1
|
Roberts B, Cooper Z, Lu S, Stanley S, Majda BT, Collins KRL, Gilkes L, Rodger J, Akkari PA, Hood SD. Utility of pharmacogenetic testing to optimise antidepressant pharmacotherapy in youth: a narrative literature review. Front Pharmacol 2023; 14:1267294. [PMID: 37795032 PMCID: PMC10545970 DOI: 10.3389/fphar.2023.1267294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Pharmacogenetics (PGx) is the study and application of how interindividual differences in our genomes can influence drug responses. By evaluating individuals' genetic variability in genes related to drug metabolism, PGx testing has the capabilities to individualise primary care and build a safer drug prescription model than the current "one-size-fits-all" approach. In particular, the use of PGx testing in psychiatry has shown promising evidence in improving drug efficacy as well as reducing toxicity and adverse drug reactions. Despite randomised controlled trials demonstrating an evidence base for its use, there are still numerous barriers impeding its implementation. This review paper will discuss the management of mental health conditions with PGx-guided treatment with a strong focus on youth mental illness. PGx testing in clinical practice, the concerns for its implementation in youth psychiatry, and some of the barriers inhibiting its integration in clinical healthcare will also be discussed. Overall, this paper provides a comprehensive review of the current state of knowledge and application for PGx in psychiatry and summarises the capabilities of genetic information to personalising medicine for the treatment of mental ill-health in youth.
Collapse
Affiliation(s)
- Bradley Roberts
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Zahra Cooper
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Stephanie Lu
- School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Susanne Stanley
- Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | | | - Khan R. L. Collins
- Western Australian Department of Health, North Metropolitan Health Service, Perth, WA, Australia
| | - Lucy Gilkes
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
- Divison of General Practice, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Jennifer Rodger
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - P. Anthony Akkari
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- Division of Neurology, Duke University Medical Centre, Duke University, Durham, United States
| | - Sean D. Hood
- Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
2
|
Bentley GR. Don't blame the BAME: Ethnic and structural inequalities in susceptibilities to COVID-19. Am J Hum Biol 2020; 32:e23478. [PMID: 32677326 PMCID: PMC7404609 DOI: 10.1002/ajhb.23478] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
|
3
|
Fanelli A, Palazzo C, Balzani E, Iuvaro A, Pelotti S, Melotti RM. An Explorative Study of CYP2D6’s Polymorphism in a Sample of Chronic Pain Patients. PAIN MEDICINE 2019; 21:1010-1017. [DOI: 10.1093/pm/pnz265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Background
A proper antalgic treatment is based on the use of titrated drugs to provide adequate relief and a good tolerability profile. Therapies have a variable effectiveness among subjects depending on medical and genetic conditions. CYP2D6 variations determine a different clinical response to most analgesic drugs commonly used in daily clinical practice by influencing the drugs’ pharmacokinetics. This study was a monocentric clinical trial exploring the CYP2D6 variants in 100 patients with a diagnosis of chronic pain.
Methods
DNA was extracted to evaluate the genotype and to classify patients as normal-fast (gNMs-F), normal-slow (gNMs-S), ultrarapid (gUMs), intermediate (gIMs), and poor metabolizers (gPMs) using the Activity Score (AS). Information on therapies and general side effects experienced by patients was collected. Nongenetic co-factors were evaluated to examine the discrepancy between metabolic profile predicted from genotype (gPh) and metabolic profile (phenocopying).
Results
The distribution of our data underlined the prevalence of the gNMs-F (67%), whereas gNMs-S were 24%, gIMs 6%, gPMs 3%, and no gUMs were found, resulting in 33% of patients with reduced metabolic activity. In the analyzed population sample, 86% and 56% of patients, respectively, took at least one or two drugs inhibiting in vitro activity of the CYP2D6 enzyme.
Conclusions
Over one-third of the enrolled patients showed altered CYP2D6 enzymatic metabolic activity, with a risk of phenocopying potentially due to polypharmacology.
Trial registration
ClinicalTrials.gov ID: NCT03411759.
Collapse
Affiliation(s)
- Andrea Fanelli
- Anesthesia and Pain Medicine Unit, Department of Emergency and Urgency, Policlinico S.Orsola-Malpighi Hospital, Bologna, Italy
| | - Chiara Palazzo
- Forensic Science and Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Alessandra Iuvaro
- Forensic Science and Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Susi Pelotti
- Forensic Science and Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Rita Maria Melotti
- Anesthesia and Pain Medicine Unit, Department of Emergency and Urgency, Policlinico S.Orsola-Malpighi Hospital, Bologna, Italy
- University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Aruoma OI, Hausman-Cohen S, Pizano J, Schmidt MA, Minich DM, Joffe Y, Brandhorst S, Evans SJ, Brady DM. Personalized Nutrition: Translating the Science of NutriGenomics Into Practice: Proceedings From the 2018 American College of Nutrition Meeting. J Am Coll Nutr 2019; 38:287-301. [DOI: 10.1080/07315724.2019.1582980] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Okezie I Aruoma
- California State University Los Angeles, Los Angeles, California, USA
- Southern California University of Health Sciences, Whittier, California, USA
| | | | - Jessica Pizano
- Nutritional Genomics Institute, SNPed, and OmicsDX, Chasterfield, Virginia, USA
| | - Michael A. Schmidt
- Advanced Pattern Analysis & Countermeasures Group, Boulder, Colorado, USA
- Sovaris Aerospace, Boulder, Colorado, USA
| | - Deanna M. Minich
- University of Western States, Portland, Oregon, USA
- Institute for Functional Medicine, Federal Way, Washington, USA
| | - Yael Joffe
- 3X4 Genetics and Manuka Science, Cape Town, South Africa
| | | | | | - David M. Brady
- University of Bridgeport, Bridgeport, Connecticut, USA
- Whole Body Medicine, Fairfield, Connecticut, USA
| |
Collapse
|
5
|
Pharmacogenomics in Papua New Guineans: unique profiles and implications for enhancing drug efficacy while improving drug safety. Pharmacogenet Genomics 2019; 28:153-164. [PMID: 29768302 DOI: 10.1097/fpc.0000000000000335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Papua New Guinea (PNG) can be roughly divided into highland, coastal and island peoples with significant mitochondrial DNA differentiation reflecting early and recent distinct migrations from Africa and East Asia, respectively. Infectious diseases such as tuberculosis, malaria and HIV severely impact on the health of its peoples for which drug therapy is the major treatment and pharmacogenetics has clinical relevance for many of these drugs. Although there is generally little information about known single nucleotide polymorphisms in the population, in some instances, their frequencies have been shown to be higher than anywhere worldwide. For example, CYP2B6*6 is over 50%, and CYP2C19*2 and *3 are over 40 and 25%, respectively. Conversely, CYP2A6*9, 2B6*2, *3, *4 and *18, and 2C8*3 appear to be much lower than in Whites. CYP2D6 known variants are unclear, and for phase II enzymes, only UGT2B7 and UGT1A9 data are available, with variant frequencies either slightly lower than or similar to Whites. Although almost all PNG people tested are rapid acetylators, but which variant(s) define this phenotype is not known. For HLA-B*13:01, HLA-B*35:05 and HLA-C*04:01, the frequencies show some regioselectivity, but the clinical implications with respect to adverse drug reactions are not known. There are minimal phenotype data for the CYPs and nothing is known about drug transporter or receptor genetics. Determination of genetic variants that are rare in Whites or Asians but common in PNG people is a topic of both scientific and clinical importance, and further research needs to be carried out. Optimizing the safety and efficacy of infectious disease drug therapy through pharmacogenetic studies that have translation potential is a priority.
