1
|
Vilasboas-Campos V, Jammal AA, Gracitelli CP, Gameiro GR, Costa VP, Medeiros FA. Estimated Rates of Retinal Ganglion Cell Loss with Aging. OPHTHALMOLOGY SCIENCE 2025; 5:100616. [PMID: 39584181 PMCID: PMC11584911 DOI: 10.1016/j.xops.2024.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/10/2024] [Accepted: 08/30/2024] [Indexed: 11/26/2024]
Abstract
Purpose To evaluate the effect of aging on estimated retinal ganglion cell (RGC) counts over time in healthy eyes, obtained from a combination of structural and functional information. Design Longitudinal observational cohort study. Participants One hundred healthy eyes of 50 subjects. Methods Estimated RGC counts were obtained by a previously described method using standard automated perimetry sensitivity thresholds and OCT retinal nerve fiber layer thickness measurements. Linear mixed-effects models were applied to investigate the effect of aging, as well as other covariates, on rates of change in estimated RGC counts over time. Main Outcome Measures Rates of change in estimated RGC counts in healthy eyes. Results Subjects had a mean age of 49.6 ± 15.7 years at baseline (range 22.8-89.9 years) and were followed up for 3.5 ± 2.5 years. Thirty-three (66%) patients were female and 11 (22%) self-identified as Black. At baseline, the eyes had an average estimated RGC count of 1 144 010 ± 222 084 cells. After adjusting for confounding factors, the mean rate of change in estimated RGC counts was -6769 RGC/year (95% confidence interval: -10 994 to -2544 RGC/year; P = 0.002), or 0.6%/year. Older age and longer axial length were significantly associated with lower RGC counts at baseline. Conclusions A significant age-related decline in estimated RGC counts was found in healthy subjects with a combined metric integrating imaging and functional testing. The estimated mean age-related decline was remarkably similar to estimates from previous histologic studies in cadaver eyes, reinforcing the validity of the proposed combined metric and highlighting the importance of considering age when evaluating RGC count changes over time for monitoring glaucoma progression. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Verônica Vilasboas-Campos
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida
- Department of Ophthalmology, Universidade Estadual de Campinas, Campinas, Brazil
| | | | - Carolina P.B. Gracitelli
- Department of Ophthalmology and Visual Science, Federal University of São Paulo, São Paulo, Brazil
| | | | - Vital P. Costa
- Department of Ophthalmology, Universidade Estadual de Campinas, Campinas, Brazil
| | | |
Collapse
|
2
|
Navakkode S, Kennedy BK. Neural ageing and synaptic plasticity: prioritizing brain health in healthy longevity. Front Aging Neurosci 2024; 16:1428244. [PMID: 39161341 PMCID: PMC11330810 DOI: 10.3389/fnagi.2024.1428244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Ageing is characterized by a gradual decline in the efficiency of physiological functions and increased vulnerability to diseases. Ageing affects the entire body, including physical, mental, and social well-being, but its impact on the brain and cognition can have a particularly significant effect on an individual's overall quality of life. Therefore, enhancing lifespan and physical health in longevity studies will be incomplete if cognitive ageing is over looked. Promoting successful cognitive ageing encompasses the objectives of mitigating cognitive decline, as well as simultaneously enhancing brain function and cognitive reserve. Studies in both humans and animal models indicate that cognitive decline related to normal ageing and age-associated brain disorders are more likely linked to changes in synaptic connections that form the basis of learning and memory. This activity-dependent synaptic plasticity reorganises the structure and function of neurons not only to adapt to new environments, but also to remain robust and stable over time. Therefore, understanding the neural mechanisms that are responsible for age-related cognitive decline becomes increasingly important. In this review, we explore the multifaceted aspects of healthy brain ageing with emphasis on synaptic plasticity, its adaptive mechanisms and the various factors affecting the decline in cognitive functions during ageing. We will also explore the dynamic brain and neuroplasticity, and the role of lifestyle in shaping neuronal plasticity.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Buck Institute for Research on Ageing, Novato, CA, United States
| |
Collapse
|
3
|
Klemmensen MM, Borrowman SH, Pearce C, Pyles B, Chandra B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 2024; 21:e00292. [PMID: 38241161 PMCID: PMC10903104 DOI: 10.1016/j.neurot.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/07/2023] [Indexed: 01/21/2024] Open
Abstract
Recent advances in understanding the role of mitochondrial dysfunction in neurodegenerative diseases have expanded the opportunities for neurotherapeutics targeting mitochondria to alleviate symptoms and slow disease progression. In this review, we offer a historical account of advances in mitochondrial biology and neurodegenerative disease. Additionally, we summarize current knowledge of the normal physiology of mitochondria and the pathogenesis of mitochondrial dysfunction, the role of mitochondrial dysfunction in neurodegenerative disease, current therapeutics and recent therapeutic advances, as well as future directions for neurotherapeutics targeting mitochondrial function. A focus is placed on reactive oxygen species and their role in the disruption of telomeres and their effects on the epigenome. The effects of mitochondrial dysfunction in the etiology and progression of Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease are discussed in depth. Current clinical trials for mitochondria-targeting neurotherapeutics are discussed.
Collapse
Affiliation(s)
- Madelyn M Klemmensen
- University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, USA
| | - Seth H Borrowman
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Colin Pearce
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Benjamin Pyles
- Aper Funis Research, Union River Innovation Center, Ellsworth, ME 04605, USA
| | - Bharatendu Chandra
- University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, USA; Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|
4
|
Song P, Sun M, Liu C, Liu J, Lin P, Chen H, Zhou D, Tang K, Wang A, Jin Y. Reactive Oxygen Species Damage Bovine Endometrial Epithelial Cells via the Cytochrome C-mPTP Pathway. Antioxidants (Basel) 2023; 12:2123. [PMID: 38136242 PMCID: PMC10741073 DOI: 10.3390/antiox12122123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
After parturition, bovine endometrial epithelial cells (BEECs) undergo serious inflammation and imbalance between oxidation and antioxidation, which is widely acknowledged as a primary contributor to the development of endometritis in dairy cows. Nevertheless, the mechanism of oxidative stress-mediated inflammation and damage in bovine endometrial epithelial cells remains inadequately defined, particularly the molecular pathways associated with mitochondria-dependent apoptosis. Hence, the present study was designed to explore the mechanism responsible for mitochondrial dysfunction-induced BEEC damage. In vivo, the expressions of proapoptotic protein caspase 3 and cytochrome C were increased significantly in dairy uteri with endometritis. Similarly, the levels of proapoptotic protein caspase 3, BAX, and cytochrome C were markedly increased in H2O2-treated BEECs. Our findings revealed pronounced BEEC damage in dairy cows with endometritis, accompanied by heightened expression of cyto-C and caspase-3 both in vivo and in vitro. The reduction in apoptosis-related protein of BEECs due to oxidant injury was notably mitigated following N-acetyl-L-cysteine (NAC) treatment. Furthermore, mitochondrial vacuolation was significantly alleviated, and mitochondrial membrane potential returned to normal levels after the removal of ROS. Excessive ROS may be the main cause of mitochondrial dysfunction. Mitochondrial permeability transition pore (mPTP) blockade by cyclophilin D (CypD) knockdown with CSA significantly blocked the flow of cytochrome C (cyto-C) and Ca2+ to the cytoplasm from the mitochondria. Our results indicate that elevated ROS and persistent opening of the mPTP are the main causes of oxidative damage in BEECs. Collectively our results reveal a new mechanism involving ROS-mPTP signaling in oxidative damage to BEECs, which may be a potential avenue for the clinical treatment of bovine endometritis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (P.S.)
| |
Collapse
|
5
|
Robichaux DJ, Harata M, Murphy E, Karch J. Mitochondrial permeability transition pore-dependent necrosis. J Mol Cell Cardiol 2023; 174:47-55. [PMID: 36410526 PMCID: PMC9868081 DOI: 10.1016/j.yjmcc.2022.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Mitochondrial permeability transition pore (mPTP)-dependent cell death is a form of necrotic cell death that is driven by mitochondrial dysfunction by the opening of the mPTP and is triggered by increases in matrix levels of Ca2+ and reactive oxygen species. This form of cell death has been implicated in ischemic injuries of the heart and brain as well as numerous degenerative diseases in the brain and skeletal muscle. This review focuses on the molecular triggers and regulators of mPTP-dependent necrosis in the context of myocardial ischemia reperfusion injury. Research over the past 50 years has led to the identity of regulators and putative pore-forming components of the mPTP. Finally, downstream consequences of activation of the mPTP as well as ongoing questions and areas of research are discussed. These questions pose a particular interest as targeting the mPTP could potentially represent an efficacious therapeutic strategy to reduce infarct size following an ischemic event.
