1
|
Wheatcroft D, Backström N, Dutoit L, McFarlane SE, Mugal CF, Wang M, Ålund M, Ellegren H, Qvarnström A. Divergence in expression of a singing-related neuroplasticity gene in the brains of 2 Ficedula flycatchers and their hybrids. G3 (BETHESDA, MD.) 2025; 15:jkae293. [PMID: 39670717 PMCID: PMC11797017 DOI: 10.1093/g3journal/jkae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Species-specific sexual traits facilitate species-assortative mating by reducing mating across species and reducing hybrid sexual attractiveness. For learned sexual traits, such as song in oscine birds, species distinctiveness can be eroded when species co-occur. Transcriptional regulatory divergence in brain regions involved in sensory learning is hypothesized to maintain species distinctiveness, but relatively few studies have compared gene expression in relevant brain regions between closely related species. Species differences in song are an important premating reproductive barrier between the collared (Ficedula albicollis) and pied flycatcher (F. hypoleuca). Here, we compare brain gene expression in adult males from each species and their naturally occurring F1 hybrids. We report overall conserved expression across species in a portion of the brain containing regions and nuclei known to be involved in song responses and learning. Further, among those genes that were differentially expressed between species, we find largely intermediate expression in hybrids. A single gene, SYT4 (synaptotagmin 4), known to be singing-associated, both was differentially expressed and has a putative upstream transcriptional regulatory factor containing fixed differences between the 2 species. Although a finer-scale investigation limited to song-specific regions may reveal further species differences, our findings provide insight into regulatory divergence in the brain between closely related species.
Collapse
Affiliation(s)
- David Wheatcroft
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, 752 36 Uppsala, Sweden
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
- Department of Zoology, Stockholm University, 619 95 Stockholm, Sweden
| | - Niclas Backström
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Ludovic Dutoit
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - S Eryn McFarlane
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, 752 36 Uppsala, Sweden
- Department of Biology, York University, M3J 1P3 Toronto, Canada
| | - Carina F Mugal
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
- Laboratory of Biometry and Evolutionary Biology (LBBE), CNRS, UMR 5558, University of Lyon 1, Villeurbanne 69622, France
| | - Mi Wang
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, 752 36 Uppsala, Sweden
| | - Hans Ellegren
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Anna Qvarnström
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
2
|
Jones W, Menon PNK, Qvarnström A. Location and timing of infection drives a sex-bias in Haemoproteus prevalence in a hole-nesting bird. Parasitology 2024; 151:875-883. [PMID: 39428850 PMCID: PMC11578888 DOI: 10.1017/s0031182024001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 10/22/2024]
Abstract
Sex biases in prevalence of disease are often attributed to intrinsic factors, such as physiological differences while a proximate role of extrinsic factors such as behavioural or ecological differences may be more difficult to establish. We combined large-scale screening for the presence and lineage identity of avian malaria (haemosporidian) parasites, in 1234 collared flycatchers (Ficedula albicollis) with life-history information from each bird to establish the location and timing of infection. We found an overall infection rate of 36.2% ± 0.03 (95% CI) with 25 distinct malaria lineages. Interestingly, first-year breeding males and females had similar infection prevalence while females accrued a significantly higher infection rate than males later in life. The sex difference in infection rate was driven by the most abundant Haemoproteus, lineage, hPHSIB1, while the infection rate of Plasmodium lineages was similar in males and females. Furthermore, when infections were assigned to an apparent transmission location, we found that the sex difference in infection rate trend was driven by lineages transmitted in Europe, more specifically by one lineage (the hPHSIB1), while no similar pattern was found in African lineages. We deduce that the observed infection patterns are likely to be caused by differences in breeding behaviour, with incubating females (and nestling individuals of both sexes) being easy targets for the biting insects that are the vectors of avian malaria parasites. Overall, our results are most consistent with ecological factors rather than intrinsic factors underlying the observed sex-biased infection rate of avian malaria in collared flycatchers.
Collapse
Affiliation(s)
- William Jones
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, 75236, Sweden
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - P. Navaneeth Krishna Menon
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, 75236, Sweden
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, 75236, Sweden
| |
Collapse
|
3
|
Jones W, Reifová R, Reif J, Synek P, Šíma M, Munclinger P. Sympatry in a nightingale contact zone has no effect on host-specific blood parasite prevalence and lineage diversity. Int J Parasitol 2024; 54:357-366. [PMID: 38460721 DOI: 10.1016/j.ijpara.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Parasites are a key driving force behind many ecological and evolutionary processes. Prevalence and diversity of parasites, as well as their effects on hosts, are not uniform across host species. As such, the potential parasite spillover between species can significantly influence outcomes of interspecific interactions. We screened two species of Luscinia nightingales for haemosporidian blood parasites (Plasmodium, Leucocytozoon and Haemoproteus) along an approximately 3000 km transect in Europe, incorporating areas of host distant allopatry, close allopatry and sympatry. We found significant differences in infection rates between the two host species, with common nightingales having much lower parasite prevalence than thrush nightingales (36.7% versus 83.8%). This disparity was mostly driven by Haemoproteus prevalence, which was significantly higher in thrush nightingales while common nightingales had a small, but significantly higher, Plasmodium prevalence. Furthermore, we found no effect of proximity to the contact zone on infection rate in either host species. Despite having lower infection prevalence, common nightingales were infected with a significantly higher diversity of parasite lineages than thrush nightingales, and lineage assemblages differed considerably between the two species, even in sympatry. This pattern was mostly driven by the large diversity of comparatively rare lineages, while the most abundant lineages were shared between the two host species. This suggests that, despite the close evolutionary relationships between the two nightingales, there are significant differences in parasite prevalence and diversity, regardless of the distance from the contact zone. This suggests that spillover of haemosporidian blood parasites is unlikely to contribute towards interspecific interactions in this system.
Collapse
Affiliation(s)
- William Jones
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Jiří Reif
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia; Department of Zoology, Faculty of Science, Palacky University, Olomouc, Czechia
| | - Petr Synek
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia; Biodviser Ltd. Enterprise House 2 Pass Street Oldham, Manchester OL9 6HZ, United Kingdom
| | - Michal Šíma
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia; Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czechia
| | - Pavel Munclinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
4
|
Boman J, Qvarnström A, Mugal CF. Regulatory and evolutionary impact of DNA methylation in two songbird species and their naturally occurring F 1 hybrids. BMC Biol 2024; 22:124. [PMID: 38807214 PMCID: PMC11134931 DOI: 10.1186/s12915-024-01920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Regulation of transcription by DNA methylation in 5'-CpG-3' context is a widespread mechanism allowing differential expression of genetically identical cells to persist throughout development. Consequently, differences in DNA methylation can reinforce variation in gene expression among cells, tissues, populations, and species. Despite a surge in studies on DNA methylation, we know little about the importance of DNA methylation in population differentiation and speciation. Here we investigate the regulatory and evolutionary impact of DNA methylation in five tissues of two Ficedula flycatcher species and their naturally occurring F1 hybrids. RESULTS We show that the density of CpG in the promoters of genes determines the strength of the association between DNA methylation and gene expression. The impact of DNA methylation on gene expression varies among tissues with the brain showing unique patterns. Differentially expressed genes between parental species are predicted by genetic and methylation differentiation in CpG-rich promoters. However, both these factors fail to predict hybrid misexpression suggesting that promoter mismethylation is not a main determinant of hybrid misexpression in Ficedula flycatchers. Using allele-specific methylation estimates in hybrids, we also determine the genome-wide contribution of cis- and trans effects in DNA methylation differentiation. These distinct mechanisms are roughly balanced in all tissues except the brain, where trans differences predominate. CONCLUSIONS Overall, this study provides insight on the regulatory and evolutionary impact of DNA methylation in songbirds.
Collapse
Affiliation(s)
- Jesper Boman
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
| | - Anna Qvarnström
- Department of Ecology and Genetics (IEG), Division of Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden
| | - Carina F Mugal
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
- CNRS, Laboratory of Biometry and Evolutionary Biology (LBBE), UMR 5558, University of Lyon 1, Villeurbanne, France.
| |
Collapse
|
5
|
Chase MA, Vilcot M, Mugal CF. Evidence that genetic drift not adaptation drives fast-Z and large-Z effects in Ficedula flycatchers. Mol Ecol 2024:e17262. [PMID: 38193599 DOI: 10.1111/mec.17262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
The sex chromosomes have been hypothesized to play a key role in driving adaptation and speciation across many taxa. The reason for this is thought to be the hemizygosity of the heteromorphic part of sex chromosomes in the heterogametic sex, which exposes recessive mutations to natural and sexual selection. The exposure of recessive beneficial mutations increases their rate of fixation on the sex chromosomes, which results in a faster rate of evolution. In addition, genetic incompatibilities between sex-linked loci are exposed faster in the genomic background of hybrids of divergent lineages, which makes sex chromosomes contribute disproportionately to reproductive isolation. However, in birds, which show a Z/W sex determination system, the role of adaptation versus genetic drift as the driving force of the faster differentiation of the Z chromosome (fast-Z effect) and the disproportionate role of the Z chromosome in reproductive isolation (large-Z effect) are still debated. Here, we address this debate in the bird genus Ficedula flycatchers based on population-level whole-genome sequencing data of six species. Our analysis provides evidence for both faster lineage sorting and reduced gene flow on the Z chromosome than the autosomes. However, these patterns appear to be driven primarily by the increased role of genetic drift on the Z chromosome, rather than an increased rate of adaptive evolution. Genomic scans of selective sweeps and fixed differences in fact suggest a reduced action of positive selection on the Z chromosome.