Collapse
|
6
|
Corponi F, Fabbri C, Boriani G, Diemberger I, Albani D, Forloni G, Serretti A. Corrected QT Interval Prolongation in Psychopharmacological Treatment and Its Modulation by Genetic Variation. Neuropsychobiology 2019; 77:67-72. [PMID: 30544110 DOI: 10.1159/000493400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/29/2018] [Indexed: 11/19/2022]
Abstract
Several antipsychotics and antidepressants have been associated with electrocardiogram alterations, the most clinically relevant of which is the heart rate-corrected QT interval (QTc) prolongation, a risk factor for sudden cardiac death. Genetic variants influence drug-induced QTc prolongation and can provide valuable information for precision medicine. The effect of genetic variants on QTc prolongation as well as the possible interaction between polymorphisms and risk medications in determining QTc prolongation were investigated. Medications were classified according to their known risk of inducing QTc prolongation (high-to-moderate, low, and no risk). QTc duration and risk of QTc > median value were investigated in a sample of 77 patients with mood or psychotic disorders being treated with antidepressants and antipsychotics, and who had at least 1 ECG recording. A secondary analysis considered QTc percentage change in patients (n = 25) with 2 ECG recordings. Single-nucleotide polymorphisms previously associated with QTc prolongation during treatment with psychotropic medications were investigated. No association survived after multiple-testing correction. The best results for modulation of QTc duration were identified for rs10808071 (the ABCB1 gene, nominal p = 0.007) when at least 1 medication with a moderate-to-high risk was prescribed, and for rs12029454 (the NOS1AP gene) in patients taking at least 1 medication with a cardiovascular risk (nominal p = 0.008). In the secondary analysis, rs2072413 (the KCNH2 gene) was the top finding for the modulation of QTc percentage change (nominal p = 0.001) when 1 drug with a moderate-to-high risk was added compared to baseline. Despite the limited power of this study, our results suggest that ABCB1, NOS1AP, and KCNH2 may play a role in QTc duration/prolongation during treatment with psychotropic drugs.
Collapse
Affiliation(s)
- Filippo Corponi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Igor Diemberger
- Department of Specialist, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
| | - Diego Albani
- Unità Genetica delle Malattie Neurodegenerative, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Gianluigi Forloni
- Unità Genetica delle Malattie Neurodegenerative, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy,
| |
Collapse
|
7
|
Tan-Koi WC, Limenta M, Mohamed EHM, Lee EJD. The Importance of Ethnicity Definitions and Pharmacogenomics in Ethnobridging and Pharmacovigilance. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
8
|
Monie DD, DeLoughery EP. Pathogenesis of thrombosis: cellular and pharmacogenetic contributions. Cardiovasc Diagn Ther 2017; 7:S291-S298. [PMID: 29399533 DOI: 10.21037/cdt.2017.09.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Our understanding of thrombosis formation has evolved significantly ever since physician Rudolf Virchow proposed his "triad" theory in 1856. Modern science has elucidated the mechanisms of stasis, hypercoagulability, and endothelial dysfunction. Today, we have a firm understanding of the key molecular factors involved in the coagulation cascade and fibrinolytic system, as well as the underlying genetic influences. This knowledge of cellular and genetic contributors has been translated into diverse pharmaceutical interventions. Here, we examine the molecular and cellular mechanisms of thrombosis and its associated pathologies. We also review the current state of pharmacologic interventions, including pro- and anti-thrombotics, direct oral anticoagulants, and anti-platelet therapies. The pharmacogenetic factors that guide clinical decision making and prognosis are described in detail. Finally, we explore new approaches to thrombosis drug discovery, repurposing, and diagnostics. We argue that network biology tools will enable a systems pharmacology revolution in the next generation of interventions, facilitating precision medicine applications and ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Dileep D Monie
- School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emma P DeLoughery
- School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
9
|
Analysis of Immunogenetic Factors in Idiosyncratic Drug-induced Liver Injury in the Pediatric Population. J Pediatr Gastroenterol Nutr 2017; 64:742-747. [PMID: 28005582 DOI: 10.1097/mpg.0000000000001502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Idiosyncratic drug-induced liver injury is a multifactorial complex disease, in which the toxic potential of the drug, together with genetic and acquired factors and deficiencies in adaptive processes, which limit the extent of damage, can determine susceptibility, and make individuals unique in their development of hepatotoxicity. The aim of the present study is to analyse the genetic factors (human leukocyte antigen [HLA], cytokine polymorphisms, and killer cell immunoglobulin-like receptor [KIR] genotype) of children who experience an episode of drug-induced liver injury. PATIENTS AND METHODS Prospective multicentre case-control study. The subjects included in the study were 30 paediatric patients-infants and children ages between 0 and 15 years and who presented possible liver disease associated with the intake of medicines, herbal products, drugs, or toxins. As a control group, 62 subjects were selected. RESULTS Although HLAC0401 and HLADQB0603 may provide a hepatoprotective mechanism in the paediatric population, HLADQA0102 and HLA-DR12 are more commonly found in sick children and their presence may be related to liver damage. The KIR inhibitor KIR3DL1 was not present in any child in the control group. CONCLUSIONS Polymorphisms that are low producers of interleukin-10 occur more frequently in children who have experienced hepatotoxicity.
Collapse
|
10
|
Adole PS, Kharbanda PS, Sharma S. N-acetyltransferase 2 (NAT2) gene polymorphism as a predisposing factor for phenytoin intoxication in tuberculous meningitis or tuberculoma patients having seizures - A pilot study. Indian J Med Res 2016; 143:581-90. [PMID: 27488001 PMCID: PMC4989831 DOI: 10.4103/0971-5916.187106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background & objectives: Simultaneous administration of phenytoin and isoniazid (INH) in tuberculous meningitis (TBM) or tuberculoma patients with seizures results in higher plasma phenytoin level and thus phenytoin intoxication. N-acetyltransferase 2 (NAT2) enzyme catalyses two acetylation reactions in INH metabolism and NAT2 gene polymorphism leads to slow and rapid acetylators. The present study was aimed to evaluate the effect of allelic variants of N-acetyltransferase 2 (NAT2) gene as a predisposing factor for phenytoin toxicity in patients with TBM or tuberculoma having seizures, and taking INH and phenytoin simultaneously. Methods: Sixty patients with TBM or tuberculoma with seizures and taking INH and phenytoin simultaneously for a minimum period of seven days were included in study. Plasma phenytoin was measured by high performance liquid chromatography. NAT2 gene polymorphism was studied using restriction fragment length polymorphism and allele specific PCR. Results: The patients were grouped into those having phenytoin intoxication and those with normal phenytoin level, and also classified as rapid or slow acetylators by NAT2 genotyping. Genotypic analysis showed that of the seven SNPs (single nucleotide polymorphisms) of NAT2 gene studied, six mutations were found to be associated with phenytoin intoxication. For rs1041983 (C282T), rs1799929 (C481T), rs1799931 (G857A), rs1799930 (G590A), rs1208 (A803G) and rs1801280 (T341C) allelic variants, the proportion of homozygous mutant was higher in phenytoin intoxicated group than in phenytoin non-intoxicated group. Interpretation & conclusions: Homozygous mutant allele of NAT2 gene at 481site may act as a predisposing factor for phenytoin intoxication among TBM or tuberculoma patients having seizures.