Collapse
Affiliation(s)
- Dexter J Robichaux
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Mikako Harata
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA
| | - Elizabeth Murphy
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Rodrigues EA, Christie GJ, Farzan F, Moreno S. Does cognitive aging follow an orchid and dandelion phenomenon? Front Aging Neurosci 2022; 14:986262. [PMID: 36299615 PMCID: PMC9588970 DOI: 10.3389/fnagi.2022.986262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Cognitive reserve reflects the brain’s intrinsic adaptive capacity against the neurodegenerative effects of aging. The maintenance or enhancement of the brain’s cognitive reserve plays a crucial role in mitigating the severity of pathologies associated with aging. A new movement, social prescribing, which focuses on prescribing lifestyle activities as a treatment for patients, is growing in popularity as a solution against aging pathologies. However, few studies have demonstrated a clear impact of lifestyle activities on individual cognitive health, outside of floor and ceiling effects. Understanding who benefits from which lifestyle factors remains unclear. Here, we investigated the potential effects of lifestyle activities on individuals’ cognitive health from more than 3,530 older adults using a stratification method and advanced analysis technique. Our stratification methods allowed us to observe a new result: older adults who had relatively average cognitive scores were not impacted by lifestyle factors. By comparison, older adults with very high or very low cognitive scores were highly impacted by lifestyle factors. These findings expand the orchid and dandelion theory to the aging field, regarding the biological sensitivity of individuals to harmful and protective environmental effects. Our discoveries demonstrate the role of individual differences in the aging process and its importance for social prescribing programs.
Collapse
Affiliation(s)
- Emma A. Rodrigues
- School of Interactive Arts and Technology, Simon Fraser University, Surrey, BC, Canada
| | | | - Faranak Farzan
- School of Mechatronics and Systems Engineering, Simon Fraser University, Surrey, BC, Canada
| | - Sylvain Moreno
- School of Interactive Arts and Technology, Simon Fraser University, Surrey, BC, Canada
- Circle Innovation, Surrey, BC, Canada
- *Correspondence: Sylvain Moreno,
| |
Collapse
|
7
|
Stecker M. A Perspective: Challenges in Dementia Research. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1368. [PMID: 36295529 PMCID: PMC9609997 DOI: 10.3390/medicina58101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
Although dementia is a common and devastating disease that has been studied intensely for more than 100 years, no effective disease modifying treatment has been found. At this impasse, new approaches are important. The purpose of this paper is to provide, in the context of current research, one clinician's perspective regarding important challenges in the field in the form of specific challenges. These challenges not only illustrate the scope of the problems inherent in finding treatments for dementia, but can also be specific targets to foster discussion, criticism and new research. One common theme is the need to transform research activities from small projects in individual laboratories/clinics to larger multinational projects, in which each clinician and researcher works as an integral part. This transformation will require collaboration between researchers, large corporations, regulatory/governmental authorities and the general population, as well as significant financial investments. However, the costs of transforming the approach are small in comparison with the cost of dementia.
Collapse
Affiliation(s)
- Mark Stecker
- Fresno Institute of Neuroscience, Fresno, CA 93720, USA
| |
Collapse
|
8
|
Yang T, Wang Y, Liao W, Zhang S, Wang S, Xu N, Xie W, Luo C, Wang Y, Wang Z, Zhang Y. Down-regulation of EPB41L4A-AS1 mediated the brain aging and neurodegenerative diseases via damaging synthesis of NAD + and ATP. Cell Biosci 2021; 11:192. [PMID: 34758883 PMCID: PMC8579638 DOI: 10.1186/s13578-021-00705-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background Aging and neurodegenerative diseases are typical metabolic-related processes. As a metabolism-related long non-coding RNA, EPB41L4A-AS has been reported to be potentially involved in the development of brain aging and neurodegenerative diseases. In this study, we sought to reveal the mechanisms of EPB41L4A-AS in aging and neurodegenerative diseases. Methods Human hippocampal gene expression profiles downloaded from the Genotype-Tissue Expression database were analyzed to obtain age-stratified differentially expressed genes; a weighted correlation network analysis algorithm was then used to construct a gene co-expression network of these differentially expressed genes to obtain gene clustering modules. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, protein–protein interaction network, and correlation analysis were used to reveal the role of EPB41L4A-AS1. The mechanism was verified using Gene Expression Omnibus dataset GSE5281 and biological experiments (construction of cell lines, Real-time quantitative PCR, Western blot, measurement of ATP and NAD+ levels, nicotinamide riboside treatment, Chromatin Immunoprecipitation) in neurons and glial-derived cells. Results EPB41L4A-AS1 was downregulated in aging and Alzheimer's disease. EPB41L4A-AS1 related genes were found to be enriched in the electron transport chain and NAD+ synthesis pathway. Furthermore, these genes were highly associated with neurodegenerative diseases and positively correlated with EPB41L4A-AS1. In addition, biological experiments proved that the downregulation of EPB41L4A-AS1 could reduce the expression of these genes via histone H3 lysine 27 acetylation, resulting in decreased NAD+ and ATP levels, while EPB41L4A-AS1 overexpression and nicotinamide riboside treatment could restore the NAD+ and ATP levels. Conclusions Downregulation of EPB41L4A-AS1 not only disturbs NAD+ biosynthesis but also affects ATP synthesis. As a result, the high demand for NAD+ and ATP in the brain cannot be met, promoting the development of brain aging and neurodegenerative diseases. However, overexpression of EPB41L4A-AS1 and nicotinamide riboside, a substrate of NAD+ synthesis, can reduce EPB41L4A-AS1 downregulation-mediated decrease of NAD+ and ATP synthesis. Our results provide new perspectives on the mechanisms underlying brain aging and neurodegenerative diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00705-2.
Collapse
Affiliation(s)
- Tingpeng Yang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.,State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Yanzhi Wang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Weijie Liao
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.,Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Shikuan Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Songmao Wang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.,Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.,Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.,Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.,Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Cheng Luo
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.,Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.,Department of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yangyang Wang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.,Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.,Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ziqiang Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China.
| | - Yaou Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China. .,Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China. .,Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Markovic SJ, Fitzgerald M, Peiffer JJ, Scott BR, Rainey-Smith SR, Sohrabi HR, Brown BM. The impact of exercise, sleep, and diet on neurocognitive recovery from mild traumatic brain injury in older adults: A narrative review. Ageing Res Rev 2021; 68:101322. [PMID: 33737117 DOI: 10.1016/j.arr.2021.101322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Mild traumatic brain injury (mTBI) accounts for a large majority of traumatic brain injuries sustained globally each year. Older adults, who are already susceptible to age-related declines to neurocognitive health, appear to be at an increased risk of both sustaining an mTBI and experiencing slower or impaired recovery. There is also growing evidence that mTBI is a potential risk factor for accelerated cognitive decline and neurodegeneration. Lifestyle-based interventions are gaining prominence as a cost-effective means of maintaining cognition and brain health with age. Consequently, inter-individual variations in exercise, sleep, and dietary patterns could influence the trajectory of post-mTBI neurocognitive recovery, particularly in older adults. This review synthesises the current animal and human literature centred on the mechanisms through which lifestyle-related habits and behaviours could influence acute and longer-term neurocognitive functioning following mTBI. Numerous neuroprotective processes which are impacted by lifestyle factors have been established in animal models of TBI. However, the literature is characterised by a lack of translation to human samples and limited appraisal of the interaction between ageing and brain injury. Further research is needed to better establish the therapeutic utility of applying lifestyle-based modifications to improve post-mTBI neurocognitive outcomes in older adults.
Collapse
Affiliation(s)
- Shaun J Markovic
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia, Australia.
