1
|
Langlois GA. Past-President address: My journey in microbial ecology-footprints in the sand, island hopping, supply chains, and technology bridges. J Eukaryot Microbiol 2024; 71:e13037. [PMID: 38946328 DOI: 10.1111/jeu.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
This paper highlights and honors the connectivity among protistan researchers, using my own research journey as a backdrop, with attention to the supply chain of ideas, supporters, and other influencers who helped to shape and guide my career by sharing their ideas, protocols, skills, and enthusiasm. In looking back at the journey, the supply chain in my career has also included changes in the conceptual framework for my research studies, converging with a continuous flow of ideas and support from colleagues and mentors. To illustrate the complex map of ideas and supporters, this paper will examine technological advances, paradigm shifts in ecological constructs, geographical considerations, breakthroughs in peritrich biology, and the importance of an integrated perspective as we navigate the changing realities of today's scientific challenges.
Collapse
Affiliation(s)
- Gaytha A Langlois
- Department of Biological and Biomedical Sciences, Bryant University, Smithfield, Rhode Island, USA
| |
Collapse
|
2
|
Keum GB, Pandey S, Kim ES, Doo H, Kwak J, Ryu S, Choi Y, Kang J, Kim S, Kim HB. Understanding the Diversity and Roles of the Ruminal Microbiome. J Microbiol 2024; 62:217-230. [PMID: 38662310 DOI: 10.1007/s12275-024-00121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/26/2024]
Abstract
The importance of ruminal microbiota in ruminants is emphasized, not only as a special symbiotic relationship with ruminants but also as an interactive and dynamic ecosystem established by the metabolites of various rumen microorganisms. Rumen microbial community is essential for life maintenance and production as they help decompose and utilize fiber that is difficult to digest, supplying about 70% of the energy needed by the host and 60-85% of the amino acids that reach the small intestine. Bacteria are the most abundant in the rumen, but protozoa, which are relatively large, account for 40-50% of the total microorganisms. However, the composition of these ruminal microbiota is not conserved or constant throughout life and is greatly influenced by the host. It is known that the initial colonization of calves immediately after birth is mainly influenced by the mother, and later changes depending on various factors such as diet, age, gender and breed. The initial rumen microbial community contains aerobic and facultative anaerobic bacteria due to the presence of oxygen, but as age increases, a hypoxic environment is created inside the rumen, and anaerobic bacteria become dominant in the rumen microbial community. As calves grow, taxonomic diversity increases, especially as they begin to consume solid food. Understanding the factors affecting the rumen microbial community and their effects and changes can lead to the early development and stabilization of the microbial community through the control of rumen microorganisms, and is expected to ultimately help improve host productivity and efficiency.
Collapse
Affiliation(s)
- Gi Beom Keum
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sriniwas Pandey
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hyunok Doo
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jinok Kwak
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sumin Ryu
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yejin Choi
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Juyoun Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sheena Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hyeun Bum Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
3
|
Škaloud P, Jadrná I, Dvořák P, Škvorová Z, Pusztai M, Čertnerová D, Bestová H, Rengefors K. Rapid diversification of a free-living protist is driven by adaptation to climate and habitat. Curr Biol 2024; 34:92-105.e6. [PMID: 38103550 DOI: 10.1016/j.cub.2023.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Microbial eukaryotes (protists) have major functional roles in aquatic ecosystems, including the biogeochemical cycling of elements as well as occupying various roles in the food web. Despite their importance for ecosystem function, the factors that drive diversification in protists are not known. Here, we aimed to identify the factors that drive differentiation and, subsequently, speciation in a free-living protist, Synura petersenii (Chrysophyceae). We sampled five different geographic areas and utilized population genomics and quantitative trait analyses. Habitat and climate were the major drivers of diversification on the local geographical scale, while geography played a role over longer distances. In addition to conductivity and temperature, precipitation was one of the most important environmental drivers of differentiation. Our results imply that flushing episodes (floods) drive microalgal adaptation to different niches, highlighting the potential for rapid diversification in protists.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic.
| | - Iva Jadrná
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, 78371 Olomouc, Czech Republic.
| | - Zuzana Škvorová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Martin Pusztai
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic; Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 46117 Liberec, Czech Republic
| | - Dora Čertnerová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Helena Bestová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic; Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077 Göttingen, Germany
| | | |
Collapse
|
4
|
Melekhin M, Potekhin A, Gentekaki E, Chantangsi C. Paramecium (Oligohymenophorea, Ciliophora) diversity in Thailand sheds light on the genus biogeography and reveals new phylogenetic lineages. J Eukaryot Microbiol 2024; 71:e13004. [PMID: 37849422 DOI: 10.1111/jeu.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Paramecium (Ciliophora, Oligohymenophorea) is a good model to study ciliate biogeography. Extensive sampling mainly in northern hemisphere has led to 16 valid morphological species description thus far. However, a majority of hard-to-reach regions, including South East Asia, are underinvestigated. Our study combined traditional morphological and molecular approaches to reveal the biodiversity of Paramecium in Thailand from more than 110 samples collected in 10 provinces. Representatives of seven morphological species were identified from our collection, including the rare species, such as P. gigas and P. jenningsi. Additionally, we detected five different sibling species of the P. aurelia complex, described a new cryptic species P. hiwatashii n. sp. phylogenetically related to P. caudatum, and discovered a potentially new genetic species of the P. bursaria species complex. We also documented a variety of bacterial cytoplasmic symbionts from at least nine monoclonal cultures of Paramecium.
Collapse
Affiliation(s)
- Maksim Melekhin
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, St Petersburg, Russia
| | - Alexey Potekhin
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Chitchai Chantangsi
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Glass SE, McCourt RM, Gottschalk SD, Lewis LA, Karol KG. Chloroplast genome evolution and phylogeny of the early-diverging charophycean green algae with a focus on the Klebsormidiophyceae and Streptofilum. JOURNAL OF PHYCOLOGY 2023; 59:1133-1146. [PMID: 37548118 DOI: 10.1111/jpy.13359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023]
Abstract
The Klebsormidiophyceae are a class of green microalgae observed globally in both freshwater and terrestrial habitats. Morphology-based classification schemes of this class have been shown to be inadequate due to the simple morphology of these algae, the tendency of morphology to vary in culture versus field conditions, and rampant morphological homoplasy. Molecular studies revealing cryptic diversity have renewed interest in this group. We sequenced the complete chloroplast genomes of a broad series of taxa spanning the known taxonomic breadth of this class. We also sequenced the chloroplast genomes of three strains of Streptofilum, a recently discovered green algal lineage with close affinity to the Klebsormidiophyceae. Our results affirm the previously hypothesized polyphyly of the genus Klebsormidium as well as the polyphyly of the nominal species in this genus, K. flaccidum. Furthermore, plastome sequences strongly support the status of Streptofilum as a distinct, early-diverging lineage of charophytic algae sister to a clade comprising Klebsormidiophyceae plus Phragmoplastophyta. We also uncovered major structural alterations in the chloroplast genomes of species in Klebsormidium that have broad implications regarding the underlying mechanisms of chloroplast genome evolution.
Collapse
Affiliation(s)
- Sarah E Glass
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, USA
- Department of Biological Sciences, Lehman College, The City University of New York, New York, New York, USA
| | - Richard M McCourt
- Academy of Natural Sciences of Drexel University, Philadelphia, Pennsylvania, USA
| | - Stephen D Gottschalk
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, USA
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Kenneth G Karol
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, USA
| |
Collapse
|
6
|
Li Z, Wang M, Usman S, Khan A, Zhang Y, Li F, Bai J, Chen M, Zhang Y, Guo X. Effects of nisin on bacterial community and fermentation profiles, in vitro rumen fermentation, microbiota, and methane emission of alfalfa silage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6706-6718. [PMID: 37276023 DOI: 10.1002/jsfa.12765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Alfalfa (Medicago sativa L.) has been used widely in preparing silage. However, forage legumes are prone to contamination by spoilage bacteria during fermentation. Nisin has broad-spectrum antibacterial properties and has been applied as an inhibitor of rumen methane emissions. However, little research has been carried out on the application of nisin in silage. This study therefore aimed to investigate the impacts of different nisin concentrations on the bacterial community and fermentation dynamics, in vitro ruminal fermentation characteristics, microbiota, and methane emissions of alfalfa silage. RESULTS The detection limits of organic acid in nisin-treated silages were not reached in 0.09 g kg-1 nisin (0.09 level) from days 1 to 7 of ensiling. With increasing nisin concentrations, the silage dry matter increased linearly (P < 0.05), and dry matter loss decreased linearly (P < 0.05). Moreover, both the 0.06 g kg-1 nisin (0.06 level) and 0.09 level treatments increased the relative abundance of Pediococcus acidilactici during ensiling. Concurrently, as the nisin concentrations increased, ruminal methane production decreased linearly (P < 0.05), while the relative abundances of ruminal Succinivibrio, Fibrobacter succinogenes and Ruminobacter amylophilus increased linearly (P < 0.05). The populations of ruminal total bacteria, methanogens, protozoa, and fungi decreased linearly with increasing nisin concentrations (P < 0.05). CONCLUSION The addition of nisin delayed the fermentation process, preserved more nutrients in alfalfa silage, and promoted fermentation dominated by P. acidilactici in the late phase of ensiling. Moreover, nisin reduced in vitro rumen methane emissions without adverse effects on dry matter digestibility. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ziqian Li
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Musen Wang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
- College of Animal Science and Technology, Hainan University, Haikou, P.R. China
| | - Samaila Usman
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Ashiq Khan
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Yixin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Fuhou Li
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Jie Bai
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Mengyan Chen
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Ying Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Xusheng Guo
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
7
|
Dai X, Kalscheur KF, Huhtanen P, Faciola AP. Effects of ruminal protozoa on methane emissions in ruminants-A meta-analysis. J Dairy Sci 2022; 105:7482-7491. [PMID: 35931473 DOI: 10.3168/jds.2021-21139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
Abstract
The effects of different ruminal protozoa (RP) on CH4 emissions from ruminants were evaluated in a meta-analysis, using 64 publications reporting data from 79 in vivo experiments. Experiments included in the database reported CH4 emissions (g/d) and total RP (TRP, log10 cells/mL) from the same group of animals. The relationship between CH4 emissions and RP (TRP, entodiniomorphids, and isotrichids), and TRP-, entodiniomorphid-, and isotrichid-based CH4 emission prediction models, were evaluated as mixed models with experiment as a random effect and weighted by the reciprocal of the standard error of the mean and centered around one. Positive associations existed between TRP and isotrichids with CH4 emissions but not between entodiniomorphids and CH4 emissions. A reduction in CH4 emissions was observed, averaging 7.96 and 4.25 g/d, per log unit reduction in TRP and isotrichid concentrations, respectively. Total RP and isotrichids were important variables in predicting CH4 emissions from ruminants. Isotrichid CH4 prediction model was more robust than the TRP, evidenciated by lower predicted sigma hat study (%), and error (%), and with higher concordance correlation coefficient. Both TRP and isotrichid models can accurately predict CH4 emissions across different ruminant types, as shown by the low square root of the mean square prediction error, with 6.59 and 4.08% of the mean of root of the mean square prediction error in the TRP and isotrichid models, respectively. Our results confirm that isotrichids are more important than entodiniomorphids in methanogenesis. Distinguishing these 2 populations yielded a more robust CH4 prediction model than combining them as total protozoa.
