1
|
Peris D, Postigo-Mijarra JM, Peñalver E, Pellicer J, Labandeira CC, Peña-Kairath C, Pérez-Lorenzo I, Sauquet H, Delclòs X, Barrón E. The impact of thermogenesis on the origin of insect pollination. NATURE PLANTS 2024; 10:1297-1303. [PMID: 39242982 DOI: 10.1038/s41477-024-01775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024]
Abstract
Thermogenesis in plants is the ability to raise their temperature above that of the surrounding air through metabolic processes, and is especially detected in reproductive organs. Warming benefits plants by facilitating the transmission of odours and compounds that attract insects. As a result, these plants increase their odds of being pollinated by the attracted insect. Modern thermogenesis has been reported in extant cycads and a small number of angiosperm lineages. Although thermogenesis is not directly preserved in the fossil record, it can be inferred by examining extant thermogenic plant lineages and comparing their features with those of the fossil record. We suggest that thermogenesis has probably occurred in seed plants for at least the past 200 million years, long before the origin of angiosperms. Thermogenesis in plants is an important factor that facilitated entomophilous pollination by enhancing the attraction of insects, complementary to other factors, thereby participating in the success of the two groups of organisms and providing many facets of past and recent reproductive biology for future exploration.
Collapse
Affiliation(s)
- David Peris
- Institut Botànic de Barcelona, CSIC-CMCNB, Barcelona, Spain.
| | - José Mª Postigo-Mijarra
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
| | - Enrique Peñalver
- Instituto Geológico y Minero de España, IGME-CSIC, Valencia, Spain
| | - Jaume Pellicer
- Institut Botànic de Barcelona, CSIC-CMCNB, Barcelona, Spain
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Conrad C Labandeira
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Entomology, and Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, MD, USA
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Constanza Peña-Kairath
- Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | | | - Hervé Sauquet
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Xavier Delclòs
- Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - Eduardo Barrón
- Museo Geominero, Instituto Geológico y Minero de España, IGME-CSIC, Madrid, Spain
| |
Collapse
|
2
|
Shi CY, Qin GL, Qin YC, Lu LY, Guan DL, Gao LX. A high-quality chromosome-level genome assembly of the endangered tree Kmeria septentrionalis. Sci Data 2024; 11:775. [PMID: 39003271 PMCID: PMC11246460 DOI: 10.1038/s41597-024-03617-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Kmeria septentrionalis is a critically endangered tree endemic to Guangxi, China, and is listed on the International Union for Conservation of Nature's Red List. The lack of genetic information and high-quality genome data has hindered conservation efforts and studies on this species. In this study, we present a chromosome-level genome assembly of K. septentrionalis. The genome was initially assembled to be 2.57 Gb, with a contig N50 of 11.93 Mb. Hi-C guided genome assembly allowed us to anchor 98.83% of the total length of the initial contigs onto 19 pseudochromosomes, resulting in a scaffold N50 of 135.08 Mb. The final chromosome-level genome, spaning 2.54 Gb, achieved a BUSCO completeness of 98.9% and contained 1.67 Gb repetitive elements and 35,927 coding genes. This high-quality genome assembly provides a valuable resource for understanding the genetic basis of conservation-related traits and biological properties of this endangered tree species. Furthermore, it lays a critical foundation for evolutionary studies within the Magnoliaceae family.
Collapse
Grants
- This study was supported by the Scientific research project of Hechi University (Grant No: 2021GCC023, 2021GCC017, 2023GCC017), and Research platform of “Northwest Guangxi characteristic plant resources development and function research center”, “Northwest Guangxi Economic Plant Biotechnology Research Center” and “Screening and Breeding of high-value Medicinal plants in Krast”.
- National Key Research and Development Program of China (Grant No.2022YFC2601400), the National Nature Science Foundation (Grant No: 32102205), the Nanfan special project, CAAS (Grant No: ZDXM2312), and the Program of Beijing Academy of Agriculture and Forestry Sciences (Grant No: JKZX202208).
- Nanfan special project, CAAS (Grant No: ZDXM2312), and the Program of Beijing Academy of Agriculture and Forestry Sciences (Grant No: JKZX202208). Scientific research project of Hechi University (Grant No: 2021GCC023, 2021GCC017)
Collapse
Affiliation(s)
- Chen-Yu Shi
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, School of Chemistry and Bioengineering, Hechi University, Hechi, 546300, China
| | - Guo-Le Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, School of Chemistry and Bioengineering, Hechi University, Hechi, 546300, China
| | - Ying-Can Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, School of Chemistry and Bioengineering, Hechi University, Hechi, 546300, China
| | - Lin-Yuan Lu
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, School of Chemistry and Bioengineering, Hechi University, Hechi, 546300, China
| | - De-Long Guan
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, School of Chemistry and Bioengineering, Hechi University, Hechi, 546300, China.
| | - Li-Xia Gao
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, School of Chemistry and Bioengineering, Hechi University, Hechi, 546300, China.
| |
Collapse
|
3
|
Liu L, Yahaya BS, Li J, Wu F. Enigmatic role of auxin response factors in plant growth and stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1398818. [PMID: 38903418 PMCID: PMC11188990 DOI: 10.3389/fpls.2024.1398818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Abiotic and biotic stresses globally constrain plant growth and impede the optimization of crop productivity. The phytohormone auxin is involved in nearly every aspect of plant development. Auxin acts as a chemical messenger that influences gene expression through a short nuclear pathway, mediated by a family of specific DNA-binding transcription factors known as Auxin Response Factors (ARFs). ARFs thus act as effectors of auxin response and translate chemical signals into the regulation of auxin responsive genes. Since the initial discovery of the first ARF in Arabidopsis, advancements in genetics, biochemistry, genomics, and structural biology have facilitated the development of models elucidating ARF action and their contributions to generating specific auxin responses. Yet, significant gaps persist in our understanding of ARF transcription factors despite these endeavors. Unraveling the functional roles of ARFs in regulating stress response, alongside elucidating their genetic and molecular mechanisms, is still in its nascent phase. Here, we review recent research outcomes on ARFs, detailing their involvement in regulating leaf, flower, and root organogenesis and development, as well as stress responses and their corresponding regulatory mechanisms: including gene expression patterns, functional characterization, transcriptional, post-transcriptional and post- translational regulation across diverse stress conditions. Furthermore, we delineate unresolved questions and forthcoming challenges in ARF research.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| |
Collapse
|
4
|
Yu X, Feng Y, Zhang J. Characterization of the Complete Mitochondrial Genome of Wintersweet ( Chimonanthus praecox) and Comparative Analysis within Magnoliids. Life (Basel) 2024; 14:182. [PMID: 38398691 PMCID: PMC10890521 DOI: 10.3390/life14020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial genome sequencing is a valuable tool for investigating mitogenome evolution, species phylogeny, and population genetics. Chimonanthus praecox (L.) Link, also known as "La Mei" in Chinese, is a famous ornamental and medical shrub belonging to the order Laurales of the Calycanthaceae family. Although the nuclear genomes and chloroplast genomes of certain Laurales representatives, such as Lindera glauca, Laurus nobilis, and Piper nigrum, have been sequenced, the mitochondrial genome of Laurales members remains unknown. Here, we reported the first complete mitogenome of C. praecox. The mitogenome was 972,347 bp in length and comprised 60 unique coding genes, including 40 protein-coding genes (PCGs), 17 tRNA genes, and three rRNA genes. The skewness of the PCGs showed that the AT skew (-0.0096233) was negative, while the GC skew (0.031656) was positive, indicating higher contents of T's and G's in the mitochondrial genome of C. praecox. The Ka/Ks ratio analysis showed that the Ka/Ks values of most genes were less than one, suggesting that these genes were under purifying selection. Furthermore, there is a substantial abundance of dispersed repeats in C. praecox, constituting 16.98% of the total mitochondrial genome. A total of 731 SSR repeats were identified in the mitogenome, the highest number among the eleven available magnoliids mitogenomes. The mitochondrial phylogenetic analysis based on 29 conserved PCGs placed the C. praecox in Lauraceae, and supported the sister relationship of Laurales with Magnoliales, which was congruent with the nuclear genome evidence. The present study enriches the mitogenome data of C. praecox and promotes further studies on phylogeny and plastid evolution.
Collapse
Affiliation(s)
- Xianxian Yu
- College of Urban and Environmental Sciences, Xuchang University, Xuchang 461000, China;
| | - Yanlei Feng
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China;
| | - Jie Zhang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| |
Collapse
|
5
|
Zhou L, Hou F, Wang L, Zhang L, Wang Y, Yin Y, Pei J, Peng C, Qin X, Gao J. The genome of Magnolia hypoleuca provides a new insight into cold tolerance and the evolutionary position of magnoliids. FRONTIERS IN PLANT SCIENCE 2023; 14:1108701. [PMID: 36844093 PMCID: PMC9950645 DOI: 10.3389/fpls.2023.1108701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Magnolia hypoleuca Sieb. & Zucc, a member of the Magnoliaceae of magnoliids, is one of the most economically valuable, phylogenetic and ornamental tree species in Eastern China. Here, the 1.64 Gb chromosome-level assembly covers 96.64% of the genome which is anchored to 19 chromosomes, with a contig N50 value of 1.71 Mb and 33,873 protein-coding genes was predicted. Phylogenetic analyses between M. hypoleuca and other 10 representative angiosperms suggested that magnoliids were placed as a sister group to the eudicots, rather than sister to monocots or both monocots and eudicots. In addition, the relative timing of the whole-genome duplication (WGD) events about 115.32 Mya for magnoliid plants. M. hypoleuca was found to have a common ancestor with M. officinalis approximately 23.4 MYA, and the climate change of OMT (Oligocene-Miocene transition) is the main reason for the divergence of M. hypoleuca and M. officinalis, which was along with the division of Japanese islands. Moreover, the TPS gene expansion observed in M. hypoleuca might contribute to the enhancement of flower fragrance. Tandem and proximal duplicates of younger age that have been preserved have experienced more rapid sequence divergence and a more clustered distribution on chromosomes contributing to fragrance accumulation, especially phenylpropanoid, monoterpenes and sesquiterpenes and cold tolerance. The stronger selective pressure drived the evolution of tandem and proximal duplicates toward plant self-defense and adaptation. The reference M. hypoleuca genome will provide insights into the evolutionary process of M. hypoleuca and the relationships between the magnoliids with monocots and eudicots, and enable us to delve into the fragrance and cold tolerance produced by M. hypoleuca and provide more robust and deep insight of how the Magnoliales evolved and diversified.