Collapse
Affiliation(s)
- Madeline A Chase
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Maurine Vilcot
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Laboratory of Biometry and Evolutionary Biology, University of Lyon 1, CNRS UMR 5558, Villeurbanne, France
| |
Collapse
|
6
|
Species-specific song responses emerge as a by-product of tuning to the local dialect. Curr Biol 2022; 32:5153-5158.e5. [PMID: 36288731 DOI: 10.1016/j.cub.2022.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Oscine birds preferentially respond to certain sounds over others from an early age, which focuses subsequent learning onto sexually relevant songs.1,2,3 Songs vary both across species and, due to cultural evolution, among populations of the same species. As a result, early song responses are expected to be shaped by selection both to avoid the fitness costs of cross-species learning4 and to promote learning of population-typical songs.5 These sources of selection are not mutually exclusive but can result in distinct geographic patterns of song responses in juvenile birds: if the risks of interspecific mating are the main driver of early song discrimination, then discrimination should be strongest where closely related species co-occur.4 In contrast, if early discrimination primarily facilitates learning local songs, then it should be tuned to songs typical of the local dialect.5,6,7 Here, we experimentally assess the drivers of song discrimination in nestling pied flycatchers (Ficedula hypoleuca). We first demonstrate that early discrimination against the songs of the closely related collared flycatcher (F. albicollis) is not strongly affected by co-occurrence. Second, across six European populations, we show that nestlings' early song responses are tuned to their local song dialect and that responses to the songs of collared flycatchers are similarly weak as to those of other conspecific dialects. Taken together, these findings provide clear experimental support for the hypothesis that cultural evolution, in conjunction with associated learning predispositions, drives the emergence of pre-mating reproductive barriers.
Collapse
|
7
|
Grether GF, Okamoto KW. Eco‐evolutionary dynamics of interference competition. Ecol Lett 2022; 25:2167-2176. [DOI: 10.1111/ele.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Gregory F. Grether
- Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles California USA
| | | |
Collapse
|
8
|
Jablonszky M, Canal D, Hegyi G, Krenhardt K, Laczi M, Markó G, Nagy G, Rosivall B, Szász E, Zsebők S, Garamszegi LZ. Individual differences in song plasticity in response to social stimuli and singing position. Ecol Evol 2022; 12:e8883. [PMID: 35509613 PMCID: PMC9058795 DOI: 10.1002/ece3.8883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Individual animals can react to the changes in their environment by exhibiting behaviors in an individual‐specific way leading to individual differences in phenotypic plasticity. However, the effect of multiple environmental factors on multiple traits is rarely tested. Such a complex approach is necessary to assess the generality of plasticity and to understand how among‐individual differences in the ability to adapt to changing environments evolve. This study examined whether individuals adjust different song traits to varying environmental conditions in the collared flycatcher (Ficedula albicollis), a passerine with complex song. We also aimed to reveal among‐individual differences in behavioral responses by testing whether individual differences in plasticity were repeatable. The presence of general plasticity across traits and/or contexts was also tested. To assess plasticity, we documented (1) short‐scale temporal changes in song traits in different social contexts (after exposition to male stimulus, female stimulus or without stimuli), and (2) changes concerning the height from where the bird sang (singing position), used as a proxy of predation risk and acoustic transmission conditions. We found population‐level relationships between singing position and both song length (SL) and complexity, as well as social context‐dependent temporal changes in SL and maximum frequency (MF). We found among‐individual differences in plasticity of SL and MF along both the temporal and positional gradients. These among‐individual differences in plasticity were repeatable. Some of the plastic responses correlated across different song traits and environmental gradients. Overall, our results show that the plasticity of bird song (1) depends on the social context, (2) exists along different environmental gradients, and (3) there is evidence for trade‐offs between the responses of different traits to different environmental variables. Our results highlight the need to consider individual differences and to investigate multiple traits along multiple environmental axes when studying behavioral plasticity.
Collapse
Affiliation(s)
- Mónika Jablonszky
- Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary.,Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - David Canal
- Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary
| | - Gergely Hegyi
- Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - Katalin Krenhardt
- Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary.,Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - Miklós Laczi
- Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary.,The Barn Owl Foundation Orosztony Hungary
| | - Gábor Markó
- Department of Plant Pathology Institute of Plant Protection Hungarian University of Agriculture and Life Sciences Budapest Hungary
| | - Gergely Nagy
- Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary.,Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - Balázs Rosivall
- Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - Eszter Szász
- Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - Sándor Zsebők
- Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary.,Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - László Zsolt Garamszegi
- Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary.,MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group Institute of Physics ELTE Eötvös Loránd University Budapest Hungary
| |
Collapse
|
9
|
Jin B, Barbash DA, Castillo DM. Divergent selection on behavioural and chemical traits between reproductively isolated populations of Drosophila melanogaster. J Evol Biol 2022; 35:693-707. [PMID: 35411988 PMCID: PMC9320809 DOI: 10.1111/jeb.14007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
Speciation is driven by traits that can act to prevent mating between nascent lineages, including male courtship and female preference for male traits. Mating barriers involving these traits evolve quickly because there is strong selection on males and females to maximize reproductive success, and the tight co-evolution of mating interactions can lead to rapid diversification of sexual behaviour. Populations of Drosophila melanogaster show strong asymmetrical reproductive isolation that is correlated with geographic origin. Using strains that capture natural variation in mating traits, we ask two key questions: which specific male traits are females selecting, and are these traits under divergent sexual selection? These questions have proven extremely challenging to answer, because even in closely related lineages males often differ in multiple traits related to mating behaviour. We address these questions by estimating selection gradients for male courtship and cuticular hydrocarbons for two different female genotypes. We identify specific behaviours and particular cuticular hydrocarbons that are under divergent sexual selection and could potentially contribute to premating reproductive isolation. Additionally, we report that a subset of these traits are plastic; males adjust these traits based on the identity of the female genotype they interact with. These results suggest that even when male courtship is not fixed between lineages, ongoing selection can act on traits that are important for reproductive isolation.
Collapse
Affiliation(s)
- Bozhou Jin
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Daniel A. Barbash
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Dean M. Castillo
- Department of BiologyUniversity of Nebraska at OmahaOmahaNebraskaUSA
| |
Collapse
|
10
|
Wolfgramm H, Martens J, Töpfer T, Vamberger M, Pathak A, Stuckas H, Päckert M. Asymmetric allelic introgression across a hybrid zone of the coal tit ( Periparus ater) in the central Himalayas. Ecol Evol 2021; 11:17332-17351. [PMID: 34938512 PMCID: PMC8668783 DOI: 10.1002/ece3.8369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/07/2022] Open
Abstract
In the Himalayas, a number of secondary contact zones have been described for vicariant vertebrate taxa. However, analyses of genetic divergence and admixture are missing for most of these examples. In this study, we provide a population genetic analysis for the coal tit (Periparus ater) hybrid zone in Nepal. Intermediate phenotypes between the distinctive western "spot-winged tit" (P. a. melanolophus) and Eastern Himalayan coal tits (P. a. aemodius) occur across a narrow range of <100 km in western Nepal. As a peculiarity, another distinctive cinnamon-bellied form is known from a single population so far. Genetic admixture of western and eastern mitochondrial lineages was restricted to the narrow zone of phenotypically intermediate populations. The cline width was estimated 46 km only with a center close to the population of the cinnamon-bellied phenotype. In contrast, allelic introgression of microsatellite loci was asymmetrical from eastern P. a. aemodius into far western populations of phenotypic P. a. melanolophus but not vice versa. Accordingly, the microsatellite cline was about 3.7 times wider than the mitochondrial one.
Collapse
Affiliation(s)
- Hannes Wolfgramm
- Senckenberg Natural History Collections DresdenDresdenGermany
- Present address:
Department of Functional GenomicsInterfaculty Institute of Genetics and Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany
| | - Jochen Martens
- Institute of Organismic and Molecular Evolution (iomE)Johannes Gutenberg UniversityMainzGermany
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity ChangeZoological Research Museum Alexander KoenigBonnGermany
| | | | - Abhinaya Pathak
- Department of National Parks and Wildlife ConservationKathmanduNepal
| | - Heiko Stuckas
- Senckenberg Natural History Collections DresdenDresdenGermany
| | - Martin Päckert
- Senckenberg Natural History Collections DresdenDresdenGermany
| |
Collapse
|
11
|
Turbek SP, Semenov GA, Enbody ED, Campagna L, Taylor SA. Variable Signatures of Selection Despite Conserved Recombination Landscapes Early in Speciation. J Hered 2021; 112:485-496. [PMID: 34499149 DOI: 10.1093/jhered/esab054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/08/2021] [Indexed: 11/14/2022] Open
Abstract
Recently diverged taxa often exhibit heterogeneous landscapes of genomic differentiation, characterized by regions of elevated differentiation on an otherwise homogeneous background. While divergence peaks are generally interpreted as regions responsible for reproductive isolation, they can also arise due to background selection, selective sweeps unrelated to speciation, and variation in recombination and mutation rates. To investigate the association between patterns of recombination and landscapes of genomic differentiation during the early stages of speciation, we generated fine-scale recombination maps for six southern capuchino seedeaters (Sporophila) and two subspecies of White Wagtail (Motacilla alba), two recent avian radiations in which divergent selection on pigmentation genes has likely generated peaks of differentiation. We compared these recombination maps to those of Collared (Ficedula albicollis) and Pied Flycatchers (Ficedula hypoleuca), non-sister taxa characterized by moderate genomic divergence and a heterogenous landscape of genomic differentiation shaped in part by background selection. Although recombination landscapes were conserved within all three systems, we documented a weaker negative correlation between recombination rate and genomic differentiation in the recent radiations. All divergence peaks between capuchinos, wagtails, and flycatchers were located in regions with lower-than-average recombination rates, and most divergence peaks in capuchinos and flycatchers fell in regions of exceptionally reduced recombination. Thus, co-adapted allelic combinations in these regions may have been protected early in divergence, facilitating rapid diversification. Despite largely conserved recombination landscapes, divergence peaks are specific to each focal comparison in capuchinos, suggesting that regions of elevated differentiation have not been generated by variation in recombination rate alone.
