resulted in decreased ganglioside levels (as judged by GM1a detection). Four rotavirus strains tested (human Wa, simian RRV, porcine TFR-41, and bovine UK) showed a decreased infectivity in cells with impaired ganglioside synthesis; however, their replication after bypassing the entry step was not affected, confirming the importance of gangliosides for cell entry of the viruses. Interestingly, viral binding to the cell surface was not affected in cells with inhibited ganglioside synthesis, but the infectivity of all strains tested was inhibited by preincubation of gangliosides with virus prior to infection. These data suggest that rotaviruses can attach to cell surface in the absence of gangliosides but require them for productive cell entry, confirming their functional role during rotavirus cell entry.
Collapse
|
32
|
Sturgill ER, Aoki K, Lopez PHH, Colacurcio D, Vajn K, Lorenzini I, Majić S, Yang WH, Heffer M, Tiemeyer M, Marth JD, Schnaar RL. Biosynthesis of the major brain gangliosides GD1a and GT1b. Glycobiology 2012; 22:1289-301. [PMID: 22735313 DOI: 10.1093/glycob/cws103] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gangliosides-sialylated glycosphingolipids-are the major glycoconjugates of nerve cells. The same four structures-GM1, GD1a, GD1b and GT1b-comprise the great majority of gangliosides in mammalian brains. They share a common tetrasaccharide core (Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1'Cer) with one or two sialic acids on the internal galactose and zero (GM1 and GD1b) or one (GD1a and GT1b) α2-3-linked sialic acid on the terminal galactose. Whereas the genes responsible for the sialylation of the internal galactose are known, those responsible for terminal sialylation have not been established in vivo. We report that St3gal2 and St3gal3 are responsible for nearly all the terminal sialylation of brain gangliosides in the mouse. When brain ganglioside expression was analyzed in adult St3gal1-, St3gal2-, St3gal3- and St3gal4-null mice, only St3gal2-null mice differed significantly from wild type, expressing half the normal amount of GD1a and GT1b. St3gal1/2-double-null mice were no different than St3gal2-single-null mice; however, St3gal2/3-double-null mice were >95% depleted in gangliosides GD1a and GT1b. Total ganglioside expression (lipid-bound sialic acid) in the brains of St3gal2/3-double-null mice was equivalent to that in wild-type mice, whereas total protein sialylation was reduced by half. St3gal2/3-double-null mice were small, weak and short lived. They were half the weight of wild-type mice at weaning and displayed early hindlimb dysreflexia. We conclude that the St3gal2 and St3gal3 gene products (ST3Gal-II and ST3Gal-III sialyltransferases) are largely responsible for ganglioside terminal α2-3 sialylation in the brain, synthesizing the major brain gangliosides GD1a and GT1b.
Collapse
Affiliation(s)
- Elizabeth R Sturgill
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Neurofibromatosis-like phenotype in Drosophila caused by lack of glucosylceramide extension. Proc Natl Acad Sci U S A 2012; 109:6987-92. [PMID: 22493273 DOI: 10.1073/pnas.1115453109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Glycosphingolipids (GSLs) are of fundamental importance in the nervous system. However, the molecular details associated with GSL function are largely unknown, in part because of the complexity of GSL biosynthesis in vertebrates. In Drosophila, only one major GSL biosynthetic pathway exists, controlled by the glycosyltransferase Egghead (Egh). Here we discovered that loss of Egh causes overgrowth of peripheral nerves and attraction of immune cells to the nerves. This phenotype is reminiscent of the human disorder neurofibromatosis type 1, which is characterized by disfiguring nerve sheath tumors with mast cell infiltration, increased cancer risk, and learning deficits. Neurofibromatosis type 1 is due to a reduction of the tumor suppressor neurofibromin, a negative regulator of the small GTPase Ras. Enhanced Ras signaling promotes glial growth through activation of phosphatidylinositol 3-kinase (PI3K) and its downstream kinase Akt. We find that overgrowth of peripheral nerves in egh mutants is suppressed by down-regulation of the PI3K signaling pathway by expression of either dominant-negative PI3K, the tumor suppressor PTEN, or the transcription factor FOXO in the subperineurial glia. These results show that loss of the glycosyltransferase Egh affects membrane signaling and activation of PI3K signaling in glia of the peripheral nervous system, and suggest that glycosyltransferases may suppress proliferation.