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia, Australia
| | - Jeremiah J Peiffer
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; Centre for Healthy Ageing, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; Murdoch Applied Sports Science Laboratory, Murdoch University, 90 South St, Murdoch, Western Australia, Australia
| | - Brendan R Scott
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; Centre for Healthy Ageing, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; Murdoch Applied Sports Science Laboratory, Murdoch University, 90 South St, Murdoch, Western Australia, Australia
| | - Stephanie R Rainey-Smith
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia, Australia; Centre for Healthy Ageing, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Dr, Joondalup, Western Australia, Australia; School of Psychological Science, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia, Australia
| | - Hamid R Sohrabi
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia, Australia; Centre for Healthy Ageing, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Dr, Joondalup, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, Balaclava Rd, Macquarie Park, New South Wales, Australia
| | - Belinda M Brown
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South St, Murdoch, Western Australia, Australia; Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia, Australia; Centre for Healthy Ageing, Murdoch University, 90 South St, Murdoch, Western Australia, Australia
| |
Collapse
|
10
|
Role of Kynurenine Pathway in Oxidative Stress during Neurodegenerative Disorders. Cells 2021; 10:cells10071603. [PMID: 34206739 PMCID: PMC8306609 DOI: 10.3390/cells10071603] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are chronic and life-threatening conditions negatively affecting the quality of patients’ lives. They often have a genetic background, but oxidative stress and mitochondrial damage seem to be at least partly responsible for their development. Recent reports indicate that the activation of the kynurenine pathway (KP), caused by an activation of proinflammatory factors accompanying neurodegenerative processes, leads to the accumulation of its neuroactive and pro-oxidative metabolites. This leads to an increase in the oxidative stress level, which increases mitochondrial damage, and disrupts the cellular energy metabolism. This significantly reduces viability and impairs the proper functioning of central nervous system cells and may aggravate symptoms of many psychiatric and neurodegenerative disorders. This suggests that the modulation of KP activity could be effective in alleviating these symptoms. Numerous reports indicate that tryptophan supplementation, inhibition of KP enzymes, and administration or analogs of KP metabolites show promising results in the management of neurodegenerative disorders in animal models. This review gathers and systematizes the knowledge concerning the role of metabolites and enzymes of the KP in the development of oxidative damage within brain cells during neurodegenerative disorders and potential strategies that could reduce the severity of this process.
Collapse
|
11
|
Astrocyte Intracellular Ca 2+and TrkB Signaling in the Hippocampus Could Be Involved in the Beneficial Behavioral Effects of Antidepressant Treatment. Neurotox Res 2021; 39:860-871. [PMID: 33616872 DOI: 10.1007/s12640-021-00334-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Although monoaminergic-based antidepressant drugs are largely used to treat major depressive disorder (MDD), their mechanisms are still incompletely understood. Intracellular Ca2+ (iCa2+) and Calmodulin 1(CaM-1) homeostasis have been proposed to participate in the therapeutic effects of these compounds. We investigated whether intra-hippocampal inhibition of CaM-1 would modulate the behavioral responses to chronic treatment with imipramine (IMI) or 7-nitroindazole (7-NI), a selective inhibitor of the neuronal nitric oxide synthase 1 (NOS1) enzyme that shows antidepressant-like effects. We also investigated the interactions of IMI and CaM-1 on transient astrocyte iCa2+ evoked by glutamate stimuli. Intra-hippocampal microinjection of the lentiviral delivered (LV) short hairpin iRNA-driven against the CaM-1 mRNA (LV-shRNA-CaM-1) or the CaM-1 inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide (W-7) blocked the antidepressant-like effect of chronic treatment with IMI or 7-NI. The shRNA also inhibited the mRNA expression of the tropomyosin receptor kinase B (TrkB) in the microinjection region. The iCa2+ in ex vivo hippocampus slices stained with fluorescent Ca2+indicator Oregon Green 488 BAPTA-1 revealed that IMI increased the intensity and duration of iCa2+ oscillation and reduced the number of events evoked by glutamate stimuli, evaluated by using CCD imaging and the % ΔF/Fo parameters. The pre-treatment with W-7 fully antagonized this effect. The present results indicate that the behavioral benefits of chronic antidepressant treatment might be associated with astrocyte intracellular Ca2+dynamics and TrkB mRNA expression in the hippocampus.
Collapse
|
12
|
Lee D, Jo MG, Kim SY, Chung CG, Lee SB. Dietary Antioxidants and the Mitochondrial Quality Control: Their Potential Roles in Parkinson's Disease Treatment. Antioxidants (Basel) 2020; 9:antiox9111056. [PMID: 33126703 PMCID: PMC7692176 DOI: 10.3390/antiox9111056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Advances in medicine and dietary standards over recent decades have remarkably increased human life expectancy. Unfortunately, the chance of developing age-related diseases, including neurodegenerative diseases (NDDs), increases with increased life expectancy. High metabolic demands of neurons are met by mitochondria, damage of which is thought to contribute to the development of many NDDs including Parkinson’s disease (PD). Mitochondrial damage is closely associated with the abnormal production of reactive oxygen species (ROS), which are widely known to be toxic in various cellular environments, including NDD contexts. Thus, ways to prevent or slow mitochondrial dysfunction are needed for the treatment of these NDDs. In this review, we first detail how ROS are associated with mitochondrial dysfunction and review the cellular mechanisms, such as the mitochondrial quality control (MQC) system, by which neurons defend against both abnormal production of ROS and the subsequent accumulation of damaged mitochondria. We next highlight previous studies that link mitochondrial dysfunction with PD and how dietary antioxidants might provide reinforcement of the MQC system. Finally, we discuss how aging plays a role in mitochondrial dysfunction and PD before considering how healthy aging through proper diet and exercise may be salutary.
Collapse
Affiliation(s)
- Davin Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Min Gu Jo
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Seung Yeon Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Correspondence: (C.G.C.); (S.B.L.)
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Correspondence: (C.G.C.); (S.B.L.)
| |
Collapse
|
13
|
Cruz-Almeida Y, Porges E. Additional considerations for studying brain metabolite levels across pain conditions using proton magnetic resonance spectroscopy. Neuroimage 2020; 224:117392. [PMID: 32971265 DOI: 10.1016/j.neuroimage.2020.117392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 01/20/2023] Open
Abstract
Advances in proton magnetic resonance spectroscopy (MRS) allow for the non-invasive examination of neuroinhibitory and neuroexcitatory processes in humans. In particular, these methods have been used to understand changes across chronic pain conditions. While a recent meta-analysis supports the idea that underlying brain metabolite levels may be unique to different pain conditions and may serve as biomarkers for specific pain conditions, the lack of consideration of differential brain aging processes across heterogenous pain conditions introduces a significant source of bias. Future studies need to address the interactions between pain and brain aging across different MRS metabolite measures.
Collapse
Affiliation(s)
- Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, Florida; Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, PO BOX 112610, Gainesville, FL 326010, Florida; Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, Florida; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida.
| | - Eric Porges
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, Florida; Department of Clinical & Health Psychology, College of Health Professions, University of Florida, Gainesville, Florida
| |
Collapse
|
14
|
Takemura K, Nishi H, Inagi R. Mitochondrial Dysfunction in Kidney Disease and Uremic Sarcopenia. Front Physiol 2020; 11:565023. [PMID: 33013483 PMCID: PMC7500155 DOI: 10.3389/fphys.2020.565023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, there has been an increased focus on the influences of mitochondrial dysfunction on various pathologies. Mitochondria are major intracellular organelles with a variety of critical roles, such as adenosine triphosphate production, metabolic modulation, generation of reactive oxygen species, maintenance of intracellular calcium homeostasis, and the regulation of apoptosis. Moreover, mitochondria are attracting attention as a therapeutic target in several diseases. Additionally, a lot of existing agents have been found to have pharmacological effects on mitochondria. This review provides an overview of the mitochondrial change in the kidney and skeletal muscle, which is often complicated with sarcopenia and chronic kidney disease (CKD). Furthermore, the pharmacological effects of therapeutics for CKD on mitochondria are explored.
