1
|
Thomas G, Rusman Q, Morrison WR, Magalhães DM, Dowell JA, Ngumbi E, Osei-Owusu J, Kansman J, Gaffke A, Pagadala Damodaram KJ, Kim SJ, Tabanca N. Deciphering Plant-Insect-Microorganism Signals for Sustainable Crop Production. Biomolecules 2023; 13:997. [PMID: 37371577 PMCID: PMC10295935 DOI: 10.3390/biom13060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Agricultural crop productivity relies on the application of chemical pesticides to reduce pest and pathogen damage. However, chemical pesticides also pose a range of ecological, environmental and economic penalties. This includes the development of pesticide resistance by insect pests and pathogens, rendering pesticides less effective. Alternative sustainable crop protection tools should therefore be considered. Semiochemicals are signalling molecules produced by organisms, including plants, microbes, and animals, which cause behavioural or developmental changes in receiving organisms. Manipulating semiochemicals could provide a more sustainable approach to the management of insect pests and pathogens across crops. Here, we review the role of semiochemicals in the interaction between plants, insects and microbes, including examples of how they have been applied to agricultural systems. We highlight future research priorities to be considered for semiochemicals to be credible alternatives to the application of chemical pesticides.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Quint Rusman
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland;
| | - William R. Morrison
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66502, USA;
| | - Diego M. Magalhães
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Jordan A. Dowell
- Department of Plant Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA;
| | - Esther Ngumbi
- Department of Entomology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA;
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya EY0329-2478, Ghana;
| | - Jessica Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Alexander Gaffke
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Medical, Agricultural, and Veterinary Entomology, 6383 Mahan Dr., Tallahassee, FL 32308, USA;
| | | | - Seong Jong Kim
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Natural Products Utilization Research Unit, University, MS 38677, USA;
| | - Nurhayat Tabanca
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158, USA
| |
Collapse
|
2
|
Rodriguez-Saona C, Polashock JJ, Kyryczenko-Roth V, Holdcraft R, Jimenez-Gonzalez G, De Moraes CM, Mescher MC. Application of Plant Defense Elicitors Fails to Enhance Herbivore Resistance or Mitigate Phytoplasma Infection in Cranberries. FRONTIERS IN PLANT SCIENCE 2021; 12:700242. [PMID: 34456943 PMCID: PMC8387625 DOI: 10.3389/fpls.2021.700242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Synthetic elicitors of the salicylic acid (SA) and jasmonic acid (JA) plant defense pathways can be used to increase crop protection against herbivores and pathogens. In this study, we tested the hypothesis that elicitors of plant defenses interact with pathogen infection to influence crop resistance against vector and nonvector herbivores. To do so, we employed a trophic system comprising of cranberries (Vaccinium macrocarpon), the phytoplasma that causes false blossom disease, and two herbivores-the blunt-nosed leafhopper (Limotettix vaccinii), the vector of false blossom disease, and the nonvector gypsy moth (Lymantria dispar). We tested four commercial elicitors, including three that activate mainly SA-related plant defenses (Actigard, LifeGard, and Regalia) and one activator of JA-related defenses (Blush). A greenhouse experiment in which phytoplasma-infected and uninfected plants received repeated exposure to elicitors revealed that both phytoplasma infection and elicitor treatment individually improved L. vaccinii and L. dispar mass compared to uninfected, untreated controls; however, SA-based elicitor treatments reduced L. vaccinii mass on infected plants. Regalia also improved L. vaccinii survival. Phytoplasma infection reduced plant size and mass, increased levels of nitrogen (N) and SA, and lowered carbon/nitrogen (C/N) ratios compared to uninfected plants, irrespective of elicitor treatment. Although none of our elicitor treatments influenced transcript levels of a phytoplasma-specific marker gene, all of them increased N and reduced C/N levels; the three SA activators also reduced JA levels. Taken together, our findings reveal positive effects of both phytoplasma infection and elicitor treatment on the performance of L. vaccinii and L. dispar in cranberries, likely via enhancement of plant nutrition and changes in phytohormone profiles, specifically increases in SA levels and corresponding decreases in levels of JA. Thus, we found no evidence that the tested elicitors of plant defenses increase resistance to insect herbivores or reduce disease incidence in cranberries.