Collapse
|
34
|
Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res 2012; 37:1230-44. [PMID: 22410735 DOI: 10.1007/s11064-012-0744-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 02/01/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nervous system. They are localized primarily in the outer leaflets of plasma membranes and participated in cell-cell recognition, adhesion, and signal transduction and are integral components of cell surface microdomains or lipid rafts along with proteins, sphingomyelin and cholesterol. Ganglioside-rich lipid rafts play an important role in signaling events affecting neural development and the pathogenesis of certain diseases. Disruption of gangloside synthase genes in mice induces developmental defects and neural degeneration. Targeting ganglioside metabolism may represent a novel therapeutic strategy for intervention in certain diseases. In this review, we focus on recent advances on metabolic and functional studies of gangliosides in normal brain development and in certain neurological disorders.
Collapse
|
35
|
Daniotti JL, Iglesias-Bartolomé R. Metabolic pathways and intracellular trafficking of gangliosides. IUBMB Life 2012; 63:513-20. [PMID: 21698755 DOI: 10.1002/iub.477] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gangliosides constitute a large and heterogeneous family of acidic glycosphingolipids that contain one or more sialic acid residues and are expressed in nearly all vertebrate cells. Their de novo synthesis starts at the endoplasmic reticulum and is continued by a combination of glycosyltransferase activities at the Golgi complex, followed by vesicular delivery to the plasma membrane. At the cell surface, gangliosides participate in a variety of physiological as well as pathological processes. The cloning of genes for most of the glycosyltransferases responsible for ganglioside biosynthesis has produced a better understanding of the cellular and molecular basis of the ganglioside metabolism. In addition, the ability to delete groups of glycosphingolipid structures in mice has been enormously important in determining their physiological roles. Recently, a number of enzymes for ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane, which might contribute to modulate local glycolipid composition, and consequently, the cell function.
Collapse
Affiliation(s)
- Jose Luis Daniotti
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | |
Collapse
|
36
|
Figueroa AC, Soria EA, Cantero JJ, Sanchez MS, Goleniowski ME. Cytotoxic Activity of <i>Thelesperma megapotamicum</i> Organic Fractions against MCF-7 Human Breast Cancer Cell Line. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jct.2012.31013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Kwak DH, Seo BB, Chang KT, Choo YK. Roles of gangliosides in mouse embryogenesis and embryonic stem cell differentiation. Exp Mol Med 2011; 43:379-88. [PMID: 21654188 DOI: 10.3858/emm.2011.43.7.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Gangliosides have been suggested to play important roles in various functions such as adhesion, cell differentiation, growth control, and signaling. Mouse follicular development, ovulation, and luteinization during the estrous cycle are regulated by several hormones and cell-cell interactions. In addition, spermatogenesis in seminiferous tubules of adult testes is also regulated by several hormones, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and cell-cell interactions. The regulation of these processes by hormones and cell-cell interactions provides evidence for the importance of surface membrane components, including gangliosides. During preimplantation embryo development, a mammalian embryo undergoes a series of cleavage divisions whereby a zygote is converted into a blastocyst that is sufficiently competent to be implanted in the ma ternal uterus and continue its development. Mouse embryonic stem (mES) cells are pluripotent cells derived from mouse embryo, specifically, from the inner cell mass of blastocysts. Differentiated neuronal cells are derived from mES cells through the formation of embryonic bodies (EBs). EBs recapitulate many aspects of lineage-specific differentiation and temporal and spatial gene expression patterns during early embryogenesis. Previous studies on ganglioside expression during mouse embryonic development (including during in vitro fertilization, ovulation, spermatogenesis, and embryogenesis) reported that gangliosides were expressed in both undifferentiated and differentiated (or differentiating) mES cells. In this review, we summarize some of the advances in our understanding of the functional roles of gangliosides during the stages of mouse embryonic development, including ovulation, spermatogenesis, and embryogenesis, focusing on undifferentiated and differentiated mES cells (neuronal cells).
