1
|
Sun Y, Men W, Kennerknecht I, Fang W, Zheng HF, Zhang W, Rao Y. Human genetics of face recognition: discovery of MCTP2 mutations in humans with face blindness (congenital prosopagnosia). Genetics 2024; 227:iyae047. [PMID: 38547502 DOI: 10.1093/genetics/iyae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/19/2024] [Indexed: 06/06/2024] Open
Abstract
Face recognition is important for both visual and social cognition. While prosopagnosia or face blindness has been known for seven decades and face-specific neurons for half a century, the molecular genetic mechanism is not clear. Here we report results after 17 years of research with classic genetics and modern genomics. From a large family with 18 congenital prosopagnosia (CP) members with obvious difficulties in face recognition in daily life, we uncovered a fully cosegregating private mutation in the MCTP2 gene which encodes a calcium binding transmembrane protein expressed in the brain. After screening through cohorts of 6589, we found more CPs and their families, allowing detection of more CP associated mutations in MCTP2. Face recognition differences were detected between 14 carriers with the frameshift mutation S80fs in MCTP2 and 19 noncarrying volunteers. Six families including one with 10 members showed the S80fs-CP correlation. Functional magnetic resonance imaging found association of impaired recognition of individual faces by MCTP2 mutant CPs with reduced repetition suppression to repeated facial identities in the right fusiform face area. Our results have revealed genetic predisposition of MCTP2 mutations in CP, 76 years after the initial report of prosopagnosia and 47 years after the report of the first CP. This is the first time a gene required for a higher form of visual social cognition was found in humans.
Collapse
Affiliation(s)
- Yun Sun
- Chinese Institutes for Medical Research, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Beijing Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Ingo Kennerknecht
- Institute of Human Genetics, Westfälische Wilhelms-Universität, Münster 48149, Germany
| | - Wan Fang
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hou-Feng Zheng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Wenxia Zhang
- Chinese Institutes for Medical Research, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Rao
- Chinese Institutes for Medical Research, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| |
Collapse
|
2
|
Froesel M, Gacoin M, Clavagnier S, Hauser M, Goudard Q, Ben Hamed S. Macaque claustrum, pulvinar and putative dorsolateral amygdala support the cross-modal association of social audio-visual stimuli based on meaning. Eur J Neurosci 2024; 59:3203-3223. [PMID: 38637993 DOI: 10.1111/ejn.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024]
Abstract
Social communication draws on several cognitive functions such as perception, emotion recognition and attention. The association of audio-visual information is essential to the processing of species-specific communication signals. In this study, we use functional magnetic resonance imaging in order to identify the subcortical areas involved in the cross-modal association of visual and auditory information based on their common social meaning. We identified three subcortical regions involved in audio-visual processing of species-specific communicative signals: the dorsolateral amygdala, the claustrum and the pulvinar. These regions responded to visual, auditory congruent and audio-visual stimulations. However, none of them was significantly activated when the auditory stimuli were semantically incongruent with the visual context, thus showing an influence of visual context on auditory processing. For example, positive vocalization (coos) activated the three subcortical regions when presented in the context of positive facial expression (lipsmacks) but not when presented in the context of negative facial expression (aggressive faces). In addition, the medial pulvinar and the amygdala presented multisensory integration such that audiovisual stimuli resulted in activations that were significantly higher than those observed for the highest unimodal response. Last, the pulvinar responded in a task-dependent manner, along a specific spatial sensory gradient. We propose that the dorsolateral amygdala, the claustrum and the pulvinar belong to a multisensory network that modulates the perception of visual socioemotional information and vocalizations as a function of the relevance of the stimuli in the social context. SIGNIFICANCE STATEMENT: Understanding and correctly associating socioemotional information across sensory modalities, such that happy faces predict laughter and escape scenes predict screams, is essential when living in complex social groups. With the use of functional magnetic imaging in the awake macaque, we identify three subcortical structures-dorsolateral amygdala, claustrum and pulvinar-that only respond to auditory information that matches the ongoing visual socioemotional context, such as hearing positively valenced coo calls and seeing positively valenced mutual grooming monkeys. We additionally describe task-dependent activations in the pulvinar, organizing along a specific spatial sensory gradient, supporting its role as a network regulator.
