1
|
Rumbaugh TD, Gorka MJ, Baker CS, Golbeck JH, Silakov A. Light-induced H 2 generation in a photosystem I-O 2-tolerant [FeFe] hydrogenase nanoconstruct. Proc Natl Acad Sci U S A 2024; 121:e2400267121. [PMID: 39136990 PMCID: PMC11348241 DOI: 10.1073/pnas.2400267121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/29/2024] [Indexed: 08/15/2024] Open
Abstract
The fusion of hydrogenases and photosynthetic reaction centers (RCs) has proven to be a promising strategy for the production of sustainable biofuels. Type I (iron-sulfur-containing) RCs, acting as photosensitizers, are capable of promoting electrons to a redox state that can be exploited by hydrogenases for the reduction of protons to dihydrogen (H2). While both [FeFe] and [NiFe] hydrogenases have been used successfully, they tend to be limited due to either O2 sensitivity, binding specificity, or H2 production rates. In this study, we fuse a peripheral (stromal) subunit of Photosystem I (PS I), PsaE, to an O2-tolerant [FeFe] hydrogenase from Clostridium beijerinckii using a flexible [GGS]4 linker group (CbHydA1-PsaE). We demonstrate that the CbHydA1 chimera can be synthetically activated in vitro to show bidirectional activity and that it can be quantitatively bound to a PS I variant lacking the PsaE subunit. When illuminated in an anaerobic environment, the nanoconstruct generates H2 at a rate of 84.9 ± 3.1 µmol H2 mgchl-1 h-1. Further, when prepared and illuminated in the presence of O2, the nanoconstruct retains the ability to generate H2, though at a diminished rate of 2.2 ± 0.5 µmol H2 mgchl-1 h-1. This demonstrates not only that PsaE is a promising scaffold for PS I-based nanoconstructs, but the use of an O2-tolerant [FeFe] hydrogenase opens the possibility for an in vivo H2 generating system that can function in the presence of O2.
Collapse
Affiliation(s)
- Tristen D Rumbaugh
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Michael J Gorka
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Carol S Baker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - John H Golbeck
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
2
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
3
|
Hitchcock A, Hunter CN, Sobotka R, Komenda J, Dann M, Leister D. Redesigning the photosynthetic light reactions to enhance photosynthesis - the PhotoRedesign consortium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:23-34. [PMID: 34709696 DOI: 10.1111/tpj.15552] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
In this Perspective article, we describe the visions of the PhotoRedesign consortium funded by the European Research Council of how to enhance photosynthesis. The light reactions of photosynthesis in individual phototrophic species use only a fraction of the solar spectrum, and high light intensities can impair and even damage the process. In consequence, expanding the solar spectrum and enhancing the overall energy capacity of the process, while developing resilience to stresses imposed by high light intensities, could have a strong positive impact on food and energy production. So far, the complexity of the photosynthetic machinery has largely prevented improvements by conventional approaches. Therefore, there is an urgent need to develop concepts to redesign the light-harvesting and photochemical capacity of photosynthesis, as well as to establish new model systems and toolkits for the next generation of photosynthesis researchers. The overall objective of PhotoRedesign is to reconfigure the photosynthetic light reactions so they can harvest and safely convert energy from an expanded solar spectrum. To this end, a variety of synthetic biology approaches, including de novo design, will combine the attributes of photosystems from different photoautotrophic model organisms, namely the purple bacterium Rhodobacter sphaeroides, the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana. In parallel, adaptive laboratory evolution will be applied to improve the capacity of reimagined organisms to cope with enhanced input of solar energy, particularly in high and fluctuating light.
Collapse
Affiliation(s)
- Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Christopher Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Roman Sobotka
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 37901, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 37901, Czech Republic
| | - Marcel Dann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
4
|
Ohnishi M, Furutani R, Sohtome T, Suzuki T, Wada S, Tanaka S, Ifuku K, Ueno D, Miyake C. Photosynthetic Parameters Show Specific Responses to Essential Mineral Deficiencies. Antioxidants (Basel) 2021; 10:996. [PMID: 34201487 PMCID: PMC8300717 DOI: 10.3390/antiox10070996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
In response to decreases in the assimilation efficiency of CO2, plants oxidize the reaction center chlorophyll (P700) of photosystem I (PSI) to suppress reactive oxygen species (ROS) production. In hydro-cultured sunflower leaves experiencing essential mineral deficiencies, we analyzed the following parameters that characterize PSI and PSII: (1) the reduction-oxidation states of P700 [Y(I), Y(NA), and Y(ND)]; (2) the relative electron flux in PSII [Y(II)]; (3) the reduction state of the primary electron acceptor in PSII, QA (1 - qL); and (4) the non-photochemical quenching of chlorophyll fluorescence (NPQ). Deficiency treatments for the minerals N, P, Mn, Mg, S, and Zn decreased Y(II) with an increase in the oxidized P700 [Y(ND)], while deficiencies for the minerals K, Fe, Ca, B, and Mo decreased Y(II) without an increase in Y(ND). During the induction of photosynthesis, the above parameters showed specific responses to each mineral. That is, we could diagnose the mineral deficiency and identify which mineral affected the photosynthesis parameters.