Collapse
Affiliation(s)
- Dong Hoon Kwak
- Department of Biological Science College of Natural Sciences Biotechnology Institute Wonkwang University Iksan, Korea
| | | | | | | |
Collapse
|
38
|
Vilcaes AA, Demichelis VT, Daniotti JL. Trans-activity of plasma membrane-associated ganglioside sialyltransferase in mammalian cells. J Biol Chem 2011; 286:31437-46. [PMID: 21768099 DOI: 10.1074/jbc.m111.257196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition.
Collapse
Affiliation(s)
- Aldo A Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
39
|
Abstract
The last 10 years have seen a rebirth of interest in lipid biology in the fields of Drosophila development and neurobiology, and sphingolipids have emerged as controlling many processes that have not previously been studied from the viewpoint of lipid biochemistry. Mutations in sphingolipid regulatory enzymes have been pinpointed as affecting cell survival and growth in tissues ranging from muscle to retina. Specification of cell types are also influenced by sphingolipid regulatory pathways, as genetic interactions of glycosphingolipid biosynthetic enzymes with many well-known signaling receptors such as Notch and epidermal growth factor receptor reveal. Furthermore, studies in flies are now uncovering unexpected roles of sphingolipids in controlling lipid storage and response to nutrient availability. The sophisticated genetics of Drosophila is particularly well suited to uncover the roles of sphingolipid regulatory enzymes in development and metabolism, especially in light of conserved pathways that are present in both flies and mammals. The challenges that remain in the field of sphingolipid biology in Drosophila are to combine traditional developmental genetics with more analytical biochemical and biophysical methods, to quantify and localize the responses of these lipids to genetic and metabolic perturbations.
Collapse
Affiliation(s)
- Rachel Kraut
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
40
|
|
41
|
Crespo PM, Demichelis VT, Daniotti JL. Neobiosynthesis of glycosphingolipids by plasma membrane-associated glycosyltransferases. J Biol Chem 2010; 285:29179-90. [PMID: 20639193 DOI: 10.1074/jbc.m110.123422] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gangliosides, complex glycosphingolipids containing sialic acids, are synthesized in the endoplasmic reticulum and in the Golgi complex. These neobiosynthesized gangliosides move via vesicular transport to the plasma membrane, becoming components of the external leaflet. Gangliosides can undergo endocytosis followed by recycling to the cell surface or sorting to the Golgi complex or lysosomes for remodeling and catabolism. Recently, glycosphingolipid catabolic enzymes (glycohydrolases) have been found to be associated with the plasma membrane, where they display activity on the membrane components. In this work, we demonstrated that ecto-ganglioside glycosyltransferases may catalyze ganglioside synthesis outside the Golgi compartment, particularly at the cell surface. Specifically, we report the first direct evidence of expression and activity of CMP-NeuAc:GM3 sialyltransferase (Sial-T2) at the cell surface of epithelial and melanoma cells, with membrane-integrated ecto-Sial-T2 being able to sialylate endogenously synthesized GM3 ganglioside as well as exogenously incorporated substrate. Interestingly, we also showed that ecto-Sial-T2 was able to synthesize GD3 ganglioside at the cell surface using the endogenously synthesized cytidine monophospho-N-acetylneuraminic acid (CMP-NeuAc) available at the extracellular milieu. In addition, the expression of UDP-GalNAc:LacCer/GM3/GD3 N-acetylgalactosaminyltransferase (GalNAc-T) was also detected at the cell surface of epithelial cells, whose catalytic activity was only observed after feeding the cells with exogenous GM3 substrate. Thus, the relative interplay between the plasma membrane-associated glycosyltransferase and glycohydrolase activities, even when acting on a common substrate, emerges as a potential level of regulation of the local glycosphingolipid composition in response to different external and internal stimuli.