Collapse
Affiliation(s)
- Sheela P Turbek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Georgy A Semenov
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
12
|
Segami JC, Lind MI, Qvarnström A. Should females prefer old males? Evol Lett 2021; 5:507-520. [PMID: 34621537 PMCID: PMC8484724 DOI: 10.1002/evl3.250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/05/2022] Open
Abstract
Whether females should prefer to mate with old males is controversial. Old males may sire offspring of low quality because of an aging germline, but their proven ability to reach an old age can also be an excellent indicator of superior genetic quality, especially in natural populations. These genetic effects are, however, hard to study in nature, because they are often confounded with direct benefits offered by old males to the female, such as experience and high territory quality. We, therefore, used naturally occurring extra‐pair young to disentangle different aspects of male age on female fitness in a natural population of collared flycatchers because any difference between within‐ and extra‐pair young within a nest should be caused by paternal genetic effects only. Based on 18 years of long‐term data, we found that females paired with older males as social partners experienced an overall reproductive advantage. However, offspring sired by old males were of lower quality as compared to their extra‐pair half‐siblings, whereas the opposite was found in nests attended by young males. These results imply a negative genetic effect of old paternal age, given that extra‐pair males are competitive middle‐age males. Thus, offspring may benefit from being sired by young males but raised by old males, to maximize both genetic and direct effects. Our results show that direct and genetic benefits from pairing with old males may act in opposing directions and that the quality of the germline may deteriorate before other signs of senescence become obvious.
Collapse
Affiliation(s)
- Julia Carolina Segami
- Department of Ecology and Genetics, Animal Ecology Uppsala University Uppsala SE-75236 Sweden
| | - Martin I Lind
- Department of Ecology and Genetics, Animal Ecology Uppsala University Uppsala SE-75236 Sweden
| | - Anna Qvarnström
- Department of Ecology and Genetics, Animal Ecology Uppsala University Uppsala SE-75236 Sweden
| |
Collapse
|
13
|
McFarlane SE, Ålund M, Sirkiä PM, Qvarnström A. Low Heritability but Significant Early Environmental Effects on Resting Metabolic Rate in a Wild Passerine. Am Nat 2021; 198:551-560. [PMID: 34559605 DOI: 10.1086/715842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPredicting the impact of climate change on biodiversity requires understanding the adaptation potential of wild organisms. Evolutionary responses depend on the additive genetic variation associated with the phenotypic traits targeted by selection. We combine 5 years of cross-fostering experiments, measurements of resting metabolic rate (RMR) on nearly 200 wild collared flycatcher (Ficedula albicollis) nestlings, and animal models using a 17-year pedigree to evaluate the potential for an evolutionary response to changing environmental conditions. Contrary to other avian studies, we find no significant heritability of whole-organism, mass-independent, or mass-specific RMR, but we report a strong effect of nest environment instead. We therefore conclude that variation in nestling RMR is explained by variation in the early-life environment provided by the parents. We discuss possible underlying specific parental effects and the importance of taking different mechanisms into account to understand how animals phenotypically adapt (or fail to adapt) to climate change.
Collapse
|
14
|
|
15
|
Jablonszky M, Zsebők S, Laczi M, Nagy G, Vaskuti É, Garamszegi LZ. The effect of social environment on bird song: listener-specific expression of a sexual signal. Behav Ecol 2021; 32:395-406. [PMID: 34899049 PMCID: PMC8653761 DOI: 10.1093/beheco/araa132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
Animal signals should consistently differ among individuals to convey distinguishable information about the signalers. However, behavioral display signals, such as bird song are also loaded with considerable within-individual variance with mostly unknown function. We hypothesized that the immediate social environment may play a role in mediating such variance component, and investigated in the collared flycatcher (Ficedula albicollis) if the identity and quality of listeners could affect song production in signalers. After presenting territorial males with either a female or male social stimulus, we found in the subsequent song recordings that the among-stimulus effects corresponded to non-zero variance components in several acoustic traits indicating that singing males are able to plastically adjust their songs according to stimulus identity. Male and female stimuli elicited different responses as the identity of the female stimuli affected song complexity only, while the identity of male stimuli altered also song length, maximum frequency, and song rate. The stimulus-specific effect on song in some cases decreased with time, being particularly detectable right after the removal of the stimulus and ceasing later, but this pattern varied across the sex of the stimulus and the song traits. We were able to identify factors that can explain the among-stimulus effects (e.g., size and quality of the stimuli) with roles that also varied among song traits. Our results confirm that the variable social environment can raise considerable variation in song performance, highlighting that within-individual plasticity of bird song can play important roles in sexual signaling.
Collapse
Affiliation(s)
- Mónika Jablonszky
- Institute of Ecology and Botany, Centre for Ecological
Research, Alkotmány u. 2–4, 2163
Vácrátót, Hungary
- Behavioural Ecology Group, Department of Systematic Zoology and
Ecology, ELTE Eötvös Loránd University,
Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Sándor Zsebők
- Institute of Ecology and Botany, Centre for Ecological
Research, Alkotmány u. 2–4, 2163
Vácrátót, Hungary
- Behavioural Ecology Group, Department of Systematic Zoology and
Ecology, ELTE Eötvös Loránd University,
Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Miklós Laczi
- Behavioural Ecology Group, Department of Systematic Zoology and
Ecology, ELTE Eötvös Loránd University,
Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- The Barn Owl Foundation, Temesvári út 8,
8744 Orosztony, Hungary
| | - Gergely Nagy
- Institute of Ecology and Botany, Centre for Ecological
Research, Alkotmány u. 2–4, 2163
Vácrátót, Hungary
- Behavioural Ecology Group, Department of Systematic Zoology and
Ecology, ELTE Eötvös Loránd University,
Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Éva Vaskuti
- Behavioural Ecology Group, Department of Systematic Zoology and
Ecology, ELTE Eötvös Loránd University,
Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - László Zsolt Garamszegi
- Institute of Ecology and Botany, Centre for Ecological
Research, Alkotmány u. 2–4, 2163
Vácrátót, Hungary
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group,
Institute of Physics, Eötvös Loránd
University, Pázmány Péter
sétány 1/A, 1117 Budapest, Hungary
| |
Collapse
|
16
|
Chase MA, Ellegren H, Mugal CF. Positive selection plays a major role in shaping signatures of differentiation across the genomic landscape of two independent Ficedula flycatcher species pairs. Evolution 2021; 75:2179-2196. [PMID: 33851440 DOI: 10.1111/evo.14234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022]
Abstract
A current debate within population genomics surrounds the relevance of patterns of genomic differentiation between closely related species for our understanding of adaptation and speciation. Mounting evidence across many taxa suggests that the same genomic regions repeatedly develop elevated differentiation in independent species pairs. These regions often coincide with high gene density and/or low recombination, leading to the hypothesis that the genomic differentiation landscape mostly reflects a history of background selection, and reveals little about adaptation or speciation. A comparative genomics approach with multiple independent species pairs at a timescale where gene flow and ILS are negligible permits investigating whether different evolutionary processes are responsible for generating lineage-specific versus shared patterns of species differentiation. We use whole-genome resequencing data of 195 individuals from four Ficedula flycatcher species comprising two independent species pairs: collared and pied flycatchers, and red-breasted and taiga flycatchers. We found that both shared and lineage-specific FST peaks could partially be explained by selective sweeps, with recurrent selection likely to underlie shared signatures of selection, whereas indirect evidence supports a role of recombination landscape evolution in driving lineage-specific signatures of selection. This work therefore provides evidence for an interplay of positive selection and recombination to genomic landscape evolution.
Collapse
Affiliation(s)
- Madeline A Chase
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala university, Uppsala, SE-75236, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala university, Uppsala, SE-75236, Sweden
| | - Carina F Mugal
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala university, Uppsala, SE-75236, Sweden
| |
Collapse
|
17
|
Sirkiä PM, Qvarnström A. Adaptive coloration in pied flycatchers ( Ficedula hypoleuca)-The devil is in the detail. Ecol Evol 2021; 11:1501-1525. [PMID: 33613985 PMCID: PMC7882974 DOI: 10.1002/ece3.7048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
Understanding the origin and persistence of phenotypic variation within and among populations is a major goal in evolutionary biology. However, the eagerness to find unadulterated explanatory models in combination with difficulties in publishing replicated studies may lead to severe underestimations of the complexity of selection patterns acting in nature. One striking example is variation in plumage coloration in birds, where the default adaptive explanation often is that brightly colored individuals signal superior quality across environmental conditions and therefore always should be favored by directional mate choice. Here, we review studies on the proximate determination and adaptive function of coloration traits in male pied flycatchers (Ficedula hypoleuca). From numerous studies, we can conclude that the dark male color phenotype is adapted to a typical northern climate and functions as a dominance signal in male-male competition over nesting sites, and that the browner phenotypes are favored by relaxed intraspecific competition with more dominant male collared flycatchers (Ficedula albicollis) in areas where the two species co-occur. However, the role of avoidance of hybridization in driving character displacement in plumage between these two species may not be as important as initially thought. The direction of female choice on male coloration in pied flycatchers is not simply as opposite in direction in sympatry and allopatry as traditionally expected, but varies also in relation to additional contexts such as climate variation. While some of the heterogeneity in the observed relationships between coloration and fitness probably indicate type 1 errors, we strongly argue that environmental heterogeneity and context-dependent selection play important roles in explaining plumage color variation in this species, which probably also is the case in many other species studied in less detail.