Collapse
Affiliation(s)
- Luojing Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feixia Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- Sichuan Academy of Forestry Sciences, Chengdu, China
| | - Lingyu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yalan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanpeng Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Qin
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Jihai Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Reed A, Rudall PJ, Brockington SF, Glover BJ. Conical petal epidermal cells, regulated by the MYB transcription factor MIXTA, have an ancient origin within the angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5490-5502. [PMID: 35596728 PMCID: PMC9467652 DOI: 10.1093/jxb/erac223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Conical epidermal cells occur on the tepals (perianth organs, typically petals and/or sepals) of the majority of animal-pollinated angiosperms, where they play both visual and tactile roles in pollinator attraction, providing grip to foraging insects, and enhancing colour, temperature, and hydrophobicity. To explore the evolutionary history of conical epidermal cells in angiosperms, we surveyed the tepal epidermis in representative species of the ANA-grade families, the early-diverging successive sister lineages to all other extant angiosperms, and analysed the function of a candidate regulator of cell outgrowth from Cabomba caroliniana (Nymphaeales). We identified conical cells in at least two genera from different families (Austrobaileya and Cabomba). A single SBG9 MYB gene was isolated from C. caroliniana and found to induce strong differentiation of cellular outgrowth, including conical cells, when ectopically expressed in Nicotiana tabacum. Ontogenetic analysis and quantitative reverse transcription-PCR established that CcSBG9A1 is spatially and temporally expressed in a profile which correlates with a role in conical cell development. We conclude that conical or subconical cells on perianth organs are ancient within the angiosperms and most probably develop using a common genetic programme initiated by a SBG9 MYB transcription factor.
Collapse
Affiliation(s)
- Alison Reed
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Paula J Rudall
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | | | | |
Collapse
|
7
|
Chen J, Li Y, Li Y, Li Y, Wang Y, Jiang C, Choisy P, Xu T, Cai Y, Pei D, Jiang CZ, Gan SS, Gao J, Ma N. AUXIN RESPONSE FACTOR 18-HISTONE DEACETYLASE 6 module regulates floral organ identity in rose (Rosa hybrida). PLANT PHYSIOLOGY 2021; 186:1074-1087. [PMID: 33729501 PMCID: PMC8195501 DOI: 10.1093/plphys/kiab130] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The phytohormone auxin plays a pivotal role in floral meristem initiation and gynoecium development, but whether and how auxin controls floral organ identity remain largely unknown. Here, we found that auxin levels influence organ specification, and changes in auxin levels influence homeotic transformation between petals and stamens in rose (Rosa hybrida). The PIN-FORMED-LIKES (PILS) gene RhPILS1 governs auxin levels in floral buds during floral organogenesis. RhAUXIN RESPONSE FACTOR 18 (RhARF18), whose expression decreases with increasing auxin content, encodes a transcriptional repressor of the C-class gene RhAGAMOUS (RhAG), and controls stamen-petal organ specification in an auxin-dependent manner. Moreover, RhARF18 physically interacts with the histone deacetylase (HDA) RhHDA6. Silencing of RhHDA6 increases H3K9/K14 acetylation levels at the site adjacent to the RhARF18-binding site in the RhAG promoter and reduces petal number, indicating that RhARF18 might recruit RhHDA6 to the RhAG promoter to reinforce the repression of RhAG transcription. We propose a model for how auxin homeostasis controls floral organ identity via regulating transcription of RhAG.
Collapse
Affiliation(s)
- Jiwei Chen
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yang Li
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yonghong Li
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen, Guangdong 518055, China
| | - Yuqi Li
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chuyan Jiang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | | | - Tao Xu
- LVMH Recherche, F-45800 St Jean de Braye, France
| | - Youming Cai
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Cai-Zhong Jiang
- Crop Pathology and Genetic Research Unit, US Department of Agriculture, Agricultural Research Service, University of California, Davis, California, USA
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Su-Sheng Gan
- Plant Biology Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Junping Gao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Nan Ma
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Floral scent is different between sexual phases within individuals in a synchronously dichogamous shrub (Canella winterana) but there is no distinct female or male scent profile across individuals. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Carey S, Yu Q, Harkess A. The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing. Genes (Basel) 2021; 12:381. [PMID: 33800038 PMCID: PMC8000587 DOI: 10.3390/genes12030381] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/21/2023] Open
Abstract
For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. Through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there are also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics to unravel the patterns that can be found across the hundreds of independent origins.
Collapse
Affiliation(s)
- Sarah Carey
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA;
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Qingyi Yu
- Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX 75252, USA
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA;
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
10
|
Slavković F, Dogimont C, Morin H, Boualem A, Bendahmane A. The Genetic Control of Nectary Development. TRENDS IN PLANT SCIENCE 2021; 26:260-271. [PMID: 33246889 DOI: 10.1016/j.tplants.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Nectar is the most important reward offered by flowering plants to pollinators for pollination services. Since pollinator decline has emerged as a major threat for agriculture, and the food demand is growing globally, studying the nectar gland is of utmost importance. Although the genetic mechanisms that control the development of angiosperm flowers have been quite well understood for many years, the development and maturation of the nectar gland and the secretion of nectar in synchrony with the maturation of the sexual organs appears to be one of the flower's best-kept secrets. Here we review key findings controlling these processes. We also raise key questions that need to be addressed to develop crop ecological functions that take into consideration pollinators' needs.
Collapse
Affiliation(s)
- Filip Slavković
- Université Paris-Saclay, INRAE, CNRS, Univ. Evry, Institute of Plant Sciences Paris-Saclay, 91405 Orsay, France
| | - Catherine Dogimont
- INRAE, UR 1052, Unité de Génétique et d'Amélioration des Fruits et Légumes, BP 94, F-84143 Montfavet, France
| | - Halima Morin
- Université Paris-Saclay, INRAE, CNRS, Univ. Evry, Institute of Plant Sciences Paris-Saclay, 91405 Orsay, France
| | - Adnane Boualem
- Université Paris-Saclay, INRAE, CNRS, Univ. Evry, Institute of Plant Sciences Paris-Saclay, 91405 Orsay, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, INRAE, CNRS, Univ. Evry, Institute of Plant Sciences Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
11
|
Lustofin K, Świątek P, Stolarczyk P, Miranda VFO, Płachno BJ. Do food trichomes occur in Pinguicula (Lentibulariaceae) flowers? ANNALS OF BOTANY 2020; 126:1039-1048. [PMID: 32592586 PMCID: PMC7596368 DOI: 10.1093/aob/mcaa123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/19/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Floral food bodies (including edible trichomes) are a form of floral reward for pollinators. This type of nutritive reward has been recorded in several angiosperm families: Annonaceae, Araceae, Calycanthaceae, Eupomatiaceae, Himantandraceae, Nymphaeaceae, Orchidaceae, Pandanaceae and Winteraceae. Although these bodies are very diverse in their structure, their cells contain food material: starch grains, protein bodies or lipid droplets. In Pinguicula flowers, there are numerous multicellular clavate trichomes. Previous authors have proposed that these trichomes in the Pinguicula flower play the role of 'futterhaare' ('feeding hairs') and are eaten by pollinators. The main aim of this study was to investigate whether the floral non-glandular trichomes of Pinguicula contain food reserves and thus are a reward for pollinators. The trichomes from the Pinguicula groups, which differ in their taxonomy (species from the subgenera: Temnoceras, Pinguicula and Isoloba) as well as the types of their pollinators (butterflies/flies and bees/hummingbirds), were examined. Thus, it was determined whether there are any connections between the occurrence of food trichomes and phylogeny position or pollination biology. Additionally, we determined the phylogenetic history of edible trichomes and pollinator evolution in the Pinguicula species. METHODS The species that were sampled were: Pinguicula moctezumae, P. esseriana, P. moranensis, P. emarginata, P. rectifolia, P. mesophytica, P. hemiepiphytica, P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia, P. gigantea, P. lusitanica, P. alpina and P. vulgaris. Light microscopy, histochemistry, and scanning and transmission electron microscopy were used to address our aims with a phylogenetic perspective based on matK/trnK DNA sequences. KEY RESULTS No accumulation of protein bodies or lipid droplets was recorded in the floral non-glandular trichomes of any of the analysed species. Starch grains occurred in the cells of the trichomes of the bee-/fly-pollinated species: P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia and P. gigantea, but not in P. alpina or P. vulgaris. Moreover, starch grains were not recorded in the cells of the trichomes of the Pinguicula species that have long spurs, which are pollinated by Lepidoptera (P. moctezumae, P. esseriana, P. moranensis, P. emarginata and P. rectifolia) or birds (P. mesophytica and P. hemiepihytica), or in species with a small and whitish corolla that self-pollinate (P. lusitanica). The results on the occurrence of edible trichomes and pollinator syndromes were mapped onto a phylogenetic reconstruction of the genus. CONCLUSION Floral non-glandular trichomes play the role of edible trichomes in some Pinguicula species (P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia and P. gigantea), which are mainly classified as bee-pollinated species that had originated from Central and South America. It seems that in the Pinguicula that are pollinated by other pollinator groups (Lepidoptera and hummingbirds), the non-glandular trichomes in the flowers play a role other than that of a floral reward for their pollinators. Edible trichomes are symplesiomorphic for the Pinguicula species, and thus do not support a monophyletic group such as a synapomorphy. Nevertheless, edible trichomes are derived and are possibly a specialization for fly and bee pollinators by acting as a food reward for these visitors.