Collapse
Affiliation(s)
- Mathilda Froesel
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Maëva Gacoin
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Simon Clavagnier
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Marc Hauser
- Risk-Eraser, West Falmouth, Massachusetts, USA
| | - Quentin Goudard
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, Bron Cedex, France
| |
Collapse
|
3
|
Laurent MA, Audurier P, De Castro V, Gao X, Durand JB, Jonas J, Rossion B, Cottereau BR. Towards an optimization of functional localizers in non-human primate neuroimaging with (fMRI) frequency-tagging. Neuroimage 2023; 270:119959. [PMID: 36822249 DOI: 10.1016/j.neuroimage.2023.119959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Non-human primate (NHP) neuroimaging can provide essential insights into the neural basis of human cognitive functions. While functional magnetic resonance imaging (fMRI) localizers can play an essential role in reaching this objective (Russ et al., 2021), they often differ substantially across species in terms of paradigms, measured signals, and data analysis, biasing the comparisons. Here we introduce a functional frequency-tagging face localizer for NHP imaging, successfully developed in humans and outperforming standard face localizers (Gao et al., 2018). FMRI recordings were performed in two awake macaques. Within a rapid 6 Hz stream of natural non-face objects images, human or monkey face stimuli were presented in bursts every 9 s. We also included control conditions with phase-scrambled versions of all images. As in humans, face-selective activity was objectively identified and quantified at the peak of the face-stimulation frequency (0.111 Hz) and its second harmonic (0.222 Hz) in the Fourier domain. Focal activations with a high signal-to-noise ratio were observed in regions previously described as face-selective, mainly in the STS (clusters PL, ML, MF; also, AL, AF), both for human and monkey faces. Robust face-selective activations were also found in the prefrontal cortex of one monkey (PVL and PO clusters). Face-selective neural activity was highly reliable and excluded all contributions from low-level visual cues contained in the amplitude spectrum of the stimuli. These observations indicate that fMRI frequency-tagging provides a highly valuable approach to objectively compare human and monkey visual recognition systems within the same framework.
Collapse
Affiliation(s)
| | - Pauline Audurier
- Centre de Recherche Cerveau et Cognition, Université Toulouse 3 Paul Sabatier, CNRS, 31052 Toulouse, France
| | - Vanessa De Castro
- Centre de Recherche Cerveau et Cognition, Université Toulouse 3 Paul Sabatier, CNRS, 31052 Toulouse, France
| | - Xiaoqing Gao
- Center for Psychological Sciences, Zhejiang University, Hangzhou City, China
| | - Jean-Baptiste Durand
- Centre de Recherche Cerveau et Cognition, Université Toulouse 3 Paul Sabatier, CNRS, 31052 Toulouse, France
| | - Jacques Jonas
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Universite de Lorraine, CHRU-Nancy, Service de neurologie, F-54000, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Benoit R Cottereau
- Centre de Recherche Cerveau et Cognition, Université Toulouse 3 Paul Sabatier, CNRS, 31052 Toulouse, France.
| |
Collapse
|
4
|
Rossion B, Jacques C, Jonas J. Intracerebral Electrophysiological Recordings to Understand the Neural Basis of Human Face Recognition. Brain Sci 2023; 13:354. [PMID: 36831897 PMCID: PMC9954066 DOI: 10.3390/brainsci13020354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Understanding how the human brain recognizes faces is a primary scientific goal in cognitive neuroscience. Given the limitations of the monkey model of human face recognition, a key approach in this endeavor is the recording of electrophysiological activity with electrodes implanted inside the brain of human epileptic patients. However, this approach faces a number of challenges that must be overcome for meaningful scientific knowledge to emerge. Here we synthesize a 10 year research program combining the recording of intracerebral activity (StereoElectroEncephaloGraphy, SEEG) in the ventral occipito-temporal cortex (VOTC) of large samples of participants and fast periodic visual stimulation (FPVS), to objectively define, quantify, and characterize the neural basis of human face recognition. These large-scale studies reconcile the wide distribution of neural face recognition activity with its (right) hemispheric and regional specialization and extend face-selectivity to anterior regions of the VOTC, including the ventral anterior temporal lobe (VATL) typically affected by magnetic susceptibility artifacts in functional magnetic resonance imaging (fMRI). Clear spatial dissociations in category-selectivity between faces and other meaningful stimuli such as landmarks (houses, medial VOTC regions) or written words (left lateralized VOTC) are found, confirming and extending neuroimaging observations while supporting the validity of the clinical population tested to inform about normal brain function. The recognition of face identity - arguably the ultimate form of recognition for the human brain - beyond mere differences in physical features is essentially supported by selective populations of neurons in the right inferior occipital gyrus and the lateral portion of the middle and anterior fusiform gyrus. In addition, low-frequency and high-frequency broadband iEEG signals of face recognition appear to be largely concordant in the human association cortex. We conclude by outlining the challenges of this research program to understand the neural basis of human face recognition in the next 10 years.