Collapse
Affiliation(s)
- Miho Ohnishi
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| | - Riu Furutani
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| | - Takayuki Sohtome
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
- Department of System Development, Bunkoukeiki Co. Ltd., 4-8 Takakura-machi, Hachioji-shi, Tokyo 192-0033, Japan
| | - Takeshi Suzuki
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| | - Shinya Wada
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| | - Soma Tanaka
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
| | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan;
| | - Daisei Ueno
- Graduate School of Integrated Arts and Science, Kochi University, 200 Otsu, Monobe, Nankoku 783-8502, Japan;
| | - Chikahiro Miyake
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| |
Collapse
|
5
|
Hirose M, Harada J, Tamiaki H. In Vitro Hydrolysis of Zinc Chlorophyllide a Homologues by a BciC Enzyme. Biochemistry 2020; 59:4622-4626. [PMID: 33258578 DOI: 10.1021/acs.biochem.0c00850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chlorosomes in green photosynthetic bacteria are the largest and most efficient light-harvesting antenna systems of all phototrophs. The core part of chlorosomes consists of bacteriochlorophyll c, d, or e molecules. In their biosynthetic pathway, a BciC enzyme catalyzes the removal of the C132-methoxycarbonyl group of chlorophyllide a. In this study, the in vitro enzymatic reactions of chlorophyllide a analogues, C132-methylene- and ethylene-inserted zinc complexes, were examined using a BciC protein from Chlorobaculum tepidum. As the products, their hydrolyzed free carboxylic acids were observed without the corresponding demethoxycarbonylated compounds. The results showed that the in vivo demethoxycarbonylation of chlorophyllide a by an action of the BciC enzyme would occur via two steps: (1) an enzymatic hydrolysis of a methyl ester at the C132-position, followed by (2) a spontaneous (nonenzymatic) decarboxylation in the resulting carboxylic acid.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
6
|
Gerland L, Friedrich D, Hopf L, Donovan EJ, Wallmann A, Erdmann N, Diehl A, Bommer M, Buzar K, Ibrahim M, Schmieder P, Dobbek H, Zouni A, Bondar A, Dau H, Oschkinat H. pH-Dependent Protonation of Surface Carboxylate Groups in PsbO Enables Local Buffering and Triggers Structural Changes. Chembiochem 2020; 21:1597-1604. [PMID: 31930693 PMCID: PMC7318136 DOI: 10.1002/cbic.201900739] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 11/11/2022]
Abstract
Photosystem II (PSII) catalyzes the splitting of water, releasing protons and dioxygen. Its highly conserved subunit PsbO extends from the oxygen-evolving center (OEC) into the thylakoid lumen and stabilizes the catalytic Mn4 CaO5 cluster. The high degree of conservation of accessible negatively charged surface residues in PsbO suggests additional functions, as local pH buffer or by affecting the flow of protons. For this discussion, we provide an experimental basis, through the determination of pKa values of water-accessible aspartate and glutamate side-chain carboxylate groups by means of NMR. Their distribution is strikingly uneven, with high pKa values around 4.9 clustered on the luminal PsbO side and values below 3.5 on the side facing PSII. pH-dependent changes in backbone chemical shifts in the area of the lumen-exposed loops are observed, indicating conformational changes. In conclusion, we present a site-specific analysis of carboxylate group proton affinities in PsbO, providing a basis for further understanding of proton transport in photosynthesis.
Collapse
Affiliation(s)
- Lisa Gerland
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyThielallee 6314195BerlinGermany
| | - Daniel Friedrich
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyThielallee 6314195BerlinGermany
| | - Linus Hopf
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyThielallee 6314195BerlinGermany
| | - Eavan J. Donovan
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Arndt Wallmann
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Natalja Erdmann
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Anne Diehl
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Martin Bommer
- Max-Delbrück-Centrum für Molekulare MedizinRobert-Rössle-Strasse 1013125BerlinGermany
| | - Krzysztof Buzar
- Freie Universität BerlinDepartment of Physics, Theoretical Molecular BiophysicsArnimallee 1414195BerlinGermany
| | - Mohamed Ibrahim
- Humboldt-Universität zu BerlinInstitute of BiologyPhilippstrasse 1310099BerlinGermany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Holger Dobbek
- Humboldt-Universität zu BerlinInstitute of BiologyPhilippstrasse 1310099BerlinGermany
| | - Athina Zouni
- Humboldt-Universität zu BerlinInstitute of BiologyPhilippstrasse 1310099BerlinGermany
| | - Ana‐Nicoleta Bondar
- Freie Universität BerlinDepartment of Physics, Theoretical Molecular BiophysicsArnimallee 1414195BerlinGermany
| | - Holger Dau
- Freie Universität BerlinDepartment of Physics, Biophysics and PhotosynthesisArnimallee 1414195BerlinGermany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyThielallee 6314195BerlinGermany
| |
Collapse
|
7
|
Abstract
Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
8
|
Trogadas P, Coppens MO. Nature-inspired electrocatalysts and devices for energy conversion. Chem Soc Rev 2020; 49:3107-3141. [DOI: 10.1039/c8cs00797g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A NICE approach for the design of nature-inspired electrocatalysts and electrochemical devices for energy conversion.