Collapse
Affiliation(s)
- Koji Takemura
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Inagi
- Division of CKD Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Giller A, Andrawus M, Gutman D, Atzmon G. Pregnancy as a model for aging. Ageing Res Rev 2020; 62:101093. [PMID: 32502628 DOI: 10.1016/j.arr.2020.101093] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 04/21/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
The process of aging can be defined as the sum accumulation of damages and changes in metabolism during the life of an organism, due to both genetic predisposition and stochastic damage. During the gestational period and following parturition, similar damage can be seen due to the strenuous effect on the maternal body, exhibited on both the physiological and cellular level. In this review, we will focus on the similar physiological and cellular characteristics exhibited during pregnancy and aging, including induction of and response to oxidative stress, inflammation, and degradation of telomeres. We will evaluate any similar processes between aging and pregnancy by comparing common biomarkers, pathologies, and genetic and epigenetic effects, to establish the pregnant body as a model for aging. This review will approach the connection both in respect to current theories on aging as a byproduct of natural selection, and regarding unrelated biochemical similarities between the two, drawing on existing studies and models in humans and other species where relevant alike. Furthermore, we will show the response of the pregnant body to these changes, and through that illuminate unique areas of potential study to advance our knowledge of the maladies relating to aging and pregnancy, and an avenue for solutions.
Collapse
Affiliation(s)
- Abram Giller
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 349888, Israel
| | - Mariana Andrawus
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 349888, Israel
| | - Danielle Gutman
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 349888, Israel
| | - Gil Atzmon
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 349888, Israel; Departments of Genetics and Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York, 10461, USA.
| |
Collapse
|
16
|
Swenson S, Blum K, McLaughlin T, Gold MS, Thanos PK. The therapeutic potential of exercise for neuropsychiatric diseases: A review. J Neurol Sci 2020; 412:116763. [PMID: 32305746 DOI: 10.1016/j.jns.2020.116763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Exercise is known to have a myriad of health benefits. There is much to be learned from the effects of exercise and its potential for prevention, attenuation and treatment of multiple neuropsychiatric diseases and behavioral disorders. Furthermore, recent data and research on exercise benefits with respect to major health crises, such as, that of opioid and general substance use disorders, make it very important to better understand and review the mechanisms of exercise and how it could be utilized for effective treatments or adjunct treatments for these diseases. In addition, mechanisms, epigenetics and sex differences are examined and discussed in terms of future research implications.
Collapse
Affiliation(s)
- Sabrina Swenson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Western Univesity Health Sciences, Graduate College, Pomona, CA, USA
| | | | - Mark S Gold
- Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA; Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
17
|
Azman KF, Zakaria R. Honey as an antioxidant therapy to reduce cognitive ageing. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1368-1377. [PMID: 32133053 PMCID: PMC7043876 DOI: 10.22038/ijbms.2019.14027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This paper reviews the potential role of honey as a therapeutic antioxidant to reduce oxidative stress and improve cognitive ageing. All articles indexed to PubMed Central (PMC) were searched using the following key words: honey, antioxidant, memory and ageing. Honey is a natural insect-derived product with therapeutic, medicinal and nutritional values. Antioxidant properties of honey quench biologically-circulating reactive oxygen species (ROS) and counter oxidative stress while restoring the cellular antioxidant defense system. Antioxidant properties of honey may complement its nootropic effects to reduce cognitive ageing.
Collapse
Affiliation(s)
- Khairunnuur Fairuz Azman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia ,Corresponding author: Rahimah Zakaria. Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia. Tel: +609-7676156;
| |
Collapse
|
18
|
Abstract
Many diseases are related to age, among these neurodegeneration is particularly important. Alzheimer's disease Parkinson's and Glaucoma have many common pathogenic events including oxidative damage, Mitochondrial dysfunction, endothelial alterations and changes in the visual field. These are well known in the case of glaucoma, less in the case of neurodegeneration of the brain. Many other molecular aspects are common, such as the role of endoplasmic reticulum autophagy and neuronal apoptosis while others have been neglected due to lack of space such as inflammatory cytokine or miRNA. Moreover, the loss of specific neuronal populations, the induction of similar mechanisms of cell injury and the deposition of protein aggregates in specific anatomical areas are very similar events between these diseases. Intracellular and/or extracellular accumulation of protein aggregates is a key feature of many neurodegenerative disorders. The existence of abnormal protein aggregates has been documented in the RGCs of glaucomatous patients such as the anomalous Tau protein or the β-amyloid accumulations. Intra-cell catabolic processes also appear to be common in both glaucoma and neurodegeneration. They also help us to understand how the basis between these diseases is common and how the visual aspects can be a serious problem for those who are affected.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy.
| | - Carlo Alberto Cutolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Science, University of Genoa, Policlinico San Martino Hospital, Eye Clinic Genoa, Genoa, Italy
| | - Tommaso Rossi
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy
| |
Collapse
|
19
|
Brain age and other bodily 'ages': implications for neuropsychiatry. Mol Psychiatry 2019; 24:266-281. [PMID: 29892055 PMCID: PMC6344374 DOI: 10.1038/s41380-018-0098-1] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023]
Abstract
As our brains age, we tend to experience cognitive decline and are at greater risk of neurodegenerative disease and dementia. Symptoms of chronic neuropsychiatric diseases are also exacerbated during ageing. However, the ageing process does not affect people uniformly; nor, in fact, does the ageing process appear to be uniform even within an individual. Here, we outline recent neuroimaging research into brain ageing and the use of other bodily ageing biomarkers, including telomere length, the epigenetic clock, and grip strength. Some of these techniques, using statistical approaches, have the ability to predict chronological age in healthy people. Moreover, they are now being applied to neurological and psychiatric disease groups to provide insights into how these diseases interact with the ageing process and to deliver individualised predictions about future brain and body health. We discuss the importance of integrating different types of biological measurements, from both the brain and the rest of the body, to build more comprehensive models of the biological ageing process. Finally, we propose seven steps for the field of brain-ageing research to take in coming years. This will help us reach the long-term goal of developing clinically applicable statistical models of biological processes to measure, track and predict brain and body health in ageing and disease.
Collapse
|
20
|
Cole JH. Neuroimaging Studies Illustrate the Commonalities Between Ageing and Brain Diseases. Bioessays 2018; 40:e1700221. [PMID: 29882974 DOI: 10.1002/bies.201700221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/23/2018] [Indexed: 12/19/2022]
Abstract
The lack of specificity in neuroimaging studies of neurological and psychiatric diseases suggests that these different diseases have more in common than is generally considered. Potentially, features that are secondary effects of different pathological processes may share common neurobiological underpinnings. Intriguingly, many of these mechanisms are also observed in studies of normal (i.e., non-pathological) brain ageing. Different brain diseases may be causing premature or accelerated ageing to the brain, an idea that is supported by a line of "brain ageing" research that combines neuroimaging data with machine learning analysis. In reviewing this field, I conclude that such observations could have important implications, suggesting that we should shift experimental paradigm: away from characterizing the average case-control brain differences resulting from a disease toward methods that place individuals in their age-appropriate context. This will also lead naturally to clinical applications, whereby neuroimaging can contribute to a personalized-medicine approach to improve brain health.
Collapse
Affiliation(s)
- James H Cole
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience King's College London, London, SE5 8AF, UK
| |
Collapse
|
21
|
Heimann G, Canhos LL, Frik J, Jäger G, Lepko T, Ninkovic J, Götz M, Sirko S. Changes in the Proliferative Program Limit Astrocyte Homeostasis in the Aged Post-Traumatic Murine Cerebral Cortex. Cereb Cortex 2018; 27:4213-4228. [PMID: 28472290 DOI: 10.1093/cercor/bhx112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Indexed: 12/18/2022] Open
Abstract
Aging leads to adverse outcomes after traumatic brain injury. The mechanisms underlying these defects, however, are not yet clear. In this study, we found that astrocytes in the aged post-traumatic cerebral cortex develop a significantly reduced proliferative response, resulting in reduced astrocyte numbers in the penumbra. Moreover, experiments of reactive astrocytes in vitro reveal that their diminished proliferation is due to an age-related switch in the division mode with reduced cell-cycle re-entry rather than changes in cell-cycle length. Notably, reactive astrocytes in vivo and in vitro become refractory to stimuli increasing their proliferation during aging, such as Sonic hedgehog signaling. These data demonstrate for the first time that age-dependent, most likely intrinsic changes in the proliferative program of reactive astrocytes result in their severely hampered proliferative response to traumatic injury thereby affecting astrocyte homeostasis.