Collapse
Affiliation(s)
- Päivi M. Sirkiä
- Finnish Museum of Natural HistoryZoology UnitUniversity of HelsinkiHelsinkiFinland
- Department of Ecology and GeneticsAnimal EcologyUppsala UniversityUppsalaSweden
| | - Anna Qvarnström
- Department of Ecology and GeneticsAnimal EcologyUppsala UniversityUppsalaSweden
| |
Collapse
|
18
|
Mugal CF, Wang M, Backström N, Wheatcroft D, Ålund M, Sémon M, McFarlane SE, Dutoit L, Qvarnström A, Ellegren H. Tissue-specific patterns of regulatory changes underlying gene expression differences among Ficedula flycatchers and their naturally occurring F 1 hybrids. Genome Res 2020; 30:1727-1739. [PMID: 33144405 PMCID: PMC7706733 DOI: 10.1101/gr.254508.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
Changes in interacting cis- and trans-regulatory elements are important candidates for Dobzhansky-Muller hybrid incompatibilities and may contribute to hybrid dysfunction by giving rise to misexpression in hybrids. To gain insight into the molecular mechanisms and determinants of gene expression evolution in natural populations, we analyzed the transcriptome from multiple tissues of two recently diverged Ficedula flycatcher species and their naturally occurring F1 hybrids. Differential gene expression analysis revealed that the extent of differentiation between species and the set of differentially expressed genes varied across tissues. Common to all tissues, a higher proportion of Z-linked genes than autosomal genes showed differential expression, providing evidence for a fast-Z effect. We further found clear signatures of hybrid misexpression in brain, heart, kidney, and liver. However, while testis showed the highest divergence of gene expression among tissues, it showed no clear signature of misexpression in F1 hybrids, even though these hybrids were found to be sterile. It is therefore unlikely that incompatibilities between cis-trans regulatory changes explain the observed sterility. Instead, we found evidence that cis-regulatory changes play a significant role in the evolution of gene expression in testis, which illustrates the tissue-specific nature of cis-regulatory evolution bypassing constraints associated with pleiotropic effects of genes.
Collapse
Affiliation(s)
- Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Mi Wang
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Niclas Backström
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - David Wheatcroft
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marie Sémon
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,ENS de Lyon, Laboratory of Biology and Modelling of the Cell, Lyon University, 69364 Lyon Cedex 07, France
| | - S Eryn McFarlane
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Ludovic Dutoit
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - Anna Qvarnström
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Hans Ellegren
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
19
|
Kyogoku D, Wheatcroft D. Heterospecific mating interactions as an interface between ecology and evolution. J Evol Biol 2020; 33:1330-1344. [PMID: 32762053 DOI: 10.1111/jeb.13687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022]
Abstract
Reproductive interference (costly interspecific sexual interactions) is well-understood to promote divergence in mating-relevant traits (i.e. reproductive character displacement: RCD), but it can also reduce population growth, eventually leading to local extinction of one of the species. The ecological and evolutionary processes driven by reproductive interference can interact with each other. These interactions are likely to influence whether the outcome is coexistence or extinction, but remain little studied. In this paper, we first develop an eco-evolutionary perspective on reproductive interference by integrating ecological and evolutionary processes in a common framework. We also present a simple model to demonstrate the eco-evolutionary dynamics of reproductive interference. We then identify a number of factors that are likely to influence the relative likelihoods of extinction or RCD. We discuss particularly relevant factors by classifying them into four categories: the nature of the traits responding to selection, the mechanisms determining the expression of these traits, mechanisms of reproductive interference and the ecological background. We highlight previously underappreciated ways in which these factors may influence the relative likelihoods of RCD and local extinction. By doing so, we also identify questions and future directions that will increase our holistic understanding of the outcomes of reproductive interference.
Collapse
|
20
|
Heterospecific song quality as social information for settlement decisions: an experimental approach in a wild bird. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Macedo G, Silva M, Amaral FRD, Maldonado-Coelho M. Symmetrical discrimination despite weak song differentiation in 2 suboscine bird sister species. Behav Ecol 2019. [DOI: 10.1093/beheco/arz066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Song mediates territorial competition and mate choice in birds and population divergence in this signal can have important evolutionary consequences. For example, divergent songs can act in specific recognition and limit gene flow and, hence, have a fundamental role on the origin and/or integrity of evolutionary lineages. Especially interesting systems to test the role of song in specific recognition are species pairs that present small structural differences in this signal. Here, we perform song play-back experiments on males of a long-diverged sister pair of Neotropical Suboscine species, the squamate antbird (Myrmoderus squamosus) and the white-bibbed antbird (Myrmoderus loricatus), which occur in parapatry in the Atlantic Forest and that overlap extensively in song variation. Previous evidence indicates that genetic introgression between these species is either absent or negligible, suggesting that vocal discrimination or other mechanisms function as effective barriers to gene flow. Our results show that responses to heterospecific songs were symmetrical and intermediary compared with responses to conspecific songs in both species. A stronger response to conspecific territorial songs suggests that conspecific individuals pose greater competitive threat than heterospecifics. An important implication of our study is that even small song differences can play an important role in specific recognition.
Collapse
Affiliation(s)
- Gabriel Macedo
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Marco Silva
- SAVE Brasil, BirdLife International, São Paulo, Brazil
| | - Fábio Raposo do Amaral
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Marcos Maldonado-Coelho
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
22
|
Lipshutz SE, Meier JI, Derryberry GE, Miller MJ, Seehausen O, Derryberry EP. Differential introgression of a female competitive trait in a hybrid zone between sex-role reversed species. Evolution 2019; 73:188-201. [PMID: 30597557 DOI: 10.1111/evo.13675] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/10/2018] [Indexed: 01/04/2023]
Abstract
Mating behavior between recently diverged species in secondary contact can impede or promote reproductive isolation. Traditionally, researchers focus on the importance of female mate choice and male-male competition in maintaining or eroding species barriers. Although female-female competition is widespread, little is known about its role in the speciation process. Here, we investigate a case of interspecific female competition and its influence on patterns of phenotypic and genetic introgression between species. We examine a hybrid zone between sex-role reversed, Neotropical shorebird species, the northern jacana (Jacana spinosa) and wattled jacana (J. jacana), in which female-female competition is a major determinant of reproductive success. Previous work found that females of the more aggressive and larger species, J. spinosa, disproportionately mother hybrid offspring, potentially by monopolizing breeding territories in sympatry with J. jacana. We find a cline shift of female body mass relative to the genetic center of the hybrid zone, consistent with asymmetric introgression of this competitive trait. We suggest that divergence in sexual characteristics between sex-role reversed females can influence patterns of gene flow upon secondary contact, similar to males in systems with more typical sex roles.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, 70118.,Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996.,Institute of Ecology and Evolution, University of Bern, Switzerland
| | - Joana I Meier
- Institute of Ecology and Evolution, University of Bern, Switzerland.,Fish Ecology and Evolution, Eawag Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Graham E Derryberry
- Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Matthew J Miller
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama.,Sam Noble Oklahoma Museum and Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019
| | - Ole Seehausen
- Institute of Ecology and Evolution, University of Bern, Switzerland.,Fish Ecology and Evolution, Eawag Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, 70118.,Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|
23
|
Jones W, Kulma K, Bensch S, Cichoń M, Kerimov A, Krist M, Laaksonen T, Moreno J, Munclinger P, Slater FM, Szöllősi E, Visser ME, Qvarnström A. Interspecific transfer of parasites following a range-shift in Ficedula flycatchers. Ecol Evol 2018; 8:12183-12192. [PMID: 30598810 PMCID: PMC6303764 DOI: 10.1002/ece3.4677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 11/07/2022] Open
Abstract
Human-induced climate change is expected to cause major biotic changes in species distributions and thereby including escalation of novel host-parasite associations. Closely related host species that come into secondary contact are especially likely to exchange parasites and pathogens. Both the Enemy Release Hypothesis (where invading hosts escape their original parasites) and the Novel Weapon Hypothesis (where invading hosts bring new parasites that have detrimental effects on native hosts) predict that the local host will be most likely to experience a disadvantage. However, few studies evaluate the occurrence of interspecific parasite transfer by performing wide-scale geographic sampling of pathogen lineages, both within and far from host contact zones. In this study, we investigate how haemosporidian (avian malaria) prevalence and lineage diversity vary in two, closely related species of passerine birds; the pied flycatcher Ficedula hypoleuca and the collared flycatcher F. albicollis in both allopatry and sympatry. We find that host species is generally a better predictor of parasite diversity than location, but both prevalence and diversity of parasites vary widely among populations of the same bird species. We also find a limited and unidirectional transfer of parasites from pied flycatchers to collared flycatchers in a recent contact zone. This study therefore rejects both the Enemy Release Hypothesis and the Novel Weapon Hypothesis and highlights the complexity and importance of studying host-parasite relationships in an era of global climate change and species range shifts.