Collapse
Affiliation(s)
- Panagiotis Trogadas
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| | - Marc-Olivier Coppens
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| |
Collapse
|
9
|
Edgar JA. L-ascorbic acid and the evolution of multicellular eukaryotes. J Theor Biol 2019; 476:62-73. [DOI: 10.1016/j.jtbi.2019.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/10/2019] [Accepted: 06/02/2019] [Indexed: 12/26/2022]
|
10
|
Sleep NH. Geological and Geochemical Constraints on the Origin and Evolution of Life. ASTROBIOLOGY 2018; 18:1199-1219. [PMID: 30124324 DOI: 10.1089/ast.2017.1778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The traditional tree of life from molecular biology with last universal common ancestor (LUCA) branching into bacteria and archaea (though fuzzy) is likely formally valid enough to be a basis for discussion of geological processes on the early Earth. Biologists infer likely properties of nodal organisms within the tree and, hence, the environment they inhabited. Geologists both vet tenuous trees and putative origin of life scenarios for geological and ecological reasonability and conversely infer geological information from trees. The latter approach is valuable as geologists have only weakly constrained the time when the Earth became habitable and the later time when life actually existed to the long interval between ∼4.5 and ∼3.85 Ga where no intact surface rocks are known. With regard to vetting, origin and early evolution hypotheses from molecular biology have recently centered on serpentinite settings in marine and alternatively land settings that are exposed to ultraviolet sunlight. The existence of these niches on the Hadean Earth is virtually certain. With regard to inferring geological environment from genomics, nodes on the tree of life can arise from true bottlenecks implied by the marine serpentinite origin scenario and by asteroid impact. Innovation of a very useful trait through a threshold allows the successful organism to quickly become very abundant and later root a large clade. The origin of life itself, that is, the initial Darwinian ancestor, the bacterial and archaeal roots as free-living cellular organisms that independently escaped hydrothermal chimneys above marine serpentinite or alternatively from shallow pore-water environments on land, the Selabacteria root with anoxygenic photosynthesis, and the Terrabacteria root colonizing land are attractive examples that predate the geological record. Conversely, geological reasoning presents likely events for appraisal by biologists. Asteroid impacts may have produced bottlenecks by decimating life. Thermophile roots of bacteria and archaea as well as a thermophile LUCA are attractive.
Collapse
Affiliation(s)
- Norman H Sleep
- Department of Geophysics, Stanford University , Stanford, California
| |
Collapse
|
11
|
A modeling and simulation perspective on the mechanism and function of respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:510-523. [DOI: 10.1016/j.bbabio.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
|
12
|
Semin BK, Davletshina LN, Mamedov MD. Effect of different methods of Ca 2+ extraction from PSII oxygen-evolving complex on the Q A- oxidation kinetics. PHOTOSYNTHESIS RESEARCH 2018; 136:83-91. [PMID: 28895009 DOI: 10.1007/s11120-017-0441-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Lumenal extrinsic proteins PsbO, PsbP, and PsbQ of photosystem II (PSII) protect the catalytic cluster Mn4CaO5 of oxygen-evolving complex (OEC) from the bulk solution and from soluble compounds in the surrounding medium. Extraction of PsbP and PsbQ proteins by NaCl-washing together with chelator EGTA is followed also by the depletion of Ca2+ cation from OEC. In this study, the effects of PsbP and PsbQ proteins, as well as Ca2+ extraction from OEC on the kinetics of the reduced primary electron acceptor (QA-) oxidation, have been studied by fluorescence decay kinetics measurements in PSII membrane fragments. We found that in addition to the impairment of OEC, removal of PsbP and PsbQ significantly slows the rate of electron transfer from QA- to the secondary quinone acceptor QB. Electron transfer from QA- to QB in photosystem II membranes with an occupied QB site was slowed down by a factor of 8. However, addition of EGTA or CaCl2 to NaCl-washed PSII did not change the kinetics of fluorescence decay. Moreover, the kinetics of QA- oxidation by QB in Ca-depleted PSII membranes obtained by treatment with citrate buffer at pH 3.0 (such treatment keeps all extrinsic proteins in PSII but extracts Ca2+ from OEC) was not changed. The results obtained indicate that the effect of NaCl-washing on the QA- to QB electron transport is due to PsbP and PsbQ extrinsic proteins extraction, but not due to Ca2+ depletion.