Collapse
Affiliation(s)
- Pilar M Crespo
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | | | | |
Collapse
|
42
|
Jung JU, Ko K, Lee DH, Ko K, Chang KT, Choo YK. The roles of glycosphingolipids in the proliferation and neural differentiation of mouse embryonic stem cells. Exp Mol Med 2010; 41:935-45. [PMID: 19745600 DOI: 10.3858/emm.2009.41.12.099] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glycosphingolipids including gangliosides play important regulatory roles in cell proliferation and differentiation. UDP-glucose:ceramide glucosyltransferase (Ugcg) catalyze the initial step in glycosphingolipids biosynthesis pathway. In this study, Ugcg expression was reduced to approximately 80% by short hairpin RNAs (shRNAs) to evaluate the roles of glycosphingolipids in proliferation and neural differentiation of mouse embryonic stem cells (mESCs). HPTLC/immunofluorescence analyses of shRNA- transfected mESCs revealed that treatment with Ugcg-shRNA decreased expression of major gangliosides, GM3 and GD3. Furthermore, MTT and Western blot/immunofluorescence analyses demonstrated that inhibition of the Ugcg expression in mESCs resulted in decrease of cell proliferation (P<0.05) and decrease of activation of the ERK1/2 (P<0.05), respectively. To further investigate the role of glycosphingolipids in neural differentiation, the embryoid bodies formed from Ugcg-shRNA transfected mESCs were differentiated into neural cells by treatment with retinoic acid. We found that inhibition of Ugcg expression did not affect embryoid body (EB) differentiation, as judged by morphological comparison and expression of early neural precursor cell marker, nestin, in differentiated EBs. However, RT-PCR/immunofluorescence analyses showed that expression of microtubule-associated protein 2 (MAP-2) for neurons and glial fibrillary acidic protein (GFAP) for glial cells was decreased in neural cells differentiated from the shRNA-transfected mESCs. These results suggest that glycosphingolipids are involved in the proliferation of mESCs through ERK1/2 activation, and that glycosphingolipids play roles in differentiation of neural precursor cells derived from mESCs.
Collapse
Affiliation(s)
- Ji-Ung Jung
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | | | |
Collapse
|
43
|
Alterations in the content and physiological role of sphingomyelin in plasma membranes of cells cultured in three-dimensional matrix. Mol Cell Biochem 2010; 340:215-22. [DOI: 10.1007/s11010-010-0420-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
44
|
Schnaar RL. Brain gangliosides in axon-myelin stability and axon regeneration. FEBS Lett 2009; 584:1741-7. [PMID: 19822144 DOI: 10.1016/j.febslet.2009.10.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 01/21/2023]
Abstract
Gangliosides, sialic acid-bearing glycosphingolipids, are expressed at high abundance and complexity in the brain. Altered ganglioside expression results in neural disorders, including seizures and axon degeneration. Brain gangliosides function, in part, by interacting with a ganglioside-binding lectin, myelin-associated glycoprotein (MAG). MAG, on the innermost wrap of the myelin sheath, binds to gangliosides GD1a and GT1b on axons. MAG-ganglioside binding ensures optimal axon-myelin cell-cell interactions, enhances long-term axon-myelin stability and inhibits axon outgrowth after injury. Knowledge of the molecular interactions of brain gangliosides may improve understanding of axon-myelin stability and provide opportunities to enhance recovery after nerve injury.