Collapse
Affiliation(s)
- William Jones
- Department of Animal Ecology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Katarzyna Kulma
- Department of Animal Ecology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Staffan Bensch
- MEMEG, Molecular Ecology and Evolution Group, Department of BiologyLund UniversityLundSweden
| | - Mariusz Cichoń
- Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Anvar Kerimov
- Faculty of BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia
| | - Miloš Krist
- Department of Zoology and Laboratory of Ornithology, Faculty of SciencePalacky UniversityOlomoucCzech Republic
| | - Toni Laaksonen
- Natural Resources Institute Finland (Luke)TurkuFinland
- Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland
| | - Juan Moreno
- Departamento de Ecologia EvolutivaMuseo Nacional de Ciencias Naturales (CSIC)MadridSpain
| | - Pavel Munclinger
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Eszter Szöllősi
- Department of Systematic Zoology and EcologyEötvös Loránd UniversityBudapestHungary
| | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| |
Collapse
|
24
|
Ålund M, Persson Schmiterlöw S, McFarlane SE, Qvarnström A. Optimal sperm length for high siring success depends on forehead patch size in collared flycatchers. Behav Ecol 2018. [DOI: 10.1093/beheco/ary115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen, Uppsala, Sweden
| | - Siri Persson Schmiterlöw
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen, Uppsala, Sweden
| | - S Eryn McFarlane
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen, Uppsala, Sweden
| | - Anna Qvarnström
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen, Uppsala, Sweden
| |
Collapse
|
25
|
Tritsch C, Stuckas H, Martens J, Pentzold S, Kvist L, Lo Valvo M, Giacalone G, Tietze DT, Nazarenko AA, PÄckert M. Gene flow in the European coal tit, Periparus ater (Aves: Passeriformes): low among Mediterranean populations but high in a continental contact zone. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christian Tritsch
- Senckenberg Natural History Collections, Königsbrücker Landstraße, Dresden, Germany
- Institute of Biology, Molecular Evolution & Animal Systematics, University of Leipzig, Leipzig, Germany
| | - Heiko Stuckas
- Senckenberg Natural History Collections, Königsbrücker Landstraße, Dresden, Germany
| | - Jochen Martens
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Pentzold
- Institute of Biology, Molecular Evolution & Animal Systematics, University of Leipzig, Leipzig, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura Kvist
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Mario Lo Valvo
- Dipartimento di Scienze e Tecnologie biologiche, chimiche e farmaceutiche, Via Archirafi, Palermo, Italy
| | | | | | - Alexander A Nazarenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Martin PÄckert
- Senckenberg Natural History Collections, Königsbrücker Landstraße, Dresden, Germany
| |
Collapse
|
26
|
Rice AM, McQuillan MA. Maladaptive learning and memory in hybrids as a reproductive isolating barrier. Proc Biol Sci 2018; 285:20180542. [PMID: 29848649 PMCID: PMC5998094 DOI: 10.1098/rspb.2018.0542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023] Open
Abstract
Selection against hybrid offspring, or postzygotic reproductive isolation, maintains species boundaries in the face of gene flow from hybridization. In this review, we propose that maladaptive learning and memory in hybrids is an important, but overlooked form of postzygotic reproductive isolation. Although a role for learning in premating isolation has been supported, whether learning deficiencies can contribute to postzygotic isolation has rarely been tested. We argue that the novel genetic combinations created by hybridization have the potential to impact learning and memory abilities through multiple possible mechanisms, and that any displacement from optima in these traits is likely to have fitness consequences. We review evidence supporting the potential for hybridization to affect learning and memory, and evidence of links between learning abilities and fitness. Finally, we suggest several avenues for future research. Given the importance of learning for fitness, especially in novel and unpredictable environments, maladaptive learning and memory in hybrids may be an increasingly important source of postzygotic reproductive isolation.
Collapse
Affiliation(s)
- Amber M Rice
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Michael A McQuillan
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
27
|
McFarlane SE, Ålund M, Sirkiä PM, Qvarnström A. Difference in plasticity of resting metabolic rate - the proximate explanation to different niche breadth in sympatric Ficedula flycatchers. Ecol Evol 2018; 8:4575-4586. [PMID: 29760898 PMCID: PMC5938467 DOI: 10.1002/ece3.3987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/24/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022] Open
Abstract
Variation in relative fitness of competing recently formed species across heterogeneous environments promotes coexistence. However, the physiological traits mediating such variation in relative fitness have rarely been identified. Resting metabolic rate (RMR) is tightly associated with life history strategies, thermoregulation, diet use, and inhabited latitude and could therefore moderate differences in fitness responses to fluctuations in local environments, particularly when species have adapted to different climates in allopatry. We work in a long‐term study of collared (Ficedula albicollis) and pied flycatchers (Ficedula hypoleuca) in a recent hybrid zone located on the Swedish island of Öland in the Baltic Sea. Here, we explore whether differences in RMR match changes in relative performance of growing flycatcher nestlings across environmental conditions using an experimental approach. The fitness of pied flycatchers has previously been shown to be less sensitive to the mismatch between the peak in food abundance and nestling growth among late breeders. Here, we find that pied flycatcher nestlings have lower RMR in response to higher ambient temperatures (associated with low food availability). We also find that experimentally relaxed nestling competition is associated with an increased RMR in this species. In contrast, collared flycatcher nestlings did not vary their RMR in response to these environmental factors. Our results suggest that a more flexible nestling RMR in pied flycatchers is responsible for the better adaptation of pied flycatchers to the typical seasonal changes in food availability experienced in this hybrid zone. Generally, subtle physiological differences that have evolved when species were in allopatry may play an important role to patterns of competition, coexistence, or displacements between closely related species in secondary contact.
Collapse
Affiliation(s)
- S Eryn McFarlane
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden.,Present address: Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
| | - Murielle Ålund
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Päivi M Sirkiä
- Finnish Museum of Natural History Zoology Unit University of Helsinki Helsinki Finland.,Section of Ecology Department of Biology University of Turku Turku Finland
| | - Anna Qvarnström
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| |
Collapse
|
28
|
Kitchen DM, Cortés‐Ortiz L, Dias PAD, Canales‐Espinosa D, Bergman TJ. Alouatta pigra
males ignore
A. palliata
loud calls: A case of failed rival recognition? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:433-441. [DOI: 10.1002/ajpa.23443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Dawn M. Kitchen
- Department of AnthropologyThe Ohio State UniversityColumbus Ohio43210
- Department of AnthropologyThe Ohio State University‐MansfieldMansfield Ohio44906
| | - Liliana Cortés‐Ortiz
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn Arbor Michigan48109
| | - Pedro A. D. Dias
- Primate Behavioral Ecology Lab, Instituto de NeuroetologíaUniversidad Veracruzana, XalapaVeracruzCP 91000 Mexico
| | - Domingo Canales‐Espinosa
- Primate Behavioral Ecology Lab, Instituto de NeuroetologíaUniversidad Veracruzana, XalapaVeracruzCP 91000 Mexico
| | - Thore J. Bergman
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn Arbor Michigan48109
- Department of PsychologyUniversity of MichiganAnn Arbor Michigan48109
| |
Collapse
|
29
|
Nadeau NJ, Kawakami T. Population Genomics of Speciation and Admixture. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Heterogeneous Patterns of Genetic Diversity and Differentiation in European and Siberian Chiffchaff ( Phylloscopus collybita abietinus/P. tristis). G3-GENES GENOMES GENETICS 2017; 7:3983-3998. [PMID: 29054864 PMCID: PMC5714495 DOI: 10.1534/g3.117.300152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Identification of candidate genes for trait variation in diverging lineages and characterization of mechanistic underpinnings of genome differentiation are key steps toward understanding the processes underlying the formation of new species. Hybrid zones provide a valuable resource for such investigations, since they allow us to study how genomes evolve as species exchange genetic material and to associate particular genetic regions with phenotypic traits of interest. Here, we use whole-genome resequencing of both allopatric and hybridizing populations of the European (Phylloscopus collybita abietinus) and the Siberian chiffchaff (P. tristis)—two recently diverged species which differ in morphology, plumage, song, habitat, and migration—to quantify the regional variation in genome-wide genetic diversity and differentiation, and to identify candidate regions for trait variation. We find that the levels of diversity, differentiation, and divergence are highly heterogeneous, with significantly reduced global differentiation, and more pronounced differentiation peaks in sympatry than in allopatry. This pattern is consistent with regional differences in effective population size and recurrent background selection or selective sweeps reducing the genetic diversity in specific regions prior to lineage divergence, but the data also suggest that postdivergence selection has resulted in increased differentiation and fixed differences in specific regions. We find that hybridization and backcrossing is common in sympatry, and that phenotype is a poor predictor of the genomic composition of sympatric birds. The combination of a differentiation scan approach with identification of fixed differences pinpoint a handful of candidate regions that might be important for trait variation between the two species.
Collapse
|
31
|
McFarlane SE, Söderberg A, Wheatcroft D, Qvarnström A. Song discrimination by nestling collared flycatchers during early development. Biol Lett 2017; 12:rsbl.2016.0234. [PMID: 27405379 PMCID: PMC4971166 DOI: 10.1098/rsbl.2016.0234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/20/2016] [Indexed: 01/01/2023] Open
Abstract
Pre-zygotic isolation is often maintained by species-specific signals and preferences. However, in species where signals are learnt, as in songbirds, learning errors can lead to costly hybridization. Song discrimination expressed during early developmental stages may ensure selective learning later in life but can be difficult to demonstrate before behavioural responses are obvious. Here, we use a novel method, measuring changes in metabolic rate, to detect song perception and discrimination in collared flycatcher embryos and nestlings. We found that nestlings as early as 7 days old respond to song with increased metabolic rate, and, by 9 days old, have increased metabolic rate when listening to conspecific when compared with heterospecific song. This early discrimination between songs probably leads to fewer heterospecific matings, and thus higher fitness of collared flycatchers living in sympatry with closely related species.