Collapse
Affiliation(s)
- Bruno Rossion
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, F-54000 Nancy, France
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Corentin Jacques
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Jacques Jonas
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, F-54000 Nancy, France
| |
Collapse
|
5
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part II: Neural basis. Neuropsychologia 2022; 173:108279. [PMID: 35667496 DOI: 10.1016/j.neuropsychologia.2022.108279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Patient PS sustained her dramatic brain injury in 1992, the same year as the first report of a neuroimaging study of human face recognition. The present paper complements the review on the functional nature of PS's prosopagnosia (part I), illustrating how her case study directly, i.e., through neuroimaging investigations of her brain structure and activity, but also indirectly, through neural studies performed on other clinical cases and neurotypical individuals, inspired and constrained neural models of human face recognition. In the dominant right hemisphere for face recognition in humans, PS's main lesion concerns (inputs to) the inferior occipital gyrus (IOG), in a region where face-selective activity is typically found in normal individuals ('Occipital Face Area', OFA). Her case study initially supported the criticality of this region for face identity recognition (FIR) and provided the impetus for transcranial magnetic stimulation (TMS), intracerebral electrical stimulation, and cortical surgery studies that have generally supported this view. Despite PS's right IOG lesion, typical face-selectivity is found anteriorly in the middle portion of the fusiform gyrus, a hominoid structure (termed the right 'Fusiform Face Area', FFA) that is widely considered to be the most important region for human face recognition. This finding led to the original proposal of direct anatomico-functional connections from early visual cortices to the FFA, bypassing the IOG/OFA (lulu), a hypothesis supported by further neuroimaging studies of PS, other neurological cases and neuro-typical individuals with original visual stimulation paradigms, data recordings and analyses. The proposal of a lack of sensitivity to face identity in PS's right FFA due to defective reentrant inputs from the IOG/FFA has also been supported by other cases, functional connectivity and cortical surgery studies. Overall, neural studies of, and based on, the case of prosopagnosia PS strongly question the hierarchical organization of the human neural face recognition system, supporting a more flexible and dynamic view of this key social brain function.
Collapse
Affiliation(s)
- Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France; CHRU-Nancy, Service de Neurologie, F-5400, France; Psychological Sciences Research Institute, Institute of Neuroscience, University of Louvain, Belgium.
| |
Collapse
|
6
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part I: Function. Neuropsychologia 2022; 173:108278. [DOI: 10.1016/j.neuropsychologia.2022.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
7
|
Human face and gaze perception is highly context specific and involves bottom-up and top-down neural processing. Neurosci Biobehav Rev 2021; 132:304-323. [PMID: 34861296 DOI: 10.1016/j.neubiorev.2021.11.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022]
Abstract
This review summarizes human perception and processing of face and gaze signals. Face and gaze signals are important means of non-verbal social communication. The review highlights that: (1) some evidence is available suggesting that the perception and processing of facial information starts in the prenatal period; (2) the perception and processing of face identity, expression and gaze direction is highly context specific, the effect of race and culture being a case in point. Culture affects by means of experiential shaping and social categorization the way in which information on face and gaze is collected and perceived; (3) face and gaze processing occurs in the so-called 'social brain'. Accumulating evidence suggests that the processing of facial identity, facial emotional expression and gaze involves two parallel and interacting pathways: a fast and crude subcortical route and a slower cortical pathway. The flow of information is bi-directional and includes bottom-up and top-down processing. The cortical networks particularly include the fusiform gyrus, superior temporal sulcus (STS), intraparietal sulcus, temporoparietal junction and medial prefrontal cortex.