Collapse
Affiliation(s)
- X Dai
- Department of Clinical Science and Services, Royal Veterinary College, University of London, Hatfield, AL97TA, United Kingdom
| | - K F Kalscheur
- US Dairy Forage Research Center, USDA-Agricultural Research Service, Madison, WI 53706
| | - P Huhtanen
- Production Systems, Natural Resources Institute Finland (LUKE), 31600 Jokinen, Finland
| | - A P Faciola
- Department of Animal Sciences, University of Florida, Gainesville 32608.
| |
Collapse
|
8
|
Kim SB, Lyou ES, Kim MS, Lee TK. Bacterial Resuscitation from Starvation-Induced Dormancy Results in Phenotypic Diversity Coupled with Translational Activity Depending on Carbon Substrate Availability. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02068-8. [PMID: 35788867 DOI: 10.1007/s00248-022-02068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Dormancy is a survival strategy of stressed bacteria inhabiting a various environment. Frequent dormant-active transitions owing to environmental changes play an important role in functional redundancy. However, a proper understanding of the phenotypic changes in bacteria during these transitions remains to be clarified. In this study, orthogonal approaches, such as electron microscopy, flow cytometry, and Raman spectroscopy, which can evaluate phenotypic heterogeneity at the single-cell level, were used to observe morphological and molecular phenotypic changes in resuscitated cells, and RNA sequencing (RNASeq) was used to determine the genetic characteristics associated with phenotypes. Within 12 h of the resuscitation process, morphological (cell size and shape) and physiological (growth and viability) characteristics as well as molecular phenotypes (cellular components) were found to be recovered to the extent that they were similar to those in active cells. The recovery rate and detailed phenotypic properties of the resuscitated cells differed significantly depending on the type or concentration of carbon sources. RNASeq analysis revealed that genes related to translation were significantly upregulated under all resuscitation conditions. The simpler the carbon source (e.g., glucose), the higher the expression of genes involved in cellular repair, and the more complex the carbon source (e.g., beef extract), the higher the expression of genes associated with increased energy production associated with cellular aerobic respiration. This study of phenotypic plasticity of resuscitated cells provides fundamental insight into understanding the adaptive fine-tuning of the microbiome in response to environmental changes and the functional redundancy resulting from phenotype heterogeneity.
Collapse
Affiliation(s)
- Soo Bin Kim
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26593, Republic of Korea
| | - Eun Sun Lyou
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26593, Republic of Korea
| | - Min Sung Kim
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26593, Republic of Korea
- BioChemical Analysis Group, Center for Research Equipment, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26593, Republic of Korea.
| |
Collapse
|
9
|
Liang D, McManus GB, Wang Q, Sun X, Liu Z, Lin S, Yang Y. Genetic differentiation and phylogeography of rotifer
Polyarthra dolichoptera
and
P. vulgaris
populations between Southeastern China and eastern North America: High intercontinental differences. Ecol Evol 2022; 12:e8912. [PMID: 35592069 PMCID: PMC9101598 DOI: 10.1002/ece3.8912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
Genetic differentiations and phylogeographical patterns of small organisms may be shaped by spatial isolation, environmental gradients, and gene flow. However, knowledge about genetic differentiation of rotifers at the intercontinental scale is still limited. Polyarthra dolichoptera and P. vulgaris are cosmopolitan rotifers that are tolerant to environmental changes, offering an excellent model to address the research gap. Here, we investigated the populations in Southeastern China and eastern North America and evaluated the phylogeographical patterns from their geographical range sizes, geographic–genetic distance relationships and their responses to spatial‐environmental factors. Using the mitochondrial cytochrome c oxidase subunit I gene as the DNA marker, we analyzed a total of 170 individuals. Our results showed that some putative cryptic species, also known as entities were widely distributed, but most of them were limited to single areas. The divergence of P. dolichoptera and P. vulgaris indicated that gene flow between continents was limited while that within each continent was stronger. Oceanographic barriers do affect the phylogeographic pattern of rotifers in continental waters and serve to maintain genetic diversity in nature. The genetic distance of P. dolichoptera and P. vulgaris populations showed significant positive correlation with geographic distance. This might be due to the combined effects of habitat heterogeneity, long‐distance colonization, and oceanographic barriers. Furthermore, at the intercontinental scale, spatial distance had a stronger influence than environmental variables on the genetic differentiations of both populations. Wind‐ and animal‐mediated transport and even historical events of continental plate tectonics are potential factors for phylogeography of cosmopolitan rotifers.
Collapse
Affiliation(s)
- Diwen Liang
- Department of Ecology Key Laboratory of Philosophy and Social Science in Guangdong Province Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Jinan University Guangzhou P. R. China
- State Environmental Protection Key Laboratory of Urban Ecological Simulation and Protection South China Institute of Environmental Sciences MEE Guangzhou China
- Department of Marine Sciences University of Connecticut Groton Connecticut USA
| | - George B. McManus
- Department of Marine Sciences University of Connecticut Groton Connecticut USA
| | - Qing Wang
- Department of Ecology Key Laboratory of Philosophy and Social Science in Guangdong Province Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Jinan University Guangzhou P. R. China
| | - Xian Sun
- School of Marine Science Sun Yat‐Sen University Guangzhou P. R. China
| | - Zhiwei Liu
- School of Marine Science Sun Yat‐Sen University Guangzhou P. R. China
| | - Senjie Lin
- Department of Marine Sciences University of Connecticut Groton Connecticut USA
| | - Yufeng Yang
- Department of Ecology Key Laboratory of Philosophy and Social Science in Guangdong Province Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Jinan University Guangzhou P. R. China
| |
Collapse
|
10
|
Probiotic Characterization and Population Diversity Analysis of Gut-Associated Pediococcus acidilactici for Its Potential Use in the Dairy Industry. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, gut-tailored probiotics have been proven to be beneficial for host health. Probiotic strains such as lactic acid bacteria (LAB) are known to exhibit antimicrobial activity, acting as natural substitutes for the regulation of foodborne pathogens. In the present study, a complete analysis, isolation, biochemical characterization, and molecular identification of Pediococcus acidilactici (NMCC-11) from Nili Ravi water buffalo (Bubalis bubalis) gut was carried out. NMCC-11 showed the best enzymatic potential, antimicrobial activity against known pathogenic strains, and survivability at a wide pH range (pH 4–pH 6) out of all isolates. The isolates were screened for their antimicrobial activity against the five most infectious microbes such as Escherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC9027), Staphylococcus aureus (ATCC6538), Listeria monocytogenes (ATCC13932), and Bacillus cereus (ATCC 11778) using the agar-well diffusion method. Moreover, after NMCC-11 isolation, a comparative diversity analysis against a variety of other randomly selected strains from around the world was carried out using R software. This study showed relatively low genetic diversity, which also contributed to the claim of the stability of this probiotic strain and its potential use as a starter culture and feed probiotic in the dairy industry. However, further studies are certainly warranted to determine its optimal dosage, time frame, and intake frequency.
Collapse
|
11
|
Vogt JC, Olefeld JL, Bock C, Boenigk J, Albach DC. Patterns of protist distribution and diversification in alpine lakes across Europe. Microbiologyopen 2021; 10:e1216. [PMID: 34459549 PMCID: PMC8311734 DOI: 10.1002/mbo3.1216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Biogeography in Europe is known to be crucially influenced by the large mountain ranges serving as biogeographical islands for cold-adapted taxa and geographical barriers for warm-adapted taxa. While biogeographical patterns are well-known for plants and animals in Europe, we here investigated diversity and distribution patterns of protist freshwater communities on a European scale (256 lakes) in the light of the well-studied post-glacial distribution patterns of macroorganisms. Thus, our study compared 43 alpine protist communities of lakes located in the Alps, Carpathians, Pyrenees, and the Sierra Nevada with that of surrounding lowland lakes. We verified altitudinal diversity gradients of freshwater protists with decreasing richness and diversity across altitudes similar to those observed for plants and animals. Alpine specialists and generalists could be identified differing significantly in richness and diversity, but hardly in occurrence and proportions of major taxonomic groups. High proportions of region-specific alpine specialists indicate an increased occurrence of distinct lineages within each mountain range and thus, suggested either separated glacial refugia or post-glacial diversification within mountain ranges. However, a few alpine specialists were shared between mountain ranges suggesting a post-glacial recolonization from a common lowland pool. Our results identified generalists with wide distribution ranges and putatively wide tolerance ranges toward environmental conditions as main drivers of protist diversification (specification) in alpine lakes, while there was hardly any diversification in alpine specialists.