Collapse
Affiliation(s)
- Boris K Semin
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - Lira N Davletshina
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| |
Collapse
|
13
|
Wikström M, Krab K, Sharma V. Oxygen Activation and Energy Conservation by Cytochrome c Oxidase. Chem Rev 2018; 118:2469-2490. [PMID: 29350917 PMCID: PMC6203177 DOI: 10.1021/acs.chemrev.7b00664] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
This review focuses on the type
A cytochrome c oxidases (CcO), which
are found in all mitochondria
and also in several aerobic bacteria. CcO catalyzes
the respiratory reduction of dioxygen (O2) to water by
an intriguing mechanism, the details of which are fairly well understood
today as a result of research for over four decades. Perhaps even
more intriguingly, the membrane-bound CcO couples
the O2 reduction chemistry to translocation of protons
across the membrane, thus contributing to generation of the electrochemical
proton gradient that is used to drive the synthesis of ATP as catalyzed
by the rotary ATP synthase in the same membrane. After reviewing the
structure of the core subunits of CcO, the active
site, and the transfer paths of electrons, protons, oxygen, and water,
we describe the states of the catalytic cycle and point out the few
remaining uncertainties. Finally, we discuss the mechanism of proton
translocation and the controversies in that area that still prevail.
Collapse
Affiliation(s)
- Mårten Wikström
- Institute of Biotechnology , University of Helsinki , P.O. Box 56 , Helsinki FI-00014 , Finland
| | - Klaas Krab
- Department of Molecular Cell Physiology , Vrije Universiteit , P.O. Box 7161 , Amsterdam 1007 MC , The Netherlands
| | - Vivek Sharma
- Institute of Biotechnology , University of Helsinki , P.O. Box 56 , Helsinki FI-00014 , Finland.,Department of Physics , University of Helsinki , P.O. Box 64 , Helsinki FI-00014 , Finland
| |
Collapse
|
14
|
Yamaguchi K, Isobe H, Shoji M, Yamanaka S, Okumura M. Theory of chemical bonds in metalloenzymes XX: magneto-structural correlations in the CaMn4O5cluster in oxygen-evolving complex of photosystem II. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1114162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Isobe H, Shoji M, Yamanaka S, Mino H, Umena Y, Kawakami K, Kamiya N, Shen JR, Yamaguchi K. Generalized approximate spin projection calculations of effective exchange integrals of the CaMn4O5 cluster in the S1 and S3 states of the oxygen evolving complex of photosystem II. Phys Chem Chem Phys 2015; 16:11911-23. [PMID: 24632787 DOI: 10.1039/c4cp00282b] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Full geometry optimizations followed by the vibrational analysis were performed for eight spin configurations of the CaMn4O4X(H2O)3Y (X = O, OH; Y = H2O, OH) cluster in the S1 and S3 states of the oxygen evolution complex (OEC) of photosystem II (PSII). The energy gaps among these configurations obtained by vertical, adiabatic and adiabatic plus zero-point-energy (ZPE) correction procedures have been used for computation of the effective exchange integrals (J) in the spin Hamiltonian model. The J values are calculated by the (1) analytical method and the (2) generalized approximate spin projection (AP) method that eliminates the spin contamination errors of UB3LYP solutions. Using J values derived from these methods, exact diagonalization of the spin Hamiltonian matrix was carried out, yielding excitation energies and spin densities of the ground and lower-excited states of the cluster. The obtained results for the right (R)- and left (L)-opened structures in the S1 and S3 states are found to be consistent with available optical and magnetic experimental results. Implications of the computational results are discussed in relation to (a) the necessity of the exact diagonalization for computations of reliable energy levels, (b) magneto-structural correlations in the CaMn4O5 cluster of the OEC of PSII, (c) structural symmetry breaking in the S1 and S3 states, and (d) the right- and left-handed scenarios for the O-O bond formation for water oxidation.
Collapse
Affiliation(s)
- H Isobe
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tsabari O, Nevo R, Meir S, Carrillo LR, Kramer DM, Reich Z. Differential effects of ambient or diminished CO2 and O2 levels on thylakoid membrane structure in light-stressed plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:884-894. [PMID: 25619921 DOI: 10.1111/tpj.12774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
Over-reduction of the photosynthetic electron transport chain may severely damage the photosynthetic apparatus as well as other constituents of the chloroplast and the cell. Here, we exposed Arabidopsis leaves to saturating light either under normal atmospheric conditions or under CO2--and O2 -limiting conditions, which greatly increase excitation and electron pressures by draining terminal electron acceptors. The two treatments were found to have very different, often opposing, effects on the structure of the thylakoid membranes, including the width of the granal lumenal compartment. Modulation of the latter is proposed to be related to movements of ions across the thylakoid membrane, which alter the relative osmolarity of the lumen and stroma and affect the partitioning of the proton motive force into its electrical and osmotic components. The resulting changes in thylakoid organization and lumenal width should facilitate the repair of photodamaged photosystem II complexes in response to light stress under ambient conditions, but are expected to inhibit the repair cycle when the light stress occurs concurrently with CO2 and O2 depletion. Under the latter conditions, the changes in thylakoid structure are predicted to complement other processes that restrict the flow of electrons into the high-potential chain, thus moderating the production of deleterious reactive oxygen species at photosystem I.