Collapse
|
8
|
Linear Integration of Sensory Evidence over Space and Time Underlies Face Categorization. J Neurosci 2021; 41:7876-7893. [PMID: 34326145 DOI: 10.1523/jneurosci.3055-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Visual object recognition relies on elaborate sensory processes that transform retinal inputs to object representations, but it also requires decision-making processes that read out object representations and function over prolonged time scales. The computational properties of these decision-making processes remain underexplored for object recognition. Here, we study these computations by developing a stochastic multifeature face categorization task. Using quantitative models and tight control of spatiotemporal visual information, we demonstrate that human subjects (five males, eight females) categorize faces through an integration process that first linearly adds the evidence conferred by task-relevant features over space to create aggregated momentary evidence and then linearly integrates it over time with minimum information loss. Discrimination of stimuli along different category boundaries (e.g., identity or expression of a face) is implemented by adjusting feature weights of spatial integration. This linear but flexible integration process over space and time bridges past studies on simple perceptual decisions to complex object recognition behavior.SIGNIFICANCE STATEMENT Although simple perceptual decision-making such as discrimination of random dot motion has been successfully explained as accumulation of sensory evidence, we lack rigorous experimental paradigms to study the mechanisms underlying complex perceptual decision-making such as discrimination of naturalistic faces. We develop a stochastic multifeature face categorization task as a systematic approach to quantify the properties and potential limitations of the decision-making processes during object recognition. We show that human face categorization could be modeled as a linear integration of sensory evidence over space and time. Our framework to study object recognition as a spatiotemporal integration process is broadly applicable to other object categories and bridges past studies of object recognition and perceptual decision-making.
Collapse
|
9
|
Khandhadia AP, Murphy AP, Romanski LM, Bizley JK, Leopold DA. Audiovisual integration in macaque face patch neurons. Curr Biol 2021; 31:1826-1835.e3. [PMID: 33636119 PMCID: PMC8521527 DOI: 10.1016/j.cub.2021.01.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 12/29/2020] [Accepted: 01/28/2021] [Indexed: 12/03/2022]
Abstract
Primate social communication depends on the perceptual integration of visual and auditory cues, reflected in the multimodal mixing of sensory signals in certain cortical areas. The macaque cortical face patch network, identified through visual, face-selective responses measured with fMRI, is assumed to contribute to visual social interactions. However, whether face patch neurons are also influenced by acoustic information, such as the auditory component of a natural vocalization, remains unknown. Here, we recorded single-unit activity in the anterior fundus (AF) face patch, in the superior temporal sulcus, and anterior medial (AM) face patch, on the undersurface of the temporal lobe, in macaques presented with audiovisual, visual-only, and auditory-only renditions of natural movies of macaques vocalizing. The results revealed that 76% of neurons in face patch AF were significantly influenced by the auditory component of the movie, most often through enhancement of visual responses but sometimes in response to the auditory stimulus alone. By contrast, few neurons in face patch AM exhibited significant auditory responses or modulation. Control experiments in AF used an animated macaque avatar to demonstrate, first, that the structural elements of the face were often essential for audiovisual modulation and, second, that the temporal modulation of the acoustic stimulus was more important than its frequency spectrum. Together, these results identify a striking contrast between two face patches and specifically identify AF as playing a potential role in the integration of audiovisual cues during natural modes of social communication.
Collapse
Affiliation(s)
- Amit P Khandhadia
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA; Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK.
| | - Aidan P Murphy
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Lizabeth M Romanski
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Jennifer K Bizley
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - David A Leopold
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Human brain activity reflecting facial attractiveness from skin reflection. Sci Rep 2021; 11:3412. [PMID: 33619295 PMCID: PMC7900112 DOI: 10.1038/s41598-021-82601-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/06/2020] [Indexed: 11/30/2022] Open
Abstract
Facial attraction has a great influence on our daily social interactions. Previous studies have mainly focused on the attraction from facial shape and expression. We recently found that faces with radiant skin appear to be more attractive than those with oily-shiny or matte skin. In the present study, we conducted functional magnetic resonance imaging (fMRI) and psychological experiments to determine the human brain activity that reflects facial attractiveness modulated by these skin reflection types. In the fMRI experiment, female subjects were shown successive images of unfamiliar female faces with matte, oily-shiny, or radiant skin. The subjects compared each face with the immediately preceding face in terms of attractiveness, age, and skin reflection, all based on the skin. The medial part of the orbitofrontal cortex (mOFC) was significantly more active when comparing attractiveness than when comparing skin reflection, suggesting that the mOFC is involved in processing facial attractiveness from skin reflection. In the psychological experiment, attractiveness rating was highest for radiant skin, followed by oily-shiny, and then matte skin. Comparison of the results of these experiments showed that mOFC activation level increased with attractiveness rating. These results suggest that the activation level of the mOFC reflects facial attractiveness from skin reflection.