Collapse
Affiliation(s)
- Prashant S Adole
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh; Present address: Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605 006, India
| | - Parampreet S Kharbanda
- Department of Neurology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Sadhna Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
11
|
|
12
|
Abstract
A prolonged QT interval is an important risk factor for ventricular arrhythmias and sudden cardiac death. QT prolongation can be caused by drugs. There are multiple risk factors for drug-induced QT prolongation, including genetic variation. QT prolongation is one of the most common reasons for withdrawal of drugs from the market, despite the fact that these drugs may be beneficial for certain patients and not harmful in every patient. Identifying genetic variants associated with drug-induced QT prolongation might add to tailored pharmacotherapy and prevent beneficial drugs from being withdrawn unnecessarily. In this review, our objective was to provide an overview of the genetic background of drug-induced QT prolongation, distinguishing pharmacokinetic and pharmacodynamic pathways. Pharmacokinetic-mediated genetic susceptibility is mainly characterized by variation in genes encoding drug-metabolizing cytochrome P450 enzymes or drug transporters. For instance, the P-glycoprotein drug transporter plays a role in the pharmacokinetic susceptibility of drug-induced QT prolongation. The pharmacodynamic component of genetic susceptibility is mainly characterized by genes known to be associated with QT interval duration in the general population and genes in which the causal mutations of congenital long QT syndromes are located. Ethnicity influences susceptibility to drug-induced QT interval prolongation, with Caucasians being more sensitive than other ethnicities. Research on the association between pharmacogenetic interactions and clinical endpoints such as sudden cardiac death is still limited. Future studies in this area could enable us to determine the risk of arrhythmias more adequately in clinical practice.
Collapse
|
13
|
Chakravarthy U, Harding SP, Rogers CA, Downes S, Lotery AJ, Dakin HA, Culliford L, Scott LJ, Nash RL, Taylor J, Muldrew A, Sahni J, Wordsworth S, Raftery J, Peto T, Reeves BC. A randomised controlled trial to assess the clinical effectiveness and cost-effectiveness of alternative treatments to Inhibit VEGF in Age-related choroidal Neovascularisation (IVAN). Health Technol Assess 2016; 19:1-298. [PMID: 26445075 DOI: 10.3310/hta19780] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Bevacizumab (Avastin®, Roche), which is used in cancer therapy, is the 'parent' molecule from which ranibizumab (Lucentis®, Novartis) was derived for the treatment of neovascular age-related macular degeneration (nAMD). There were reports in the literature on the effectiveness of bevacizumab in treating nAMD, but no trials. The cost per dose of bevacizumab is about 5-10% that of ranibizumab. This trial was a head-to-head comparison of these two drugs. OBJECTIVE To compare the clinical effectiveness and cost-effectiveness of ranibizumab and bevacizumab, and two treatment regimens, for nAMD. DESIGN Multicentre, factorial randomised controlled trial with within-trial cost-utility and cost-minimisation analyses from the perspective of the UK NHS. Participants, health professionals and researchers were masked to allocation of drug but not regimen. Computer-generated random allocations to combinations of ranibizumab or bevacizumab, and continuous or discontinuous regimen, were stratified by centre, blocked and concealed. SETTING Twenty-three ophthalmology departments in NHS hospitals. PARTICIPANTS Patients ≥ 50 years old with active nAMD in the study eye with best corrected distance visual acuity (BCVA) ≥ 25 letters measured on a Early Treatment of Diabetic Retinopathy Study (ETDRS) chart. Previous treatment for nAMD, long-standing disease, lesion diameter > 6000 µm, thick blood at the fovea and any other confounding ocular disease were exclusion criteria. One eye per participant was studied; the fellow eye was treated according to usual care, if required. INTERVENTIONS Ranibizumab and bevacizumab were procured commercially. Doses were ranibizumab 0.5 mg or bevacizumab 1.25 mg. The repackaged bevacizumab was quality assured. All participants were treated at visits 0, 1 and 2. Participants randomised to the continuous regimen were treated monthly thereafter. Participants randomised to the discontinuous regimen were not retreated after visit 2 unless pre-specified criteria for active disease were met. If retreatment was needed, monthly injections over 3 months were mandated. MAIN OUTCOME MEASURES The primary outcome was BCVA. The non-inferiority margin was 3.5 letters. Secondary outcomes were contrast sensitivity; near visual acuity; reading index; neovascular lesion morphology; generic and disease-specific patient-reported outcomes, including macular disease-specific quality of life; survival free from treatment failure; resource use; quality-adjusted life-years (QALYs); and development of new geographic atrophy (GA) (outcome added during the trial). Results are reported for the study eye, except for patient-reported outcomes. RESULTS Between 27 March 2008 and 15 October 2010, 610 participants were allocated and treated (314 ranibizumab, 296 bevacizumab; at 3 months, 305 continuous, 300 discontinuous). After 2 years, bevacizumab was neither non-inferior nor inferior to ranibizumab [-1.37 letters, 95% confidence interval (CI) -3.75 to +1.01 letters] and discontinuous treatment was neither non-inferior nor inferior to continuous treatment (-1.63 letters, 95% CI -4.01 to +0.75 letters). Lesion thickness at the fovea was similar by drug [geometric mean ratio (GMR) 0.96, 95% CI 0.90 to 1.03; p = 0.24] but 9% less with continuous treatment (GMR 0.91, 95% CI 0.85 to 0.97; p = 0.004). Odds of developing new GA during the trial were similar by drug [odds ratio (OR) 0.87, 95% CI 0.61 to 1.25; p = 0.46] but significantly higher with continuous treatment (OR 1.47, 95% CI 1.03 to 2.11; p = 0.033). Safety outcomes did not differ by drug but mortality was lower with continuous treatment (OR 0.47, 95% CI 0.22 to 1.03; p = 0.05). Continuous ranibizumab cost £3.5M per QALY compared with continuous bevacizumab; continuous bevacizumab cost £30,220 per QALY compared with discontinuous bevacizumab. These results were robust in sensitivity analyses. CONCLUSIONS Ranibizumab and bevacizumab have similar efficacy. Discontinuing treatment and restarting when required results in slightly worse efficacy. Safety was worse with discontinuous treatment, although new GA developed more often with continuous treatment. Ranibizumab is not cost-effective, although it remains uncertain whether or not continuous bevacizumab is cost-effective compared with discontinuous bevacizumab at £20,000 per QALY threshold. Future studies should focus on the ocular safety of the two drugs, further optimisation of treatment regimens and criteria for stopping treatment. TRIAL REGISTRATION Current Controlled Trials ISRCTN92166560. FUNDING This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 19, No. 78. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Usha Chakravarthy
- Centre for Experimental Medicine, Institute of Clinical Science, Queen's University Belfast, Belfast, UK
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Chris A Rogers
- Clinical Trials and Evaluation Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Susan Downes
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Helen A Dakin
- Health Economic Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Lucy Culliford
- Clinical Trials and Evaluation Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Lauren J Scott
- Clinical Trials and Evaluation Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Rachel L Nash
- Clinical Trials and Evaluation Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Jodi Taylor
- Clinical Trials and Evaluation Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Alyson Muldrew
- Centre for Experimental Medicine, Institute of Clinical Science, Queen's University Belfast, Belfast, UK