Collapse
Affiliation(s)
- Janina C. Vogt
- Institute for Biology and Environmental Science (IBU)Plants Biodiversity and EvolutionCarl von Ossietzky UniversityOldenburgGermany
| | - Jana L. Olefeld
- Department of BiodiversityUniversity of Duisburg‐EssenEssenGermany
| | - Christina Bock
- Department of BiodiversityUniversity of Duisburg‐EssenEssenGermany
| | - Jens Boenigk
- Department of BiodiversityUniversity of Duisburg‐EssenEssenGermany
| | - Dirk C. Albach
- Institute for Biology and Environmental Science (IBU)Plants Biodiversity and EvolutionCarl von Ossietzky UniversityOldenburgGermany
| |
Collapse
|
12
|
Morek W, Surmacz B, López‐López A, Michalczyk Ł. "Everything is not everywhere": Time-calibrated phylogeography of the genus Milnesium (Tardigrada). Mol Ecol 2021; 30:3590-3609. [PMID: 33966339 PMCID: PMC8361735 DOI: 10.1111/mec.15951] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022]
Abstract
There is ample evidence that macroscopic animals form geographic clusters termed as zoogeographic realms, whereas distributions of species of microscopic animals are still poorly understood. The common view has been that micrometazoans, thanks to their putatively excellent dispersal abilities, are subject to the "Everything is everywhere but environment selects" hypothesis (EiE). One of such groups, <1 mm in length, are limnoterrestrial water bears (Tardigrada), which can additionally enter cryptobiosis that should further enhance their potential for long distance dispersion (e.g., by wind). However, an increasing number of studies, including the most recent phylogeny of the eutardigrade genus Milnesium, seem to question the general applicability of the EiE hypothesis to tardigrade species. Nevertheless, all Milnesium phylogenies published to date were based on a limited number of populations, which are likely to falsely suggest limited geographic ranges. Thus, in order to test the EiE hypothesis more confidently, we considerably enlarged the Milnesium data set both taxonomically and geographically, and analysed it in tandem with climate type and reproductive mode. Additionally, we time-calibrated our phylogeny to align it with major geological events. Our results show that, although cases of long distance dispersal are present, they seem to be rare and mostly ancient. Overall, Milnesium species are restricted to single zoogeographic realms, which suggests that these tardigrades have limited dispersal abilities. Finally, our results also suggest that the breakdown of Gondwana may have influenced the evolutionary history of Milnesium. In conclusion, phylogenetic relationships within the genus seem to be determined mainly by paleogeography.
Collapse
Affiliation(s)
- Witold Morek
- Department of Invertebrate EvolutionInstitute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Bartłomiej Surmacz
- Department of Invertebrate EvolutionInstitute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Alejandro López‐López
- Department of Invertebrate EvolutionInstitute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Łukasz Michalczyk
- Department of Invertebrate EvolutionInstitute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
13
|
Ma Z(S. Niche-neutral theoretic approach to mechanisms underlying the biodiversity and biogeography of human microbiomes. Evol Appl 2021; 14:322-334. [PMID: 33664779 PMCID: PMC7896709 DOI: 10.1111/eva.13116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
The human microbiome consists of five major regional biomes distributed in or on our five body sites including skin, oral, lung, gut, and reproductive tract. Its biogeography (the spatial and temporal distribution of its biodiversity) has far-reaching implications to our health and diseases. Nevertheless, we currently have very limited understanding on the mechanisms shaping the biogeography, since it is often rather difficult to determine the relative importance of drift, dispersal, speciation, and selection, the four processes (mechanisms) determining the patterns of microbial biogeography and community dynamics according to a recent synthesis in community ecology and biogeography. To disentangle these mechanisms, I utilize multisite neutral (MSN) model and niche-neutral hybrid (NNH) model to analyze large number of truly multisite microbiome samples covering all five major human microbiome habitats, including 699 metacommunities and 5,420 local communities. Approximately 89% of metacommunities and 92% local communities exhibit patterns indistinguishable from neutral, and 20% indistinguishable from niche-neutral hybrid model, indicating the relative significance of stochastic neutral forces versus deterministic niche selection in shaping the biogeography of human microbiome. These findings cast supporting evidence to van der Gast's revision to classic Bass-Becking doctrine of microbial biogeography: "Some things are everywhere and some things are not. Sometimes the environment selects and sometimes it doesn't," offering the first educated guess for "some" and "sometimes" in the revised doctrine. Furthermore, the logistic/Cox regression models describing the relationships among community neutrality, niche differentiation, and key community/species characteristics (including community diversity, community/species dominance, speciation, and migration rates) were constructed to quantitatively describe the niche-neutral continuum and the influences of community/species properties on the continuum.
Collapse
Affiliation(s)
- Zhanshan (Sam) Ma
- Computational Biology and Medical Ecology LabState Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| |
Collapse
|
14
|
Heterotrophic flagellates and centrohelid heliozoans from marine waters of Curacao, the Netherlands Antilles. Eur J Protistol 2020; 77:125758. [PMID: 33307359 DOI: 10.1016/j.ejop.2020.125758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/22/2020] [Accepted: 11/11/2020] [Indexed: 11/23/2022]
Abstract
Recent progress in understanding the early evolution of eukaryotes was tied to morphological identification of flagellates and heliozoans from natural samples, isolation of their culture and genomic and ultrastructural investigations. These protists are the smallest and least studied microbial eukaryotes but play an important role in the functioning of microbial food webs. Using light and electron microscopy, we have studied the diversity of heterotrophic flagellates and centrohelid heliozoans from marine waters of Curacao (The Netherlands Antilles), and provide micrographs and morphological descriptions of observed species. Among 86 flagellates and 3 centrohelids encountered in this survey, five heterotrophic flagellates and one сentrohelid heliozoan were not identified even to the genus. Some flagellate protists have a unique morphology, and may represent undescribed lineages of eukaryotes of high taxonomic rank. The vast majority (89%) of identified flagellates is characterized by wide geographical distribution and have been reported previously from all hemispheres and various climatic regions. More than half of the species were previously observed not only from marine, but also from freshwater habitats. The parameters of the species accumulation curve indicate that our species list obtained for the Curacao study sites is far from complete, and each new sample should yield new species.
Collapse
|
15
|
Gottschling M, Czech L, Mahé F, Adl S, Dunthorn M. The Windblown: Possible Explanations for Dinophyte DNA in Forest Soils. J Eukaryot Microbiol 2020; 68:e12833. [PMID: 33155377 DOI: 10.1111/jeu.12833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
Dinophytes are widely distributed in marine- and fresh-waters, but have yet to be conclusively documented in terrestrial environments. Here, we evaluated the presence of these protists from an environmental DNA metabarcoding dataset of Neotropical rainforest soils. Using a phylogenetic placement approach with a reference alignment and tree, we showed that the numerous sequencing reads that were phylogenetically placed as dinophytes did not correlate with taxonomic assignment, environmental preference, nutritional mode, or dormancy. All the dinophytes in the soils are rather windblown dispersal units of aquatic species and are not biologically active residents of terrestrial environments.
Collapse
Affiliation(s)
- Marc Gottschling
- Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, D-80638, Germany
| | - Lucas Czech
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, D-69118, Germany.,Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Frédéric Mahé
- CIRAD, UMR BGPI, Montpellier, F-34398, France.,BGPI, Université de Montpellier, CIRAD, IRD, Montpellier SupAgro, , Montpellier, France
| | - Sina Adl
- Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Micah Dunthorn
- Eukaryotic Microbiology, Faculty of Biology, Universität Duisburg-Essen, Essen, D-45141, Germany.,Centre for Water and Environmental Research (ZWU), Universität Duisburg-Essen, Essen, D-45141, Germany
| |
Collapse
|
16
|
Trevizan Segovia B, Sanders-Smith R, Adamczyk EM, Forbes C, Hessing-Lewis M, O'Connor MI, Parfrey LW. Microeukaryotic Communities Associated With the Seagrass Zostera marina Are Spatially Structured. J Eukaryot Microbiol 2020; 68:e12827. [PMID: 33065761 DOI: 10.1111/jeu.12827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
Epibiotic microorganisms link seagrass productivity to higher trophic levels, but little is known about the processes structuring these communities, and which taxa consistently associate with seagrass. We investigated epibiotic microeukaryotes on seagrass (Zostera marina) leaves, substrates, and planktonic microeukaryotes in ten meadows in the Northeast Pacific. Seagrass epibiotic communities are distinct from planktonic and substrate communities. We found sixteen core microeukaryotes, including dinoflagellates, diatoms, and saprotrophic stramenopiles. Some likely use seagrass leaves as a substrate, others for grazing, or they may be saprotrophic organisms involved in seagrass decomposition or parasites; their relatives have been previously reported from marine sediments and in association with other hosts such as seaweeds. Core microeukaryotes were spatially structured, and none were ubiquitous across meadows. Seagrass epibiota were more spatially structured than planktonic communities, mostly due to spatial distance and changes in abiotic conditions across space. Seawater communities were relatively more similar in composition across sites and more influenced by the environmental component, but more variable over time. Core and transient taxa were both mostly structured by spatial distance and the abiotic environment, with little effect of host attributes, further indicating that those core taxa would not show a strong specific association with Z. marina.
Collapse
Affiliation(s)
- Bianca Trevizan Segovia
- Botany and Biodiversity Research Centre, University of British Columbia, Unceded xʷməθkʷəýəm (Musqueam) Territory, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.,Hakai Institute, PO BOX 309, Heriot Bay, BC, V0P 1H0, Canada
| | - Rhea Sanders-Smith
- Botany and Biodiversity Research Centre, University of British Columbia, Unceded xʷməθkʷəýəm (Musqueam) Territory, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.,Hakai Institute, PO BOX 309, Heriot Bay, BC, V0P 1H0, Canada
| | - Emily M Adamczyk
- Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xʷməθkʷəýəm (Musqueam) Territory, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Coreen Forbes
- Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xʷməθkʷəýəm (Musqueam) Territory, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | | | - Mary I O'Connor
- Hakai Institute, PO BOX 309, Heriot Bay, BC, V0P 1H0, Canada.,Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xʷməθkʷəýəm (Musqueam) Territory, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Laura Wegener Parfrey
- Botany and Biodiversity Research Centre, University of British Columbia, Unceded xʷməθkʷəýəm (Musqueam) Territory, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.,Hakai Institute, PO BOX 309, Heriot Bay, BC, V0P 1H0, Canada.,Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xʷməθkʷəýəm (Musqueam) Territory, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
17
|
Flegontova O, Flegontov P, Londoño PAC, Walczowski W, Šantić D, Edgcomb VP, Lukeš J, Horák A. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ Microbiol 2020; 22:4014-4031. [PMID: 32779301 DOI: 10.1111/1462-2920.15190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
We analysed a widely used barcode, the V9 region of the 18S rRNA gene, to study the effect of environmental conditions on the distribution of two related heterotrophic protistan lineages in marine plankton, kinetoplastids and diplonemids. We relied on a major published dataset (Tara Oceans) where samples from the mesopelagic zone were available from just 32 of 123 locations, and both groups are most abundant in this zone. To close sampling gaps and obtain more information from the deeper ocean, we collected 57 new samples targeting especially the mesopelagic zone. We sampled in three geographic regions: the Arctic, two depth transects in the Adriatic Sea, and the anoxic Cariaco Basin. In agreement with previous studies, both protist groups are most abundant and diverse in the mesopelagic zone. In addition to that, we found that their abundance, richness, and community structure also depend on geography, oxygen concentration, salinity, temperature, and other environmental variables reflecting the abundance of algae and nutrients. Both groups studied here demonstrated similar patterns, although some differences were also observed. Kinetoplastids and diplonemids prefer tropical regions and nutrient-rich conditions and avoid high oxygen concentration, high salinity, and high density of algae.