Collapse
|
11
|
Salvia E, Harvey M, Nazarian B, Grosbras M. Social perception drives eye-movement related brain activity: Evidence from pro- and anti-saccades to faces. Neuropsychologia 2020; 139:107360. [DOI: 10.1016/j.neuropsychologia.2020.107360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
|
12
|
Salmela VR, Ölander K, Muukkonen I, Bays PM. Recall of facial expressions and simple orientations reveals competition for resources at multiple levels of the visual hierarchy. J Vis 2019; 19:8. [PMID: 30897626 PMCID: PMC6432740 DOI: 10.1167/19.3.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Many studies of visual working memory have tested humans' ability to reproduce primary visual features of simple objects, such as the orientation of a grating or the hue of a color patch, following a delay. A consistent finding of such studies is that precision of responses declines as the number of items in memory increases. Here we compared visual working memory for primary features and high-level objects. We presented participants with memory arrays consisting of oriented gratings, facial expressions, or a mixture of both. Precision of reproduction for all facial expressions declined steadily as the memory load was increased from one to five faces. For primary features, this decline and the specific distributions of error observed, have been parsimoniously explained in terms of neural population codes. We adapted the population coding model for circular variables to the non-circular and bounded parameter space used for expression estimation. Total population activity was held constant according to the principle of normalization and the intensity of expression was decoded by drawing samples from the Bayesian posterior distribution. The model fit the data well, showing that principles of population coding can be applied to model memory representations at multiple levels of the visual hierarchy. When both gratings and faces had to be remembered, an asymmetry was observed. Increasing the number of faces decreased precision of orientation recall, but increasing the number of gratings did not affect recall of expression, suggesting that memorizing faces involves the automatic encoding of low-level features, in addition to higher-level expression information.
Collapse
Affiliation(s)
- Viljami R Salmela
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,Department of Psychology, University of Cambridge, Cambridge, UK
| | - Kaisu Ölander
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Ilkka Muukkonen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Paul M Bays
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Burns EJ, Tree J, Chan AH, Xu H. Bilingualism shapes the other race effect. Vision Res 2019; 157:192-201. [DOI: 10.1016/j.visres.2018.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
|
14
|
Meunier H. The Pertinence of Studying Neuroethology in Nonhuman Primates for Human Behavior in Groups and Organizations. ORGANIZATIONAL RESEARCH METHODS 2018. [DOI: 10.1177/1094428118756741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Are we the only living beings endowed with a complex communicative system and sharp sociocognitive skills? How did these remarkable abilities develop? Even raised several centuries ago, those questions are still nourishing the current research and debates. A relevant approach for identifying the dynamics in the evolution of humans’ social and communicative abilities appears to study our closest living relatives, the nonhuman primates. In this article I focus on two abilities that drove the building of our unique sociality and are still playing a crucial role in daily human behaviors in groups and organizations: (a) the origins of human language, through the study of nonhuman primates gestures, vocalizations, and facial expressions and (b) the precursors and underpinning neural mechanisms of our ability to assess others’ mental states, that is, theory of mind. In each part, examples illustrate the advantages and limitations of the different methodological approaches used in research on nonhuman primates’ communication and social abilities and discuss the results in light of the current hypotheses and still open debates on what make the singularity of our species.
Collapse
Affiliation(s)
- Hélène Meunier
- Centre de Primatologie de l’Université de Strasbourg, Fort Foch, Niederhausbergen, France
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
15
|
Minxha J, Mosher C, Morrow JK, Mamelak AN, Adolphs R, Gothard KM, Rutishauser U. Fixations Gate Species-Specific Responses to Free Viewing of Faces in the Human and Macaque Amygdala. Cell Rep 2017; 18:878-891. [PMID: 28122239 DOI: 10.1016/j.celrep.2016.12.083] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/05/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022] Open
Abstract
Neurons in the primate amygdala respond prominently to faces. This implicates the amygdala in the processing of socially significant stimuli, yet its contribution to social perception remains poorly understood. We evaluated the representation of faces in the primate amygdala during naturalistic conditions by recording from both human and macaque amygdala neurons during free viewing of identical arrays of images with concurrent eye tracking. Neurons responded to faces only when they were fixated, suggesting that neuronal activity was gated by visual attention. Further experiments in humans utilizing covert attention confirmed this hypothesis. In both species, the majority of face-selective neurons preferred faces of conspecifics, a bias also seen behaviorally in first fixation preferences. Response latencies, relative to fixation onset, were shortest for conspecific-selective neurons and were ∼100 ms shorter in monkeys compared to humans. This argues that attention to faces gates amygdala responses, which in turn prioritize species-typical information for further processing.