| | - Jayashree Sahni
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Sarah Wordsworth
- Health Economic Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - James Raftery
- Wessex Institute, University of Southampton, Southampton, UK
| | - Tunde Peto
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Barnaby C Reeves
- Clinical Trials and Evaluation Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
14
|
Shah RR. Inter-ethnic differences in drug response: Implications for drug development and complying with drug regulation. ACTA ACUST UNITED AC 2015. [DOI: 10.3109/10601333.2015.1064131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Affiliation(s)
- Stephen T Sonis
- From the Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
16
|
Marwa KJ, Schmidt T, Sjögren M, Minzi OMS, Kamugisha E, Swedberg G. Cytochrome P450 single nucleotide polymorphisms in an indigenous Tanzanian population: a concern about the metabolism of artemisinin-based combinations. Malar J 2014; 13:420. [PMID: 25363545 PMCID: PMC4228099 DOI: 10.1186/1475-2875-13-420] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/25/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Artemisinin-based combinations currently recommended for treatment of uncomplicated Plasmodium falciparum malaria in many countries of sub-Saharan Africa are substrates of CYP enzymes. The cytochrome enzyme system is responsible for metabolism of about 80-90% of clinically used drugs. It is, therefore, important to obtain the pharmacogenetics of the population in the region with respect to these combinations and thereby enable practitioners to predict treatment outcomes. The aim of this study was to detect and determine allelic frequencies of CYP2C8*2, CYP2C8*3, CYP3A4*1B, CYP3A5*3 and CYP2B6*6 variant alleles in a Tanzanian indigenous population. METHODS Genomic DNA extraction from blood obtained from 256 participants who escorted patients at Karume Health Centre in Mwanza Tanzania, was carried out using the Gene JET™ Genomic DNA purification kit (Thermo Scientific). Genotyping for the cytochrome P450 variant alleles was performed using predesigned primers. Amplification was done by PCR while differentiation between alleles was done by restriction fragment length polymorphism (PCR-RFLP) (for CYP2C8*2, CYP2C8*3) and sequencing (for CYP2B6*6, CYP3A5*3 and CYP3A4*1B). RESULTS CYP2C8*2, CYP2C8*3, CYP3A5*3, CYP3A4*1B and CYP2B6*6 variant allelic frequencies were found to be 19,10,16,78 and 36% respectively. CONCLUSION Prevalence of CYP2C8*2, CYP3A5*3, CYP3A4*1B and CYP2B6*6 mutations in a Tanzanian population/subjects are common. The impact of these point mutations on the metabolism of anti-malarial drugs, particularly artemisinin-based combinations, and their potential drug-drug interactions (DDIs) needs to be further evaluated.
Collapse
Affiliation(s)
- Karol J Marwa
- Department of Pharmacology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania.
| | | | | | | | | | | |
Collapse
|
17
|
Modak AS. 13C breath tests in personalized medicine: fiction or reality? Expert Rev Mol Diagn 2014; 9:805-15. [DOI: 10.1586/erm.09.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Lanni C, Racchi M, Govoni S. Do we need pharmacogenetics to personalize antidepressant therapy? Cell Mol Life Sci 2013; 70:3327-40. [PMID: 23272319 PMCID: PMC11113225 DOI: 10.1007/s00018-012-1237-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 12/16/2022]
Abstract
This review examines the role of drug metabolism and drug target polymorphism in determining the clinical response to antidepressants. Even though antidepressants are the most effective available treatment for depressive disorders, there is still substantial need for improvement due to the slow onset of appreciable clinical improvement and the association with side effects. Moreover, a substantial group of patients receiving antidepressant therapy does not achieve remission or fails to respond entirely. Even if the large variation in antidepressant treatment outcome across individuals remains poorly understood, one possible source of this variation in treatment outcome are genetic differences. The review focuses on a few polymorphisms which have been extensively studied, while reporting a more comprehensive reference to the existing literature in table format. It is relatively easy to predict the effect of polymorphisms in drug metabolizing enzymes, such as cytochromes P450 2D6 (CYP2D6) and cytochrome P450 2C19 (CYP2C19), which may be determined in the clinical context in order to explain or prevent serious adverse effects. The role of target polymorphism, however, is much more difficult to establish and may be more relevant for disease susceptibility and presentation rather than for response to therapy.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences (Pharmacology Section), Center of Excellence in Applied Biology, University of Pavia, IUSS-Pavia (Istituto Universitario di Studi Superiori-Pavia), Viale Taramelli 14, 27100, Pavia, Italy.
| | | | | |
Collapse
|
19
|
Abstract
INTRODUCTION Dipeptidyl peptidase-4 (DPP-4) inhibitors have emerged as new options in the management of type 2 diabetes mellitus, demonstrating meaningful antihyperglycemic effects and good tolerability profiles. Glycemic control is improved by preventing the DPP-4-mediated degradation of incretin hormones, with a resulting increase in insulin secretion and inhibition of glucagon secretion. PURPOSE This article provides a discussion of the clinical utility of linagliptin. RESULTS AND CONCLUSION Linagliptin is a xanthine-based, oral DPP-4 inhibitor that has been approved in the United States and Europe. It has been evaluated extensively in clinical trials, and results in improved glycemic control when used as monotherapy, initial combination therapy with metformin or pioglitazone, add-on therapy to metformin and/or a sulfonylurea, or add-on therapy to basal insulin (with or without oral antidiabetic drugs). Consistent with other members of its class, the benefits of linagliptin also include a low risk of hypoglycemia and weight gain. However, linagliptin is the first DPP-4 inhibitor to be approved as a once-daily, 5-mg dose and, due to its primarily non-renal route of excretion, no dosage adjustment is required for patients with renal or hepatic impairment. The pharmacokinetics and pharmacodynamics of linagliptin are not affected to a clinically meaningful degree by race or ethnicity and linagliptin has very low potential for drug-drug interactions.
Collapse
|
20
|
Mahida S, Hogarth AJ, Cowan C, Tayebjee MH, Graham LN, Pepper CB. Genetics of congenital and drug-induced long QT syndromes: current evidence and future research perspectives. J Interv Card Electrophysiol 2013; 37:9-19. [PMID: 23515882 DOI: 10.1007/s10840-013-9779-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/07/2013] [Indexed: 12/17/2022]
Abstract
The long QT syndrome (LQTS) is a condition characterized by abnormal prolongation of the QT interval with an associated risk of ventricular arrhythmias and sudden cardiac death. Congenital forms of LQTS arise due to rare and highly penetrant mutations that segregate in a Mendelian fashion. Over the years, multiple mutations in genes encoding ion channels and ion channel binding proteins have been reported to underlie congenital LQTS. Drugs are by far the most common cause of acquired forms of LQTS. Emerging evidence suggests that drug-induced LQTS also has a significant heritable component. However, the genetic substrate underlying drug-induced LQTS is presently largely unknown. In recent years, advances in next-generation sequencing technology and molecular biology techniques have significantly enhanced our ability to identify genetic variants underlying both monogenic diseases and more complex traits. In this review, we discuss the genetic basis of congenital and drug-induced LQTS and focus on future avenues of research in the field. Ultimately, a detailed characterization of the genetic substrate underlying congenital and drug-induced LQTS will enhance risk stratification and potentially result in the development of tailored genotype-based therapies.