Collapse
Affiliation(s)
- Krzysztof Lustofin
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa Street, 30-387 Cracow, Poland
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa Street, 40-007 Katowice, Poland
| | - Piotr Stolarczyk
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, University of Agriculture in Kraków, 29 Listopada 54 Street, 31-425 Kraków, Poland
| | - Vitor F O Miranda
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Biologia Aplicada à Agropecuária, São Paulo, Brazil
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa Street, 30-387 Cracow, Poland
| |
Collapse
|
12
|
Peris D, Labandeira CC, Barrón E, Delclòs X, Rust J, Wang B. Generalist Pollen-Feeding Beetles during the Mid-Cretaceous. iScience 2020; 23:100913. [PMID: 32191877 PMCID: PMC7113562 DOI: 10.1016/j.isci.2020.100913] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/15/2020] [Accepted: 02/11/2020] [Indexed: 02/01/2023] Open
Abstract
The Cretaceous fossil record of amber provides a variety of evidence that is essential for greater understanding of early pollination strategies. Here, we describe four pieces of ca. 99-million-year-old (early Cenomanian) Myanmar amber from Kachin containing four closely related genera of short-winged flower beetles (Coleoptera: Kateretidae) associated with abundant pollen grains identified as three distinct palynomorphotypes of the gymnosperm Cycadopites and Praenymphaeapollenites cenomaniensis gen. and sp. nov., a form-taxon of pollen from a basal angiosperm lineage of water lilies (Nymphaeales: Nymphaeaceae). We demonstrate how a gymnosperm to angiosperm plant-host shift occurred during the mid-Cretaceous, from a generalist pollen-feeding family of beetles, which served as a driving mechanism for the subsequent success of flowering plants.
Collapse
Affiliation(s)
- David Peris
- Institute of Geosciences, University of Bonn, 53115 Bonn, Germany.
| | - Conrad C Labandeira
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA; Department of Entomology and Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, MD 20742, USA; College of Life Sciences, Capital Normal University, 100048 Beijing, China
| | - Eduardo Barrón
- Museo Geominero, Instituto Geológico y Minero de España, 28003 Madrid, Spain
| | - Xavier Delclòs
- Departament de Dinàmica de la Terra i de l'Oceà and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Ciències de la Terra, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jes Rust
- Institute of Geosciences, University of Bonn, 53115 Bonn, Germany
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Centre for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 210008 Nanjing, China.
| |
Collapse
|
13
|
Liu H, Ma J, Li H. Transcriptomic and microstructural analyses in Liriodendron tulipifera Linn. reveal candidate genes involved in nectary development and nectar secretion. BMC PLANT BIOLOGY 2019; 19:531. [PMID: 31791230 PMCID: PMC6889543 DOI: 10.1186/s12870-019-2140-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/14/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Nectar is a major floral attractant and reward for insects that ensures pollination. Liriodendron, a genus of the Magnoliaceae family, includes only two relict species, L. chinense and L. tulipifera, which are considered "basal angiosperms" according to plant evolutionary history. The flowers of Liriodendron plants are insect pollinated and secrete nectar to attract pollinators. To date, the morphology and anatomy of nectaries, the mechanism of nectar secretion and the molecular mechanism of nectary development in Liriodendron remain poorly understood. METHODS In this study, we examined the nectary surface cells and change in starch in L. tulipifera by using scanning electron microscopy and periodic acid-Schiff techniques to select appropriate samples for subsequent research. Transcriptome sequencing was of the top and middle parts of immature nectaries and the middle part of mature and postsecretory nectaries in L. tulipifera was performed. We evaluated the expression profiles of 21 DEGs that are closely related to nectary development and nectar secretion for real-time quantitative PCR analysis. RESULTS L. tulipifera nectaries are starch-storing nectaries and are located in the top and middle parts of L. tulipifera petals. After analyzing the RNA-seq data, we obtained 115.26 Gb of clean data in 12 libraries and mapped the results to the L. chinense reference genome with 71.02-79.77% efficiency. In total, 26,955 DEGs were identified by performing six pairwise comparisons. The flavonoid biosynthesis, phenylpropanoid biosynthesis, anthocyanin biosynthesis and starch and sucrose metabolism pathways were enriched and related to nectar secretion and pigment change. We identified 56 transcription factor families, and members of the TCP, Trihelix, C2H2, ERF, and MADS families changed dynamically during nectary development. Moreover, to further verify the accuracy of the RNA-seq results, we validated the expression profiles of 21 candidate genes. CONCLUSIONS We evaluated the nectary development and secretion processes comprehensively and identified many related candidate genes in L. tulipifera. These findings suggest that nectaries play important roles in flavonoid synthesis and petal color presentation.
Collapse
Affiliation(s)
- Huanhuan Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Jikai Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Huogen Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
14
|
Luo SX, Zhang LJ, Yuan S, Ma ZH, Zhang DX, Renner SS. The largest early-diverging angiosperm family is mostly pollinated by ovipositing insects and so are most surviving lineages of early angiosperms. Proc Biol Sci 2019; 285:rspb.2017.2365. [PMID: 29298936 DOI: 10.1098/rspb.2017.2365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 11/30/2017] [Indexed: 11/12/2022] Open
Abstract
Insect pollination in basal angiosperms is assumed to mostly involve 'generalized' insects looking for food, but direct observations of ANITA grade (283 species) pollinators are sparse. We present new data for numerous Schisandraceae, the largest ANITA family, from fieldwork, nocturnal filming, electron microscopy, barcoding and molecular clocks to infer pollinator/plant interactions over multiple years at sites throughout China to test the extent of pollinator specificity. Schisandraceae are pollinated by nocturnal gall midges that lay eggs in the flowers and whose larvae then feed on floral exudates. At least three Schisandraceae have shifted to beetle pollination. Pollination by a single midge species predominates, but one species was pollinated by different species at three locations and one by two at the same location. Based on molecular clocks, gall midges and Schisandraceae may have interacted since at least the Early Miocene. Combining these findings with a review of all published ANITA pollination data shows that ovipositing flies are the most common pollinators of living representatives of the ANITA grade. Compared to food reward-based pollination, oviposition-based systems are less wasteful of plant gametes because (i) none are eaten and (ii) female insects with herbivorous larvae reliably visit conspecific flowers.
Collapse
Affiliation(s)
- Shi-Xiao Luo
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, The Chinese Academy of Sciences, South China Botanical Garden, Guangzhou 510650, People's Republic of China .,Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou 510650, People's Republic of China
| | - Lian-Jie Zhang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, The Chinese Academy of Sciences, South China Botanical Garden, Guangzhou 510650, People's Republic of China
| | - Shuai Yuan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, The Chinese Academy of Sciences, South China Botanical Garden, Guangzhou 510650, People's Republic of China
| | - Zhong-Hui Ma
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, The Chinese Academy of Sciences, South China Botanical Garden, Guangzhou 510650, People's Republic of China
| | - Dian-Xiang Zhang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, The Chinese Academy of Sciences, South China Botanical Garden, Guangzhou 510650, People's Republic of China
| | - Susanne S Renner
- Systematic Botany and Mycology, University of Munich (LMU), 80638 Munich, Germany
| |
Collapse
|
15
|
Coiro M, Barone Lumaga MR. Disentangling historical signal and pollinator selection on the micromorphology of flowers: an example from the floral epidermis of the Nymphaeaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:902-915. [PMID: 29869401 DOI: 10.1111/plb.12850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/28/2018] [Indexed: 05/20/2023]
Abstract
The family Nymphaeaceae includes most of the diversity among the ANA-grade angiosperms. Among the species of this family, floral structures and pollination strategies vary. The genus Victoria, as well as subgenera Lotos and Hydrocallis in Nymphaea, present night-blooming, scented flowers pollinated by scarab beetles. Such similar pollination strategies have led to macromorphological similarities among the flowers of these species, which could be interpreted as homologies or convergences based on different phylogenetic hypotheses about the relationships of these groups. We employed scanning electron microscopy of floral epidermis for seven species of the Nymphaeaceae with contrasting pollination biology to identify the main characters of the floral organs and the potential homologous nature of the structures involved in pollinator attraction. Moreover, we used transmission electron microscopy to observe ultrastructure of papillate-conical epidermis in the stamen of Victoria cruziana. We then tested the phylogenetic or ecological distribution of these traits using both consensus network approaches and ancestral state reconstruction on fixed phylogenies. Our results show that the night-blooming flowers present different specialisations in their epidermis, with V. cruziana presenting the most elaborate floral anatomy. We also identify for the first time the presence of conical-papillate cells in the order Nymphaeales. The epidermal characters tend to reflect phylogenetic relationships more than convergence due to pollinator selection. These results point to an independent and parallel evolution of scarab pollination in Nymphaeaceae and demonstrate the promise of floral anatomy as a phylogenetic marker. Moreover, they indicate a degree of sophistication in the anatomical basis of cantharophilous flowers in the Nymphaeales that diverges from the most simplistic views of floral evolution in the angiosperms.