Collapse
Affiliation(s)
- Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
45
|
Crespo PM, von Muhlinen N, Iglesias-Bartolomé R, Daniotti JL. Complex gangliosides are apically sorted in polarized MDCK cells and internalized by clathrin-independent endocytosis. FEBS J 2009; 275:6043-56. [PMID: 19021775 DOI: 10.1111/j.1742-4658.2008.06732.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gangliosides are glycosphingolipids mainly present at the outer leaflet of the plasma membrane of eukaryotic cells, where they participate in recognition and signalling activities. The synthesis of gangliosides is carried out in the lumen of the Golgi apparatus by a complex system of glycosyltransferases. After synthesis, gangliosides leave the Golgi apparatus via the lumenal surface of transport vesicles destined to the plasma membrane. In this study, we analysed the synthesis and membrane distribution of GD3 and GM1 gangliosides endogenously synthesized by Madin-Darby canine kidney (MDCK) cell lines genetically modified to express appropriate ganglioside glycosyltransferases. Using biochemical techniques and confocal laser scanning microscopy analysis, we demonstrated that GD3 and GM1, after being synthesized at the Golgi apparatus, were transported and accumulated mainly at the plasma membrane of nonpolarized MDCK cell lines. More interestingly, both complex gangliosides were found to be enriched mainly at the apical domain when these cell lines were induced to polarize. In addition, we demonstrated that, after arrival at the plasma membrane, GD3 and GM1 gangliosides were endocytosed using a clathrin-independent pathway. Then, internalized GD3, in association with a specific monoclonal antibody, was accumulated in endosomal compartments and transported back to the plasma membrane. In contrast, endocytosed GM1, in association with cholera toxin, was transported to endosomal compartments en route to the Golgi apparatus. In conclusion, our results demonstrate that complex gangliosides are apically sorted in polarized MDCK cells, and that GD3 and GM1 gangliosides are internalized by clathrin-independent endocytosis to follow different intracellular destinations.
Collapse
Affiliation(s)
- Pilar M Crespo
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | |
Collapse
|
46
|
Moore ML, Chi MH, Goleniewska K, Durbin JE, Peebles RS. Differential regulation of GM1 and asialo-GM1 expression by T cells and natural killer (NK) cells in respiratory syncytial virus infection. Viral Immunol 2008; 21:327-39. [PMID: 18788941 DOI: 10.1089/vim.2008.0003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously reported that respiratory syncytial virus (RSV) infection increases lung CD8(+) T cell GM1 expression. The related lipid asialo-GM1 (ASGM1) is expressed by T cells in viral infection and by natural killer (NK) cells. The in vivo co-expression of GM1 and ASGM1 by immune cells is not defined. Here we analyzed lung lymphocyte GM1 and ASGM1 expression in RSV-infected mice. GM1 and ASGM1 were coordinately upregulated by activated CD8(+) T cells in RSV-infected BALB/c and C57BL/6 mice. In contrast, RSV infection had no effect on constitutively high NK cell GM1 expression, while increasing NK cell ASGM1 expression. GM1 and ASGM1 co-localized in lipid raft structures in NK and CD8(+) T cells sorted from the lungs of RSV-infected mice. Anti-ASGM1 Ab treatment of RSV-infected BALB/c mice depleted GM1/ASGM1-expressing NK cells and GM1/ASGM1-expressing T cells, reduced lung IFN-gamma levels, increased viral load, delayed viral clearance, and reduced illness. STAT1(-/-) mice are more susceptible to RSV replication and disease than wild-type mice. In RSV-infected STAT1(-/-) mice, anti-ASGM1 Ab altered cytokine levels, but in contrast to BALB/c mice, antibody treatment had no effect on viral load or illness. Taken together, GM1 and ASGM1 expression are differentially regulated by T and NK cells in RSV infection. Also, GM1/ASGM1-expressing cells are important for control of RSV in BALB/c mice, whereas STAT1(-/-) mice clear RSV by an alternative pathway.