Collapse
Affiliation(s)
- Saagar Mahida
- Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, UK.
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Abstract
Genetic testing prior to treatment, pharmacogenetic analysis, is key to realizing personalized medicine which is a topic that has attracted much attention recently. Through the optimization of therapy selection and dosage, a reduction in side effects is expected. Genetic testing has been conducted as a type of pharmacogenetic analysis in recent years, but it faces challenges in terms of cost effectiveness and its complicated procedures. Here we report on the development of a novel platform for genetic testing, the i-densy™, with the use of quenching probe system (QP-system) as principle of mutant detection. The i-densy™ automatically performs pre-treatment, PCR and detection to provide the test result from whole blood and extracted DNA within approximately 90 and 60 min, respectively. Integration of all steps into a single platform greatly reduces test time and complicated procedures. An even higher-precision genetic analysis has been achieved through the development of novel and highly-specific detection methods. The applications of items measured using the i-densy™ are diverse, from single nucleotide polymorphism (SNP), such as CYP2C19 and UGT1A1, to somatic mutations associated with cancer, such as EGFR, KRAS and JAK2. The i-densy™ is a useful tool for optimization of anticancer drug therapy and can contribute to personalized medicine.
Collapse
|
23
|
Abstract
BACKGROUND The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? METHODS We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. RESULTS Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. CONCLUSION We conclude that even the presence of conserved processes is insufficient for inter-species extrapolation when the trait or response being studied is located at higher levels of organization, is in a different module, or is influenced by other modules. However, when the examination of the conserved process occurs at the same level of organization or in the same module, and hence is subject to study solely by reductionism, then extrapolation is possible.
Collapse
Affiliation(s)
- Ray Greek
- Americans For Medical Advancement (www.AFMA-curedisease.org), 2251 Refugio Rd, Goleta, CA, 93117, USA
| | - Mark J Rice
- Department of Anesthesiology, University of Florida College of Medicine, PO Box 100254, Gainesville, FL, 32610-0254, USA
| |
Collapse
|
24
|
Salazar-Flores J, Torres-Reyes LA, Martínez-Cortés G, Rubi-Castellanos R, Sosa-Macías M, Muñoz-Valle JF, González-González C, Ramírez A, Román R, Méndez JL, Barrera A, Torres A, Medina R, Rangel-Villalobos H. Distribution of CYP2D6 and CYP2C19 polymorphisms associated with poor metabolizer phenotype in five Amerindian groups and western Mestizos from Mexico. Genet Test Mol Biomarkers 2012; 16:1098-104. [PMID: 22913530 DOI: 10.1089/gtmb.2012.0055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The distribution of polymorphisms in the CYP2D6 and CYP2C19 genes allows inferring the potential risk for specific adverse drug reactions and lack of therapeutic effects in humans. This variability shows differences among human populations. The aim of this study was to analyze single-nucleotide polymorphisms related to a poor metabolizer (PM) phenotype in nonpreviously studied Amerindian groups and Mestizos (general admixed population) from Mexico. METHODS We detected by SNaPshot(®) different polymorphisms located in CYP2D6 (*3, *4, *6, *7, and *8) and CYP2C19 (*2, *3, *4 and *5) in western Mestizos (n=145) and five Amerindian groups from Mexico: Tarahumaras from the North (n=88); Purépechas from the Center (n=101); and Tojolabales (n=68), Tzotziles (n=88), and Tzeltales (n=20) from the Southeast. Genotypes were observed by capillary electrophoresis. The genetic relationships among these populations were estimated based on these genes. RESULTS AND DISCUSSION The wild-type allele (*1) of both genes was predominant in the Mexican populations studied. The most widely observed alleles were CYP2C19*2 (range, 0%-31%) and CYP2D6*4 (range, 1.2%-7.3%), whereas CYP2D6*3 was exclusively detected in Mestizos. Conversely, CYP2C19*4 and *5, as well as CYP2D6*3, *6, *7, and *8, were not observed in the majority of the Mexican populations. The Tarahumaras presented a high frequency of the allele CYP2C19*2 (31%) and of homozygotes *2/*2 (10.7%), which represent a high frequency of potentially PM phenotypes in this Amerindian group. The genetic distances showed high differentiation of Tarahumaras (principally for CYP2C19 gene). In general, a relative proximity was observed between most of the Amerindian, Mexican-Mestizo, and Latin-American populations. CONCLUSION In general, the wild-type allele (*1) predominates in Mexican populations, outlining a relatively homogeneous distribution for CYP2C19 and CYP2D6. The exception is the Tarahumara group that displays a potentially increased risk for adverse reactions to CYP2C19-metabolized drugs.
Collapse
Affiliation(s)
- Joel Salazar-Flores
- Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, México
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Personalized medicine is based on intraspecies differences. It is axiomatic that small differences in genetic make-up can result in dramatic differences in response to drugs or disease. To express this in more general terms: in any given complex system, small changes in initial conditions can result in dramatically different outcomes. Despite human variability and intraspecies variation in other species, nonhuman species are still the primary model for ascertaining data for humans. We call this practice into question and conclude that human-based research should be the primary means for obtaining data about human diseases and responses to drugs.
Collapse
Affiliation(s)
| | - Andre Menache
- Americans For Medical Advancement, 2251 Refugio Rd, Goleta, CA 93117, USA
| | - Mark J Rice
- Department of Anesthesiology, University of Florida College of Medicine, PO Box 100254, Gainesville, FL 32610-0254, USA
| |
Collapse
|
26
|
Samer CF, Dayer P, Desmeules JA. How close are we to individual analgesic adjustment according to a patient’s genotype? Per Med 2011; 8:289-292. [DOI: 10.2217/pme.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Caroline Flora Samer
- Clinical Pharmacology & Toxicology, Geneva University Hospitals, Switzerland and Swiss Center for Applied Human Toxicology, University of Geneva, Switzerland
| | - Pierre Dayer
- Clinical Pharmacology & Toxicology, Geneva University Hospitals, Switzerland
| | - Jules Alexandre Desmeules
- Clinical Pharmacology & Toxicology Geneva University Hospitals Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland and Swiss Center for Applied Human Toxicology, University of Geneva, Switzerland
| |
Collapse
|
27
|
Liumbruno G, D’Alessandro A, Grazzini G, Zolla L. How has proteomics informed transfusion biology so far? Crit Rev Oncol Hematol 2010; 76:153-72. [DOI: 10.1016/j.critrevonc.2010.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 12/22/2009] [Accepted: 01/07/2010] [Indexed: 01/06/2023] Open
|
28
|
Kleine-Brueggeney M, Musshoff F, Stuber F, Stamer UM. Pharmacogenetics in palliative care. Forensic Sci Int 2010; 203:63-70. [DOI: 10.1016/j.forsciint.2010.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Abstract
Large inter-individual variability in drug response and toxicity, as well as in drug concentrations after application of the same dosage, can be of genetic, physiological, pathophysiological, or environmental origin. Absorption, distribution and metabolism of a drug and interactions with its target often are determined by genetic differences. Pharmacokinetic and pharmacodynamic variations can appear at the level of drug metabolizing enzymes (e.g., the cytochrome P450 system), drug transporters, drug targets or other biomarker genes. Pharmacogenetics or toxicogenetics can therefore be relevant in forensic toxicology. This review presents relevant aspects together with some examples from daily routines.