Collapse
Affiliation(s)
- Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Paula Andrea Castañeda Londoño
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | - Virginia P Edgcomb
- Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
18
|
Simão TLL, Utz LRP, Dias R, Giongo A, Triplett EW, Eizirik E. Remarkably Complex Microbial Community Composition in Bromeliad Tank Waters Revealed by eDNA Metabarcoding. J Eukaryot Microbiol 2020; 67:593-607. [PMID: 32562451 DOI: 10.1111/jeu.12814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/04/2020] [Accepted: 06/04/2020] [Indexed: 11/29/2022]
Abstract
To investigate patterns of biotic community composition at different spatial scales and biological contexts, we used environmental DNA metabarcoding to characterize eukaryotic and prokaryotic assemblages present in the phytotelmata of three bromeliad species (Aechmea gamosepala, Vriesea friburgensis, and Vriesea platynema) at a single Atlantic Forest site in southern Brazil. We sampled multiple individuals per species and multiple tanks from each individual, totalizing 30 samples. We observed very high levels of diversity in these communities, and remarkable variation across individuals and even among tanks from the same individual. The alpha diversity was higher for prokaryotes than eukaryotes, especially for A. gamosepala and V. platynema samples. Some biotic components appeared to be species-specific, while most of the biota was shared among species, but varied substantially in frequency among samples. Interestingly, V. friburgensis communities (which were sampled at nearby locations) tended to be more heterogeneous across samples, for both eukaryotes and prokaryotes. The opposite was true for V. platynema, whose samples were more broadly spaced but whose communities were more similar to each other. Our results indicate that additional attention should be devoted to within-individual heterogeneity when assessing bromeliad phytotelmata biodiversity, and highlight the complexity of the biotic assemblages gathered in these unique habitats.
Collapse
Affiliation(s)
- Taiz L L Simão
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Av. Ipiranga, 6681, prédio 12., Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Laura R P Utz
- Laboratório de Ecologia Aquática, Escola de Ciências da Saúde e da Vida, PUCRS, Av. Ipiranga, 6681, prédio 12., Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Raquel Dias
- Department of Integrative Structural and Computational Biology, Scripps Research Translational Institute, 3344 North Torrey Pines Court, Suite 300, La Jolla, California, 92037, USA
| | - Adriana Giongo
- Instituto do Petróleo e Recursos Naturais, PUCRS, Av. Ipiranga 6681, prédio 96J, Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Eric W Triplett
- Department of Microbiology and Cell Science, University of Florida, 1052 Museum Road, P.O. Box 110700, Gainesville, Florida, 32608, USA
| | - Eduardo Eizirik
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Av. Ipiranga, 6681, prédio 12., Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| |
Collapse
|
19
|
Cao X, Zhao D, Zeng J, Huang R, He F. Biogeographic patterns of abundant and rare bacterial and microeukaryotic subcommunities in connected freshwater lake zones subjected to different levels of nutrient loading. J Appl Microbiol 2020; 130:123-132. [PMID: 32427406 DOI: 10.1111/jam.14720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 11/26/2022]
Abstract
AIMS To reveal whether the patterns of abundant and rare subcommunity composition of both bacteria and microeukaryotes vary between connected regions with different levels of nutrient loading in freshwater lakes. METHODS AND RESULTS We investigated the abundant and rare subcommunity composition of both bacteria and microeukaryotes in two connected zones (Meiliang Bay (MLB) and Xukou Bay (XKB)) of a large shallow freshwater Lake Taihu via the high-throughput sequencing of bacterial 16S rRNA and microeukaryotic 18S rRNA genes. Even though these two lake zones are connected and share a species bank, they diverge in community composition. Significantly higher alpha diversity was observed for the abundant bacterial subcommunity in the MLB. However, no significant difference in alpha diversity between the rare bacterial subcommunities, as well as both rare and abundant microeukaryotic subcommunities were observed between MLB and XKB. It is demonstrated that both environmental factors and geographic distance play central roles in controlling the rare and abundant microbial subcommunities in the two connected lake zones. CONCLUSIONS The abundant subcommunity composition of bacteria and microeukaryotes vary between connected regions with different levels of nutrient loading. Dispersal limitation plays a vital role in shaping microbial communities even in connected zones of freshwater lakes. SIGNIFICANCE AND IMPACT OF THE STUDY Leading to a comprehensive understanding of the characteristics of microbial community in connected lake regions with different levels of nutrient loading.
Collapse
Affiliation(s)
- Xinyi Cao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Rui Huang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China
| |
Collapse
|
20
|
Canals O, Obiol A, Muhovic I, Vaqué D, Massana R. Ciliate diversity and distribution across horizontal and vertical scales in the open ocean. Mol Ecol 2020; 29:2824-2839. [PMID: 32618376 DOI: 10.1111/mec.15528] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
Ciliates are globally distributed eukaryotic organisms inhabiting virtually all environments on Earth. Although ciliates range from 10 µm to a few millimetres in cell size, they are repeatedly reported in the pico-sized fraction (<2-3 µm) of molecular surveys. Here, we used existing data sets (BioMarKs and Tara Oceans) with different size fractions to demonstrate that the ciliate pico-sized signal, probably derived from cell breakage during filtration, is informative and reliable to study marine ciliate biodiversity and biogeography. We then used sequences from the pico-eukaryotic fraction of two circumnavigation expeditions, Malaspina-2010 and Tara Oceans, to give insights into the taxonomic composition and horizontal and vertical distribution of ciliates in the global ocean. The results suggested a high homogeneity of ciliate communities along the ocean surface from temperate to tropical waters, with ciliate assemblages dominated by a few abundant and widely distributed taxa. Very few taxa were found in a single oceanic region, therefore suggesting a high level of ciliate cosmopolitanism in the global ocean. In vertical profiles, ciliates were detected up to 4,000 m depth, and a clear vertical community structuring was observed. Our results provided evidence supporting ciliates as deeply integrated organisms in the deep-sea trophic web, where they may play a relevant role as symbionts of metazoans and grazers of prokaryotes and small eukaryotes in the water column and in aggregates.
Collapse
Affiliation(s)
- Oriol Canals
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Aleix Obiol
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Imer Muhovic
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Dolors Vaqué
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Ramon Massana
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| |
Collapse
|
21
|
Škaloud P, Škaloudová M, Jadrná I, Bestová H, Pusztai M, Kapustin D, Siver PA. Comparing Morphological and Molecular Estimates of Species Diversity in the Freshwater Genus Synura (Stramenopiles): A Model for Understanding Diversity of Eukaryotic Microorganisms. JOURNAL OF PHYCOLOGY 2020; 56:574-591. [PMID: 32065394 DOI: 10.1111/jpy.12978] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
We performed a comparison of molecular and morphological diversity in a freshwater colonial genus Synura (Chrysophyceae, Stramenopiles), using the island of Newfoundland (Canada) as a case study. We examined the morphological species diversity in collections from 79 localities, and compared these findings to diversity based on molecular characters for 150 strains isolated from the same sites. Of 27 species or species-level lineages identified, only one third was recorded by both molecular and morphological techniques, showing both approaches are complementary in estimating species diversity within this genus. Eight taxa, each representing young evolutionary lineages, were recovered only by sequencing of isolated colonies, whereas ten species were recovered only microscopically. Our complex investigation, involving both morphological and molecular examinations, indicates that our knowledge of Synura diversity is still poor, limited only to a few well-studied areas. We revealed considerable cryptic diversity within the core S. petersenii and S. leptorrhabda lineages. We further resolved the phylogenetic position of two previously described taxa, S. kristiansenii and S. petersenii f. praefracta, propose species-level status for S. petersenii f. praefracta, and describe three new species, S. vinlandica, S. fluviatilis, and S. cornuta. Our findings add to the growing body of literature detailing distribution patterns observed in the genus, ranging from cosmopolitan species, to highly restricted taxa, to species such as S. hibernica found along coastal regions on multiple continents. Finally, our study illustrates the usefulness of combining detailed morphological information with gene sequence data to examine species diversity within chrysophyte algae.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Magda Škaloudová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Iva Jadrná
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Helena Bestová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Martin Pusztai
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Dmitry Kapustin
- Institute of Plant Physiology, Russian Academy of Sciences, Botanical Street 35, 127276, Moscow, Russia
| | - Peter A Siver
- Department of Botany, Connecticut College, New London, 06320-4196, Connecticut, USA
| |
Collapse
|
22
|
Khonkhaeng B, Cherdthong A. Pleurotus Ostreatus and Volvariella Volvacea Can Enhance the Quality of Purple Field Corn Stover and Modulate Ruminal Fermentation and Feed Utilization in Tropical Beef Cattle. Animals (Basel) 2019; 9:E1084. [PMID: 31817269 PMCID: PMC6941118 DOI: 10.3390/ani9121084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 01/05/2023] Open
Abstract
This objective is to elucidate the effect of purple field corn stover treated with Pleurotus ostreatus and Volvarialla volvacea on feed utilization, ruminal ecology, and CH4 synthesis in tropical beef cattle. Four male Thai native beef cattle (100 ± 30 kg of body weight (BW) were assigned randomly as a 2 × 2 factorial arrangement in a 4 × 4 Latin square design. Factor A (roughage sources) was rice straw and purple field corn stover and factor B was species of white-rot fungi (P. ostreatus and V. volvacea). After fermentation, crude protein (CP) was increased in rice straw and purple field corn stover fermented with P. ostreatus and V. volvacea. The unfermented purple field corn stover contained 11.8% dry matter (DM) of monomeric anthocyanin (MAC), whereas the MAC concentration decreased when purple field corn stover was fermented with white rot fungi. There were no changes (p > 0.05) in DM intake of body weight (BW) kg/d and g/kg BW0.75 among the four treatments. The organic matter (OM), CP, and acid detergent fiber (ADF) intake were different between rice straw and purple field corn stover and were the greatest in the purple field corn stover group. Moreover, the current study showed that neutral detergent fiber (NDF) and ADF digestion was higher in purple field corn stover than in rice straw, but there were no significant differences between P. ostreatus and V. volvacea. There were significant effects of roughage sources on ammonia nitrogen (NH3-N) at 4 h after feeding. Bacterial population was changed by feeding with purple field corn stover fermented with P. ostreatus and V. volvacea. On the other hand, the number of protozoa was reduced by approximately 33% at 4 h after feeding with purple field corn stover (p < 0.01). Propionic acid concentration was different between roughage sources (p < 0.01) enhanced with purple field corn stover fermented with P. ostreatus and V. volvacea. In addition, methane production decreased by 15% with purple field corn stover fermented with P. ostreatus and V. volvacea compared to rice straw. There were significant differences on all nitrogen balances parameters (p < 0.05), except the fecal N excretion (p > 0.05) were not changed. Furthermore, microbial crude protein and efficiency of microbial N synthesis were enhanced when purple field corn stover fermented with P. ostreatus and V. volvacea was fed compared to rice straw group. Base on this study, it could be summarized that P. ostreatus or V. volvacea can enhance the quality of purple field corn stover and modulate rumen fermentation and feed digestion in Thai native beef cattle.