Collapse
Affiliation(s)
- S Eryn McFarlane
- Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 753 26 Uppsala, Sweden
| | - Axel Söderberg
- Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 753 26 Uppsala, Sweden
| | - David Wheatcroft
- Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 753 26 Uppsala, Sweden
| | - Anna Qvarnström
- Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 753 26 Uppsala, Sweden
| |
Collapse
|
32
|
Liu B, Alström P, Olsson U, Fjeldså J, Quan Q, Roselaar KCS, Saitoh T, Yao CT, Hao Y, Wang W, Qu Y, Lei F. Explosive radiation and spatial expansion across the cold environments of the Old World in an avian family. Ecol Evol 2017; 7:6346-6357. [PMID: 28861238 PMCID: PMC5574758 DOI: 10.1002/ece3.3136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 01/08/2023] Open
Abstract
Our objective was to elucidate the biogeography and speciation patterns in an entire avian family, which shows a complex pattern of overlapping and nonoverlapping geographical distributions, and much variation in plumage, but less in size and structure. We estimated the phylogeny and divergence times for all of the world's species of Prunella based on multiple genetic loci, and analyzed morphometric divergence and biogeographical history. The common ancestor of Prunella was present in the Sino‐Himalayan Mountains or these mountains and Central Asia–Mongolia more than 9 million years ago (mya), but a burst of speciations took place during the mid‐Pliocene to early Pleistocene. The relationships among the six primary lineages resulting from that differentiation are unresolved, probably because of the rapid radiation. A general increase in sympatry with increasing time since divergence is evident. With one exception, species in clades younger than c. 3.7 my are allopatric. Species that are widely sympatric, including the most recently diverged (2.4 mya) sympatric sisters, are generally more divergent in size/structure than allo‐/parapatric close relatives. The distributional pattern and inferred ages suggest divergence in allopatry and substantial waiting time until secondary contact, likely due to competitive exclusion. All sympatrically breeding species are ecologically segregated, as suggested by differences in size/structure and habitat. Colonizations of new areas were facilitated during glacial periods, followed by fragmentation during interglacials—contrary to the usual view that glacial periods resulted mainly in fragmentations.
Collapse
Affiliation(s)
- Baoyan Liu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China.,University of Chinese Academy of Sciences Beijing China
| | - Per Alström
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China.,Department of Animal Ecology Evolutionary Biology Centre Uppsala University Uppsala Sweden.,Swedish Species Information Centre Swedish University of Agricultural Sciences Uppsala Sweden
| | - Urban Olsson
- Systematics and Biodiversity Department of Biology and Environmental Sciences University of Gothenburg Göteborg Sweden
| | - Jon Fjeldså
- Centre for Macroecology, Evolution and Climate Zoological Museum University of Copenhagen Copenhagen Denmark
| | - Qing Quan
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China.,University of Chinese Academy of Sciences Beijing China
| | | | - Takema Saitoh
- Yamashina Institute for Ornithology Abiko Chiba Japan
| | - Cheng-Te Yao
- High-Altitude Experimental Station Endemic Species Research Institute COA Chi-chi Taiwan, China
| | - Yan Hao
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China.,University of Chinese Academy of Sciences Beijing China
| | - Wenjuan Wang
- Center for Watershed Ecology Institute of Life Science and Ministry of Education Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University Nanchang China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China.,University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
33
|
Silva CNS, McFarlane SE, Hagen IJ, Rönnegård L, Billing AM, Kvalnes T, Kemppainen P, Rønning B, Ringsby TH, Sæther BE, Qvarnström A, Ellegren H, Jensen H, Husby A. Insights into the genetic architecture of morphological traits in two passerine bird species. Heredity (Edinb) 2017; 119:197-205. [PMID: 28613280 DOI: 10.1038/hdy.2017.29] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/08/2017] [Accepted: 05/04/2017] [Indexed: 01/15/2023] Open
Abstract
Knowledge about the underlying genetic architecture of phenotypic traits is needed to understand and predict evolutionary dynamics. The number of causal loci, magnitude of the effects and location in the genome are, however, still largely unknown. Here, we use genome-wide single-nucleotide polymorphism (SNP) data from two large-scale data sets on house sparrows and collared flycatchers to examine the genetic architecture of different morphological traits (tarsus length, wing length, body mass, bill depth, bill length, total and visible badge size and white wing patches). Genomic heritabilities were estimated using relatedness calculated from SNPs. The proportion of variance captured by the SNPs (SNP-based heritability) was lower in house sparrows compared with collared flycatchers, as expected given marker density (6348 SNPs in house sparrows versus 38 689 SNPs in collared flycatchers). Indeed, after downsampling to similar SNP density and sample size, this estimate was no longer markedly different between species. Chromosome-partitioning analyses demonstrated that the proportion of variance explained by each chromosome was significantly positively related to the chromosome size for some traits and, generally, that larger chromosomes tended to explain proportionally more variation than smaller chromosomes. Finally, we found two genome-wide significant associations with very small-effect sizes. One SNP on chromosome 20 was associated with bill length in house sparrows and explained 1.2% of phenotypic variation (VP), and one SNP on chromosome 4 was associated with tarsus length in collared flycatchers (3% of VP). Although we cannot exclude the possibility of undetected large-effect loci, our results indicate a polygenic basis for morphological traits.
Collapse
Affiliation(s)
- C N S Silva
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, Helsinki, Finland
| | - S E McFarlane
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - I J Hagen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - L Rönnegård
- School of Technology and Business Studies, Dalarna University, Falun, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A M Billing
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - T Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - P Kemppainen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - B Rønning
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - T H Ringsby
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - B-E Sæther
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - A Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - H Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - H Jensen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - A Husby
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, Helsinki, Finland.,Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
34
|
Wheatcroft D, Qvarnström A. Genetic divergence of early song discrimination between two young songbird species. Nat Ecol Evol 2017. [DOI: 10.1038/s41559-017-0192] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Wheatcroft D, Qvarnström A. Reproductive character displacement of female, but not male song discrimination in an avian hybrid zone. Evolution 2017; 71:1776-1786. [DOI: 10.1111/evo.13267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022]
Affiliation(s)
- David Wheatcroft
- Animal Ecology, Department of Ecology and Genetics Uppsala University Norbyvägen 18D 752 36 Sweden
| | - Anna Qvarnström
- Animal Ecology, Department of Ecology and Genetics Uppsala University Norbyvägen 18D 752 36 Sweden
| |
Collapse
|
36
|
Macfarlane CBA, Natola L, Brown MW, Burg TM. Population genetic isolation and limited connectivity in the purple finch ( Haemorhous purpureus). Ecol Evol 2016; 6:8304-8317. [PMID: 27878097 PMCID: PMC5108279 DOI: 10.1002/ece3.2524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 11/11/2022] Open
Abstract
Using a combination of mitochondrial and z-linked sequences, microsatellite data, and spatio-geographic modeling, we examined historical and contemporary factors influencing the population genetic structure of the purple finch (Haemorhous purpureus). Mitochondrial DNA data show the presence of two distinct groups corresponding to the two subspecies, H. p. purpureus and H. p. californicus. The two subspecies likely survived in separate refugia during the last glacial maximum, one on the Pacific Coast and one east of the Rocky Mountains, and now remain distinct lineages with little evidence of gene flow between them. Southwestern British Columbia is a notable exception, as subspecies mixing between central British Columbia and Vancouver Island populations suggests a possible contact zone in this region. Z-linked data support two mitochondrial groups; however, Coastal Oregon and central British Columbia sites show evidence of mixing. Contemporary population structure based on microsatellite data identified at least six genetic clusters: three H. p. purpureus clusters, two H. p. californicus clusters, and one mixed cluster, which likely resulted from high site fidelity and isolation by distance, combined with sexual selection on morphological characters reinforcing subspecies differences.
Collapse
|
37
|
McFarlane SE, Sirkiä PM, Ålund M, Qvarnström A. Hybrid Dysfunction Expressed as Elevated Metabolic Rate in Male Ficedula Flycatchers. PLoS One 2016; 11:e0161547. [PMID: 27583553 PMCID: PMC5008804 DOI: 10.1371/journal.pone.0161547] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Studies of ecological speciation are often biased towards extrinsic sources of selection against hybrids, resulting from intermediate hybrid morphology, but the knowledge of how genetic incompatibilities accumulate over time under natural conditions is limited. Here we focus on a physiological trait, metabolic rate, which is central to life history strategies and thermoregulation but is also likely to be sensitive to mismatched mitonuclear interactions. We measured the resting metabolic rate of male collared, and pied flycatchers as well as of naturally occurring F1 hybrid males, in a recent hybrid zone. We found that hybrid males had a higher rather than intermediate metabolic rate, which is indicative of hybrid physiological dysfunction. Fitness costs associated with elevated metabolic rate are typically environmentally dependent and exaggerated under harsh conditions. By focusing on male hybrid dysfunction in an eco-physiological trait, our results contribute to the general understanding of how combined extrinsic and intrinsic sources of hybrid dysfunction build up under natural conditions.
Collapse
Affiliation(s)
- S. Eryn McFarlane
- Animal Ecology/ Department of Ecology and Genetics, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Päivi M. Sirkiä
- Finnish Museum of Natural History, Zoology Unit, University of Helsinki, Helsinki, Finland
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | - Murielle Ålund
- Animal Ecology/ Department of Ecology and Genetics, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Anna Qvarnström
- Animal Ecology/ Department of Ecology and Genetics, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
38
|
Rybinski J, Sirkiä PM, McFarlane SE, Vallin N, Wheatcroft D, Ålund M, Qvarnström A. Competition-driven build-up of habitat isolation and selection favoring modified dispersal patterns in a young avian hybrid zone. Evolution 2016; 70:2226-2238. [PMID: 27464950 DOI: 10.1111/evo.13019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Abstract
Competition-driven evolution of habitat isolation is an important mechanism of ecological speciation but empirical support for this process is often indirect. We examined how an on-going displacement of pied flycatchers from their preferred breeding habitat by collared flycatchers in a young secondary contact zone is associated with (a) access to an important food resource (caterpillar larvae), (b) immigration of pied flycatchers in relation to habitat quality, and (c) the risk of hybridization in relation to habitat quality. Over the past 12 years, the estimated access to caterpillar larvae biomass in the habitat surrounding the nests of pied flycatchers has decreased by a fifth due to shifted establishment possibilities, especially for immigrants. However, breeding in the high quality habitat has become associated with such a high risk of hybridization for pied flycatchers that overall selection currently favors pied flycatchers that were forced to immigrate into the poorer habitats (despite lower access to preferred food items). Our results show that competition-driven habitat segregation can lead to fast habitat isolation, which per se caused an opportunity for selection to act in favor of future "voluntarily" altered immigration patterns and possibly strengthened habitat isolation through reinforcement.