Collapse
|
30
|
Stamer UM, Zhang L, Stüber F. Personalized therapy in pain management: where do we stand? Pharmacogenomics 2010; 11:843-64. [DOI: 10.2217/pgs.10.47] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genomic variations influencing response to pharmacotherapy of pain are currently under investigation. Drug-metabolizing enzymes represent a major target of ongoing research in order to identify associations between an individual’s drug response and genetic profile. Polymorphisms of the cytochrome P450 enzymes (CYP2D6) influence metabolism of codeine, tramadol, hydrocodone, oxycodone and tricyclic antidepressants. Blood concentrations of some NSAIDs depend on CYP2C9 and/or CYP2C8 activity. Genomic variants of these genes associate well with NSAIDs’ side effect profile. Other candidate genes, such as those encoding (opioid) receptors, transporters and other molecules important for pharmacotherapy in pain management, are discussed; however, study results are often equivocal. Besides genetic variants, further variables, for example, age, disease, comorbidity, concomitant medication, organ function as well as patients’ compliance, may have an impact on pharmacotherapy and need to be addressed when pain therapists prescribe medication. Although pharmacogenetics as a diagnostic tool has the potential to improve patient therapy, well-designed studies are needed to demonstrate superiority to conventional dosing regimes.
Collapse
Affiliation(s)
| | - Lan Zhang
- Department of Anaesthesiology & Intensive Care Medicine, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
- Department of Anaesthesiology and Pain Therapy, Inselspital, University of Bern, Freiburgstr., CH-3010 Bern, Switzerland
| | - Frank Stüber
- Department of Anaesthesiology and Pain Therapy, Inselspital, University of Bern, Freiburgstr., CH-3010 Bern, Switzerland
| |
Collapse
|
31
|
Kouhi H, Hamzeiy H, Barar J, Asadi M, Omidi Y. Frequency of five important CYP2D6 alleles within an Iranian population (Eastern Azerbaijan). Genet Test Mol Biomarkers 2010; 13:665-70. [PMID: 19715474 DOI: 10.1089/gtmb.2009.0009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polymorphisms in cytochrome P450 genes encoding enzymes of critical importance for drug metabolism have the highest genetic influence on interindividual variations in drug bioavailability. Human CYP2D6 enzyme is claimed to be polymorphically expressed among different ethnic groups. It has been suggested to account for a large part of the interindividual differences in drug metabolism and pharmacokinetics. In the current investigation, 100 healthy unrelated subjects living in Tabriz, Iran, were randomly selected. Genotyping was designed to determine the frequencies of five major and important alleles: CYP2D6*2, CYP2D6*4, CYP2D6*5, CYP2D6*10, and CYP2D6*17. After collecting venous blood samples, polymerase chain reaction-restriction fragment length polymorphism methodology was performed for detection of the alleles (except CYP2D6*5, which has been detected using an allele-specific polymerase chain reaction procedure). Finally, the obtained data were used to determine the allele frequencies. The frequencies for CYP2D6 alleles *2, *4, *5, and *10 were 32%, 12.5%, 3%, and 9%, respectively. CYP2D6*17 was completely absent in this study group. Poor metabolizer phenotype can be related to *4/*4 and *4/*5 genotypes with a total frequency of 4%. This is the first study of the CYP2D6 genetic polymorphism in an Iranian population. The frequencies of the studied alleles resulted in degrees of differences between this population and Orientals, Saudi Arabians, and Caucasians, while similarities to the reported results obtained from the studies among Mediterraneans and South Indians are noticeable.
Collapse
Affiliation(s)
- Hamed Kouhi
- Faculty of Pharmacy, Research Center for Pharmaceutical Nanotechnology, Tabriz University (Medical Science), Tabriz, Iran
| | | | | | | | | |
Collapse
|
32
|
Abstract
Genetic variations have been shown to influence drug metabolism, risk of adverse drug events, and pharmacodynamic responses for many drugs routinely used to treat patients with stroke or at risk for stroke. Examples include clopidogrel, statins, antihypertensive medications, and coumadin. Further validation studies are needed to assess the clinical utility of selecting drugs and doses based on genetic tests. Physicians, pharmaceutical companies, regulatory agencies, and health insurers continue to grapple with how best to translate this burgeoning field into effective individualized medicine.
Collapse
|
33
|
Nolan D. HLA-B*5701 screening prior to abacavir prescription: clinical and laboratory aspects. Crit Rev Clin Lab Sci 2009; 46:153-65. [PMID: 19514905 DOI: 10.1080/10408360902937817] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This review focuses on the development of HLA-B*5701 genetic screening as a means of preventing drug hypersensitivity reactions caused by a commonly prescribed antiretroviral drug, abacavir. This strongly predictive genetic association, which in many respects represents a test case for the clinical application of pharmacogenetics, highlights the fine specificity of HLA-restricted immunity, here directed against a drug-specific antigen rather than an allogeneic molecule (as occurs in transplantation) or a pathogenic organism (as in viral infection). However, this example also demonstrates that successful implementation of pharmacogenetic screening requires that a range of criteria be adequately addressed. These include pharmaceutical factors (e.g. lack of alternative treatments with similar or improved cost effectiveness, safety, and efficacy), clinical factors (e.g. accurate diagnosis of the adverse event, in this case provided by clinical diagnostic criteria and adjunctive epicutaneous patch testing), sufficient objective evidence of the test's predictive value and generalizability (in this case provided by the first large-scale randomized trial of a pharmacogenetic test), as well as availability of quality-assured laboratory services that are responsive to the needs of targeted genetic screening. This example is intended to serve as a precedent for other pharmacogenetic screening strategies, particularly those aimed at reducing rates of serious drug hypersensitivity reactions in clinical practice.
Collapse
Affiliation(s)
- David Nolan
- Centre for Clinical Immunology and Biomedical Statistics, Murdoch University 2nd Floor, North Block, Royal Perth Hospital, Wellington Street, Perth 6000, Western Australia.
| |
Collapse
|
34
|
Blood-related proteomics. J Proteomics 2009; 73:483-507. [PMID: 19567275 DOI: 10.1016/j.jprot.2009.06.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/17/2009] [Accepted: 06/20/2009] [Indexed: 12/12/2022]
Abstract
Blood-related proteomics is an emerging field, recently gaining momentum. Indeed, a wealth of data is now available and a plethora of groups has contributed to add pieces to the jigsaw puzzle of protein complexity within plasma and blood cells. In this review article we purported to sail across the mare magnum of the actual knowledge in this research endeavour. The main strides in proteomic investigations on red blood cells, platelets, plasma and white blood cells are hereby presented in a chronological order. Moreover, a glance is given at prospective studies which promise to shift the focus of attention from the end product to its provider, the donor, in a sort of Kantian "Copernican revolution". A well-rounded portrait of the usefulness of proteomics in blood-related research is accurately given. In particular, proteomic tools could be adopted to follow the main steps of the blood-banking production processes (a comparison of collection methods, pathogen inactivation techniques, storage protocols). Thus proteomics has been recently transformed from a mere basic-research extremely-expensive toy into a dramatically-sensitive and efficient eye-lens to either delve into the depths of the molecular mechanisms of blood and blood components or to establish quality parameters in the blood-banking production chain totally anew.