Collapse
Affiliation(s)
| | - Anusorn Cherdthong
- Tropical Feed Resource Research and Development Center (TROFREC), Department of Animal Science Faculty of Agriculture, KKU, Khon Kaen 40002, Thailand;
| |
Collapse
|
23
|
Škaloud P, Škaloudová M, Doskočilová P, Kim JI, Shin W, Dvořák P. Speciation in protists: Spatial and ecological divergence processes cause rapid species diversification in a freshwater chrysophyte. Mol Ecol 2019; 28:1084-1095. [PMID: 30633408 DOI: 10.1111/mec.15011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/26/2018] [Accepted: 01/02/2019] [Indexed: 01/05/2023]
Abstract
Although eukaryotic microorganisms are extremely numerous, diverse and essential to global ecosystem functioning, they are largely understudied by evolutionary biologists compared to multicellular macroscopic organisms. In particular, very little is known about the speciation mechanisms which may give rise to the diversity of microscopic eukaryotes. It was postulated that the enormous population sizes and ubiquitous distribution of these organisms could lead to a lack of population differentiation and therefore very low speciation rates. However, such assumptions have traditionally been based on morphospecies, which may not accurately reflect the true diversity, missing cryptic taxa. In this study, we aim to articulate the major diversification mechanisms leading to the contemporary molecular diversity by using a colonial freshwater flagellate, Synura sphagnicola, as an example. Phylogenetic analysis of five sequenced loci showed that S. sphagnicola differentiated into two morphologically distinct lineages approximately 15.4 million years ago, which further diverged into several evolutionarily recent haplotypes during the late Pleistocene. The most recent haplotypes are ecologically and biogeographically much more differentiated than the old lineages, presumably because of their persistent differentiation after the allopatric speciation events. Our study shows that in microbial eukaryotes, species diversification via the colonization of new geographical regions or ecological resources occurs much more readily than was previously thought. Consequently, divergence times of microorganisms in some lineages may be equivalent to the estimated times of speciation in plants and animals.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Praha, Czech Republic
| | - Magda Škaloudová
- Department of Botany, Faculty of Science, Charles University, Praha, Czech Republic
| | - Pavla Doskočilová
- Department of Botany, Faculty of Science, Charles University, Praha, Czech Republic
| | - Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Woonghi Shin
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Petr Dvořák
- Department of Botany, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
24
|
Fenchel T, Finlay BJ, Esteban GF. Cosmopolitan Metapopulations? Protist 2019; 170:314-318. [PMID: 31181472 DOI: 10.1016/j.protis.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 11/15/2022]
Abstract
A "metapopulation" is a group of populations of the same species separated by space but linked by dispersal and migration. Metapopulations of macroscopic organisms tend to have geographically-restricted distributions, but this does not seem to be the case in microbial eukaryotes due to their astronomical abundance. The term "metapopulation" was first applied to protists' biogeography in the article Finlay and Fenchel (2004), published in PROTIST, which contributed to the popularity of the paper. The article considered protist species as consisting of a single, cosmopolitan population. Here, we recall this paper, and assess developments during the last 15 years with respect to the question of protist species distribution on the surface of the earth.
Collapse
Affiliation(s)
- Tom Fenchel
- Marine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Bland J Finlay
- Queen Mary University of London, School of Biological and Chemical Sciences,Mile End Road London E1 4NS, UK
| | - Genoveva F Esteban
- Bournemouth University, Department of Life and Environmental Sciences, Talbot Campus, Poole, BH12 5BB Dorset, UK.
| |
Collapse
|
25
|
Lan W, Yang C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:1270-1283. [PMID: 30841400 DOI: 10.1016/j.scitotenv.2018.11.180] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 05/16/2023]
Abstract
Methane emission from ruminants not only causes serious environmental problems, but also represents a significant source of energy loss to animals. The increasing demand for sustainable animal production is driving researchers to explore proper strategies to mitigate ruminal methanogenesis. Since hydrogen is the primary substrate of ruminal methanogenesis, hydrogen metabolism and its associated microbiome in the rumen may closely relate to low- and high-methane phenotypes. Using candidate microbes that can compete with methanogens and redirect hydrogen away from methanogenesis as ruminal methane mitigants are promising avenues for methane mitigation, which can both prevent the adverse effects deriving from chemical additives such as toxicity and resistance, and increase the retention of feed energy. This review describes the ruminal microbial ecosystem and its association with methane production, as well as the effects of interspecies hydrogen transfer on methanogenesis. It provides a scientific perspective on using bacteria that are involved in hydrogen utilization as ruminal modifiers to decrease methanogenesis. This information will be helpful in better understanding the key role of ruminal microbiomes and their relationship with methane production and, therefore, will form the basis of valuable and eco-friendly methane mitigation methods while improving animal productivity.
Collapse
Affiliation(s)
- Wei Lan
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; MoE Key Laboratory of Molecular Animal Nutrition, China
| | - Chunlei Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; MoE Key Laboratory of Molecular Animal Nutrition, China.
| |
Collapse
|
26
|
Lentendu G, Mahé F, Bass D, Rueckert S, Stoeck T, Dunthorn M. Consistent patterns of high alpha and low beta diversity in tropical parasitic and free-living protists. Mol Ecol 2018; 27:2846-2857. [PMID: 29851187 DOI: 10.1111/mec.14731] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/27/2018] [Accepted: 05/18/2018] [Indexed: 01/11/2023]
Abstract
Tropical animals and plants are known to have high alpha diversity within forests, but low beta diversity between forests. By contrast, it is unknown whether microbes inhabiting the same ecosystems exhibit similar biogeographic patterns. To evaluate the biogeographies of tropical protists, we used metabarcoding data of species sampled in the soils of three lowland Neotropical rainforests. Taxa-area and distance-decay relationships for three of the dominant protist taxa and their subtaxa were estimated at both the OTU and phylogenetic levels, with presence-absence and abundance-based measures. These estimates were compared to null models. High local alpha and low regional beta diversity patterns were consistently found for both the parasitic Apicomplexa and the largely free-living Cercozoa and Ciliophora. Similar to animals and plants, the protists showed spatial structures between forests at the OTU and phylogenetic levels, and only at the phylogenetic level within forests. These results suggest that the biogeographies of macro- and micro-organismal eukaryotes in lowland Neotropical rainforests are partially structured by the same general processes. However, and unlike the animals and plants, the protist OTUs did not exhibit spatial structures within forests, which hinders our ability to estimate the local and regional diversity of protists in tropical forests.
Collapse
Affiliation(s)
- Guillaume Lentendu
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Frédéric Mahé
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany.,CIRAD, UMR LSTM, Montpellier, France
| | - David Bass
- Department of Life Sciences, The Natural History Museum London, London, UK.,Centre for Environment, Fisheries & Aquaculture Science (Cefas), Weymouth, Dorset, UK
| | - Sonja Rueckert
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Thorsten Stoeck
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
27
|
Dunthorn M, Zufall RA, Chi J, Paszkiewicz K, Moore K, Mahé F. Meiotic Genes in Colpodean Ciliates Support Secretive Sexuality. Genome Biol Evol 2018; 9:1781-1787. [PMID: 28854634 PMCID: PMC5570047 DOI: 10.1093/gbe/evx125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 12/19/2022] Open
Abstract
The putatively asexual Colpodean ciliates potentially pose a problem to macro-organismic theories of evolution. They are extremely ancient (although asexuality is thought to hasten extinction), and yet there is one apparently derived sexual species (implying an unlikely regain of a complex trait). If macro-organismic theories of evolution also broadly apply to microbial eukaryotes, though, then most or all of the colpodean ciliates should merely be secretively sexual. Here we show using de novo genome sequencing, that colpodean ciliates have the meiotic genes required for sex and these genes are under functional constraint. Along with these genomic data, we argue that these ciliates are sexual given the cytological observations of both micronuclei and macronuclei within their cells, and the behavioral observations of brief fusions as if the cells were mating. The challenge that colpodean ciliates pose is therefore not to evolutionary theory, but to our ability to induce microbial eukaryotic sex in the laboratory.
Collapse
Affiliation(s)
- Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Jingyun Chi
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Karen Moore
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Frédéric Mahé
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany.,CIRAD, UMR LSTM, Montpellier, France
| |
Collapse
|
28
|
Jaturapruek R, Fontaneto D, Meksuwan P, Pholpunthin P, Maiphae S. Planktonic and periphytic bdelloid rotifers from Thailand reveal a species assemblage with a combination of cosmopolitan and tropical species. SYST BIODIVERS 2017. [DOI: 10.1080/14772000.2017.1353554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rapeepan Jaturapruek
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Diego Fontaneto
- National Research Council, Institute of Ecosystem Study, Verbania Pallanza, Italy
| | - Phuripong Meksuwan
- Biology Program, Faculty of Science and Technology, Phuket Rajabhat University, Ratsada, Muang, Phuket 83000, Thailand
| | - Pornsilp Pholpunthin
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Supiyanit Maiphae
- Department of Zoology, Faculty of Science, Kasetsart University 10900, Thailand
| |
Collapse
|
29
|
Venter PC, Nitsche F, Domonell A, Heger P, Arndt H. The Protistan Microbiome of Grassland Soil: Diversity in the Mesoscale. Protist 2017; 168:546-564. [PMID: 28961455 DOI: 10.1016/j.protis.2017.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/10/2017] [Accepted: 03/30/2017] [Indexed: 12/22/2022]
Abstract
Genomic data for less than one quarter of ∼1.8 million named species on earth exist in public databases like GenBank. Little information exists on the estimated one million small sized (1-100μm) heterotrophic nanoflagellates and ciliates and their taxa-area relationship. We analyzed environmental DNA from 150 geo-referenced grassland plots representing topographical and land-use ranges typical for Central Europe. High through-put barcoding allowed the identification of operational taxonomic units (OTUs) at species level, with high pairwise identity to reference sequences (≥99.7%), but also the identification of sequences at the genus (≥97%) and class (≥80%) taxonomic level. Species richness analyses revealed, on average, 100 genus level OTUs (332 unique individual read (UIR) and 56 class level OTUs per gram of soil sample in the mesoscale (1-1000km). Database shortfalls were highlighted by increased uncertain taxonomic lineages at lower resolution (≥80% sequence identity). No single barcode occurred ubiquitously across all sites. Taxa-area relationships indicated that OTUs spread over the entire mesoscale were more similar than in the local scale and increased land-use (fertilization, mowing and grazing) promoted taxa-area separation. Only a small fraction of sequences strictly matched reference library sequences, suggesting a large protistan "dark matter" in soil which warrants further research.