Collapse
Affiliation(s)
- Juri Minxha
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 90025, USA
| | - Clayton Mosher
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Jeremiah K Morrow
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ralph Adolphs
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 90025, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 90025, USA; Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 90025, USA
| | - Katalin M Gothard
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 90025, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
16
|
Pavlova MA. Sex and gender affect the social brain: Beyond simplicity. J Neurosci Res 2016; 95:235-250. [PMID: 27688155 DOI: 10.1002/jnr.23871] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Marina A. Pavlova
- Department of Biomedical Magnetic Resonance, Medical School; Eberhard Karls University of Tübingen; Tübingen Germany
| |
Collapse
|
17
|
Pavlova MA, Mayer A, Hösl F, Sokolov AN. Faces on Her and His Mind: Female and Likable. PLoS One 2016; 11:e0157636. [PMID: 27352016 PMCID: PMC4924832 DOI: 10.1371/journal.pone.0157636] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Faces are a valuable source of non-verbal information for daily life social interaction. Mounting evidence points to gender specificity in face perception. Here we search for the factors that can potentially trigger gender differences in tuning to faces. By using a set of Face-n-Food images slightly bordering on the Giuseppe Arcimboldo style, we examine: (i) whether face resemblance is linked to gender specific face impression, and, if so, whether this association is perceiver gender specific; and (ii) whether images most resembling a face are also most likable for female and male perceivers. First, in a spontaneous recognition task, participants were shown a set of Face-n-Food images in a predetermined order from the least to most resembling a face. Then in a two-alternative forced-choice (2AFC) task, participants judged whether each face appeared for them (i) either female or male (Exp. 1); or (ii) either likable or unlikable (Exp. 2). Remarkably, face resemblance is closely connected to gender specific impressions: images more resembling a face elicit also more female-face responses. This link is not perceiver gender specific as it occurs for both females and males. Moreover, face resemblance is positively linked to face likability, but this holds true only for female perceivers. The findings shed light on gender specificity in tuning to faces, and help to clarify abnormalities of the social brain in neurodevelopmental, psychiatric and psychosomatic disorders.
Collapse
Affiliation(s)
- Marina A. Pavlova
- Department of Biomedical Magnetic Resonance, Medical School, Eberhard Karls University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Annika Mayer
- Department of Biomedical Magnetic Resonance, Medical School, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Franziska Hösl
- Department of Biomedical Magnetic Resonance, Medical School, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Alexander N. Sokolov
- Department of Women’s Health, Women’s Health Research Institute, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Single-unit activity during natural vision: diversity, consistency, and spatial sensitivity among AF face patch neurons. J Neurosci 2015; 35:5537-48. [PMID: 25855170 DOI: 10.1523/jneurosci.3825-14.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Several visual areas within the STS of the macaque brain respond strongly to faces and other biological stimuli. Determining the principles that govern neural responses in this region has proven challenging, due in part to the inherently complex stimulus domain of dynamic biological stimuli that are not captured by an easily parameterized stimulus set. Here we investigated neural responses in one fMRI-defined face patch in the anterior fundus (AF) of the STS while macaques freely view complex videos rich with natural social content. Longitudinal single-unit recordings allowed for the accumulation of each neuron's responses to repeated video presentations across sessions. We found that individual neurons, while diverse in their response patterns, were consistently and deterministically driven by the video content. We used principal component analysis to compute a family of eigenneurons, which summarized 24% of the shared population activity in the first two components. We found that the most prominent component of AF activity reflected an interaction between visible body region and scene layout. Close-up shots of faces elicited the strongest neural responses, whereas far away shots of faces or close-up shots of hindquarters elicited weak or inhibitory responses. Sensitivity to the apparent proximity of faces was also observed in gamma band local field potential. This category-selective sensitivity to spatial scale, together with the known exchange of anatomical projections of this area with regions involved in visuospatial analysis, suggests that the AF face patch may be specialized in aspects of face perception that pertain to the layout of a social scene.