Collapse
|
35
|
|
36
|
Ito T, Takahashi M, Sudo K, Sugiyama Y. Interindividual Pharmacokinetics Variability of the α4β1 Integrin Antagonist, 4-[1-[3-Chloro-4-[N′-(2-methylphenyl) ureido]phenylacetyl]-(4S)-fluoro-(2S)-pyrrolidine-2-yl] methoxybenzoic Acid (D01-4582), in Beagles Is Associated with Albumin Genetic Polymorphisms. J Pharm Sci 2009; 98:1545-55. [DOI: 10.1002/jps.21520] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
37
|
Oda A, Yamaotsu N, Hirono S, Takahashi O. Brownian dynamics simulations of a wild type and mutants of bovine pancreatic trypsin inhibitors. Biol Pharm Bull 2009; 31:2182-6. [PMID: 19043196 DOI: 10.1248/bpb.31.2182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brownian dynamics simulations of a wild type and mutants of bovine pancreatic trypsin inhibitors were performed using the program brownian. The results of the simulations were consistent with experimentally determined stabilities of these proteins, and the computational times of the simulations were much less than those of molecular dynamics simulations. These results indicate that Brownian dynamics simulations can be useful for investigating structural features of proteins that have some mutants, such as drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Akifumi Oda
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan.
| | | | | | | |
Collapse
|
38
|
Smith JA, Arnett DK, Kelly RJ, Ordovas JM, Sun YV, Hopkins PN, Hixson JE, Straka RJ, Peacock JM, Kardia SLR. The genetic architecture of fasting plasma triglyceride response to fenofibrate treatment. Eur J Hum Genet 2008; 16:603-13. [PMID: 18212815 DOI: 10.1038/sj.ejhg.5202003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Metabolic response to the triglyceride (TG)-lowering drug, fenofibrate, is shaped by interactions between genetic and environmental factors, yet knowledge regarding the genetic determinants of this response is primarily limited to single-gene effects. Since very low-density lipoprotein (VLDL) is the central carrier of fasting TG, identifying factors that affect both total TG and VLDL-TG response to fenofibrate is critical for predicting individual fenofibrate response. As part of the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study, 688 individuals from 161 families were genotyped for 91 single-nucleotide polymorphisms (SNPs) in 25 genes known to be involved in lipoprotein metabolism. Using generalized estimating equations to control for family structure, we performed linear modeling to investigate whether single SNPs, single covariates, SNP-SNP interactions, and/or SNP-covariate interactions had a significant association with the change in total fasting TG and fasting VLDL-TG after 3 weeks of fenofibrate treatment. A 10-iteration fourfold cross-validation procedure was used to validate significant associations and quantify their predictive abilities. More than one-third of the significant, cross-validated SNP-SNP interactions predicting each outcome involved just five SNPs, showing that these SNPs are of key importance to fenofibrate response. Multiple variable models constructed using the top-ranked SNP--covariate interactions explained 11.9% more variation in the change in TG and 7.8% more variation in the change in VLDL than baseline TG alone. These results yield insight into the complex biology of fenofibrate response, which can be used to target fenofibrate therapy to individuals who are most likely to benefit from the drug.
Collapse
Affiliation(s)
- Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Grant SFA, Hakonarson H. Recent development in pharmacogenomics: from candidate genes to genome-wide association studies. Expert Rev Mol Diagn 2007; 7:371-93. [PMID: 17620046 DOI: 10.1586/14737159.7.4.371] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genetic diversity, most notably through single nucleotide polymorphisms and copy-number variation, together with specific environmental exposures, contributes to both disease susceptibility and drug response variability. It has proved difficult to isolate disease genes that confer susceptibility to complex disorders, and as a consequence, even fewer genetic variants that influence clinical drug responsiveness have been uncovered. As such, the candidate gene approach has largely failed to deliver and, although the family-based linkage approach has certain theoretical advantages in dealing with common/complex disorders, progress has been slower than was hoped. More recently, genome-wide association studies have gained increasing popularity, as they enable scientists to robustly associate specific variants with the predisposition for complex disease, such as age-related macular degeneration, Type 2 diabetes, inflammatory bowel disease, obesity, autism and leukemia. This relatively new methodology has stirred new hope for the mapping of genes that regulate drug response related to these conditions. Collectively, these studies support the notion that modern high-throughput single nucleotide polymorphism genotyping technologies, when applied to large and comprehensively phenotyped patient cohorts, will readily reveal the most clinically relevant disease-modifying and drug response genes. This review addresses both recent advances in the genotyping field and highlights from genome-wide association studies, which have conclusively uncovered variants that underlie disease susceptibility and/or variability in drug response in common disorders.
Collapse
Affiliation(s)
- Struan F A Grant
- Center for Applied Genomics, The Children's Hospital of Philadelphia, PA 19104-4318, USA.
| | | |
Collapse
|
40
|
Grossman I. Routine pharmacogenetic testing in clinical practice: dream or reality? Pharmacogenomics 2007; 8:1449-59. [DOI: 10.2217/14622416.8.10.1449] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pharmacogenetics (PGx) has become progressively popular in recent years, thanks to growing anticipation among scientists, healthcare providers and the general public for the incorporation of genetic tests into the diagnostic arsenal at the physician’s disposal. Indeed, much research has been dedicated to elucidation of genetic determinants underlying interindividual variability in pharmacokinetic parameters, as well as drug safety and efficacy. However, few PGx applications have thus far been realized in healthcare management. This review uses examples from PGx research of psychiatric drugs to illustrate why the current published findings are inadequate and insufficient for utilization as routine clinical predictors of treatment safety, efficacy or dosing. I therefore suggest the necessary steps to demonstrate the validity, utility and cost–effectiveness of PGx. These recommendations include a whole range of aspects, starting from standardization of criteria and assessment of the technical quality of genotyping assays, up to design of prospective PGx studies, providing the basis for reimbursement programs to be recognized in routine clinical practice.