Collapse
Affiliation(s)
- Paul Christiaan Venter
- University of Cologne, Department of Biology, Institute of Zoology, General Ecology, Zuelpicher Str. 47b, D-50674 Koeln (Cologne), Germany
| | - Frank Nitsche
- University of Cologne, Department of Biology, Institute of Zoology, General Ecology, Zuelpicher Str. 47b, D-50674 Koeln (Cologne), Germany
| | - Anne Domonell
- University of Cologne, Department of Biology, Institute of Zoology, General Ecology, Zuelpicher Str. 47b, D-50674 Koeln (Cologne), Germany
| | - Peter Heger
- University of Cologne, Department of Biology, Institute for Genetics, Bioinformatics & Population Genetics, Zuelpicher Str. 47a, D-50674 Koeln (Cologne), Germany
| | - Hartmut Arndt
- University of Cologne, Department of Biology, Institute of Zoology, General Ecology, Zuelpicher Str. 47b, D-50674 Koeln (Cologne), Germany.
| |
Collapse
|
30
|
Azovsky AI, Tikhonenkov DV, Mazei YA. An Estimation of the Global Diversity and Distribution of the Smallest Eukaryotes: Biogeography of Marine Benthic Heterotrophic Flagellates. Protist 2016; 167:411-424. [DOI: 10.1016/j.protis.2016.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/26/2016] [Accepted: 07/14/2016] [Indexed: 11/17/2022]
|
31
|
Grossmann L, Bock C, Schweikert M, Boenigk J. Small but Manifold - Hidden Diversity in "Spumella-like Flagellates". J Eukaryot Microbiol 2016; 63:419-39. [PMID: 26662881 PMCID: PMC5066751 DOI: 10.1111/jeu.12287] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 10/16/2015] [Accepted: 11/09/2015] [Indexed: 11/27/2022]
Abstract
Colourless, nonscaled chrysophytes comprise morphologically similar or even indistinguishable flagellates which are important bacterivors in water and soil crucial for ecosystem functioning. However, phylogenetic analyses indicate a multiple origin of such colourless, nonscaled flagellate lineages. These flagellates are often referred to as “Spumella‐like flagellates” in ecological and biogeographic studies. Although this denomination reflects an assumed polyphyly, it obscures the phylogenetic and taxonomic diversity of this important flagellate group and, thus, hinders progress in lineage‐ and taxon‐specific ecological surveys. The smallest representatives of colourless chrysophytes have been addressed in very few taxonomic studies although they are among the dominant flagellates in field communities. To overcome the blurred picture and set the field for further investigation in biogeography and ecology of the organisms in question, we studied a set of strains of specifically small, colourless, nonscaled chrysomonad flagellates by means of electron microscopy and molecular analyses. They were isolated by a filtration‐acclimatisation approach focusing on flagellates of around 5 μm. We present the phylogenetic position of eight different lineages on both the ordinal and the generic level. Accordingly, we describe the new genera Apoikiospumella, Chromulinospumella, Segregatospumella, Cornospumella and Acrispumella Boenigk et Grossmann n. g. and different species within them.
Collapse
Affiliation(s)
- Lars Grossmann
- Department of Biodiversity, University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Christina Bock
- Department of Biodiversity, University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Michael Schweikert
- Department of Zoology, University of Stuttgart, Pfaffenwaldring 57, 70550, Stuttgart, Germany
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| |
Collapse
|
32
|
Newbold CJ, de la Fuente G, Belanche A, Ramos-Morales E, McEwan NR. The Role of Ciliate Protozoa in the Rumen. Front Microbiol 2015; 6:1313. [PMID: 26635774 PMCID: PMC4659874 DOI: 10.3389/fmicb.2015.01313] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/09/2015] [Indexed: 01/17/2023] Open
Abstract
First described in 1843, Rumen protozoa with their striking appearance were assumed to be important for the welfare of their host. However, despite contributing up to 50% of the bio-mass in the rumen, the role of protozoa in rumen microbial ecosystem remains unclear. Phylogenetic analysis of 18S rDNA libraries generated from the rumen of cattle, sheep, and goats has revealed an unexpected diversity of ciliated protozoa although variation in gene copy number between species makes it difficult to obtain absolute quantification. Despite repeated attempts it has proven impossible to maintain rumen protozoa in axenic culture. Thus it has been difficult to establish conclusively a role of ciliate protozoa in rumen fiber degradation. The development of techniques to clone and express ciliate genes in λ phage, together with bioinformatic indices to confirm the ciliate origin of the genes has allowed the isolation and characterization of fibrolytic genes from rumen protozoa. Elimination of the ciliate protozoa increases microbial protein supply by up to 30% and reduces methane production by up to 11%. Our recent findings suggest that holotrich protozoa play a disproportionate role in supporting methanogenesis whilst the small Entodinium are responsible for much of the bacterial protein turnover. As yet no method to control protozoa in the rumen that is safe and practically applicable has been developed, however a range of plant extract capable of controlling if not completely eliminating rumen protozoa have been described.
Collapse
Affiliation(s)
- Charles J. Newbold
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Gabriel de la Fuente
- Departament de Producció Animal, Escola Tècnica Superior d’Enginyeria Agrària, Universitat de Lleida, Lleida, Spain
| | - Alejandro Belanche
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Eva Ramos-Morales
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Neil R. McEwan
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
33
|
Sintes E, De Corte D, Ouillon N, Herndl GJ. Macroecological patterns of archaeal ammonia oxidizers in the Atlantic Ocean. Mol Ecol 2015; 24:4931-42. [PMID: 26336038 PMCID: PMC4950044 DOI: 10.1111/mec.13365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 07/29/2015] [Accepted: 08/21/2015] [Indexed: 12/16/2022]
Abstract
Macroecological patterns are found in animals and plants, but also in micro-organisms. Macroecological and biogeographic distribution patterns in marine Archaea, however, have not been studied yet. Ammonia-oxidizing Archaea (AOA) show a bipolar distribution (i.e. similar communities in the northernmost and the southernmost locations, separated by distinct communities in the tropical and gyral regions) throughout the Atlantic, detectable from epipelagic to upper bathypelagic layers (<2000 m depth). This tentatively suggests an influence of the epipelagic conditions of organic matter production on bathypelagic AOA communities. The AOA communities below 2000 m depth showed a less pronounced biogeographic distribution pattern than the upper 2000 m water column. Overall, AOA in the surface and deep Atlantic waters exhibit distance-decay relationships and follow the Rapoport rule in a similar way as bacterial communities and macroorganisms. This indicates a major role of environmental conditions in shaping the community composition and assembly (species sorting) and no, or only weak limits for dispersal in the oceanic thaumarchaeal communities. However, there is indication of a different strength of these relationships between AOA and Bacteria, linked to the intrinsic differences between these two domains.
Collapse
Affiliation(s)
- Eva Sintes
- Department of Limnology and Bio‐OceanographyCenter of EcologyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Daniele De Corte
- Department of Limnology and Bio‐OceanographyCenter of EcologyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Natascha Ouillon
- Department of Limnology and Bio‐OceanographyCenter of EcologyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Gerhard J. Herndl
- Department of Limnology and Bio‐OceanographyCenter of EcologyUniversity of ViennaAlthanstrasse 141090ViennaAustria
- Department of Biological OceanographyRoyal Netherlands Institute for Sea ResearchPO Box 591790Den BurgThe Netherlands
| |
Collapse
|
34
|
Pagnier I, Yutin N, Croce O, Makarova KS, Wolf YI, Benamar S, Raoult D, Koonin EV, La Scola B. Babela massiliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae. Biol Direct 2015; 10:13. [PMID: 25884386 PMCID: PMC4378268 DOI: 10.1186/s13062-015-0043-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/12/2015] [Indexed: 11/24/2022] Open
Abstract
Background Only a small fraction of bacteria and archaea that are identifiable by metagenomics can be grown on standard media. Recent efforts on deep metagenomics sequencing, single-cell genomics and the use of specialized culture conditions (culturomics) increasingly yield novel microbes some of which represent previously uncharacterized phyla and possess unusual biological traits. Results We report isolation and genome analysis of Babela massiliensis, an obligate intracellular parasite of Acanthamoeba castellanii. B. massiliensis shows an unusual, fission mode of cell multiplication whereby large, polymorphic bodies accumulate in the cytoplasm of infected amoeba and then split into mature bacterial cells. This unique mechanism of cell division is associated with a deep degradation of the cell division machinery and delayed expression of the ftsZ gene. The genome of B. massiliensis consists of a circular chromosome approximately 1.12 megabase in size that encodes, 981 predicted proteins, 38 tRNAs and one typical rRNA operon. Phylogenetic analysis shows that B. massiliensis belongs to the putative bacterial phylum TM6 that so far was represented by the draft genome of the JCVI TM6SC1 bacterium obtained by single cell genomics and numerous environmental sequences. Conclusions Currently, B. massiliensis is the only cultivated member of the putative TM6 phylum. Phylogenomic analysis shows diverse taxonomic affinities for B. massiliensis genes, suggestive of multiple gene acquisitions via horizontal transfer from other bacteria and eukaryotes. Horizontal gene transfer is likely to be facilitated by the cohabitation of diverse parasites and symbionts inside amoeba. B. massiliensis encompasses many genes encoding proteins implicated in parasite-host interaction including the greatest number of ankyrin repeats among sequenced bacteria and diverse proteins related to the ubiquitin system. Characterization of B. massiliensis, a representative of a distinct bacterial phylum, thanks to its ability to grow in amoeba, reaffirms the critical role of diverse culture approaches in microbiology. Reviewers This article was reviewed by Dr. Igor Zhulin, Dr. Jeremy Selengut, and Pr Martijn Huynen. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0043-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isabelle Pagnier
- URMITE, CNRS UMR IRD 6236, Faculté de Médecine, Université de la Méditerranée, 27 Bd. Jean Moulin, 13385, Marseille Cedex 5, France.