Collapse
Affiliation(s)
- Onie Tsabari
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | |
Collapse
|
17
|
Mamedov MD, Petrova IO, Yanykin DV, Zaspa AA, Semenov AY. Effect of trehalose on oxygen evolution and electron transfer in photosystem 2 complexes. BIOCHEMISTRY (MOSCOW) 2015; 80:61-6. [DOI: 10.1134/s0006297915010071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Chen J, Yoon H, Lee YM, Seo MS, Sarangi R, Fukuzumi S, Nam W. Tuning the Reactivity of Mononuclear Nonheme Manganese(IV)-Oxo Complexes by Triflic Acid. Chem Sci 2015; 6:3624-3632. [PMID: 26146538 PMCID: PMC4486364 DOI: 10.1039/c5sc00535c] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complexes, [(L)MnIV(O)]2+-(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) and Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependence of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)-(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentials of the [(L)MnIV(O)]2+-(HOTf)2 complexes resulted in much enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(IV)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+-(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+-(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET rate when the ET is thermodynamically feasible. When the ET reaction is highly endergonic, the rate of the HAT reaction is decelerated due to the steric effect of the counter anion of HOTf.
Collapse
Affiliation(s)
- Junying Chen
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| | - Heejung Yoon
- Department of Material and Life Science, Graduate School of Engineering, ALCA, JST, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea ; Department of Material and Life Science, Graduate School of Engineering, ALCA, JST, Osaka University, Suita, Osaka 565-0871, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
19
|
Mareeswaran PM, Rajkumar E, Sathish V, Rajagopal S. Electron transfer reactions of ruthenium(II)-bipyridine complexes carrying tyrosine moiety with quinones. LUMINESCENCE 2013; 29:754-61. [DOI: 10.1002/bio.2617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/07/2013] [Accepted: 10/27/2013] [Indexed: 11/11/2022]
Affiliation(s)
| | - Eswaran Rajkumar
- School of Chemistry; Madurai Kamaraj University; Madurai Tamil Nadu India
- Vel Tech University; Avadi Chennai Tamil Nadu India
| | - Veerasamy Sathish
- School of Chemistry; Madurai Kamaraj University; Madurai Tamil Nadu India
| | | |
Collapse
|
20
|
Harriman A. Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20110415. [PMID: 23816906 DOI: 10.1098/rsta.2011.0415] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There is, at present, no solar fuels industry anywhere in the world despite the well-publicized needs to replace our depleting stock of fossil fuels with renewable energy sources. Many obstacles have to be overcome in order to store sunlight in the form of chemical potential, and there are severe barriers to surmount in order to produce energy on a massive scale, at a modest price and in a convenient form. It is also essential to allow for the intermittent nature of sunlight, its diffusiveness and variability and to cope with the obvious need to use large surface areas for light collection. Nonetheless, we have no alternative but to devise viable strategies for storage of sunlight as biomass or chemical feedstock. Simple alternatives, such as solar heating, are attractive in terms of quick demonstrations but are not the answer. Photo-electrochemical devices might serve as the necessary machinery by which to generate electronic charge but the main problem is to couple these charges to the multi-electron catalysis needed to drive energy-storing chemical reactions. Several potential fuels (CO, H₂, HCOOH, NH₃, O₂, speciality organics, etc.) are possible, but the photochemical reduction of CO₂ deserves particular mention because of ever-growing concerns about overproduction of greenhouse gases. The prospects for achieving these reactions under ambient conditions are considered herein.
Collapse
Affiliation(s)
- Anthony Harriman
- Molecular Photonics Laboratory, School of Chemistry, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
21
|
Mazor Y, Greenberg I, Toporik H, Beja O, Nelson N. The evolution of photosystem I in light of phage-encoded reaction centres. Philos Trans R Soc Lond B Biol Sci 2013; 367:3400-5. [PMID: 23148266 DOI: 10.1098/rstb.2012.0057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent structural determinations and metagenomic studies shed light on the evolution of photosystem I (PSI) from the homodimeric reaction centre of primitive bacteria to plant PSI at the top of the evolutionary development. The evolutionary scenario of over 3.5 billion years reveals an increase in the complexity of PSI. This phenomenon of ever-increasing complexity is common to all evolutionary processes that in their advanced stages are highly dependent on fine-tuning of regulatory processes. On the other hand, the recently discovered virus-encoded PSI complexes contain a minimal number of subunits. This may reflect the unique selection scenarios associated with viral replication. It may be beneficial for future engineering of productive processes to utilize 'primitive' complexes that disregard the cellular regulatory processes and to avoid those regulatory constraints when our goal is to divert the process from its original route. In this article, we discuss the evolutionary forces that act on viral reaction centres and the role of the virus-carried photosynthetic genes in the evolution of photosynthesis.