Collapse
Affiliation(s)
- Gábor Heimann
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Luisa L Canhos
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Jesica Frik
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Institute of Biotechnology and Molecular Biology (IBBM), Department of Biological Sciences, 1900 La Plata, Argentina
| | - Gabriele Jäger
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Tjasa Lepko
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Jovica Ninkovic
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Synergy, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| |
Collapse
|
22
|
Avgerinos KI, Spyrou N, Bougioukas KI, Kapogiannis D. Effects of creatine supplementation on cognitive function of healthy individuals: A systematic review of randomized controlled trials. Exp Gerontol 2018; 108:166-173. [PMID: 29704637 DOI: 10.1016/j.exger.2018.04.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/03/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND AIMS Creatine is a supplement used by sportsmen to increase athletic performance by improving energy supply to muscle tissues. It is also an essential brain compound and some hypothesize that it aids cognition by improving energy supply and neuroprotection. The aim of this systematic review is to investigate the effects of oral creatine administration on cognitive function in healthy individuals. METHODS A search of multiple electronic databases was performed for the identification of randomized clinical trials (RCTs) examining the cognitive effects of oral creatine supplementation in healthy individuals. RESULTS Six studies (281 individuals) met our inclusion criteria. Generally, there was evidence that short term memory and intelligence/reasoning may be improved by creatine administration. Regarding other cognitive domains, such as long-term memory, spatial memory, memory scanning, attention, executive function, response inhibition, word fluency, reaction time and mental fatigue, the results were conflicting. Performance on cognitive tasks stayed unchanged in young individuals. Vegetarians responded better than meat-eaters in memory tasks but for other cognitive domains no differences were observed. CONCLUSIONS Oral creatine administration may improve short-term memory and intelligence/reasoning of healthy individuals but its effect on other cognitive domains remains unclear. Findings suggest potential benefit for aging and stressed individuals. Since creatine is safe, future studies should include larger sample sizes. It is imperative that creatine should be tested on patients with dementias or cognitive impairment.
Collapse
Affiliation(s)
- Konstantinos I Avgerinos
- 251 Hellenic Airforce General Hospital, Athens, Greece; Aristotle University of Thessaloniki, Faculty of Health Sciences, Department of Medicine, Greece.
| | - Nikolaos Spyrou
- 251 Hellenic Airforce General Hospital, Athens, Greece; Faculty of Medicine, National and Kapodistrian University of Athens, Greece
| | | | | |
Collapse
|
23
|
Beckhauser TF, Francis-Oliveira J, De Pasquale R. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity. J Exp Neurosci 2016; 10:23-48. [PMID: 27625575 PMCID: PMC5012454 DOI: 10.4137/jen.s39887] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/09/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022] Open
Abstract
In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated.
Collapse
Affiliation(s)
- Thiago Fernando Beckhauser
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - José Francis-Oliveira
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - Roberto De Pasquale
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| |
Collapse
|
24
|
Garza-Lombó C, Gonsebatt ME. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function. Front Cell Neurosci 2016; 10:157. [PMID: 27378854 PMCID: PMC4910040 DOI: 10.3389/fncel.2016.00157] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/30/2016] [Indexed: 01/14/2023] Open
Abstract
The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México México
| | - María E Gonsebatt
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México México
| |
Collapse
|
25
|
Glutamate and ATP at the Interface Between Signaling and Metabolism in Astroglia: Examples from Pathology. Neurochem Res 2016; 42:19-34. [PMID: 26915104 DOI: 10.1007/s11064-016-1848-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/17/2022]
Abstract
Glutamate is the main excitatory transmitter in the brain, while ATP represents the most important energy currency in any living cell. Yet, these chemicals play an important role in both processes, enabling them with dual-acting functions in metabolic and intercellular signaling pathways. Glutamate can fuel ATP production, while ATP can act as a transmitter in intercellular signaling. We discuss the interface between glutamate and ATP in signaling and metabolism of astrocytes. Not only do glutamate and ATP cross each other's paths in physiology of the brain, but they also do so in its pathology. We present the fabric of this process in (patho)physiology through the discussion of synthesis and metabolism of ATP and glutamate in astrocytes as well as by providing a general description of astroglial receptors for these molecules along with the downstream signaling pathways that may be activated. It is astroglial receptors for these dual-acting molecules that could hold a key for medical intervention in pathological conditions. We focus on two examples disclosing the role of activation of astroglial ATP and glutamate receptors in pathology of two kinds of brain tissue, gray matter and white matter, respectively. Interventions at the interface of metabolism and signaling show promise for translational medicine.
Collapse
|
26
|
Age-related changes in the antidepressant-like effect of desipramine and fluoxetine in the rat forced-swim test. Behav Pharmacol 2016; 27:22-8. [DOI: 10.1097/fbp.0000000000000175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. Proc Natl Acad Sci U S A 2015; 112:10515-20. [PMID: 26240337 DOI: 10.1073/pnas.1509879112] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The lack of intravital imaging of axonal transport of mitochondria in the mammalian CNS precludes characterization of the dynamics of axonal transport of mitochondria in the diseased and aged mammalian CNS. Glaucoma, the most common neurodegenerative eye disease, is characterized by axon degeneration and the death of retinal ganglion cells (RGCs) and by an age-related increase in incidence. RGC death is hypothesized to result from disturbances in axonal transport and in mitochondrial function. Here we report minimally invasive intravital multiphoton imaging of anesthetized mouse RGCs through the sclera that provides sequential time-lapse images of mitochondria transported in a single axon with submicrometer resolution. Unlike findings from explants, we show that the axonal transport of mitochondria is highly dynamic in the mammalian CNS in vivo under physiological conditions. Furthermore, in the early stage of glaucoma modeled in adult (4-mo-old) mice, the number of transported mitochondria decreases before RGC death, although transport does not shorten. However, with increasing age up to 23-25 mo, mitochondrial transport (duration, distance, and duty cycle) shortens. In axons, mitochondria-free regions increase and lengths of transported mitochondria decrease with aging, although totally organized transport patterns are preserved in old (23- to 25-mo-old) mice. Moreover, axonal transport of mitochondria is more vulnerable to glaucomatous insults in old mice than in adult mice. These mitochondrial changes with aging may underlie the age-related increase in glaucoma incidence. Our method is useful for characterizing the dynamics of axonal transport of mitochondria and may be applied to other submicrometer structures in the diseased and aged mammalian CNS in vivo.
Collapse
|
28
|
Baltan S. Excitotoxicity and mitochondrial dysfunction underlie age-dependent ischemic white matter injury. ADVANCES IN NEUROBIOLOGY 2014; 11:151-70. [PMID: 25236728 PMCID: PMC8937575 DOI: 10.1007/978-3-319-08894-5_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The central nervous system white matter is damaged during an ischemic stroke and therapeutic strategies derived from experimental studies focused exclusively on young adults and gray matter have been unsuccessful in the more clinically relevant aging population. The risk for stroke increases with age and the white matter inherently becomes more susceptible to injury as a function of age. Age-related changes in the molecular architecture of white matter determine the principal injury mechanisms and the functional outcome. A prominent increase in the main plasma membrane Na(+)-dependent glutamate transporter, GLT-1/EAAT2, together with increased extracellular glutamate levels may reflect an increased need for glutamate signaling in the aging white matter to maintain its function. Mitochondria exhibit intricate dynamics to efficiently buffer Ca(2+), to produce sufficient ATP, and to effectively scavenge reactive oxygen species (ROS) in response to excitotoxicity to sustain axon function. Aging exacerbates mitochondrial fusion, leading to progressive alterations in mitochondrial dynamics and function, presumably to effectively buffer increased Ca(2+) load and ROS production. Interestingly, these adaptive adjustments become detrimental under ischemic conditions, leading to increased and early glutamate release and a rapid exhaustion of mitochondrial capacity to sustain energy status of axons. Consequently, protective interventions in young white matter become injurious or ineffective to promote recovery in aging white matter after an ischemic episode. An age-specific understanding of the mechanisms of injury processes in white matter is vital in order to design dynamic therapeutic approaches for stroke victims.