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Olivier Croce
- URMITE, CNRS UMR IRD 6236, Faculté de Médecine, Université de la Méditerranée, 27 Bd. Jean Moulin, 13385, Marseille Cedex 5, France.
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Samia Benamar
- URMITE, CNRS UMR IRD 6236, Faculté de Médecine, Université de la Méditerranée, 27 Bd. Jean Moulin, 13385, Marseille Cedex 5, France.
| | - Didier Raoult
- URMITE, CNRS UMR IRD 6236, Faculté de Médecine, Université de la Méditerranée, 27 Bd. Jean Moulin, 13385, Marseille Cedex 5, France.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Bernard La Scola
- URMITE, CNRS UMR IRD 6236, Faculté de Médecine, Université de la Méditerranée, 27 Bd. Jean Moulin, 13385, Marseille Cedex 5, France.
| |
Collapse
|
35
|
New Paramecium (Ciliophora, Oligohymenophorea) congeners shape our view on its biodiversity. ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0207-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Gomaa F, Yang J, Mitchell EAD, Zhang WJ, Yu Z, Todorov M, Lara E. Morphological and molecular diversification of Asian endemic Difflugia tuberspinifera (Amoebozoa, Arcellinida): a case of fast morphological evolution in protists? Protist 2014; 166:122-30. [PMID: 25594492 DOI: 10.1016/j.protis.2014.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 11/11/2014] [Accepted: 11/29/2014] [Indexed: 10/24/2022]
Abstract
Planktonic arcellinid testate amoebae exhibit a broad-range of morphological variability but it is currently unclear to what extent this variability represents phenotypic plasticity or if it is genetically determined. We investigated the morphology and phylogenetic relationships of three endemic east-asian Difflugia taxa 1) the vase-shaped D. mulanensis, 2) and a spinose and a spineless morphotypes of D. tuberspinifera using scanning electron microscopy and two ribosomal genetic markers (SSU rDNA and ITS sequences). Our phylogenetic analyses shows that all three taxa are genetically distinct and closely related to D. achlora and Netzelia oviformis. The genetic variations between the spineless and spinose morphotypes of D. tuberspinifera were low at the SSU rRNA level (0.4%), but ten times higher at the ITS level (4.5-6%). Our data suggest that the two forms of D. tuberspinifera are sufficiently differentiated in terms of morphology and genetic characteristics to constitute two separate entities and that the presence of spines does not result from phenotypic plasticity due to environmental selective pressure. However further observational and experimental data are needed to determine if these two forms constitute different biological species.
Collapse
Affiliation(s)
- Fatma Gomaa
- Laboratory of Soil Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland; Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Jun Yang
- Aquatic Ecohealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Edward A D Mitchell
- Laboratory of Soil Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland; Jardin Botanique de Neuchâtel, Chemin du Perthuis-du-Sault 58, CH-2000 Neuchâtel, Switzerland
| | - Wen-Jing Zhang
- Marine Biodiversity and Global Change Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zheng Yu
- Aquatic Ecohealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Milcho Todorov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Enrique Lara
- Laboratory of Soil Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
37
|
Vaerewijck MJ, Baré J, Lambrecht E, Sabbe K, Houf K. Interactions of Foodborne Pathogens with Free-living Protozoa: Potential Consequences for Food Safety. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12100] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Julie Baré
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| | - Ellen Lambrecht
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology; Dept. of Biology, Ghent Univ; Belgium
| | - Kurt Houf
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| |
Collapse
|
38
|
Nanjappa D, Audic S, Romac S, Kooistra WHCF, Zingone A. Assessment of species diversity and distribution of an ancient diatom lineage using a DNA metabarcoding approach. PLoS One 2014; 9:e103810. [PMID: 25133638 PMCID: PMC4136930 DOI: 10.1371/journal.pone.0103810] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 07/04/2014] [Indexed: 11/30/2022] Open
Abstract
Background Continuous efforts to estimate actual diversity and to trace the species distribution and ranges in the natural environments have gone in equal pace with advancements of the technologies in the study of microbial species diversity from microscopic observations to DNA-based barcoding. DNA metabarcoding based on Next Generation Sequencing (NGS) constitutes the latest advancement in these efforts. Here we use NGS data from different sites to investigate the geographic range of six species of the diatom family Leptocylindraceae and to identify possible new taxa within the family. Methodology/Principal Findings We analysed the V4 and V9 regions of the nuclear-encoded SSU rDNA gene region in the NGS database of the European ERA-Biodiversa project BioMarKs, collected in plankton and sediments at six coastal sites in European coastal waters, as well as environmental sequences from the NCBI database. All species known in the family Leptocylindraceae were detected in both datasets, but the much larger Illumina V9 dataset showed a higher species coverage at the various sites than the 454 V4 dataset. Sequences identical or similar to the references of Leptocylindrus aporus, L. convexus, L. danicus/hargravesii and Tenuicylindrus belgicus were found in the Mediterranean Sea, North Atlantic Ocean and Black Sea as well as at locations outside Europe. Instead, sequences identical or close to that of L. minimus were found in the North Atlantic Ocean and the Black Sea but not in the Mediterranean Sea, while sequences belonging to a yet undescribed taxon were encountered only in Oslo Fjord and Baffin Bay. Conclusions/Significance Identification of Leptocylindraceae species in NGS datasets has expanded our knowledge of the species biogeographic distribution and of the overall diversity of this diatom family. Individual species appear to be widespread, but not all of them are found everywhere. Despite the sequencing depth allowed by NGS and the wide geographic area covered by this study, the diversity of this ancient diatom family appears to be low, at least at the level of the marker used in this study.
Collapse
Affiliation(s)
- Deepak Nanjappa
- Stazione Zoologica Anton Dohrn, Naples, Italy
- * E-mail: (DN); (AZ)
| | - Stephane Audic
- CNRS, UMR EPEP – Évolution des Protistes et des Écosystèmes Pélagiques, UPMC Sorbonne Universités, Station Biologique de Roscoff, Roscoff, France
| | - Sarah Romac
- CNRS, UMR EPEP – Évolution des Protistes et des Écosystèmes Pélagiques, UPMC Sorbonne Universités, Station Biologique de Roscoff, Roscoff, France
| | | | - Adriana Zingone
- Stazione Zoologica Anton Dohrn, Naples, Italy
- * E-mail: (DN); (AZ)
| |
Collapse
|
39
|
Weisse T. Ciliates and the Rare Biosphere—Community Ecology and Population Dynamics. J Eukaryot Microbiol 2014; 61:419-33. [DOI: 10.1111/jeu.12123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Thomas Weisse
- Research Institute for Limnology University of Innsbruck Mondseestraße 95310 Mondsee Austria
| |
Collapse
|
40
|
Ryšánek D, Hrčková K, Škaloud P. Global ubiquity and local endemism of free-living terrestrial protists: phylogeographic assessment of the streptophyte alga Klebsormidium. Environ Microbiol 2014; 17:689-98. [PMID: 24803402 DOI: 10.1111/1462-2920.12501] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/17/2014] [Accepted: 04/30/2014] [Indexed: 11/30/2022]
Abstract
Despite considerable research attention during the last 10 years, the distribution and biogeography of protists remain as highly controversial issues. The presumably huge population sizes and unlimited dispersal capabilities should result in protist ubiquity. However, recent molecular investigations suggest that protist communities exhibit strong biogeographic patterns. Here, we examined the biogeographic pattern of a very common green algal genus Klebsormidium. We evaluated the geographic distribution of rbcL genotypes for 190 isolates sampled in six sampling regions located in Europe, North America and Asia. Measures of correlation between genetic and geographic distance matrices revealed a differential distribution pattern on two geographic levels. Globally, the populations were genetically homogeneous; locally, the genotypes were patchily distributed. We hypothesized that a local fine-scale structuring of genotypes may be caused by various ecological factors, in particular, by the habitat differentiation of particular genotypes. Our investigations also identified a large number of new, previously unrecognized lineages. A total of 44 genotypes were identified and more than 66% of these were reported for the first time.
Collapse
Affiliation(s)
- David Ryšánek
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | | |
Collapse
|
41
|
Edgcomb VP, Pachiadaki M. Ciliates along Oxyclines of Permanently Stratified Marine Water Columns. J Eukaryot Microbiol 2014; 61:434-45. [DOI: 10.1111/jeu.12122] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Virginia P. Edgcomb
- Department of Geology and Geophysics; Woods Hole Oceanographic Institution; Woods Hole Massachusetts 02543
| | - Maria Pachiadaki
- Department of Geology and Geophysics; Woods Hole Oceanographic Institution; Woods Hole Massachusetts 02543
| |
Collapse
|
42
|
Dunthorn M, Stoeck T, Clamp J, Warren A, Mahé F. Ciliates and the Rare Biosphere: A Review. J Eukaryot Microbiol 2014; 61:404-9. [DOI: 10.1111/jeu.12121] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Micah Dunthorn
- Department of Ecology; University of Kaiserslautern; D-67663 Kaiserslautern Germany
| | - Thorsten Stoeck
- Department of Ecology; University of Kaiserslautern; D-67663 Kaiserslautern Germany
| | - John Clamp
- Department of Biology; North Carolina Central University; Durham North Carolina 27707 USA
| | - Alan Warren
- Department of Life Sciences Department; Natural History Museum; London SW7 5BD United Kingdom
| | - Frédéric Mahé
- Department of Ecology; University of Kaiserslautern; D-67663 Kaiserslautern Germany
| |
Collapse
|
43
|
Grattepanche JD, Santoferrara LF, McManus GB, Katz LA. Diversity of diversity: conceptual and methodological differences in biodiversity estimates of eukaryotic microbes as compared to bacteria. Trends Microbiol 2014; 22:432-7. [PMID: 24814699 DOI: 10.1016/j.tim.2014.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/31/2014] [Accepted: 04/11/2014] [Indexed: 01/05/2023]
Abstract
Recent advances such as high-throughput sequencing (HTS) have changed conceptions about the magnitude of diversity on Earth. This is especially true for microbial lineages, which have seen the discovery of great numbers of rare forms in places such as the human gut as well as diverse environments (e.g., freshwater, marine, and soil). Given the differences in perceptions of diversity for bacterial and eukaryotic microbes, including divergent species concepts, HTS tools used to eliminate errors and population-level variation in bacteria may not be appropriate for microbial eukaryotes and may eliminate valid species from the data. We discuss here how the nature of biodiversity varies among microbial groups and the extent to which HTS tools designed for bacteria are useful for eukaryotes.