Collapse
Affiliation(s)
- M Coiro
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - M R Barone Lumaga
- Department of Biology, Orto Botanico, Università degli Studi di Napoli "Federico II", Napoli, Italy
| |
Collapse
|
16
|
Sauquet H, Magallón S. Key questions and challenges in angiosperm macroevolution. THE NEW PHYTOLOGIST 2018; 219:1170-1187. [PMID: 29577323 DOI: 10.1111/nph.15104] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/05/2018] [Indexed: 05/26/2023]
Abstract
Contents Summary 1170 I. Introduction 1170 II. Six key questions 1172 III. Three key challenges 1177 IV. Conclusions 1181 Acknowledgements 1182 References 1183 SUMMARY: The origin and rapid diversification of angiosperms (flowering plants) represent one of the most intriguing topics in evolutionary biology. Despite considerable progress made in complementary fields over the last two decades (paleobotany, phylogenetics, ecology, evo-devo, genomics), many important questions remain. For instance, what has been the impact of mass extinctions on angiosperm diversification? Are the angiosperms an adaptive radiation? Has morphological evolution in angiosperms been gradual or pulsed? We propose that the recent and ongoing revolution in macroevolutionary methods provides an unprecedented opportunity to explore long-standing questions that probably hold important clues to understand present-day biodiversity. We present six key questions that explore the origin and diversification of angiosperms. We also identify three key challenges to address these questions: (1) the development of new integrative models that include diversification, multiple intrinsic and environmental traits, biogeography and the fossil record all at once, whilst accounting for sampling bias and heterogeneity of macroevolutionary processes through time and among lineages; (2) the need for large and standardized synthetic databases of morphological variation; and (3) continuous effort on sampling the fossil record, but with a revolution in current paleobotanical practice.
Collapse
Affiliation(s)
- Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Laboratoire Écologie, Systématique, Évolution, Université Paris-Sud, CNRS, UMR 8079, Orsay, 91405, France
| | - Susana Magallón
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México City, 04510, México
| |
Collapse
|
17
|
Losada JM, Hormaza JI, Lora J. Pollen-pistil interaction in pawpaw ( Asimina triloba), the northernmost species of the mainly tropical family Annonaceae. AMERICAN JOURNAL OF BOTANY 2017; 104:1891-1903. [PMID: 29217674 DOI: 10.3732/ajb.1700319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/23/2017] [Indexed: 05/24/2023]
Abstract
PREMISE OF THE STUDY The pawpaw, Asimina triloba, is an underutilized fruit crop native to North America that belongs to the mainly tropical, early-divergent family Annonaceae. Asimina is the only genus within the Annonaceae with species adapted to cold climates. A thorough analysis of its reproductive biology, specifically pollen-pistil interaction during the progamic phase, is essential to understand both its adaptation to cold climates and how to optimize its fertilization and fruit set. METHODS We characterized pollen-pistil interaction in Asimina triloba, including the floral cycle and anatomy, stigmatic receptivity, and the pollen tube pathway. We used a combination of histological, cytological, and immunolocalization approaches. KEY RESULTS Asimina triloba has a gynoecium formed by plicate carpels with a short stylar canal. Unicellular papillae form a continuous tissue covered by a copious secretion from the stigma to the ovary, which is most prominent on the stigma surface where it forms an extragynoecial compitum. Compared to the stigmas of other species in the Annonaceae, the stigmas of A. triloba show a long stigmatic receptivity associated with a long flowering cycle. Stigmatic receptivity is concomitant with the secretion of cell-wall-related arabinogalactan proteins (AGPs). CONCLUSIONS A long female phase with a long period of stigmatic receptivity is unusual among protogynous flowers of the magnoliid clade, suggesting a derived condition of A. triloba within the Annonaceae. This phase further correlates with the presence of cell-wall-related arabinogalactan proteins in the secretion, which may indicate the conservation of these glycoproteins during stigmatic receptivity and pollen tube growth in angiosperms.
Collapse
Affiliation(s)
- Juan M Losada
- Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, Massachusetts 02131 USA
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138 USA
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912 USA
| | - Jose I Hormaza
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM La Mayora-UMA-CSIC) 29750 Algarrobo-Costa, Málaga, Spain
| | - Jorge Lora
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM La Mayora-UMA-CSIC) 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
18
|
Disorder in convergent floral nanostructures enhances signalling to bees. Nature 2017; 550:469-474. [DOI: 10.1038/nature24285] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/19/2017] [Indexed: 11/09/2022]
|
19
|
Wang B, Chen G, Li C, Sun W. Floral characteristics and pollination ecology of Manglietia ventii (Magnoliaceae), a plant species with extremely small populations (PSESP) endemic to South Yunnan of China. PLANT DIVERSITY 2017; 39:52-59. [PMID: 30159491 PMCID: PMC6112231 DOI: 10.1016/j.pld.2017.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 06/01/2023]
Abstract
Manglietia ventii is a highly endangered plant species endemic to Yunnan province in China, where there are only five known small populations. Despite abundant flowering there is very low fruit and seed set, and very few seedlings in natural populations, indicating problems with reproduction. The causes of low fecundity in M. ventii are not known, largely because of insufficient knowledge of the species pollination ecology and breeding system. We conducted observations and pollination experiments, and analyzed floral scents to understand the pollinator-plant interactions and the role of floral scent in this relationship, as well as the species breeding system. Like the majority of Magnoliaceae, M. ventii has protogynous and nocturnal flowers that emit a strong fragrance over two consecutive evenings. There is a closing period (the pre-staminate stage) during the process of anthesis of a flower, and we characterize the key flowering process as an "open-close-reopen" flowering rhythm with five distinct floral stages observed throughout the floral period of this species: pre-pistillate, pistillate, pre-staminate, staminate, and post-staminate. Flowers are in the pistillate stage during the first night of anthesis and enter the staminate stage the next night. During anthesis, floral scent emission occurs in the pistillate and staminate stages. The effective pollinators were weevils (Sitophilus sp.) and beetles (Anomala sp.), while the role of Rove beetles (Aleochara sp.) and thrips (Thrips sp.) in pollination of M. ventii appears to be minor or absent. The major chemical compounds of the floral scents were Limonene, β-Pinene, α-Pinene, 1,8-Cineole, Methyl-2-methylbutyrate, p-Cymene, Methyl-3-methyl-2-butenoate and 2-Methoxy-2-methyl-3-buten, and the relative proportions of these compounds varied between the pistillate and staminate stages. Production of these chemicals coincided with flower visitation by weevils and beetles. The results of pollination experiments suggest that M. ventii is pollinator-dependent, and low seed set in natural populations is a result of insufficient pollen deposition. Thus, conservation of the species should focus on improving pollination service through the introduction of genetically variable individuals and increase in density of reproducing trees.
Collapse
Affiliation(s)
- Bin Wang
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gao Chen
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Congren Li
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Weibang Sun
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| |
Collapse
|
20
|
Reproductive resource partitioning in two sympatric Goniothalamus species (Annonaceae) from Borneo: floral biology, pollinator trapping and plant breeding system. Sci Rep 2016; 6:35674. [PMID: 27767040 PMCID: PMC5073367 DOI: 10.1038/srep35674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/04/2016] [Indexed: 11/09/2022] Open
Abstract
The floral phenology, pollination ecology and breeding systems of two sympatric early-divergent angiosperms, Goniothalamus tapisoides and G. suaveolens (Annonaceae) are compared. The flowers are protogynous and morphologically similar, with anthesis over 23-25 h. Both species are predominantly xenogamous and pollinated by small beetles: G. tapisoides mainly by Curculionidae and G. suaveolens mainly by Nitidulidae. Coevolution and reproductive resource partitioning, reducing interspecific pollen transfer, is achieved by temporal isolation, due to contrasting floral phenologies; and ethological isolation, due to contrasting floral scents that contain attractants specific to the two beetle families. Analysis of floral scents revealed three volatiles (3-methylbutyl acetate, ethyl hexanoate and 2-phenylethanol) that are known to be nitidulid attractants in the floral scent of G. suaveolens, but absent from that of G. tapisoides. An effective pollinator trapping mechanism is demonstrated for both species, representing the first such report for the family. Trapping is achieved by the compression of the outer petals against the apertures between the inner petals. This trapping mechanism is likely to be a key evolutionary innovation for Goniothalamus, increasing pollination efficiency by increasing pollen loading on beetles during the staminate phase, promoting effective interfloral pollinator movements, and increasing seed-set by enabling rapid turn-over of flowers.
Collapse
|
21
|
Becker A. Tinkering with transcription factor networks for developmental robustness of Ranunculales flowers. ANNALS OF BOTANY 2016; 117:845-58. [PMID: 27091506 PMCID: PMC4845810 DOI: 10.1093/aob/mcw037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/16/2016] [Accepted: 01/27/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND The flowers of core eudicots and monocots are generally determined by the number of floral organs they produce, and their developmental set-up tolerates little change from the bauplan once the floral primordium is initiated. Many species outside the core eudicots and monocots are more plastic in the number of floral organs they produce. For example, the Nymphaeales (water lilies), within the basal angiosperms, arrange their floral organs spirally and show smooth transitions between floral organs, and many Ranunculales (buttercups) produce variable numbers of stamens by adjusting the number of stamen whorls generated from a specialized ring meristem. However, the interactions of regulatory genes governing those processes are unknown. SCOPE AND CONCLUSIONS This review provides an overview of the functional analyses of floral homeotic genes carried out in Ranunculales, summarizing knockdown and mutant phenotypes, and protein interactions to identify similarities and differences within the Ranunculales and in comparison with core eudicots. Floral gene regulatory networks in Ranunculales are identified showing intensive re-wiring amongst the floral homeotic genes to allow some degree of plasticity. The 'fading-border' model of floral organ identity evolution is extended by a hypothesis on how developmental plasticity can be achieved by interdependent regulation of floral homeotic genes. One aspect of floral plasticity may be achieved by regulation of the activity of a stamen-generating ring meristem and first ideas on its control are presented. While the amazing conservation of the major floral organ identity programme is being unravelled by analysing floral homeotic gene function and expression, we are only just beginning to understand the evolution of the gene network governing the organ identity genes, e.g. how plasticity can be achieved, and which aspects foster the robustness of the core eudicot floral bauplan.