Collapse
|
19
|
Contrasting specializations for facial motion within the macaque face-processing system. Curr Biol 2015; 25:261-266. [PMID: 25578903 DOI: 10.1016/j.cub.2014.11.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/29/2014] [Accepted: 11/14/2014] [Indexed: 11/20/2022]
Abstract
Facial motion transmits rich and ethologically vital information, but how the brain interprets this complex signal is poorly understood. Facial form is analyzed by anatomically distinct face patches in the macaque brain, and facial motion activates these patches and surrounding areas. Yet, it is not known whether facial motion is processed by its own distinct and specialized neural machinery, and if so, what that machinery's organization might be. To address these questions, we used fMRI to monitor the brain activity of macaque monkeys while they viewed low- and high-level motion and form stimuli. We found that, beyond classical motion areas and the known face patch system, moving faces recruited a heretofore unrecognized face patch. Although all face patches displayed distinctive selectivity for face motion over object motion, only two face patches preferred naturally moving faces, while three others preferred randomized, rapidly varying sequences of facial form. This functional divide was anatomically specific, segregating dorsal from ventral face patches, thereby revealing a new organizational principle of the macaque face-processing system.
Collapse
|
20
|
The building blocks of social communication. Adv Cogn Psychol 2013; 9:173-83. [PMID: 24605176 PMCID: PMC3902830 DOI: 10.2478/v10053-008-0145-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/04/2013] [Indexed: 11/20/2022] Open
Abstract
In the present review, social communication will be discussed in the context of social cognition, and cold and hot cognition. The review presents research on prosody, processing of faces, multimodal processing of voice and face, and the impact of emotion on constructing semantic meaning. Since the focus of this mini review is on brain processes involved in these cognitive functions, the bulk of evidence presented will be from event related potential (ERP) studies as this methodology offers the best temporal resolution of cognitive events under study. The argument is made that social communication is accomplished via fast acting sensory processes and later, top down processes. Future directions both in terms of methodology and research questions are also discussed.
Collapse
|
21
|
Apps MAJ, Tajadura-Jiménez A, Sereno M, Blanke O, Tsakiris M. Plasticity in unimodal and multimodal brain areas reflects multisensory changes in self-face identification. Cereb Cortex 2013; 25:46-55. [PMID: 23964067 DOI: 10.1093/cercor/bht199] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nothing provides as strong a sense of self as seeing one's face. Nevertheless, it remains unknown how the brain processes the sense of self during the multisensory experience of looking at one's face in a mirror. Synchronized visuo-tactile stimulation on one's own and another's face, an experience that is akin to looking in the mirror but seeing another's face, causes the illusory experience of ownership over the other person's face and changes in self-recognition. Here, we investigate the neural correlates of this enfacement illusion using fMRI. We examine activity in the human brain as participants experience tactile stimulation delivered to their face, while observing either temporally synchronous or asynchronous tactile stimulation delivered to another's face on either a specularly congruent or incongruent location. Activity in the multisensory right temporo-parietal junction, intraparietal sulcus, and the unimodal inferior occipital gyrus showed an interaction between the synchronicity and the congruency of the stimulation and varied with the self-reported strength of the illusory experience, which was recorded after each stimulation block. Our results highlight the important interplay between unimodal and multimodal information processing for self-face recognition, and elucidate the neurobiological basis for the plasticity required for identifying with our continuously changing visual appearance.
Collapse
Affiliation(s)
- Matthew A J Apps
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK, Lab of Action and Body, Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, UK
| | | | - Marty Sereno
- Department of Psychological Science, Birkbeck, University of London, WC1H 0DS, UK
| | - Olaf Blanke
- Center for Neuroprosthetics and Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne, SV 2805, Switzerland
| | - Manos Tsakiris
- Lab of Action and Body, Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, UK
| |
Collapse
|
22
|
Ethofer T, Bretscher J, Wiethoff S, Bisch J, Schlipf S, Wildgruber D, Kreifelts B. Functional responses and structural connections of cortical areas for processing faces and voices in the superior temporal sulcus. Neuroimage 2013; 76:45-56. [DOI: 10.1016/j.neuroimage.2013.02.064] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 01/17/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022] Open
|
23
|
Gasser B, Cartmill EA, Arbib MA. Ontogenetic Ritualization of Primate Gesture as a Case Study in Dyadic Brain Modeling. Neuroinformatics 2013; 12:93-109. [DOI: 10.1007/s12021-013-9182-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Apps MAJ, Tsakiris M. The free-energy self: a predictive coding account of self-recognition. Neurosci Biobehav Rev 2013; 41:85-97. [PMID: 23416066 DOI: 10.1016/j.neubiorev.2013.01.029] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/10/2013] [Accepted: 01/28/2013] [Indexed: 01/29/2023]
Abstract
Recognising and representing one's self as distinct from others is a fundamental component of self-awareness. However, current theories of self-recognition are not embedded within global theories of cortical function and therefore fail to provide a compelling explanation of how the self is processed. We present a theoretical account of the neural and computational basis of self-recognition that is embedded within the free-energy account of cortical function. In this account one's body is processed in a Bayesian manner as the most likely to be "me". Such probabilistic representation arises through the integration of information from hierarchically organised unimodal systems in higher-level multimodal areas. This information takes the form of bottom-up "surprise" signals from unimodal sensory systems that are explained away by top-down processes that minimise the level of surprise across the brain. We present evidence that this theoretical perspective may account for the findings of psychological and neuroimaging investigations into self-recognition and particularly evidence that representations of the self are malleable, rather than fixed as previous accounts of self-recognition might suggest.