Collapse
Affiliation(s)
- Selva Baltan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC30, Cleveland, OH, 44195, USA,
| |
Collapse
|
29
|
Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2014; 8:2003-14. [PMID: 25206509 PMCID: PMC4145906 DOI: 10.3969/j.issn.1673-5374.2013.21.009] [Citation(s) in RCA: 425] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/15/2013] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. All these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive therapeutic interventions for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunyan Guo
- Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Li Sun
- Life Science Research Center, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Xueping Chen
- Department of Human Anatomy and Cell Science, University of Manitoba, Manitoba R3E 0J9, Canada
| | - Danshen Zhang
- Hebei University of Science and Technology, Shijiazhuang 050018, Hebei Province, China
| |
Collapse
|
30
|
Ureshino RP, Hsu YT, do Carmo LG, Yokomizo CH, Nantes IL, Smaili SS. Inhibition of cytoplasmic p53 differentially modulates Ca(2+) signaling and cellular viability in young and aged striata. Exp Gerontol 2014; 58:120-7. [PMID: 25084214 DOI: 10.1016/j.exger.2014.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/12/2014] [Accepted: 07/24/2014] [Indexed: 12/23/2022]
Abstract
The p53 protein, a transcription factor with many gene targets, can also trigger apoptosis in the cytoplasm. The disruption of cell homeostasis, such as Ca(2+) signaling and mitochondrial respiration, contributes to the loss of viability and ultimately leads to cell death. However, the link between Ca(2+) signaling and p53 signaling remains unclear. During aging, there are alterations in cell physiology that are commonly associated with a reduced adaptive stress response, thus increasing cell vulnerability. In this work, we examined the effects of a cytoplasmic p53 inhibitor (pifithrin μ) in the striatum of young and aged rats by evaluating Ca(2+) signaling, mitochondrial respiration, apoptotic protein expression, and tissue viability. Our results showed that pifithrin μ differentially modulated cytoplasmic and mitochondrial Ca(2+) in young and aged rats. Cytoplasmic p53 inhibition appeared to reduce the mitochondrial respiration rate in both groups. In addition, p53 phosphorylation and Bax protein levels were elevated upon cytoplasmic p53 inhibition and could contribute to the reduction of tissue viability. Following glutamate challenge, pifithrin μ improved cell viability in aged tissue, reduced reactive oxygen species (ROS) generation, and reduced mitochondrial membrane potential (ΔΨm). Taken together, these results indicate that cytoplasmic p53 may have a special role in cell viability by influencing cellular Ca(2+) homeostasis and respiration and may produce differential effects in the striatum of young and aged rats.
Collapse
Affiliation(s)
- Rodrigo Portes Ureshino
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil.
| | - Yi-Te Hsu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lúcia Garcez do Carmo
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - César Henrique Yokomizo
- Human and Natural Sciences Center, Federal University of ABC, Santo André, SP 09210-170, Brazil
| | - Iseli Lourenço Nantes
- Human and Natural Sciences Center, Federal University of ABC, Santo André, SP 09210-170, Brazil
| | - Soraya Soubhi Smaili
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| |
Collapse
|
31
|
Fagan SG, Campbell VA. The influence of cannabinoids on generic traits of neurodegeneration. Br J Pharmacol 2014; 171:1347-60. [PMID: 24172185 PMCID: PMC3954477 DOI: 10.1111/bph.12492] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED In an increasingly ageing population, the incidence of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease are rising. While the aetiologies of these disorders are different, a number of common mechanisms that underlie their neurodegenerative components have been elucidated; namely neuroinflammation, excitotoxicity, mitochondrial dysfunction and reduced trophic support. Current therapies focus on treatment of the symptoms and attempt to delay the progression of these diseases but there is currently no cure. Modulation of the endogenous cannabinoid system is emerging as a potentially viable option in the treatment of neurodegeneration. Endocannabinoid signalling has been found to be altered in many neurodegenerative disorders. To this end, pharmacological manipulation of the endogenous cannabinoid system, as well as application of phytocannabinoids and synthetic cannabinoids have been investigated. Signalling from the CB1 and CB2 receptors are known to be involved in the regulation of Ca(2+) homeostasis, mitochondrial function, trophic support and inflammatory status, respectively, while other receptors gated by cannabinoids such as PPARγ, are gaining interest in their anti-inflammatory properties. Through multiple lines of evidence, this evolutionarily conserved neurosignalling system has shown neuroprotective capabilities and is therefore a potential target for neurodegenerative disorders. This review details the mechanisms of neurodegeneration and highlights the beneficial effects of cannabinoid treatment. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.
Collapse
Affiliation(s)
- S G Fagan
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, University of Dublin, Trinity CollegeDublin 2, Ireland
| | - V A Campbell
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, University of Dublin, Trinity CollegeDublin 2, Ireland
| |
Collapse
|
32
|
Calkins DJ. Age-related changes in the visual pathways: blame it on the axon. Invest Ophthalmol Vis Sci 2013; 54:ORSF37-41. [PMID: 24335066 DOI: 10.1167/iovs.13-12784] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aging visual system is marked by a decline in some, but not all, key functions. Some of this decline is attributed to changes in the optics of the eye, but other aspects must have a neural basis. Across mammals, with aging there is remarkable persistence of central structures to which retinal ganglion cell (RGC) axons project with little or no loss of neurons. Similarly, RGC bodies in the retina are subject to variable age-related loss, with most mammals showing none over time. In contrast, the RGC axon itself is highly vulnerable. Across species, the rate of axon loss in the optic nerve is related inversely to the total number of axons at maturity and lifespan. The result of this scaling is approximately a 40% total decline in axon number. Evidence suggests that the consistent vulnerability of RGC axons to aging arises from their high metabolic demand combined with diminishing resources. Thus, therapeutic interventions that conserve bioenergetics may have potential to abate age-related decline in visual function.
Collapse
Affiliation(s)
- David J Calkins
- The Vanderbilt Eye Institute and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
33
|
Yang L, Zhang J, Zheng K, Shen H, Chen X. Long-term Ginsenoside Rg1 Supplementation Improves Age-Related Cognitive Decline by Promoting Synaptic Plasticity Associated Protein Expression in C57BL/6J Mice. J Gerontol A Biol Sci Med Sci 2013; 69:282-94. [DOI: 10.1093/gerona/glt091] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
34
|
Guerra-Araiza C, Álvarez-Mejía AL, Sánchez-Torres S, Farfan-García E, Mondragón-Lozano R, Pinto-Almazán R, Salgado-Ceballos H. Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases. Free Radic Res 2013; 47:451-62. [DOI: 10.3109/10715762.2013.795649] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Bilkei-Gorzo A. The endocannabinoid system in normal and pathological brain ageing. Philos Trans R Soc Lond B Biol Sci 2013; 367:3326-41. [PMID: 23108550 DOI: 10.1098/rstb.2011.0388] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.
Collapse
|
36
|
|
37
|
Lu CB, Vreugdenhil M, Toescu EC. The effect of aging-associated impaired mitochondrial status on kainate-evoked hippocampal gamma oscillations. Neurobiol Aging 2012; 33:2692-703. [PMID: 22405041 PMCID: PMC3657166 DOI: 10.1016/j.neurobiolaging.2012.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/23/2011] [Accepted: 01/07/2012] [Indexed: 01/08/2023]
Abstract
Oscillations in hippocampal neuronal networks in the gamma frequency band have been implicated in various cognitive tasks and we showed previously that aging reduces the power of such oscillations. Here, using submerged hippocampal slices allowing simultaneous electrophysiological recordings and imaging, we studied the correlation between the kainate-evoked gamma oscillation and mitochondrial activity, as monitored by rhodamine 123. We show that the initiation of kainate-evoked gamma oscillations induces mitochondrial depolarization, indicating a metabolic response. Aging had an opposite effect on these parameters: while depressing the gamma oscillation strength, it increases mitochondrial depolarization. Also, in the aged neurons, kainate induced significantly larger Ca2+ signals. In younger slices, acute mitochondrial depolarization induced by low concentrations of mitochondrial protonophores strongly, but reversibly, inhibits gamma oscillations. These data indicating that the complex network activity required by the maintenance of gamma activity is susceptible to changes and modulations in mitochondrial status.