Collapse
Affiliation(s)
| | | | - George B McManus
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
44
|
Dunthorn M, Otto J, Berger SA, Stamatakis A, Mahé F, Romac S, de Vargas C, Audic S, Stock A, Kauff F, Stoeck T. Placing environmental next-generation sequencing amplicons from microbial eukaryotes into a phylogenetic context. Mol Biol Evol 2014; 31:993-1009. [PMID: 24473288 DOI: 10.1093/molbev/msu055] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nucleotide positions in the hypervariable V4 and V9 regions of the small subunit (SSU)-rDNA locus are normally difficult to align and are usually removed before standard phylogenetic analyses. Yet, with next-generation sequencing data, amplicons of these regions are all that are available to answer ecological and evolutionary questions that rely on phylogenetic inferences. With ciliates, we asked how inclusion of the V4 or V9 regions, regardless of alignment quality, affects tree topologies using distinct phylogenetic methods (including PairDist that is introduced here). Results show that the best approach is to place V4 amplicons into an alignment of full-length Sanger SSU-rDNA sequences and to infer the phylogenetic tree with RAxML. A sliding window algorithm as implemented in RAxML shows, though, that not all nucleotide positions in the V4 region are better than V9 at inferring the ciliate tree. With this approach and an ancestral-state reconstruction, we use V4 amplicons from European nearshore sampling sites to infer that rather than being primarily terrestrial and freshwater, colpodean ciliates may have repeatedly transitioned from terrestrial/freshwater to marine environments.
Collapse
Affiliation(s)
- Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Weisse T, Scheffel U, Stadler P, Foissner W. Functional ecology of the ciliate Glaucomides bromelicola, and comparison with the sympatric species Bromeliothrix metopoides. J Eukaryot Microbiol 2013; 60:578-87. [PMID: 23865693 PMCID: PMC4028988 DOI: 10.1111/jeu.12063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/12/2013] [Accepted: 05/21/2013] [Indexed: 11/27/2022]
Abstract
We investigated the ecology and life strategy of Glaucomides bromelicola (family Bromeliophryidae), a very common ciliate in the reservoirs (tanks) of bromeliads, assessing its response to food quality and quantity and pH. Further, we conducted competition experiments with the frequently coexisting species Bromeliothrix metopoides (family Colpodidae). In contrast to B. metopoides and many other colpodean ciliates, G. bromelicola does not form resting cysts, which jeopardizes this ciliate when its small aquatic habitats dry out. Both species form bactivorous microstomes and flagellate-feeding macrostomes. However, only G. bromelicola has a low feeding threshold and is able to adapt to different protist food. The higher affinity to the local bacterial and flagellate food renders it the superior competitor relative to B. metopoides. Continuous encystment and excystment of the latter may enable stable coexistence of both species in their natural habitat. Both are tolerant to a wide range of pH (4–9). These ciliates appear to be limited to tank bromeliads because they either lack resting cysts and vectors for long distance dispersal (G. bromelicola) and/or have highly specific food requirements (primarily B. metopoides).
Collapse
Affiliation(s)
- Thomas Weisse
- Research Institute for Limnology, University of Innsbruck, Herzog Odilostrasse 101, Mondsee, 5310, Austria
| | | | | | | |
Collapse
|
46
|
Stock A, Edgcomb V, Orsi W, Filker S, Breiner HW, Yakimov MM, Stoeck T. Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection. BMC Microbiol 2013. [PMID: 23834625 DOI: 10.1186/1471‐2180‐13‐150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. RESULTS Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. CONCLUSIONS Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The "isolated island character" of the different brines, that resulted from geological events and contemporary environmental conditions, create selective pressures driving evolutionary processes, and with time, lead to speciation and shape protistan community composition. We conclude that community assembly in DHABs is a mixture of isolated evolution (as evidenced by small changes in V4 primary structure in some taxa) and species sorting (as indicated by the regional absence/presence of individual taxon groups on high levels in taxonomic hierarchy).
Collapse
Affiliation(s)
- Alexandra Stock
- University of Kaiserslautern, School of Biology, Erwin-Schroedinger-Str, 14, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Stock A, Edgcomb V, Orsi W, Filker S, Breiner HW, Yakimov MM, Stoeck T. Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection. BMC Microbiol 2013; 13:150. [PMID: 23834625 PMCID: PMC3707832 DOI: 10.1186/1471-2180-13-150] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/15/2013] [Indexed: 12/01/2022] Open
Abstract
Background Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Results Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Conclusions Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The “isolated island character” of the different brines, that resulted from geological events and contemporary environmental conditions, create selective pressures driving evolutionary processes, and with time, lead to speciation and shape protistan community composition. We conclude that community assembly in DHABs is a mixture of isolated evolution (as evidenced by small changes in V4 primary structure in some taxa) and species sorting (as indicated by the regional absence/presence of individual taxon groups on high levels in taxonomic hierarchy).
Collapse
Affiliation(s)
- Alexandra Stock
- University of Kaiserslautern, School of Biology, Erwin-Schroedinger-Str, 14, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Svercel M, Filippini M, Perony N, Rossetti V, Bagheri HC. Use of a four-tiered graph to parse the factors leading to phenotypic clustering in bacteria: a case study based on samples from the Aletsch Glacier. PLoS One 2013; 8:e65059. [PMID: 23741454 PMCID: PMC3669021 DOI: 10.1371/journal.pone.0065059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 04/21/2013] [Indexed: 11/19/2022] Open
Abstract
An understanding of bacterial diversity and evolution in any environment requires knowledge of phenotypic diversity. In this study, the underlying factors leading to phenotypic clustering were analyzed and interpreted using a novel approach based on a four-tiered graph. Bacterial isolates were organized into equivalence classes based on their phenotypic profile. Likewise, phenotypes were organized in equivalence classes based on the bacteria that manifest them. The linking of these equivalence classes in a four-tiered graph allowed for a quick visual identification of the phenotypic measurements leading to the clustering patterns deduced from principal component analyses. For evaluation of the method, we investigated phenotypic variation in enzyme production and carbon assimilation of members of the genera Pseudomonas and Serratia, isolated from the Aletsch Glacier in Switzerland. The analysis indicates that the genera isolated produce at least six common enzymes and can exploit a wide range of carbon resources, though some specialist species within the pseudomonads were also observed. We further found that pairwise distances between enzyme profiles strongly correlate with distances based on carbon profiles. However, phenotypic distances weakly correlate with phylogenetic distances. The method developed in this study facilitates a more comprehensive understanding of phenotypic clustering than what would be deduced from principal component analysis alone.
Collapse
Affiliation(s)
- Miroslav Svercel
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- * E-mail: (MS); (HCB)
| | - Manuela Filippini
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Nicolas Perony
- Chair of Systems Design, ETH Zurich, Zurich, Switzerland
| | - Valentina Rossetti
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Homayoun C. Bagheri
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- * E-mail: (MS); (HCB)
| |
Collapse
|
49
|
Škaloud P, Rindi F. Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta). J Eukaryot Microbiol 2013; 60:350-62. [PMID: 23648118 DOI: 10.1111/jeu.12040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 11/05/2012] [Accepted: 01/25/2013] [Indexed: 11/29/2022]
Abstract
Taxa of microbial eukaryotes defined on morphological basis display a large degree of genetic diversity, implying the existence of numerous cryptic species. However, it has been postulated that genetic diversity merely mirrors accumulation of neutral mutations. As a case taxon to study cryptic diversity in protists, we used a widely distributed filamentous genus, Klebsormidium, specifically the lineage E (K. flaccidum/K. nitens complex) containing a number of morphologically similar strains. Fourteen clades were recognized in the phylogenetic analysis based on a concatenated ITS rDNA + rbcL data set of more than 70 strains. The results of inferred character evolution indicated the existence of phylogenetic signal in at least two phenotypic characters (production of hydro-repellent filaments and morphology of zoosporangia). Moreover, the lineages recovered exhibited strong ecological preferences to one of the three habitat types: natural subaerial substrata, artificial subaerial substrata, and aquatic habitats. We interpret these results as evidence of existence of a high number of cryptic species within the single morphospecies. We consider that the permanent existence of genetically and ecologically well-defined cryptic species is enabled by the mechanism of selective sweep.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Praha CZ 128 01, Czech Republic.
| | | |
Collapse
|
50
|
Smetacek V. Making sense of ocean biota: how evolution and biodiversity of land organisms differ from that of the plankton. J Biosci 2013; 37:589-607. [PMID: 22922185 DOI: 10.1007/s12038-012-9240-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The oceans cover 70% of the planet's surface, and their planktonic inhabitants generate about half the global primary production, thereby playing a key role in modulating planetary climate via the carbon cycle. The ocean biota have been under scientific scrutiny for well over a century, and yet our understanding of the processes driving natural selection in the pelagic environment - the open water inhabited by drifting plankton and free-swimming nekton - is still quite vague. Because of the fundamental differences in the physical environment, pelagic ecosystems function differently from the familiar terrestrial ecosystems of which we are a part. Natural selection creates biodiversity but understanding how this quality control of random mutations operates in the oceans - which traits are selected for under what circumstances and by which environmental factors, whether bottom-up or top-down - is currently a major challenge. Rapid advances in genomics are providing information, particularly in the prokaryotic realm, pertaining not only to the biodiversity inventory but also functional groups. This essay is dedicated to the poorly understood tribes of planktonic protists (unicellular eukaryotes) that feed the ocean's animals and continue to run the elemental cycles of our planet. It is an attempt at developing a conceptually coherent framework to understand the course of evolution by natural selection in the plankton and contrast it with the better-known terrestrial realm. I argue that organism interactions, in particular co-evolution between predators and prey (the arms race), play a central role in driving evolution in the pelagic realm. Understanding the evolutionary forces shaping ocean biota is a prerequisite for harnessing plankton for human purposes and also for protecting the oceanic ecosystems currently under severe stress from anthropogenic pressures.
Collapse
Affiliation(s)
- Victor Smetacek
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven 27570, Germany.
| |
Collapse
|