Collapse
Affiliation(s)
- Yuval Mazor
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
22
|
Kanteev M, Adir N. Arginine 116 stabilizes the entrance to the metal ion-binding site of the MntC protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:237-42. [PMID: 23519795 PMCID: PMC3606565 DOI: 10.1107/s174430911300153x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/16/2013] [Indexed: 01/10/2023]
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 imports Mn2+ ions via MntCAB, an ABC transport system that is expressed at submicromolar Mn2+ concentrations. The structures of the wild type (WT) and a site-directed mutant of the MntC solute-binding protein have been determined at 2.7 and 3.5 Å resolution, respectively. The WT structure is significantly improved over the previously determined structure (PDB entry 1xvl), showing improved Mn2+ binding site parameters, disulfide bonds in all three monomers and ions bound to the protein surface, revealing the role of Zn2+ ions in the crystallization liquor. The structure of MntC reveals that the active site is surrounded by neutral-to-positive electrostatic potential and is dominated by a network of polar interactions centred around Arg116. The mutation of this residue to alanine was shown to destabilize loops in the entrance to the metal-ion binding site and suggests a possible role in MntC function.
Collapse
Affiliation(s)
- Margarita Kanteev
- Schulich Faculty of Chemistry, Technion – Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion – Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
23
|
Behrenfeld MJ, Milligan AJ. Photophysiological expressions of iron stress in phytoplankton. ANNUAL REVIEW OF MARINE SCIENCE 2013; 5:217-46. [PMID: 22881354 DOI: 10.1146/annurev-marine-121211-172356] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Iron is essential for all life, but it is particularly important to photoautotrophs because of the many iron-dependent electron transport components in photosynthetic membranes. Since the proliferation of oxygenic photosynthesis in the Archean ocean, iron has been a scarce commodity, and it is now recognized as a limiting resource for phytoplankton over broad expanses of the open ocean and even in some coastal/continental shelf waters. Iron stress does not impair photochemical or carbon fixation efficiencies, and in this respect it resembles the highly tuned photosynthetic systems of steady-state macronutrient-limited phytoplankton. However, iron stress does present unique photophysiological challenges, and phytoplankton have responded to these challenges through major architectural changes in photosynthetic membranes. These evolved responses include overexpression of photosynthetic pigments and iron-economic pathways for ATP synthesis, and they result in diagnostic fluorescence properties that allow a broad appraisal of iron stress in the field and even the detection of iron stress from space.
Collapse
Affiliation(s)
- Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA.
| | | |
Collapse
|
24
|
Dynamic control of protein diffusion within the granal thylakoid lumen. Proc Natl Acad Sci U S A 2011; 108:20248-53. [PMID: 22128333 DOI: 10.1073/pnas.1104141109] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The machinery that conducts the light-driven reactions of oxygenic photosynthesis is hosted within specialized paired membranes called thylakoids. In higher plants, the thylakoids are segregated into two morphological and functional domains called grana and stroma lamellae. A large fraction of the luminal volume of the granal thylakoids is occupied by the oxygen-evolving complex of photosystem II. Electron microscopy data we obtained on dark- and light-adapted Arabidopsis thylakoids indicate that the granal thylakoid lumen significantly expands in the light. Models generated for the organization of the oxygen-evolving complex within the granal lumen predict that the light-induced expansion greatly alleviates restrictions imposed on protein diffusion in this compartment in the dark. Experiments monitoring the redox kinetics of the luminal electron carrier plastocyanin support this prediction. The impact of the increase in protein mobility within the granal luminal compartment in the light on photosynthetic electron transport rates and processes associated with the repair of photodamaged photosystem II complexes is discussed.
Collapse
|
25
|
Abstract
Submarine hydrothermal vents above serpentinite produce chemical potential gradients of aqueous and ionic hydrogen, thus providing a very attractive venue for the origin of life. This environment was most favourable before Earth's massive CO(2) atmosphere was subducted into the mantle, which occurred tens to approximately 100 Myr after the moon-forming impact; thermophile to clement conditions persisted for several million years while atmospheric pCO(2) dropped from approximately 25 bar to below 1 bar. The ocean was weakly acid (pH ∼ 6), and a large pH gradient existed for nascent life with pH 9-11 fluids venting from serpentinite on the seafloor. Total CO(2) in water was significant so the vent environment was not carbon limited. Biologically important phosphate and Fe(II) were somewhat soluble during this period, which occurred well before the earliest record of preserved surface rocks approximately 3.8 billion years ago (Ga) when photosynthetic life teemed on the Earth and the oceanic pH was the modern value of approximately 8. Serpentinite existed by 3.9 Ga, but older rocks that might retain evidence of its presence have not been found. Earth's sequesters extensive evidence of Archaean and younger subducted biological material, but has yet to be exploited for the Hadean record.