Collapse
Affiliation(s)
| | | | - Emil C. Toescu
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
38
|
de Souza L, Smaili SS, Ureshino RP, Sinigaglia-Coimbra R, Andersen ML, Lopes GS, Tufik S. Effect of chronic sleep restriction and aging on calcium signaling and apoptosis in the hippocampus of young and aged animals. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:23-30. [PMID: 22343009 DOI: 10.1016/j.pnpbp.2012.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 11/19/2022]
Abstract
Aging leads to progressive deterioration of physiological function and diminished responses to environmental stress. Organic and functional alterations are frequently observed in elderly subjects. Although chronic sleep loss is observed during senescence, little is known about the impact of insufficient sleep on cellular function in aging neurons. Disruption of neuronal calcium (Ca²⁺) signaling is related to impaired neuronal function and cell death. It has been hypothesized that sleep deprivation may compromise neuronal stability and induce cell death in young neurons; however, it is necessary to evaluate the impact of aging on this process. Therefore, the aim of this study was to evaluate the effects of chronic sleep restriction (CSR) on Ca²⁺ signaling and cell death in the hippocampus of young and aged animals. We found that glutamate and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) induced a greater elevation in cytosolic Ca²⁺ ([Ca²⁺](c)) in hippocampal slices from aged rats subjected to CSR compared to age-matched controls. Interestingly, aged-matched controls showed a reduced Ca²⁺ response to glutamate and FCCP, relative to both CSR and control young animals. Apoptotic nuclei were observed in aged rats from both treatment groups; however, the profile of apoptotic nuclei in aged CSR rats was highly variable. Bax and Bcl-2 protein expression did not change with aging in the CSR groups. Our study indicates that aging promotes changes in Ca²⁺ signaling, which may also be affected by CSR. These age-dependent changes in Ca²⁺ signaling may increase cellular vulnerability during CSR and contribute to Ca²⁺ signaling dysregulation, which may ultimately induce cell death.
Collapse
Affiliation(s)
- Luciane de Souza
- Departamento de Psicobiologia, Universidade Federal de São Paulo/UNIFESP, Rua Napoleão de Barros 925, Vila Clementino, 04024-002 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Marques-Aleixo I, Rocha-Rodrigues S, Santos-Alves E, Coxito PM, Passos E, Oliveira PJ, Magalhães J, Ascensão A. In vitro salicylate does not further impair aging-induced brain mitochondrial dysfunction. Toxicology 2012; 302:51-9. [PMID: 22967791 DOI: 10.1016/j.tox.2012.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 11/24/2022]
Abstract
Aging and drug-induced side effects may contribute to the deterioration of mitochondrial bioenergetics in the brain. One hypothesis is that the combination of both deleterious stimuli accelerates the process of mitochondrial degradation, leading to progressive bioenergetic disruption. The hypothesis was tested by analyzing the isolated and combined effect of aging and salicylate, a vastly used anti-inflammatory drug, on isolated brain fractions in rats. Male Wistar rats were divided according to age in two groups: adult (n=8, 19 weeks of age) and aged (n=8, 106 weeks of age). In vitro endpoints of brain mitochondrial function including oxygen consumption and transmembrane electric potential (ΔΨ) were evaluated in the absence and in the presence of salicylate (0.5mM). Brain mitochondrial susceptibility to calcium-induced permeability transition pore (MPTP) was also assessed. Mitochondrial oxidative stress was determined by measuring aconitase and manganese-superoxide dismutase (SOD) activity, and content in sulfhydryl groups (SH) and malondialdehyde (MDA). Mitochondrial content in apoptotic-related proteins Bax, Bcl-2 and cyclophilin D was determined by Western Blotting. Under basal, untreated, conditions, aging affected brain mitochondrial state 3 respiration, maximal ΔΨ developed, ADP phosphorylation lag phase and calcium-induced MPTP. Interestingly, MDA decreased and Mn-SOD activity increased in the aged group. Brain mitochondrial Bcl-2 content decreased and Bax/Bcl-2 ratio increased in aged group. Salicylate incubation for 20min increased lipid peroxidation in the aged group only and stimulated respiration during state 2, accompanied by decreased ΔΨ, although both effects were independent of the animal age. We confirmed that both aging and salicylate per se impaired brain mitochondrial bioenergetics, although the combination of both does not seem to worsen the mitochondrial end-points studied.
Collapse
Affiliation(s)
- I Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Age-dependent decline of motor neocortex but not hippocampal performance in heterozygous BDNF mice correlates with a decrease of cortical PSD-95 but an increase of hippocampal TrkB levels. Exp Neurol 2012; 237:335-45. [PMID: 22776425 DOI: 10.1016/j.expneurol.2012.06.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/25/2012] [Accepted: 06/28/2012] [Indexed: 12/12/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a key player in learning and memory processes. However, little is known about brain area-specific functions of this neurotrophin. Here we investigated whether BDNF could differently affect motor neocortical and hippocampal-related cognitive and plastic morphologic changes in young (12-week-old) and middle-aged (30-week-old) BDNF heterozygous (BDNF⁺/⁻) and wild type (wt) mice. We found that at 30 weeks of age, BDNF⁺/⁻ mice showed impaired performance in accelerating rotarod and grasping tests while preserved spatial learning in a T-maze and recognition memory in an object recognition task compared with wt mice suggesting a specific neocortical dysfunction. Accordingly, a significant reduction of synaptic markers (PSD-95 and GluR1) and corresponding puncta was observed in motor neocortex but not in hippocampus of BDNF⁺/⁻ mice. Interestingly, 30-week-old BDNF⁺/⁻ mice displayed increased TrkB levels in the hippocampus but not in the motor neocortex, which suggests specific hippocampal compensatory mechanisms as a consequence of BDNF decrease. In conclusion, our data indicates that BDNF could differentially regulate the neuronal micro-structures and cognition in a region-specific and in an age-dependent manner.
Collapse
|
41
|
Beregovoy NA, Sorokina NS, Starostina MV, Kolosova NG. Age-specific peculiarities of formation of long-term posttetanic potentiation in OXYS rats. Bull Exp Biol Med 2012; 151:71-3. [PMID: 22442806 DOI: 10.1007/s10517-011-1262-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OXYS rats with hereditary hyperproduction of active oxidative radicals and early disorders in the mitochondrial structure and functions are an interesting model for studies of age-specific features of synaptic plasticity. The formation of long-term posttetanic potentiation in the mossy fibers-CA3 pyramidal neuron system were studied in hippocampal slices from Wistar and OXYS rats aged 3 and 4.5 months (young), 11 (middle-aged), and 18 months (old). No appreciable age-related differences were detected in the amplitudes and latencies of stimulatory postsynaptic summary potentials of the mossy synapses evoked by test stimuli in Wistar and OXYS rat groups of different age and between the two strains. The capacity to induction and formation of long-term posttetanic potentiation and its value decreased in 18-month-old Wistar rats, which attested to disorders in synaptic plasticity of old animals. The capacity to induction and formation of long-term posttetanic potentiation and its value in OXYS were lower than Wistar rats of the same age in all the studied groups.
Collapse
Affiliation(s)
- N A Beregovoy
- Institute of Molecular Biology and Biophysics, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
42
|
Cerebrovascular disorders: role of aging. J Aging Res 2012; 2012:128146. [PMID: 22523684 PMCID: PMC3317098 DOI: 10.1155/2012/128146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 11/20/2011] [Indexed: 11/30/2022] Open
|
43
|
Mendelsohn AR, Larrick JW. Overcoming the Aging Systemic Milieu to Restore Neural Stem Cell Function. Rejuvenation Res 2011; 14:681-4. [DOI: 10.1089/rej.2011.1301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrew R. Mendelsohn
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California
| | - James W. Larrick
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California
| |
Collapse
|
44
|
Sakai K, Yamada K, Mori S, Sugimoto N, Nishimura T. Age-dependent brain temperature decline assessed by diffusion-weighted imaging thermometry. NMR IN BIOMEDICINE 2011; 24:1063-1067. [PMID: 21274962 DOI: 10.1002/nbm.1656] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/02/2010] [Indexed: 05/30/2023]
Abstract
Brain metabolism declines with age, but cerebral blood flow (CBF) is less age dependent. We therefore hypothesized that the brain temperature would decline with age, and measured the temperatures of the lateral ventricles in healthy volunteers. Diffusion-weighted imaging (DWI) data from 45 healthy volunteers [mean (± standard deviation) age, 30.6 ± 8.66 years; range, 19-56 years] were used for this study. The temperature of water molecules is directly related to the diffusion coefficient, so that the temperature of cerebrospinal fluid can be measured using DWI. Temperature was calculated using the equation, T ( °C) = 2256.74/ln(4.39221/D) - 273.15, where D is the diffusion coefficient. The lateral ventricles were manually extracted by an experienced neuroradiologist on b(0) images. The mean ventricular temperature was determined from the distribution function of the temperature of all selected voxels. The mean lateral ventricular temperature in healthy volunteers showed a linear decrease with age (correlation coefficient R(2) = 0.8879; p < 0.01), presumably caused by an asynchronous decline in brain metabolism and CBF. DWI-based thermometry demonstrates that ventricular temperature declines with the normal aging process. Further study is warranted to define the relationships between temperature, metabolism and circulation.