Collapse
Affiliation(s)
- Annette Becker
- Justus-Liebig-University, Institute of Botany, Heinrich-Buff-Ring 38, D-35392 Gießen, Germany
| |
Collapse
|
22
|
Stø IM, Orr RJS, Fooyontphanich K, Jin X, Knutsen JMB, Fischer U, Tranbarger TJ, Nordal I, Aalen RB. Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2. FRONTIERS IN PLANT SCIENCE 2015; 6:931. [PMID: 26579174 PMCID: PMC4627355 DOI: 10.3389/fpls.2015.00931] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/15/2015] [Indexed: 11/13/2022]
Abstract
The peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2), controls different cell separation events in Arabidopsis thaliana. We hypothesize the involvement of this signaling module in abscission processes in other plant species even though they may shed other organs than A. thaliana. As the first step toward testing this hypothesis from an evolutionarily perspective we have identified genes encoding putative orthologs of IDA and its receptors by BLAST searches of publically available protein, nucleotide and genome databases for angiosperms. Genes encoding IDA or IDA-LIKE (IDL) peptides and HSL proteins were found in all investigated species, which were selected as to represent each angiosperm order with available genomic sequences. The 12 amino acids representing the bioactive peptide in A. thaliana have virtually been unchanged throughout the evolution of the angiosperms; however, the number of IDL and HSL genes varies between different orders and species. The phylogenetic analyses suggest that IDA, HSL2, and the related HSL1 gene, were present in the species that gave rise to the angiosperms. HAE has arisen from HSL1 after a genome duplication that took place after the monocot-eudicots split. HSL1 has also independently been duplicated in the monocots, while HSL2 has been lost in gingers (Zingiberales) and grasses (Poales). IDA has been duplicated in eudicots to give rise to functionally divergent IDL peptides. We postulate that the high number of IDL homologs present in the core eudicots is a result of multiple whole genome duplications (WGD). We substantiate the involvement of IDA and HAE/HSL2 homologs in abscission by providing gene expression data of different organ separation events from various species.
Collapse
Affiliation(s)
- Ida M Stø
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo Oslo, Norway
| | - Russell J S Orr
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo Oslo, Norway
| | - Kim Fooyontphanich
- UMR Diversité et Adaptation et Développement des Plantes, Institut de Recherche pour le Développement Montpellier, France
| | - Xu Jin
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences Umeå, Sweden
| | - Jonfinn M B Knutsen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo Oslo, Norway
| | - Urs Fischer
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences Umeå, Sweden
| | - Timothy J Tranbarger
- UMR Diversité et Adaptation et Développement des Plantes, Institut de Recherche pour le Développement Montpellier, France
| | - Inger Nordal
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo Oslo, Norway
| | - Reidunn B Aalen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo Oslo, Norway
| |
Collapse
|
23
|
Zhong J, Preston JC. Bridging the gaps: evolution and development of perianth fusion. THE NEW PHYTOLOGIST 2015; 208:330-335. [PMID: 26094556 DOI: 10.1111/nph.13517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
One of the most striking innovations in flower development is the congenital or postgenital union of petals (sympetaly) which has enabled dramatic specialization in flower structure and possibly accelerated speciation rates. Sympetalous flowers exhibit extraordinary variation in development, including the degree and timing of fusion, and fusion with other floral organs. Different axes of corolla tube complexity can be disentangled at the developmental level, with most variation being explained by differences in coordinated growth between interconnected and lobed regions of neighboring petal primordia, and between lower and upper portions of the corolla tube, defined by the stamen insertion boundary. Genetically, inter- and intra-specific variation in the degree of petal fusion is controlled by various inputs from genes that affect organ boundary and lateral growth, signaling between different cell types, and production of the cuticle. It is thus hypothesized that the evolution and diversification of fused petals, at least within the megadiverse Asteridae clade of core eudicots, have occurred through the modification of a conserved genetic pathway previously involved in free petal development.
Collapse
Affiliation(s)
- Jinshun Zhong
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Jill C Preston
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
24
|
Fourcade F, Pouteau R, Jaffré T, Marmey P. In situ observations of the basal angiosperm Amborella trichopoda reveal a long fruiting cycle overlapping two annual flowering periods. JOURNAL OF PLANT RESEARCH 2015; 128:821-828. [PMID: 26178522 DOI: 10.1007/s10265-015-0744-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Amborella trichopoda is the sole living angiosperm species belonging to the sister lineage of all other extant flowering plants. In the last decade, the species has been the focus of many phylogenetic, genomic and reproductive biology studies, bringing new highlights regarding the evolution of flowering plants. However, little attention has been paid to in situ A. trichopoda populations, particularly to their fruiting cycle. In this study, an A. trichopoda population was observed during three annual flowering cycles. Individuals and branches were labeled in order to monitor the fruiting cycle precisely, from the flowering stage until the abscission of the fruit. Fruit exocarp was green during the first 9 months following flowering, turned red when the next flowering started a year later then remained on the branch during another year, between fruit ripping and abscission. Presence of fruits with two stages of maturity on shrubs was always noticed. Germination tests showed that seeds acquired their germination capacity 1 year after flowering, when fruits changed color. A. trichopoda's fruiting cycle is a long process overlapping two annual flowering periods. These results introduce a new model for flowering and fruiting cycles. The availability of mature seeds on shrubs for more than 1 year is likely to maximize opportunities to be dispersed, thus promoting the survival of this basal angiosperm.
Collapse
Affiliation(s)
- Fanny Fourcade
- Institut de Recherche pour le Développement (IRD), UMR DIADE, 101 Promenade Roger Laroque Anse Vata, BPA5, 98848, Nouméa, New Caledonia
| | | | | | | |
Collapse
|
25
|
Valentin-Silva A, Coelho VPDM, Ventrella MC, Vieira MF. Timing of pollen release and stigma receptivity period of Piper vicosanum: New insights into sexual reproduction of the genus. AMERICAN JOURNAL OF BOTANY 2015; 102:626-633. [PMID: 25878095 DOI: 10.3732/ajb.1400419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
PREMISE OF THE STUDY Dichogamy is a common characteristic among angiosperms, including Piper species. In this genus, the tiny flowers are morphologically similar and have an asynchronous stamen development. However, there is no information on the duration of stigma receptivity and whether it overlaps with pollen release. To better understand mechanisms of floral function in Piper vicosanum, we provide a detailed characterization of the timing of pollen release from the four stamens and the period of stigma receptivity and exposure mode of the receptive areas. METHODS We investigated plants of a natural population in a semideciduous seasonal forest (Viçosa, Minas Gerais State, southeastern Brazil), based on chemical tests, light microscopy, and scanning electron microscopy analyses. KEY RESULTS Incomplete protogyny-a mechanism that favors outcrossing-was recorded. The period of stigma receptivity was long (14 d), and the sequential exposure and senescence of stigmatic papillae occurred gradually and in a basipetal direction. Pollen release began 2-6 d after the beginning of the pistillate phase, with an average pollen viability of 87.7%, during the bisexual flower phase. Pollen was released for up to 6 d and occurred in one stamen at a time. The fruit set observed in tests of self-pollination indicated self-compatibility. CONCLUSIONS The gradual and sequential exposure of stigmatic papillae in P. vicosanum flowers is described here as the mechanism for the long duration of receptivity. Anther development and pollen release were also sequential. These findings are yet unreported reproductive characteristics of the genus and offer new perspectives for future studies on the floral biology of other Piper species.
Collapse
Affiliation(s)
- Adriano Valentin-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, Campus Universitário, CEP 36570-900, Viçosa, Minas Gerais, Brasil
| | - Victor Peçanha de Miranda Coelho
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, Campus Universitário, CEP 36570-900, Viçosa, Minas Gerais, Brasil
| | - Marília Contin Ventrella
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, Campus Universitário, CEP 36570-900, Viçosa, Minas Gerais, Brasil
| | - Milene Faria Vieira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, Campus Universitário, CEP 36570-900, Viçosa, Minas Gerais, Brasil
| |
Collapse
|
26
|
Massoni J, Couvreur TLP, Sauquet H. Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms). BMC Evol Biol 2015; 15:49. [PMID: 25887386 PMCID: PMC4377182 DOI: 10.1186/s12862-015-0320-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
Background With 10,000 species, Magnoliidae are the largest clade of flowering plants outside monocots and eudicots. Despite an ancient and rich fossil history, the tempo and mode of diversification of Magnoliidae remain poorly known. Using a molecular data set of 12 markers and 220 species (representing >75% of genera in Magnoliidae) and six robust, internal fossil age constraints, we estimate divergence times and significant shifts of diversification across the clade. In addition, we test the sensitivity of magnoliid divergence times to the choice of relaxed clock model and various maximum age constraints for the angiosperms. Results Compared with previous work, our study tends to push back in time the age of the crown node of Magnoliidae (178.78-126.82 million years, Myr), and of the four orders, Canellales (143.18-125.90 Myr), Piperales (158.11-88.15 Myr), Laurales (165.62-112.05 Myr), and Magnoliales (164.09-114.75 Myr). Although families vary in crown ages, Magnoliidae appear to have diversified into most extant families by the end of the Cretaceous. The strongly imbalanced distribution of extant diversity within Magnoliidae appears to be best explained by models of diversification with 6 to 13 shifts in net diversification rates. Significant increases are inferred within Piperaceae and Annonaceae, while the low species richness of Calycanthaceae, Degeneriaceae, and Himantandraceae appears to be the result of decreases in both speciation and extinction rates. Conclusions This study provides a new time scale for the evolutionary history of an important, but underexplored, part of the tree of angiosperms. The ages of the main clades of Magnoliidae (above the family level) are older than previously thought, and in several lineages, there were significant increases and decreases in net diversification rates. This study is a new robust framework for future investigations of trait evolution and of factors influencing diversification in this group as well as angiosperms as a whole. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0320-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julien Massoni
- Laboratoire Ecologie, Systématique, Evolution, Université Paris-Sud, CNRS UMR 8079, 91405, Orsay, France.
| | - Thomas L P Couvreur
- Institut de Recherche pour le Développement (IRD), UMR-DIADE, 911, avenue Agropolis, BP 64501, Cedex 5, F-34394, Montpellier, France. .,Département des Sciences Biologiques, Université de Yaoundé I, Ecole Normale Supérieure, Laboratoire de Botanique systématique et d'Ecologie, B.P. 047, Yaoundé, Cameroon.