Collapse
Affiliation(s)
- Iris Grossman
- GlaxoSmithKline, Pharmacogenetics, Research and Development, 5 Moore Drive, Research Triangle Park, Durham 27709, NC, USA
- Duke University, IGSP Center for Population Genomics and Pharmacogenetics, Durham, NC, USA
| |
Collapse
|
41
|
Lainesse C, Frank D, Beaudry F, Doucet M. Effects of physiological covariables on pharmacokinetic parameters of clomipramine in a large population of cats after a single oral administration. J Vet Pharmacol Ther 2007; 30:116-26. [PMID: 17348896 DOI: 10.1111/j.1365-2885.2007.00826.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study was conducted to confirm an interindividual variability in pharmacokinetic parameters of clomipramine in a large population of cats and to identify potential covariables that would explain the presence of such pharmacokinetic variability after a single dose of Clomicalm. Clomipramine hydrochloride was administered orally according to a weight-dose chart from 0.32 to 0.61 mg/kg, to 76 cats and five blood samples were then taken by direct venipuncture at 1, 3, 6, 12, and 24 h. Plasma concentrations of clomipramine and desmethylclomipramine (DCMP) were measured by LC-MS/MS. The Standard Two-Stage technique was used to assess differences and detect correlations between pharmacokinetic parameter estimates and individual covariables. A large interindividual variability in all pharmacokinetic parameters (CV% 64-124) was detected. Statistically significant gender-related differences were detected in MR and Cl/F, where female cats had a higher mean MR (0.53) and faster Cl/F (0.36 L/h.kg) than males (0.36 and 0.21 L/h.kg, respectively). No correlation could be found between clomipramine AUC0-24 h or DCMP AUC0-24 h and sedation scores. Further feline studies are required to assess these findings after multiple dosing of clomipramine and DCMP to allow clinical extrapolation.
Collapse
Affiliation(s)
- C Lainesse
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | | | | |
Collapse
|
42
|
Ryan MT, Sweeney T. Integrating molecular biology into the veterinary curriculum. JOURNAL OF VETERINARY MEDICAL EDUCATION 2007; 34:658-673. [PMID: 18326779 DOI: 10.3138/jvme.34.5.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The modern discipline of molecular biology is gaining increasing relevance in the field of veterinary medicine. This trend must be reflected in the curriculum if veterinarians are to capitalize on opportunities arising from this field and direct its development toward their own goals as a profession. This review outlines current applications of molecular-based technologies that are relevant to the veterinary profession. In addition, the current techniques and technologies employed within the field of molecular biology are discussed. Difficulties associated with teaching a subject such as molecular biology within a veterinary curriculum can be alleviated by effectively integrating molecular topics throughout the curriculum, pitching the subject at an appropriate depth, and employing varied teaching methods throughout.
Collapse
Affiliation(s)
- Marion T Ryan
- College of Life Sciences, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | | |
Collapse
|
43
|
Bhatnagar P, Guleria R, Kukreti R. Pharmacogenomics of beta2-agonist: key focus on signaling pathways. Pharmacogenomics 2006; 7:919-33. [PMID: 16981850 DOI: 10.2217/14622416.7.6.919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Asthma is one of the most common respiratory diseases, where inhalation and exhalation are obstructed due to narrowing of the airways by broncho-constriction or by inflammation. Among all the available anti-asthma therapies, beta2-agonists are the most effective bronchodilators available, and give rapid relief of asthma symptoms. Evidence suggests that the degree of beta2-agonist response varies greatly between patients and genetic factors have a major role in it. Despite several studies on the beta2-agonist pharmacogenetics, significant gaps in knowledge still remain and need to be resolved before the pharmacotyping of beta2-agonist responsiveness comes to clinical practice. As we know, beta2-agonists show their influence by targeting beta2-adrenergic receptors, leading to the activation of beta2-adrenergic receptors and its downstream cascade. Signaling through beta2-adrenergic receptors mediates numerous airway functions by regulating broncho-constriction and dilation pathways. Therefore, it is an important prerequisite to understand these pathways, which will assist in defining the variability in therapeutic responses for beta2-agonists. Owing to the complexity of the action of a beta2-agonist and its therapeutic response, a broader genomics approach will help in optimizing therapy for the individual patient. This might be achieved by considering and focusing on receptor/s at which the drug binds directly, signal transduction cascades or downstream proteins and proteins involved in the relaxation and constriction of the airway smooth muscle. Considering that a drug response may involve a large number of proteins, it seems unlikely that a single polymorphism or haplotype in a single gene would explain a high degree of drug response variability in a consistent fashion. Thus, it shows that a polygenic approach will be more appropriate. In order to follow this, the mode of action of the beta2-agonist and its downstream signaling cascade should essentially be assessed to resolve the beta2-agonist enigma.
Collapse
Affiliation(s)
- Pallav Bhatnagar
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi-110007, India
| | | | | |
Collapse
|
44
|
Abstract
Observations over the later half of the last century have suggested that genetic factors may be the prime determinant of drug response, at least for some drugs. Retrospectively gathered data have provided further support to the notion that genotype-based prescribing will improve the overall efficacy rates and minimize adverse drug reactions (ADRs), making personalized medicine a reality. During the last 16 years, 38 drugs have been withdrawn from major markets due to safety concerns. Inevitably, a question arises as to whether it might be possible to 'rescue' some of these drugs by promoting genotype-based prescribing. However, ironically pharmacogenetics has not perceptibly improved the risk/benefit of a large number of genetically susceptible drugs that are already in wide clinical use and are associated with serious ADRs. Drug-induced hepatotoxicity and QT interval prolongation (with or without torsade de pointes) account for 24 (63%) of these 38 drug withdrawals. In terms of the number of drugs implicated, both these toxicities are on the increase. Many others have had to be withdrawn due to their inappropriate use. This paper discusses the criteria that a drug would need to fulfill, and summarizes the likely regulatory requirements, before its pharmacogenetic rescue can be considered to be realistic. One drug that fulfils these criteria is perhexiline (withdrawn worldwide in 1988) and is discussed in some detail. For the majority of these 38 drugs there are, at present, no candidates for genetic traits to which the toxicity that led to their withdrawal may be linked. For a few other drugs where a potential candidate for a genetic trait might explain the toxicity of concern, the majority of patients who experienced the index toxicity had easily managed nongenetic risk factors. It may be possible to rescue these drugs simply by careful attention to their dose, interaction potential and prescribing patterns, but without the need for any pharmacogenetic test. In addition, the pharmacogenetic rescue of drugs might not be as effective as anticipated as hardly any pharmacogenetic test is known to have the required test efficiency to promote individualized therapy. Multiple pathways of drug elimination, contribution to toxicity by metabolites as well as the parent drug, gene-gene interactions, multiple mechanisms of toxicity and inadequate characterization of phenotype account for this lack of highly predictive tests. The clinical use of tests that lack the required efficiency carries the risks of over- or under-dosing some patients, denying the drug to others and decreasing physician vigilance of patients. Above all, at present, prescribing physicians lack an adequate understanding of pharmacogenetics and its limitations. It is also questionable whether their prescribing will comply with the requirements for pretreatment pharmacogenetic tests to make pharmacogenetic rescue a realistic goal.
Collapse
|
45
|
Nolan D, Phillips E, Mallal S. Efavirenz and CYP2B6 Polymorphism: Implications for Drug Toxicity and Resistance. Clin Infect Dis 2006; 42:408-10. [PMID: 16392090 DOI: 10.1086/499369] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 10/25/2005] [Indexed: 11/03/2022] Open
|
46
|
Stumpf MPH, Goldstein DB, Wood NW. Introduction: genetic variation and human health. Philos Trans R Soc Lond B Biol Sci 2006; 360:1539-41. [PMID: 16096101 PMCID: PMC1569529 DOI: 10.1098/rstb.2005.1694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- M P H Stumpf
- Department of Biological Sciences, Imperial College, Biochemistry Building, London SW7 2AY, UK
| | | | | |
Collapse
|