Collapse
Affiliation(s)
- Matthew A J Apps
- Laboratory of Action and Body, Department of Psychology, Royal Holloway, University of London, UK.
| | - Manos Tsakiris
- Laboratory of Action and Body, Department of Psychology, Royal Holloway, University of London, UK.
| |
Collapse
|
25
|
Apps MAJ, Tajadura-Jiménez A, Turley G, Tsakiris M. The different faces of one's self: an fMRI study into the recognition of current and past self-facial appearances. Neuroimage 2012; 63:1720-9. [PMID: 22940117 DOI: 10.1016/j.neuroimage.2012.08.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 08/09/2012] [Accepted: 08/20/2012] [Indexed: 11/18/2022] Open
Abstract
Mirror self-recognition is often considered as an index of self-awareness. Neuroimaging studies have identified a neural circuit specialised for the recognition of one's own current facial appearance. However, faces change considerably over a lifespan, highlighting the necessity for representations of one's face to continually be updated. We used fMRI to investigate the different neural circuits involved in the recognition of the childhood and current, adult, faces of one's self. Participants viewed images of either their own face as it currently looks morphed with the face of a familiar other or their childhood face morphed with the childhood face of the familiar other. Activity in areas which have a generalised selectivity for faces, including the inferior occipital gyrus, the superior parietal lobule and the inferior temporal gyrus, varied with the amount of current self in an image. Activity in areas involved in memory encoding and retrieval, including the hippocampus and the posterior cingulate gyrus, and areas involved in creating a sense of body ownership, including the temporo-parietal junction and the inferior parietal lobule, varied with the amount of childhood self in an image. We suggest that the recognition of one's own past or present face is underpinned by different cognitive processes in distinct neural circuits. Current self-recognition engages areas involved in perceptual face processing, whereas childhood self-recognition recruits networks involved in body ownership and memory processing.
Collapse
Affiliation(s)
- Matthew A J Apps
- Laboratory of Action and Body, Department of Psychology, Royal Holloway, University of London, UK.
| | | | | | | |
Collapse
|
26
|
Barraclough NE, Ingham J, Page SA. Dynamics of walking adaptation aftereffects induced in static images of walking actors. Vision Res 2012; 59:1-8. [PMID: 22406522 DOI: 10.1016/j.visres.2012.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
|
27
|
Re DE, Coetzee V, Xiao D, Buls D, Tiddeman BP, Boothroyd LG, Perrett DI. Viewing heavy bodies enhances preferences for facial adiposity. ACTA ACUST UNITED AC 2011. [DOI: 10.1556/jep.9.2011.4.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Little AC, Jones BC, DeBruine LM. The many faces of research on face perception. Philos Trans R Soc Lond B Biol Sci 2011; 366:1634-7. [PMID: 21536550 DOI: 10.1098/rstb.2010.0386] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Face perception is fundamental to human social interaction. Many different types of important information are visible in faces and the processes and mechanisms involved in extracting this information are complex and can be highly specialized. The importance of faces has long been recognized by a wide range of scientists. Importantly, the range of perspectives and techniques that this breadth has brought to face perception research has, in recent years, led to many important advances in our understanding of face processing. The articles in this issue on face perception each review a particular arena of interest in face perception, variously focusing on (i) the social aspects of face perception (attraction, recognition and emotion), (ii) the neural mechanisms underlying face perception (using brain scanning, patient data, direct stimulation of the brain, visual adaptation and single-cell recording), and (iii) comparative aspects of face perception (comparing adult human abilities with those of chimpanzees and children). Here, we introduce the central themes of the issue and present an overview of the articles.
Collapse
Affiliation(s)
- Anthony C Little
- Department of Psychology, University of Stirling, Stirling FK9 4LA, UK.
| | | | | |
Collapse
|