| | - Hervé Sauquet
- Laboratoire Ecologie, Systématique, Evolution, Université Paris-Sud, CNRS UMR 8079, 91405, Orsay, France.
| |
Collapse
|
27
|
Scopece G, Schiestl FP, Cozzolino S. Pollen transfer efficiency and its effect on inflorescence size in deceptive pollination strategies. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:545-550. [PMID: 25040501 DOI: 10.1111/plb.12224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
Pollination systems differ in pollen transfer efficiency, a variable that may influence the evolution of flower number. Here we apply a comparative approach to examine the link between pollen transfer efficiency and the evolution of inflorescence size in food and sexually deceptive orchids. We examined pollination performance in nine food-deceptive, and eight sexually deceptive orchids by recording pollen removal and deposition in the field. We calculated correlations between reproductive success and flower number (as a proxy for resources allocated during reproductive process), and directional selection differentials were estimated on flower number for four species. Results indicate that sexually deceptive species experience decreased pollen loss compared to food-deceptive species. Despite producing fewer flowers, sexually deceptive species attained levels of overall pollination success (through male and female function) similar to food-deceptive species. Furthermore, a positive correlation between flower number and pollination success was observed in food-deceptive species, but this correlation was not detected in sexually deceptive species. Directional selection differentials for flower number were significantly higher in food compared to sexually deceptive species. We suggest that pollination systems with more efficient pollen transfer and no correlation between pollination success and number of flowers produced, such as sexual deception, may allow the production of inflorescences with fewer flowers that permit the plant to allocate fewer resources to floral displays and, at the same time, limit transpiration. This strategy can be particularly important for ecological success in Mediterranean water-deprived habitats, and might explain the high frequency of sexually deceptive species in these specialised ecosystems.
Collapse
Affiliation(s)
- G Scopece
- Department of Biology, University Federico II, Complesso Universitario MSA, Naples, Italy; Institute for Plant Protection, Consiglio Nazionale delle Ricerche, Sesto Fiorentino (FI), Italy
| | | | | |
Collapse
|
28
|
Povilus RA, Losada JM, Friedman WE. Floral biology and ovule and seed ontogeny of Nymphaea thermarum, a water lily at the brink of extinction with potential as a model system for basal angiosperms. ANNALS OF BOTANY 2015; 115:211-26. [PMID: 25497514 PMCID: PMC4551091 DOI: 10.1093/aob/mcu235] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Nymphaea thermarum is a member of the Nymphaeales, of one of the most ancient lineages of flowering plants. This species was only recently described and then declared extinct in the wild, so little is known about its reproductive biology. In general, the complete ontogeny of ovules and seeds is not well documented among species of Nymphaea and has never been studied in the subgenus Brachyceras, the clade to which N. thermarum belongs. METHODS Flowers and fruits were processed for brightfield, epifluorescence and confocal microscopy. Flower morphology, with emphasis on the timing of male and female functions, was correlated with key developmental stages of the ovule and the female gametophyte. Development of the seed tissues and dynamics of polysaccharide reserves in the endosperm, perisperm and embryo were examined. KEY RESULTS Pollen release in N. thermarum starts before the flower opens. Cell walls of the micropylar nucellus show layering of callose and cellulose in a manner reminiscent of transfer cell wall patterning. Endosperm development is ab initio cellular, with micropylar and chalazal domains that embark on distinct developmental trajectories. The surrounding maternal perisperm occupies the majority of seed volume and accumulates starch centrifugally. In mature seeds, a minute but fully developed embryo is surrounded by a single, persistent layer of endosperm. CONCLUSIONS Early male and female function indicate that N. thermarum is predisposed towards self-pollination, a phenomenon that is likely to have evolved multiple times within Nymphaea. While formation of distinct micropylar and chalazal developmental domains in the endosperm, along with a copious perisperm, characterize the seeds of most members of the Nymphaeales, seed ontogenies vary between and among the constituent families. Floral biology, life history traits and small genome size make N. thermarum uniquely promising as an early-diverging angiosperm model system for genetic and molecular studies.
Collapse
Affiliation(s)
- Rebecca A Povilus
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA and Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA 02131, USA
| | - Juan M Losada
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA and Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA 02131, USA Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA and Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA 02131, USA
| | - William E Friedman
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA and Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA 02131, USA Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA and Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA 02131, USA
| |
Collapse
|
29
|
Losada JM, Herrero M, Hormaza JI, Friedman WE. Arabinogalactan proteins mark stigmatic receptivity in the protogynous flowers of Magnolia virginiana (Magnoliaceae). AMERICAN JOURNAL OF BOTANY 2014; 101:1963-75. [PMID: 25366861 DOI: 10.3732/ajb.1400280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
PREMISE OF THE STUDY Factors affecting floral receptivity in angiosperms remain opaque, but recent studies suggest that the acquisition of stigmatic receptivity associated with cell-wall-related arabinogalactan proteins (AGPs) may be a widespread feature of flowering plants. Here, the time during which a stigma is receptive is evaluated and related to the secretion of AGPs in Magnolia virginiana, a protogynous member of an early-divergent angiosperm clade (magnoliids) with a clearly discernible female receptive phase. METHODS Magnolia virginiana flower phenology was documented, and histochemical changes in the stigma before and after pollination were examined. Stigmatic receptivity was evaluated in relation to the secretion of AGPs detected in whole mounts and immunolocalized in sectioned stigmas. KEY RESULTS Protogynous Magnolia flowers had a precise window of stigmatic receptivity, which is concomitant with the secretion of two AGPs labeled for different epitopes. After pollen germination and tube growth, these two AGPs could no longer be detected in the stigmas, suggesting that these AGPs interact with the growing male gametophytes and could be markers of stigmatic receptivity. CONCLUSIONS These results show that the period of stigmatic receptivity is finely coordinated with the secretion of two arabinogalactan proteins on stigmas of flowers of M. virginiana. This first report of AGP presence in stigmatic tissues in a member of the magnoliids, together with recently described similar patterns in eudicots, monocots, and members of early-divergent lineages of flowering plants, suggests an ancient and widespread role for AGPs on stigmatic receptivity in angiosperms.
Collapse
Affiliation(s)
- Juan M Losada
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138 USA Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, Massachusetts 02131 USA
| | - Maria Herrero
- Department of Pomology, Aula Dei Experimental Station-CSIC, 1005 Avda. Montañana, Zaragoza, Spain 50059
| | - Jose I Hormaza
- Department of Subtropical Fruits, Instituto de Hortofruticultura Subtropical y Mediterránea "la Mayora," (IHSM la Mayora-CSIC-UMA), Algarrobo-Costa, Málaga, Spain 29750
| | - William E Friedman
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138 USA Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, Massachusetts 02131 USA
| |
Collapse
|
30
|
Wang R, Xu S, Liu X, Zhang Y, Wang J, Zhang Z. Thermogenesis, flowering and the association with variation in floral odour attractants in Magnolia sprengeri (Magnoliaceae). PLoS One 2014; 9:e99356. [PMID: 24922537 PMCID: PMC4055676 DOI: 10.1371/journal.pone.0099356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
Magnolia sprengeri Pamp. is an ornamentally and ecologically important tree that blooms at cold temperatures in early spring. In this study, thermogenesis and variation in the chemical compounds of floral odours and insect visitation in relation to flowering cycles were studied to increase our understanding of the role of floral thermogenesis in the pollination biology of M. sprengeri. There were five distinct floral stages across the floral cycle of this species: pre-pistillate, pistillate, pre-staminate, staminate and post-staminate. Floral thermogenesis during anthesis and consisted of two distinct peaks: one at the pistillate stage and the other at the staminate stage. Insects of five families visited M. sprengeri during the floral cycle, and sap beetles (Epuraea sp., Nitidulidae) were determined to be the most effective pollinators, whereas bees (Apis cerana, Apidae) were considered to be occasional pollinators. A strong fragrance was released during thermogenesis, consisting of 18 chemical compounds. Although the relative proportions of these compounds varied at different floral stages across anthesis, linalool, 1-iodo-2-methylundecane and 2,2,6-trimethyl-6-vinyltetrahydro-2H-pyran-3-ol were dominant. Importantly, we found that the floral blends released during the pistillate and staminate stages were very similar, and coincided with flower visitation by sap beetles and the two thermogenic episodes. Based on these results, we propose that odour acts as a signal for a reward (pollen) and that an odour mimicry of staminate-stage flowers occurs during the pistillate stage.
Collapse
Affiliation(s)
- Ruohan Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University,Beijing, China
| | - Sai Xu
- National Engineering Laboratory for Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University,Beijing, China
- School of Environment, Tsinghua University, Beijing, China
| | - Xiangyu Liu
- Lab of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University,Beijing, China
| | - Yiyuan Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University,Beijing, China
| | - Jianzhong Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University,Beijing, China
| | - Zhixiang Zhang
- Lab of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University,Beijing, China
- * E-mail:
| |
Collapse
|
31
|
Fukuhara T, Tokumaru SI. Inflorescence dimorphism, heterodichogamy and thrips pollination in Platycarya strobilacea (Juglandaceae). ANNALS OF BOTANY 2014; 113:467-476. [PMID: 24305967 PMCID: PMC3906971 DOI: 10.1093/aob/mct278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/14/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Unlike other taxa in Juglandaceae or in closely related families, which are anemophilous, Platycarya strobilacea has been suggested to be entomophilous. In Juglandaceae, Juglans and Carya show heterodichogamy, a reproductive strategy in which two morphs coexist in a population and undergo synchronous reciprocal sex changes. However, there has been no study focusing on heterodichogamy in the other six or seven genera, including Platycarya. METHODS Inflorescence architecture, sexual expression and pollination biology were examined in a P. strobilacea population in Japan. Flowering phenology was monitored daily for 24 trees in 2008 and 27 in 2009. Flower visitors and inhabitants were recorded or collected from different sexes and stages. KEY RESULTS The population of P. strobilacea showed heterodichogamous phenology with protogynous and duodichogamous-protandrous morphs. This dimorphism in dichogamy was associated with distinct inflorescence morphologies. Thrips pollination was suggested by the frequent presence of thrips with attached pollen grains, the scarcity of other insect visitors, the synchronicity of thrips number in male spikes with the maturation of female flowers, and morphological characters shared with previously reported thrips-pollinated plants. Male spikes went through two consecutive stages: bright yellow and strong-scented M1 stage, and brownish and little-scented M2 stage. The latter contained more thrips, synchronized better with the receptive stage of female flowers of the reciprocal morph and is probably the main period of pollen export. CONCLUSIONS Platycarya strobilacea is heterodichogamous and thrips-pollinated, both of which are relatively rare conditions in angiosperms. In male spikes of P. strobilacea, there is probably a temporal decoupling of pollinator attraction and pollen export.