Collapse
Affiliation(s)
- Norman H Sleep
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
26
|
Koumousi ES, Mukherjee S, Beavers CM, Teat SJ, Christou G, Stamatatos TC. Towards models of the oxygen-evolving complex (OEC) of photosystem II: a Mn4Ca cluster of relevance to low oxidation states of the OEC. Chem Commun (Camb) 2011; 47:11128-30. [PMID: 21904743 DOI: 10.1039/c1cc13770k] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic access has been achieved into high oxidation state Mn/Ca chemistry with the 4 : 1 Mn : Ca stoichiometry of the oxygen-evolving complex (OEC) of plants and cyanobacteria; the anion of (Et(3)NH)(2)[Mn(III)(4)Ca(O(2)CPh)(4)(shi)(4)] has a square pyramidal metal topology and an S = 0 ground state.
Collapse
|
27
|
Leeland JW, White FJ, Love JB. Encapsulation of a Magnesium Hydroxide Cubane by a Bowl-Shaped Polypyrrolic Schiff Base Macrocycle. J Am Chem Soc 2011; 133:7320-3. [PMID: 21517021 DOI: 10.1021/ja201630b] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James W. Leeland
- EaStCHEM School of Chemistry, University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh EH9 3JJ, U.K
| | - Fraser J. White
- EaStCHEM School of Chemistry, University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh EH9 3JJ, U.K
| | - Jason B. Love
- EaStCHEM School of Chemistry, University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh EH9 3JJ, U.K
| |
Collapse
|
28
|
Inoue H, Shimada T, Kou Y, Nabetani Y, Masui D, Takagi S, Tachibana H. The water oxidation bottleneck in artificial photosynthesis: how can we get through it? An alternative route involving a two-electron process. CHEMSUSCHEM 2011; 4:173-179. [PMID: 21271684 DOI: 10.1002/cssc.201000385] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Indexed: 05/30/2023]
Abstract
The state-of-the-art of research on artificial photosynthesis is briefly reviewed. Insights into how Nature takes electrons from water, the photon-flux density of sunlight, the time scale for the arrival of the next photon (electron-hole) at the oxygen-evolving complex, how Nature solves the photon-flux-density problem, and how we can get through the bottleneck of water oxidation are discussed. An alternate route for a two-electron process induced by one-photon excitation is postulated for getting through the bottleneck of water oxidation.
Collapse
Affiliation(s)
- Haruo Inoue
- SORST/JST, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachiohji, Tokyo 192-0397, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kotzabasaki V, Siczek M, Lis T, Milios CJ. The first heterometallic Mn–Ca cluster containing exclusively Mn(III) centers. INORG CHEM COMMUN 2011. [DOI: 10.1016/j.inoche.2010.10.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Abstract
A sparse geological record combined with physics and molecular phylogeny constrains the environmental conditions on the early Earth. The Earth began hot after the moon-forming impact and cooled to the point where liquid water was present in approximately 10 million years. Subsequently, a few asteroid impacts may have briefly heated surface environments, leaving only thermophile survivors in kilometer-deep rocks. A warm 500 K, 100 bar CO(2) greenhouse persisted until subducted oceanic crust sequestered CO(2) into the mantle. It is not known whether the Earth's surface lingered in a approximately 70 degrees C thermophile environment well into the Archaean or cooled to clement or freezing conditions in the Hadean. Recently discovered approximately 4.3 Ga rocks near Hudson Bay may have formed during the warm greenhouse. Alkalic rocks in India indicate carbonate subduction by 4.26 Ga. The presence of 3.8 Ga black shales in Greenland indicates that S-based photosynthesis had evolved in the oceans and likely Fe-based photosynthesis and efficient chemical weathering on land. Overall, mantle derived rocks, especially kimberlites and similar CO(2)-rich magmas, preserve evidence of subducted upper oceanic crust, ancient surface environments, and biosignatures of photosynthesis.