Collapse
Affiliation(s)
- Martin L Moore
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Glycosphingolipids, comprising a ceramide lipid backbone linked to one/more saccharides, are particularly abundant on the outer leaflet of the eukaryotic plasma membrane and play a role in a wide variety of essential cellular processes. Biosynthesis and subsequently degradation of these lipids is tightly regulated via the involvement of numerous enzymes, and failure of an enzyme to participate in the metabolism results in storage of the enzyme's substrate, giving rise to a lysosomal storage disease. The characteristics, severity and onset of the disease are dependent on the enzyme deficient and the residual activity. Most lysosomal storage disorders found thus far are caused by a defect in the catabolic activity of a hydrolase, causing progressive accumulation of its substrate, predominantly in the lysosome. Storage of gangliosides, sialic acid containing glycosphingolipids, mostly found in the central nervous system, is a hallmark of neuronopathic forms of the disease, that include GM1 and GM2 gangliosidoses, Gaucher type II and III and Niemann-Pick C. Models for these diseases have provided valuable insight into the disease pathology and potential treatment methods.Treatment of these rare but severe disorders proves challenging due to restricted access of therapeutics through the blood-brain barrier. However, recent advances in enzyme replacement, bone marrow transplantation, gene transfer, substrate reduction and chaperon-mediated therapy provide great potential in treating these devastating disorders.
Collapse
Affiliation(s)
- Stephanie D Boomkamp
- Glycobiology Institute, Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK
| | | |
Collapse
|
48
|
Zitman FMP, Todorov B, Jacobs BC, Verschuuren JJ, Furukawa K, Furukawa K, Willison HJ, Plomp JJ. Neuromuscular synaptic function in mice lacking major subsets of gangliosides. Neuroscience 2008; 156:885-97. [PMID: 18801416 DOI: 10.1016/j.neuroscience.2008.08.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/04/2008] [Accepted: 08/16/2008] [Indexed: 01/27/2023]
Abstract
Gangliosides are a family of sialylated glycosphingolipids enriched in the outer leaflet of neuronal membranes, in particular at synapses. Therefore, they have been hypothesized to play a functional role in synaptic transmission. We have measured in detail the electrophysiological parameters of synaptic transmission at the neuromuscular junction (NMJ) ex vivo of a GD3-synthase knockout mouse, expressing only the O- and a-series gangliosides, as well as of a GM2/GD2-synthase*GD3-synthase double-knockout (dKO) mouse, lacking all gangliosides except GM3. No major synaptic deficits were found in either null-mutant. However, some extra degree of rundown of acetylcholine release at high intensity use was present at the dKO NMJ and a temperature-specific increase in acetylcholine release at 35 degrees C was observed in GD3-synthase knockout NMJs, compared with wild-type. These results indicate that synaptic transmission at the NMJ is not crucially dependent on the particular presence of most ganglioside family members and remains largely intact in the sole presence of GM3 ganglioside. Rather, presynaptic gangliosides appear to play a modulating role in temperature- and use-dependent fine-tuning of transmitter output.
Collapse
Affiliation(s)
- F M P Zitman
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sabourdy F, Kedjouar B, Sorli SC, Colié S, Milhas D, Salma Y, Levade T. Functions of sphingolipid metabolism in mammals--lessons from genetic defects. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:145-83. [PMID: 18294974 DOI: 10.1016/j.bbalip.2008.01.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/15/2008] [Accepted: 01/15/2008] [Indexed: 01/23/2023]
Abstract
Much is known about the pathways that control the biosynthesis, transport and degradation of sphingolipids. During the last two decades, considerable progress has been made regarding the roles this complex group of lipids play in maintaining membrane integrity and modulating responses to numerous signals. Further novel insights have been provided by the analysis of newly discovered genetic diseases in humans as well as in animal models harboring mutations in the genes whose products control sphingolipid metabolism and action. Through the description of the phenotypic consequences of genetic defects resulting in the loss of activity of the many proteins that synthesize, transport, bind, or degrade sphingolipids, this review summarizes the (patho)physiological functions of these lipids.
Collapse
|
50
|
|