Collapse
|
32
|
Dieringer G, Leticia Cabrera R, Mottaleb M. Ecological relationship between floral thermogenesis and pollination in Nelumbo lutea (Nelumbonaceae). AMERICAN JOURNAL OF BOTANY 2014; 101:357-364. [PMID: 24458119 DOI: 10.3732/ajb.1300370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
PREMISE OF STUDY Floral thermogenesis is an unusual floral trait with a well-documented physiological process, and yet, there is limited understanding of how this trait influences plant reproduction. The current study was undertaken to gain a better understanding of how floral thermogenesis in Nelumbo lutea impacts pollinator attraction and consequent plant reproduction. METHODS We conducted field studies on floral thermogenesis and thermoregulation, flower sexual development, floral visitation patterns, breeding system, pollen transfer dynamics, and floral scent production. KEY RESULTS The most abundant visitors to the thermoregulatory flowers included the Phoridae (Diptera), Chrysomelidae (Coleoptera), and Hymenoptera. Chrysomelid beetles, particularly Diabrotica, were frequent visitors to both first-day female- and second-day bisexual-phase flowers, while phorid flies were most common in bisexual-phase flowers. Pollen transfer experiments indicated that Diabrotica was equally effective in depositing pollen on stigmas, as were the less frequent, but pollen-loaded halictid bees. CONCLUSIONS Flowers received a taxonomically wide assemblage of floral visitors and appear adapted to attract beetles, primarily Chrysomelidae and medium-sized bees. This study is the first to provide strong support that beetles can comprise the dominant portion of floral visitors and are as effective in pollen transfer as bees. Thermogenesis aids in dispersing the main floral scent component-1,4-dimethoxybenzene-attracting both chrysomelids and bees, while thermoregulation causes chrysomelid beetles to actively seek out new flowers for evening residence. This search behavior likely results in chrysomelids affecting cross-pollination.
Collapse
Affiliation(s)
- Gregg Dieringer
- Department of Natural Sciences, Northwest Missouri State University, 800 University Dr., Maryville, Missouri 64468
| | | | | |
Collapse
|
33
|
Pang CC, Scharaschkin T, Su YCF, Saunders RMK. Functional monoecy due to delayed anther dehiscence: a novel mechanism in Pseuduvaria mulgraveana (Annonaceae). PLoS One 2013; 8:e59951. [PMID: 23555844 PMCID: PMC3608580 DOI: 10.1371/journal.pone.0059951] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/21/2013] [Indexed: 11/21/2022] Open
Abstract
Unlike most genera in the early-divergent angiosperm family Annonaceae, Pseuduvaria exhibits a diversity of floral sex expression. Most species are structurally andromonoecious (or possibly androdioecious), although the hermaphroditic flowers have been inferred to be functionally pistillate, with sterile staminodes. Pseuduvaria presents an ideal model for investigating the evolution of floral sex in early-divergent angiosperms, although detailed empirical studies are currently lacking. The phenology and pollination ecology of the Australian endemic species Pseuduvaria mulgraveana are studied in detail, including evaluations of floral scent chemistry, pollen viability, and floral visitors. Results showed that the flowers are pollinated by small diurnal nitidulid beetles and are protogynous. Pollen from both hermaphroditic and staminate flowers are shown to be equally viable. The structurally hermaphroditic flowers are nevertheless functionally pistillate as anther dehiscence is delayed until after petal abscission and hence after the departure of pollinators. This mechanism to achieve functional unisexuality of flowers has not previously been reported in angiosperms. It is known that protogyny is widespread amongst early-divergent angiosperms, including the Annonaceae, and is effective in preventing autogamy. Delayed anther dehiscence represents a further elaboration of this, and is effective in preventing geitonogamy since very few sexually mature flowers occur simultaneously in an individual. We highlight the necessity for field-based empirical interpretations of functional floral sex expression prior to evaluations of evolutionary processes.
Collapse
Affiliation(s)
- Chun-Chiu Pang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Tanya Scharaschkin
- Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yvonne C. F. Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | | |
Collapse
|
34
|
Abstract
No estado do Ceará, onde predomina um clima Tropical Quente Semiárido, são observados diferentes tipos de corpos d'água. Nestes são frequentemente encontrados representantes de Nymphaeaceae. Dos seis gêneros da família apenas Nymphaea ocorre no Ceará. Foram identificadas sete espécies de Nymphaea: N. amazonum e N. lasiophylla possuem uma ampla distribuição, estando presentes desde a zona costeira ao interior do estado; N. jamesoniana, N. lingulata e N. pulchella ocorreram nas regiões semiáridas no interior do estado; N. rudgeana e N. tenerinervia apresentaram populações apenas nos ambientes litorâneos. N. lasiophylla é a espécie mais frequente. São apresentadas descrições, comentários, ilustrações e chaves de identificação dos táxons.
Collapse
|
35
|
Williams JH. Pollen Tube Growth Rates and the Diversification of Flowering Plant Reproductive Cycles. INTERNATIONAL JOURNAL OF PLANT SCIENCES 2012. [PMID: 0 DOI: 10.1086/665822] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
36
|
Friedman WE, Bachelier JB, Hormaza JI. Embryology in Trithuria submersa (Hydatellaceae) and relationships between embryo, endosperm, and perisperm in early-diverging flowering plants. AMERICAN JOURNAL OF BOTANY 2012; 99:1083-95. [PMID: 22688427 DOI: 10.3732/ajb.1200066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PREMISE OF THE STUDY Despite their highly reduced morphology, Hydatellaceae bear the unmistakable embryological signature of Nymphaeales, including a starch-rich maternal perisperm and a minute biparental endosperm and embryo. The co-occurrence of perisperm and endosperm in Nymphaeales and other lineages of flowering plants, and their respective functions during the course of seed development and embryo germination, remain enigmatic. METHODS Development of the embryo, endosperm, and perisperm was examined histologically from fertilization through germination in flowers and fruits of Trithuria submersa. KEY RESULTS The embryo of T. submersa initiates two cotyledons prior to seed maturity/dormancy, and their tips remain in contact with the endosperm throughout germination. The endosperm persists as a single layer of cells and serves as the interface between the embryo and the perisperm. The perisperm contains carbohydrates and proteins, and functions as the main storage tissue. The endosperm accumulates proteins and aleurone grains and functions as a transfer cell layer. CONCLUSIONS In Nymphaeales, the multiple roles of a more typical endosperm have been separated into two different tissues and genetic entities: a maternal perisperm (nutrient acquisition, storage, mobilization) and a minute biparental endosperm (nutrient transfer to the embryo). The presence of perisperms among several other ancient lineages of angiosperms suggests a modest degree of developmental and functional lability for the nutrient storage tissue (perisperm or endosperm) within seeds during the early evolution of flowering plants. Finally, we examine the evolutionary developmental hypothesis that, contrary to longstanding assumptions, an embryo-nourishing perisperm along with a minute endosperm may represent the plesiomorphic condition for flowering plants.
Collapse
Affiliation(s)
- William E Friedman
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138 USA.
| | | | | |
Collapse
|
37
|
Lora J, Herrero M, Hormaza JI. Pollen performance, cell number, and physiological state in the early-divergent angiosperm Annona cherimola Mill. (Annonaceae) are related to environmental conditions during the final stages of pollen development. ACTA ACUST UNITED AC 2012; 25:157-67. [DOI: 10.1007/s00497-012-0187-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/18/2012] [Indexed: 12/01/2022]
|
38
|
Wang XM, Zhang P, Du QG, He HX, Zhao L, Ren Y, Endress PK. Heterodichogamy in Kingdonia (Circaeasteraceae, Ranunculales). ANNALS OF BOTANY 2012; 109:1125-32. [PMID: 22401850 PMCID: PMC3336952 DOI: 10.1093/aob/mcs041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/07/2012] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Preliminary field observations in 2001 and 2002 suggested that Kingdonia uniflora (Circaeasteraceae, Ranunculales) exhibits heterodichogamy, an unusual kind of reproductive heteromorphy, hitherto unreported in Ranunculales and known from only one other genus in basal eudicots. METHODS During several subsequent years flowers were observed in the field. Flowers were fixed in FAA and studied with microtome sections series and with the scanning electron microscope. KEY RESULTS The flowers proved to be heterodichogamous, with protandrous and protogynous morphs, which have a 1 : 1 ratio. Both morphs equally set fruit. Each year a single flower is formed at the tip of a rhizome or more rarely two flowers. The flowers are already open when they appear at the soil surface, before they are receptive and before pollen is dispersed. In both floral morphs the styles elongate early and the stigmas are positioned above the anthers before anthesis begins. In protogynous flowers the stigmas become receptive in this position; later the styles become reflexed and then the anthers dehisce. In contrast, in protandrous flowers the stamen filaments elongate during early anthesis such that the dehiscing anthers come to lie above the (still unreceptive) stigmas; after dehiscence of all anthers in a flower the styles begin to elongate and become receptive. CONCLUSIONS This is the first record of heterodichogamy in a representative of Ranunculales, in an herbaceous eudicot, and in a plant with uniflorous ramets. The occurrence of heterodichogamy in Kingdonia in which clonal reproduction appears to be dominant might be an adaptation to avoid mating between the ramets from a common mother individual (genet).