Collapse
Affiliation(s)
- Koji Sakai
- Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
45
|
Surmeier DJ, Guzman JN, Sanchez-Padilla J, Schumacker PT. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson's disease. Neuroscience 2011; 198:221-31. [PMID: 21884755 DOI: 10.1016/j.neuroscience.2011.08.045] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/17/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in developed countries. The core motor symptoms are attributable to the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Why these neurons succumb in PD is not clear. One potential clue has come from the observation that the engagement of L-type Ca²⁺ channels during autonomous pacemaking elevates the sensitivity of SNc DA neurons to mitochondrial toxins used to create animal models of PD, suggesting that Ca²⁺ entry is a factor in their selective vulnerability. Recent work has shown that this Ca²⁺ entry also elevates mitochondrial oxidant stress and that this stress is exacerbated by deletion of DJ-1, a gene associated with an early onset, recessive form of PD. Epidemiological data also support a linkage between L-type Ca²⁺ channels and the risk of developing PD. This review examines the hypothesis that the primary factor driving neurodegenerative changes in PD is the metabolic stress created by Ca²⁺ entry, particularly in the face of genetic or environmental factors that compromise oxidative defenses or proteostatic competence.
Collapse
Affiliation(s)
- D J Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
46
|
Enciu AM, Constantinescu SN, Popescu LM, Mureşanu DF, Popescu BO. Neurobiology of vascular dementia. J Aging Res 2011; 2011:401604. [PMID: 21876809 PMCID: PMC3160011 DOI: 10.4061/2011/401604] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 01/22/2023] Open
Abstract
Vascular dementia is, in its current conceptual form, a distinct type of dementia with a spectrum of specific clinical and pathophysiological features. However, in a very large majority of cases, these alterations occur in an already aged brain, characterized by a milieu of cellular and molecular events common for different neurodegenerative diseases. The cell signaling defects and molecular dyshomeostasis might lead to neuronal malfunction prior to the death of neurons and the alteration of neuronal networks. In the present paper, we explore some of the molecular mechanisms underlying brain malfunction triggered by cerebrovascular disease and risk factors. We suggest that, in the age of genetic investigation and molecular diagnosis, the concept of vascular dementia needs a new approach.
Collapse
Affiliation(s)
- Ana-Maria Enciu
- Department of Cellular and Molecular Medicine, School of Medicine, "Carol Davila" University of Medicine and Pharmacy, 8 Eroilor Sanitari, Sector 5, 050474 Bucharest, Romania
| | | | | | | | | |
Collapse
|
47
|
Kumar P, Kale RK, McLean P, Baquer NZ. Protective effects of 17β estradiol on altered age related neuronal parameters in female rat brain. Neurosci Lett 2011; 502:56-60. [PMID: 21802496 DOI: 10.1016/j.neulet.2011.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/02/2011] [Accepted: 07/13/2011] [Indexed: 12/15/2022]
Abstract
Biological aging is a fundamental process observed in almost all living beings. During aging the brain experiences structural, molecular, and functional alterations. Aging in females and males is considered as the end of natural protection against age related diseases like osteoporosis, coronary heart disease, diabetes, Alzheimer's and Parkinson's disease. These changes increase during menopausal condition in females when the level of estradiol is decreased. The aim of the present study was to investigate the anti-aging and protective potential of 17β estradiol (E2) treatment on activities of membrane linked ATPases (Na⁺K⁺ ATPase, Ca²⁺ATPase), antioxidant enzymes (superoxide dismutases, glutathione-S-transferases), intrasynaptosomal calcium levels, membrane fluidity and neurolipofuscin in the brain of aging female rats of 3 months (young), 12 months (adult) and 24 months (old) age groups, and to see whether these changes are restored to normal levels after exogenous administration of E2 (0.1 μg/g body weight for one month).The results obtained in the present work revealed that normal aging was associated with significant decrease in the activities of membrane linked ATPases, antioxidant enzymes and an increase in neurolipofuscin, intrasynaptosomal calcium levels in brain of aging female rats. The present study showed that E2 treatment reversed the changes to near normal levels. E2 treatment appears to be beneficial in preventing some of the age related changes in the brain, an important anti-aging effect of the hormone.
Collapse
Affiliation(s)
- Pardeep Kumar
- School of Life Sciences, Jawaharlal Nehru University, 110067 New Delhi, India
| | | | | | | |
Collapse
|
48
|
Owecki MK, Michalak S, Kozubski W. [Psychopathological syndromes of neurological diseases in the elderly]. Neurol Neurochir Pol 2011; 45:161-8. [PMID: 21574121 DOI: 10.1016/s0028-3843(14)60028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vascular and degenerative diseases of the central nervous system are one of the most common health problems in the elderly. Cognitive dysfunction, mood disorders and behavioural changes as well as psychotic symptoms constitute an invariable part of the clinical manifestation of these diseases. Psychopathological syndromes influence management decisions, commonly being a reason for patients' institutionalization; they are also a cause of suffering of patients and their caregivers and relatives. Relevant diagnosis of psychological symptoms is crucial in establishing adequate therapy, which improves quality of life of patients and their caregivers. The paper provides an overview of the psychopathological presentation of the most common central nervous system diseases in the elderly.
Collapse
Affiliation(s)
- Michał K Owecki
- Klinika Neurologii UM w Poznaniu, ul. Przybyszewskiego 49, 60-355 Poznań.
| | | | | |
Collapse
|
49
|
Effect of ageing on CA3 interneuron sAHP and gamma oscillations is activity-dependent. Neurobiol Aging 2011; 32:956-65. [DOI: 10.1016/j.neurobiolaging.2009.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 01/21/2023]
|
50
|
García-Macia M, Vega-Naredo I, De Gonzalo-Calvo D, Rodríguez-González SM, Camello PJ, Camello-Almaraz C, Martín-Cano FE, Rodríguez-Colunga MJ, Pozo MJ, Coto-Montes AM. Melatonin induces neural SOD2 expression independent of the NF-kappaB pathway and improves the mitochondrial population and function in old mice. J Pineal Res 2011; 50:54-63. [PMID: 21062349 DOI: 10.1111/j.1600-079x.2010.00809.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aging is commonly defined as a physiological phenomenon associated with morphological and functional deleterious changes in which oxidative stress has a fundamental impact; therefore, readjusting the oxidative balance should have beneficial effects. In our study, we tested the antioxidant melatonin in old mouse brains and showed positive effects at the cellular and mitochondrial levels. Melatonin attenuated β-amyloid protein expression and α-synuclein deposits in the brain compared to aged group. Furthermore, oxidative stress was increased by aging and induced the nuclear translocation of nuclear factor-kappa B (NF-κB), which was suppressed by melatonin treatment. The antioxidant mitochondrial expression, superoxide dismutase 2 (SOD2), was increased in both control and melatonin-treated old mice, despite the different activation states of the NF-κB pathway. The NF-κB pathway was activated in the old mice, which may be explained by this group's response to the increased oxidative insult; this insult was inhibited in melatonin-treated animals, showing this group an increase in active mitochondria population that was not observed in old group. We also report that melatonin is capable of restoring the mitochondrial potential of age-damaged neurons. In conclusion, melatonin's beneficial effects on brain aging are linked to the increase in mitochondrial membrane potential and SOD2 expression, which probably reduces the mitochondrial contribution to the oxidative stress imbalance.
Collapse
Affiliation(s)
- Marina García-Macia
- Department of Morphology and Cellular Biology, Medicine Faculty, Oviedo University, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|