Collapse
Affiliation(s)
- Norman H Sleep
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Srinivasan N, Golbeck JH. Protein–cofactor interactions in bioenergetic complexes: The role of the A1A and A1B phylloquinones in Photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1057-88. [DOI: 10.1016/j.bbabio.2009.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/14/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
|
32
|
Shimada Y, Suzuki H, Tsuchiya T, Tomo T, Noguchi T, Mimuro M. Effect of a Single-Amino Acid Substitution of the 43 kDa Chlorophyll Protein on the Oxygen-Evolving Reaction of the Cyanobacterium Synechocystis sp. PCC 6803: Analysis of the Glu354Gln Mutation. Biochemistry 2009; 48:6095-103. [DOI: 10.1021/bi900317a] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuichiro Shimada
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroyuki Suzuki
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Tohru Tsuchiya
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Tatsuya Tomo
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Takumi Noguchi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Mamoru Mimuro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
33
|
On the free energy that drove primordial anabolism. Int J Mol Sci 2009; 10:1853-1871. [PMID: 19468343 PMCID: PMC2680651 DOI: 10.3390/ijms10041853] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 12/25/2022] Open
Abstract
A key problem in understanding the origin of life is to explain the mechanism(s) that led to the spontaneous assembly of molecular building blocks that ultimately resulted in the appearance of macromolecular structures as they are known in modern biochemistry today. An indispensable thermodynamic prerequisite for such a primordial anabolism is the mechanistic coupling to processes that supplied the free energy required. Here I review different sources of free energy and discuss the potential of each form having been involved in the very first anabolic reactions that were fundamental to increase molecular complexity and thus were essential for life.
Collapse
|
34
|
Evolutionary ecology during the rise of dioxygen in the Earth's atmosphere. Philos Trans R Soc Lond B Biol Sci 2008; 363:2651-64. [PMID: 18468980 PMCID: PMC2606762 DOI: 10.1098/rstb.2008.0018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pre-photosynthetic niches were meagre with a productivity of much less than 10(-4) of modern photosynthesis. Serpentinization, arc volcanism and ridge-axis volcanism reliably provided H(2). Methanogens and acetogens reacted CO(2) with H(2) to obtain energy and make organic matter. These skills pre-adapted a bacterium for anoxygenic photosynthesis, probably starting with H(2) in lieu of an oxygen 'acceptor'. Use of ferrous iron and sulphide followed as abundant oxygen acceptors, allowing productivity to approach modern levels. The 'photobacterium' proliferated rooting much of the bacterial tree. Land photosynthetic microbes faced a dearth of oxygen acceptors and nutrients. A consortium of photosynthetic and soil bacteria aided weathering and access to ferrous iron. Biologically enhanced weathering led to the formation of shales and, ultimately, to granitic rocks. Already oxidized iron-poor sedimentary rocks and low-iron granites provided scant oxygen acceptors, as did freshwater in their drainages. Cyanobacteria evolved dioxygen production that relieved them of these vicissitudes. They did not immediately dominate the planet. Eventually, anoxygenic and oxygenic photosynthesis oxidized much of the Earth's crust and supplied sulphate to the ocean. Anoxygenic photosynthesis remained important until there was enough O(2) in downwelling seawater to quantitatively oxidize massive sulphides at mid-ocean ridge axes.
Collapse
|
35
|
Electrons, life and the evolution of Earth's oxygen cycle. Philos Trans R Soc Lond B Biol Sci 2008; 363:2705-16. [PMID: 18487127 PMCID: PMC2606772 DOI: 10.1098/rstb.2008.0054] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The biogeochemical cycles of H, C, N, O and S are coupled via biologically catalysed electron transfer (redox) reactions. The metabolic processes responsible for maintaining these cycles evolved over the first ca 2.3 Ga of Earth's history in prokaryotes and, through a sequence of events, led to the production of oxygen via the photobiologically catalysed oxidation of water. However, geochemical evidence suggests that there was a delay of several hundred million years before oxygen accumulated in Earth's atmosphere related to changes in the burial efficiency of organic matter and fundamental alterations in the nitrogen cycle. In the latter case, the presence of free molecular oxygen allowed ammonium to be oxidized to nitrate and subsequently denitrified. The interaction between the oxygen and nitrogen cycles in particular led to a negative feedback, in which increased production of oxygen led to decreased fixed inorganic nitrogen in the oceans. This feedback, which is supported by isotopic analyses of fixed nitrogen in sedimentary rocks from the Late Archaean, continues to the present. However, once sufficient oxygen accumulated in Earth's atmosphere to allow nitrification to out-compete denitrification, a new stable electron 'market' emerged in which oxygenic photosynthesis and aerobic respiration ultimately spread via endosymbiotic events and massive lateral gene transfer to eukaryotic host cells, allowing the evolution of complex (i.e. animal) life forms. The resulting network of electron transfers led a gas composition of Earth's atmosphere that is far from thermodynamic equilibrium (i.e. it is an emergent property), yet is relatively stable on geological time scales. The early coevolution of the C, N and O cycles, and the resulting non-equilibrium gaseous by-products can be used as a guide to search for the presence of life on terrestrial planets outside of our Solar System.
Collapse
|
36
|
Photosynthetic and atmospheric evolution. Introduction. Philos Trans R Soc Lond B Biol Sci 2008; 363:2625-8. [PMID: 18468981 PMCID: PMC2459219 DOI: 10.1098/rstb.2008.0058] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|