Collapse
Affiliation(s)
- Xu-mei Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
- College of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Peng Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qing-gao Du
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Hai-xia He
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
- Wildlife Resource and Nature Reserve Conservation and Administration Office of Shaanxi Province,
Xi'an 710082, China
| | - Liang Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yi Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Peter K. Endress
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
|
40
|
Urru I, Stensmyr MC, Hansson BS. Pollination by brood-site deception. PHYTOCHEMISTRY 2011; 72:1655-66. [PMID: 21419464 DOI: 10.1016/j.phytochem.2011.02.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/16/2011] [Accepted: 02/16/2011] [Indexed: 05/11/2023]
Abstract
Pollination is often regarded as a mutualistic relationship between flowering plants and insects. In such a relationship, both partners gain a fitness benefit as a result of their interaction. The flower gets pollinated and the insect typically gets a food-related reward. However, flower-insect communication is not always a mutualistic system, as some flowers emit deceitful signals. Insects are thus fooled by irresistible stimuli and pollination is accomplished. Such deception requires very fine tuning, as insects in their typically short life span, try to find mating/feeding breeding sites as efficiently as possible, and following deceitful signals thus is both costly and time-consuming. Deceptive flowers have thus evolved the ability to emit signals that trigger obligate innate or learned responses in the targeted insects. The behavior, and thus the signals, exploited are typically involved in reproduction, from attracting pheromones to brood/food-site cues. Chemical mimicry is one of the main modalities through which flowers trick their pollen vectors, as olfaction plays a pivotal role in insect-insect and insect-plant interactions. Here we focus on floral odors that specifically mimic an oviposition substrate, i.e., brood-site mimicry. The phenomenon is wide spread across unrelated plant lineages of Angiosperm, Splachnaceae and Phallaceae. Targeted insects are mainly beetles and flies, and flowers accordingly often emit, to the human nose, highly powerful and fetid smells that are conversely extremely attractive to the duped insects. Brood-site deceptive plants often display highly elaborate flowers and have evolved a trap-release mechanism. Chemical cues often act in unison with other sensory cues to refine the imitation.
Collapse
Affiliation(s)
- Isabella Urru
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany.
| | | | | |
Collapse
|
41
|
Wanke D. The ABA-mediated switch between submersed and emersed life-styles in aquatic macrophytes. JOURNAL OF PLANT RESEARCH 2011; 124:467-75. [PMID: 21674229 DOI: 10.1007/s10265-011-0434-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/10/2011] [Indexed: 05/07/2023]
Abstract
Hydrophytes comprise aquatic macrophytes from various taxa that are able to sustain and to complete their lifecycle in a flooded environment. Their ancestors, however, underwent adaptive processes to withstand drought on land and became partially or completely independent of water for sexual reproduction. Interestingly, the step backwards into the high-density aquatic medium happened independently several times in numerous plant taxa. For flowering plants, this submersed life-style is especially difficult as they need to erect their floral organs above the water surface to be pollinated. Moreover, fresh-water plants evolved the adaptive mechanism of heterophylly, which enabled them to switch between a submersed and an emersed leaf morphology. The plant hormone abscisic acid (ABA) is a key factor of heterophylly induction in aquatic plants and is a major switch between a submersed and emersed life. The mechanisms of ABA signal perception and transduction appear to be conserved throughout the evolution of basal plants to angiosperms and from terrestrial to aquatic plants. This review summarizes the interplay of environmental factors that act through ABA to orchestrate adaptation of plants to their aquatic environment.
Collapse
Affiliation(s)
- Dierk Wanke
- ZMBP-Plant Physiology, Tübingen University, Auf der Morgenstelle 1, 72076 Tübingen, Germany.
| |
Collapse
|
42
|
Klahre U, Gurba A, Hermann K, Saxenhofer M, Bossolini E, Guerin P, Kuhlemeier C. Pollinator Choice in Petunia Depends on Two Major Genetic Loci for Floral Scent Production. Curr Biol 2011; 21:730-9. [DOI: 10.1016/j.cub.2011.03.059] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/18/2011] [Accepted: 03/22/2011] [Indexed: 11/17/2022]
|
43
|
Lora J, Herrero M, Hormaza JI. Stigmatic receptivity in a dichogamous early-divergent angiosperm species, Annona cherimola (Annonaceae): influence of temperature and humidity. AMERICAN JOURNAL OF BOTANY 2011; 98:265-74. [PMID: 21613115 DOI: 10.3732/ajb.1000185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
PREMISE OF THE STUDY A variety of mechanisms to prevent inbreeding have arisen in different angiosperm taxa during plant evolution. In early-divergent angiosperms, a widespread system is dichogamy, in which female and male structures do not mature simultaneously, thus encouraging cross pollination. While this system is common in early-divergent angiosperms, it is less widespread in more recently evolved clades. An evaluation of the consequences of this system on outbreeding may provide clues on this change, but this subject has been little explored. METHODS In this work, we characterized the cycle and anatomy of the flower and studied the influence of temperature and humidity on stigmatic receptivity in Annona cherimola, a member of an early-divergent angiosperm clade with protogynous dichogamy. KEY RESULTS Paternity analysis reveals a high proportion of seeds resulting from self-fertilization, indicating that self-pollination can occur in spite of the dichogamous system. Stigmatic receptivity is environmentally modulated--shortened by high temperatures and prolonged by high humidity. CONCLUSIONS Although spatial and temporal sexual separation in this system seems to effectively decrease selfing, the system is modulated by environmental conditions and may allow high levels of selfing that can guarantee reproductive assurance.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Subtropical Pomology, Instituto de Hortofruticultura Subtropical y Mediterránea la Mayora (IHSM la Mayora-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | | | | |
Collapse
|
44
|
Taylor ML, Macfarlane TD, Williams JH. Reproductive ecology of the basal angiosperm Trithuria submersa (Hydatellaceae). ANNALS OF BOTANY 2010; 106:909-20. [PMID: 21047886 PMCID: PMC2990668 DOI: 10.1093/aob/mcq198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Trithuria, the sole genus in the family Hydatellaceae, is an important group for understanding early angiosperm evolution because of its sister relationship to the ancient lineage, Nymphaeales (water lilies). Although also aquatic, Trithuria differs from water lilies in that all species are extremely small, and most have an annual life form and grow in seasonal wetlands. Very little is known about their reproductive ecology. This paper reports on reproductive timing, mode of pollination and characteristics of the breeding system of Trithuria submersa in Western Australia. METHODS Mass collections of open-pollinated plants from different ecological settings were used to characterize the reproductive developmental sequence and natural pollen reception. Hand-pollination, caging and emasculation experiments were used to measure outcross + geitonogamous pollen reception versus autonomous self-pollination in two populations over two field seasons. KEY RESULTS Natural outcross or geitonogamous pollination was by wind, not by water or insects, but pollen reception was extremely low. Pollen production was very low and pollen release was non-synchronous within populations. The pollen to ovule (P/O) ratio was 23·9, compared with 1569·1 in dioecious Trithuria austinensis. Stigmas became receptive before male phase and remained so until anthers dehisced and autonomous self-pollination occurred. Natural pollen loads are composed primarily of self pollen. Self- and open-pollinated plants had equivalent seed set (both >70 %). Self-pollinated plants produced seed within 17 d. CONCLUSIONS Autonomous self-pollination and self-fertilization are predominant in T. submersa. The low P/O ratio is not an artefact of small plant size and is inconsistent with long-term pollination by wind. It indicates that T. submersa has evolved a primarily autogamous breeding system. Selfing, along with the effect of small plant size on the speed of reproduction, has enabled T. submersa to colonize marginal ephemeral wetlands in the face of unpredictable pollination.
Collapse
Affiliation(s)
- Mackenzie L Taylor
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
45
|
Luo SX, Chaw SM, Zhang D, Renner SS. Flower heating following anthesis and the evolution of gall midge pollination in Schisandraceae. AMERICAN JOURNAL OF BOTANY 2010; 97:1220-1228. [PMID: 21616873 DOI: 10.3732/ajb.1000077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PREMISE OF THE STUDY Flower heating is known from a few species in 11 of the c. 450 families of flowering plants. Flowers in these families produce heat metabolically and are adapted to beetles or flies as pollinators. Here, we focus on the Schisandraceae, an American/Asian plant family known to exhibit flower heating in some species, but not others, raising the question of the adaptive function of heat production. • METHODS We used field observations, experiments, and ancestral trait reconstruction on a molecular phylogeny for Schisandraceae that includes the investigated species. • KEY RESULTS At least two Chinese species of Illicium are exclusively pollinated by gall midges that use the flowers as brood sites (not for pollen feeding). Continuous monitoring of flower temperatures revealed that the highest temperatures were attained after the flowers' sexual functions were over, and experiments showed that post-anthetic warming benefited larval development, not fruit development. Midge larvae in flowers with trimmed tepals (and hence a lower temperature) died, but fruit set ratios remained unchanged. Based on the DNA phylogeny, gall midge pollination evolved from general fly/beetle pollination several times in Schisandraceae, with some species adapted to flower-breeding midges, others to pollen-feeding midges. • CONCLUSIONS Flower heating may be an ancestral trait in Schisandraceae that became co-opted in species pollinated by flower-breeding midges requiring long-persistent warm chambers for larval development.
Collapse
Affiliation(s)
- Shi-Xiao Luo
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China
| | | | | | | |
Collapse
|
46
|
Crane PR, Friis EM, Chaloner WG. Darwin and the evolution of flowers. Philos Trans R Soc Lond B Biol Sci 2010; 365:347-50. [DOI: 10.1098/rstb.2009.0277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Peter R. Crane
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA
| | - Else Marie Friis
- Department of Palaeobotany, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden
| | - William G. Chaloner
- Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|