Collapse
Affiliation(s)
- Jakub Rybinski
- Animal Ecology, Department of Ecology and Genetics, Norbyvägen, Uppsala University, 18d, SE-752 36, Uppsala, Sweden
| | - Päivi M Sirkiä
- Animal Ecology, Department of Ecology and Genetics, Norbyvägen, Uppsala University, 18d, SE-752 36, Uppsala, Sweden.,Finnish Museum of Natural History, Zoology Unit, University of Helsinki, Finland
| | - S Eryn McFarlane
- Animal Ecology, Department of Ecology and Genetics, Norbyvägen, Uppsala University, 18d, SE-752 36, Uppsala, Sweden
| | - Niclas Vallin
- Animal Ecology, Department of Ecology and Genetics, Norbyvägen, Uppsala University, 18d, SE-752 36, Uppsala, Sweden
| | - David Wheatcroft
- Animal Ecology, Department of Ecology and Genetics, Norbyvägen, Uppsala University, 18d, SE-752 36, Uppsala, Sweden
| | - Murielle Ålund
- Animal Ecology, Department of Ecology and Genetics, Norbyvägen, Uppsala University, 18d, SE-752 36, Uppsala, Sweden
| | - Anna Qvarnström
- Animal Ecology, Department of Ecology and Genetics, Norbyvägen, Uppsala University, 18d, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
39
|
Husby A, Kawakami T, Rönnegård L, Smeds L, Ellegren H, Qvarnström A. Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait. Proc Biol Sci 2016; 282:20150156. [PMID: 25833857 PMCID: PMC4426624 DOI: 10.1098/rspb.2015.0156] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Understanding the genetic basis of traits involved in adaptation is a major
challenge in evolutionary biology but remains poorly understood. Here, we use
genome-wide association mapping using a custom 50 k single nucleotide
polymorphism (SNP) array in a natural population of collared flycatchers to
examine the genetic basis of clutch size, an important life-history trait in
many animal species. We found evidence for an association on chromosome 18 where
one SNP significant at the genome-wide level explained 3.9% of the
phenotypic variance. We also detected two suggestive quantitative trait loci
(QTLs) on chromosomes 9 and 26. Fitness differences among genotypes were
generally weak and not significant, although there was some indication of a
sex-by-genotype interaction for lifetime reproductive success at the suggestive
QTL on chromosome 26. This implies that sexual antagonism may play a role in
maintaining genetic variation at this QTL. Our findings provide candidate
regions for a classic avian life-history trait that will be useful for future
studies examining the molecular and cellular function of, as well as
evolutionary mechanisms operating at, these loci.
Collapse
Affiliation(s)
- Arild Husby
- Department of Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway Department of Biosciences, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Lars Rönnegård
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| |
Collapse
|
40
|
Nadachowska-Brzyska K, Burri R, Smeds L, Ellegren H. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol Ecol 2016; 25:1058-72. [PMID: 26797914 PMCID: PMC4793928 DOI: 10.1111/mec.13540] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
Abstract
Climatic fluctuations during the Quaternary period governed the demography of species and contributed to population differentiation and ultimately speciation. Studies of these past processes have previously been hindered by a lack of means and genetic data to model changes in effective population size (Ne ) through time. However, based on diploid genome sequences of high quality, the recently developed pairwise sequentially Markovian coalescent (PSMC) can estimate trajectories of changes in Ne over considerable time periods. We applied this approach to resequencing data from nearly 200 genomes of four species and several populations of the Ficedula species complex of black-and-white flycatchers. Ne curves of Atlas, collared, pied and semicollared flycatcher converged 1-2 million years ago (Ma) at an Ne of ≈ 200 000, likely reflecting the time when all four species last shared a common ancestor. Subsequent separate Ne trajectories are consistent with lineage splitting and speciation. All species showed evidence of population growth up until 100-200 thousand years ago (kya), followed by decline and then start of a new phase of population expansion. However, timing and amplitude of changes in Ne differed among species, and for pied flycatcher, the temporal dynamics of Ne differed between Spanish birds and central/northern European populations. This cautions against extrapolation of demographic inference between lineages and calls for adequate sampling to provide representative pictures of the coalescence process in different species or populations. We also empirically evaluate criteria for proper inference of demographic histories using PSMC and arrive at recommendations of using sequencing data with a mean genome coverage of ≥18X, a per-site filter of ≥10 reads and no more than 25% of missing data.
Collapse
Affiliation(s)
- Krystyna Nadachowska-Brzyska
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Reto Burri
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
41
|
Sardell JM, Uy JAC. Hybridization following recent secondary contact results in asymmetric genotypic and phenotypic introgression between island species ofMyzomelahoneyeaters. Evolution 2016; 70:257-69. [DOI: 10.1111/evo.12864] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/22/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Jason M. Sardell
- Department of Biology; University of Miami; Coral Gables Florida 33146
| | - J. Albert C. Uy
- Department of Biology; University of Miami; Coral Gables Florida 33146
| |
Collapse
|
42
|
Rönnegård L, McFarlane SE, Husby A, Kawakami T, Ellegren H, Qvarnström A. Increasing the power of genome wide association studies in natural populations using repeated measures - evaluation and implementation. Methods Ecol Evol 2016; 7:792-799. [PMID: 27478587 PMCID: PMC4950150 DOI: 10.1111/2041-210x.12535] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/12/2015] [Indexed: 12/03/2022]
Abstract
Genomewide association studies (GWAS) enable detailed dissections of the genetic basis for organisms' ability to adapt to a changing environment. In long‐term studies of natural populations, individuals are often marked at one point in their life and then repeatedly recaptured. It is therefore essential that a method for GWAS includes the process of repeated sampling. In a GWAS, the effects of thousands of single‐nucleotide polymorphisms (SNPs) need to be fitted and any model development is constrained by the computational requirements. A method is therefore required that can fit a highly hierarchical model and at the same time is computationally fast enough to be useful. Our method fits fixed SNP effects in a linear mixed model that can include both random polygenic effects and permanent environmental effects. In this way, the model can correct for population structure and model repeated measures. The covariance structure of the linear mixed model is first estimated and subsequently used in a generalized least squares setting to fit the SNP effects. The method was evaluated in a simulation study based on observed genotypes from a long‐term study of collared flycatchers in Sweden. The method we present here was successful in estimating permanent environmental effects from simulated repeated measures data. Additionally, we found that especially for variable phenotypes having large variation between years, the repeated measurements model has a substantial increase in power compared to a model using average phenotypes as a response. The method is available in the r package RepeatABEL. It increases the power in GWAS having repeated measures, especially for long‐term studies of natural populations, and the R implementation is expected to facilitate modelling of longitudinal data for studies of both animal and human populations.
Collapse
Affiliation(s)
- Lars Rönnegård
- Department of Clinical Sciences Swedish University of Agricultural Sciences SE-75007 Uppsala Sweden
| | - S Eryn McFarlane
- Department of Animal Ecology Evolutionary Biology Centre (EBC) Uppsala University Norbyvägen 18D SE-75236 Uppsala Sweden
| | - Arild Husby
- Department of Biosciences Metapopulation Research Centre University of Helsinki PO Box 65FI-00014 Helsinki Finland; Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology N-7491 Trondheim Norway
| | - Takeshi Kawakami
- Department of Evolutionary Biology Evolutionary Biology Centre (EBC) Uppsala University Norbyvägen 18D SE-75236 Uppsala Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology Evolutionary Biology Centre (EBC) Uppsala University Norbyvägen 18D SE-75236 Uppsala Sweden
| | - Anna Qvarnström
- Department of Animal Ecology Evolutionary Biology Centre (EBC) Uppsala University Norbyvägen 18D SE-75236 Uppsala Sweden
| |
Collapse
|
43
|
Wheatcroft D, Gallego-Abenza M, Qvarnström A. Species replacement reduces community participation in avian antipredator groups. Behav Ecol 2016. [DOI: 10.1093/beheco/arw074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Nater A, Burri R, Kawakami T, Smeds L, Ellegren H. Resolving Evolutionary Relationships in Closely Related Species with Whole-Genome Sequencing Data. Syst Biol 2015; 64:1000-17. [PMID: 26187295 PMCID: PMC4604831 DOI: 10.1093/sysbio/syv045] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/24/2015] [Indexed: 01/25/2023] Open
Abstract
Using genetic data to resolve the evolutionary relationships of species is of major interest in evolutionary and systematic biology. However, reconstructing the sequence of speciation events, the so-called species tree, in closely related and potentially hybridizing species is very challenging. Processes such as incomplete lineage sorting and interspecific gene flow result in local gene genealogies that differ in their topology from the species tree, and analyses of few loci with a single sequence per species are likely to produce conflicting or even misleading results. To study these phenomena on a full phylogenomic scale, we use whole-genome sequence data from 200 individuals of four black-and-white flycatcher species with so far unresolved phylogenetic relationships to infer gene tree topologies and visualize genome-wide patterns of gene tree incongruence. Using phylogenetic analysis in nonoverlapping 10-kb windows, we show that gene tree topologies are extremely diverse and change on a very small physical scale. Moreover, we find strong evidence for gene flow among flycatcher species, with distinct patterns of reduced introgression on the Z chromosome. To resolve species relationships on the background of widespread gene tree incongruence, we used four complementary coalescent-based methods for species tree reconstruction, including complex modeling approaches that incorporate post-divergence gene flow among species. This allowed us to infer the most likely species tree with high confidence. Based on this finding, we show that regions of reduced effective population size, which have been suggested as particularly useful for species tree inference, can produce positively misleading species tree topologies. Our findings disclose the pitfalls of using loci potentially under selection as phylogenetic markers and highlight the potential of modeling approaches to disentangle species relationships in systems with large effective population sizes and post-divergence gene flow.
Collapse
Affiliation(s)
- Alexander Nater
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Reto Burri
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Qvarnström A, Ålund M, McFarlane SE, Sirkiä PM. Climate adaptation and speciation: particular focus on reproductive barriers in Ficedula flycatchers. Evol Appl 2015; 9:119-34. [PMID: 27087843 PMCID: PMC4780377 DOI: 10.1111/eva.12276] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/14/2015] [Indexed: 01/19/2023] Open
Abstract
Climate adaptation is surprisingly rarely reported as a cause for the build‐up of reproductive isolation between diverging populations. In this review, we summarize evidence for effects of climate adaptation on pre‐ and postzygotic isolation between emerging species with a particular focus on pied (Ficedula hypoleuca) and collared (Ficedula albicollis) flycatchers as a model for research on speciation. Effects of climate adaptation on prezygotic isolation or extrinsic selection against hybrids have been documented in several taxa, but the combined action of climate adaptation and sexual selection is particularly well explored in Ficedula flycatchers. There is a general lack of evidence for divergent climate adaptation causing intrinsic postzygotic isolation. However, we argue that the profound effects of divergence in climate adaptation on the whole biochemical machinery of organisms and hence many underlying genes should increase the likelihood of genetic incompatibilities arising as side effects. Fast temperature‐dependent co‐evolution between mitochondrial and nuclear genomes may be particularly likely to lead to hybrid sterility. Thus, how climate adaptation relates to reproductive isolation is best explored in relation to fast‐evolving barriers to gene flow, while more research on later stages of divergence is needed to achieve a complete understanding of climate‐driven speciation.
Collapse
Affiliation(s)
- Anna Qvarnström
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Murielle Ålund
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - S Eryn McFarlane
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Päivi M Sirkiä
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden; Finnish Museum of Natural History Zoology Unit University of Helsinki Helsinki Finland
| |
Collapse
|
46
|
Dugas MB, Richards-Zawacki CL. A captive breeding experiment reveals no evidence of reproductive isolation among lineages of a polytypic poison frog. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew B. Dugas
- Department of Ecology and Evolutionary Biology; Tulane University; 400 Lindy Boggs Building New Orleans LA 70118 USA
| | - Corinne L. Richards-Zawacki
- Department of Ecology and Evolutionary Biology; Tulane University; 400 Lindy Boggs Building New Orleans LA 70118 USA
| |
Collapse
|
47
|
Laaksonen T, Sirkiä PM, Calhim S, Brommer JE, Leskinen PK, Primmer CR, Adamík P, Artemyev AV, Belskii E, Both C, Bureš S, Burgess MD, Doligez B, Forsman JT, Grinkov V, Hoffmann U, Ivankina E, Král M, Krams I, Lampe HM, Moreno J, Mägi M, Nord A, Potti J, Ravussin PA, Sokolov L. Sympatric divergence and clinal variation in multiple coloration traits of Ficedula flycatchers. J Evol Biol 2015; 28:779-90. [PMID: 25683091 DOI: 10.1111/jeb.12604] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/23/2015] [Accepted: 02/06/2015] [Indexed: 01/25/2023]
Abstract
Geographic variation in phenotypes plays a key role in fundamental evolutionary processes such as local adaptation, population differentiation and speciation, but the selective forces behind it are rarely known. We found support for the hypothesis that geographic variation in plumage traits of the pied flycatcher Ficedula hypoleuca is explained by character displacement with the collared flycatcher Ficedula albicollis in the contact zone. The plumage traits of the pied flycatcher differed strongly from the more conspicuous collared flycatcher in a sympatric area but increased in conspicuousness with increasing distance to there. Phenotypic differentiation (PST ) was higher than that in neutral genetic markers (FST ), and the effect of geographic distance remained when statistically controlling for neutral genetic differentiation. This suggests that a cline created by character displacement and gene flow explains phenotypic variation across the distribution of this species. The different plumage traits of the pied flycatcher are strongly to moderately correlated, indicating that they evolve non-independently from each other. The flycatchers provide an example of plumage patterns diverging in two species that differ in several aspects of appearance. The divergence in sympatry and convergence in allopatry in these birds provide a possibility to study the evolutionary mechanisms behind the highly divergent avian plumage patterns.
Collapse
Affiliation(s)
- T Laaksonen
- Department of Biology, University of Turku, Turku, Finland; Finnish Museum of Natural History, Zoology Unit, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sirkiä PM, Adamík P, Artemyev AV, Belskii E, Both C, Bureš S, Burgess M, Bushuev AV, Forsman JT, Grinkov V, Hoffmann D, Järvinen A, Král M, Krams I, Lampe HM, Moreno J, Mägi M, Nord A, Potti J, Ravussin PA, Sokolov L, Laaksonen T. Fecundity selection does not vary along a large geographical cline of trait means in a passerine bird. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Päivi M. Sirkiä
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
- Finnish Museum of Natural History; Zoology Unit; University of Helsinki; Helsinki Finland
| | - Peter Adamík
- Department of Zoology and Laboratory of Ornithology; Palacky University; Olomouc Czech Republic
| | - Alexandr V. Artemyev
- Institute of Biology, Karelian Research Centre; Russian Academy of Science; Petrozavodsk Russia
| | - Eugen Belskii
- Institute of Plant and Animal Ecology; Ural Branch; Russian Academy of Science; Ekaterinburg Russia
| | - Christiaan Both
- Centre for Ecological and Evolutionary Studies; University of Groningen; Haren The Netherlands
| | - Stanislav Bureš
- Department of Zoology and Laboratory of Ornithology; Palacky University; Olomouc Czech Republic
| | - Malcolm Burgess
- Centre for Research in Animal Behaviour; School of Life & Environmental Sciences; University of Exeter; Exeter UK
| | - Andrey V. Bushuev
- Department of Vertebrate Zoology; Faculty of Biology; Moscow State University; Moscow Russia
| | | | - Vladimir Grinkov
- Department of Vertebrate Zoology; Faculty of Biology; Moscow State University; Moscow Russia
| | | | - Antero Järvinen
- Kilpisjärvi Biological Station; University of Helsinki; Helsinki Finland
| | | | - Indrikis Krams
- Institute of Systematic Biology; University of Daugavpils; Daugavpils Latvia
| | - Helene M. Lampe
- Centre for Ecological and Evolutionary Synthesis; University of Oslo; Oslo Norway
| | - Juan Moreno
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales-CSIC; Madrid Spain
| | - Marko Mägi
- Institute of Ecology and Earth Sciences; Department of Zoology; University of Tartu; Tartu Estonia
| | - Andreas Nord
- Department of Biology; Section of Evolutionary Ecology; Lund University; Lund Sweden
| | - Jaime Potti
- Department of Evolutionary Ecology; Estación Biológica de Doñana-CSIC; Sevilla Spain
| | | | - Leonid Sokolov
- Biological Station of the Zoological Institute; Russian Academy of Science; Rybachy Russia
| | - Toni Laaksonen
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
- Finnish Museum of Natural History; Zoology Unit; University of Helsinki; Helsinki Finland
| |
Collapse
|
49
|
Moyle RG, Hosner PA, Jones AW, Outlaw DC. Phylogeny and biogeography of Ficedula flycatchers (Aves: Muscicapidae): Novel results from fresh source material. Mol Phylogenet Evol 2015; 82 Pt A:87-94. [DOI: 10.1016/j.ympev.2014.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/22/2014] [Accepted: 09/30/2014] [Indexed: 11/27/2022]
|
50
|
Kawakami T, Smeds L, Backström N, Husby A, Qvarnström A, Mugal CF, Olason P, Ellegren H. A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol Ecol 2014; 23:4035-58. [PMID: 24863701 PMCID: PMC4149781 DOI: 10.1111/mec.12810] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/15/2022]
Abstract
Detailed linkage and recombination rate maps are necessary to use the full potential of genome sequencing and population genomic analyses. We used a custom collared flycatcher 50 K SNP array to develop a high-density linkage map with 37 262 markers assigned to 34 linkage groups in 33 autosomes and the Z chromosome. The best-order map contained 4215 markers, with a total distance of 3132 cm and a mean genetic distance between markers of 0.12 cm. Facilitated by the array being designed to include markers from most scaffolds, we obtained a second-generation assembly of the flycatcher genome that approaches full chromosome sequences (N50 super-scaffold size 20.2 Mb and with 1.042 Gb (of 1.116 Gb) anchored to and mostly ordered and oriented along chromosomes). We found that flycatcher and zebra finch chromosomes are entirely syntenic but that inversions at mean rates of 1.5–2.0 event (6.6–7.5 Mb) per My have changed the organization within chromosomes, rates high enough for inversions to potentially have been involved with many speciation events during avian evolution. The mean recombination rate was 3.1 cm/Mb and correlated closely with chromosome size, from 2 cm/Mb for chromosomes >100 Mb to >10 cm/Mb for chromosomes <10 Mb. This size dependence seemed entirely due to an obligate recombination event per chromosome; if 50 cm was subtracted from the genetic lengths of chromosomes, the rate per physical unit DNA was constant across chromosomes. Flycatcher recombination rate showed similar variation along chromosomes as chicken but lacked the large interior recombination deserts characteristic of zebra finch chromosomes.
Collapse
Affiliation(s)
- Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|