Collapse
Affiliation(s)
| | - James J Polashock
- Genetic Improvement of Fruits and Vegetables Lab, United States Department of Agriculture-Agricultural Research Service, Chatsworth, NJ, United States
| | - Vera Kyryczenko-Roth
- P.E. Marucci Center, Rutgers University, Lake Oswego, Chatsworth, NJ, United States
| | - Robert Holdcraft
- P.E. Marucci Center, Rutgers University, Lake Oswego, Chatsworth, NJ, United States
| | - Giovanna Jimenez-Gonzalez
- Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente (ECAPMA), Universidad Nacional Abierta y a Distancia (UNAD), Bogotá, Colombia
| | | | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Simon AL, Caulfield JC, Hammond-Kosack KE, Field LM, Aradottir GI. Identifying aphid resistance in the ancestral wheat Triticum monococcum under field conditions. Sci Rep 2021; 11:13495. [PMID: 34188110 PMCID: PMC8241983 DOI: 10.1038/s41598-021-92883-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Wheat is an economically, socially, and nutritionally important crop, however, aphid infestation can often reduce wheat yield through feeding and virus transmission. Through field phenotyping, we investigated aphid resistance in ancestral wheat Triticum monococcum (L.). Aphid (Rhopalosiphum padi (L.), Sitobion avenae (F.) and Metopolophium dirhodum (Wlk.)) populations and natural enemy presence (parasitised mummified aphids, ladybird adults and larvae and lacewing eggs and larvae) on two naturally susceptible wheat varieties, Triticum aestivum (L.) var. Solstice and T. monococcum MDR037, and three potentially resistant genotypes T. monococcum MDR657, MDR045 and MDR049 were monitored across three years of field trials. Triticum monococcum MDR045 and MDR049 had smaller aphid populations, whereas MDR657 showed no resistance. Overall, natural enemy presence was positively correlated with aphid populations; however, MDR049 had similar natural enemy presence to MDR037 which is susceptible to aphid infestation. It is hypothesised that alongside reducing aphid population growth, MDR049 also confers indirect resistance by attracting natural enemies. The observed resistance to aphids in MDR045 and MDR049 has strong potential for introgression into commercial wheat varieties, which could have an important role in Integrated Pest Management strategies to reduce aphid populations and virus transmission.
Collapse
Affiliation(s)
- Amma L. Simon
- grid.418374.d0000 0001 2227 9389Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ Hertfordshire UK ,grid.4563.40000 0004 1936 8868Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD Leicestershire UK
| | - John C. Caulfield
- grid.418374.d0000 0001 2227 9389Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ Hertfordshire UK
| | - Kim E. Hammond-Kosack
- grid.418374.d0000 0001 2227 9389Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ Hertfordshire UK
| | - Linda M. Field
- grid.418374.d0000 0001 2227 9389Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ Hertfordshire UK
| | - Gudbjorg I. Aradottir
- grid.17595.3f0000 0004 0383 6532Department of Pathology, NIAB, Lawrence Weaver Road, Cambridge, CB3 0LE UK
| |
Collapse
|
4
|
Recent advances in biodegradable matrices for active ingredient release in crop protection: Towards attaining sustainability in agriculture. Curr Opin Colloid Interface Sci 2020; 48:121-136. [PMID: 33013179 PMCID: PMC7509166 DOI: 10.1016/j.cocis.2020.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Climate changes, emerging species of plant pests, and deficits of clean water and arable land have made availability of food to the ever-increasing global population a challenge. Excessive use of synthetic pesticides to meet ever-increasing production needs has resulted in development of resistance in pest populations, as well as significant ecotoxicity, which has directly and indirectly impacted all life-forms on earth. To meet the goal of providing safe, sufficient, and high-quality food globally with minimal environmental impact, one strategy is to focus on targeted delivery of pesticides using eco-friendly and biodegradable carriers that are derived from naturally available materials. Herein, we discuss some of the recent approaches to use biodegradable matrices in crop protection, while exploring their design and efficiency. We summarize by discussing associated challenges with the existing approaches and future trends that can lead the world to more sustainable agricultural practices. Providing food safety and security is critical for the growing global population. Crop yield is affected by various biotic and abiotic factors. Targeted/sustained delivery of agrochemicals reduces excessive use of pesticides. Nature-derived biodegradable materials curtail plant health and environmental harm. Biodegradable matrices hold promise for sustainable crop protection.
Collapse
|
5
|
Pickett JA, Weston LA. Possibilities for rationally exploiting co-evolution in addressing resistance to insecticides, and beyond. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 151:18-24. [PMID: 30704708 DOI: 10.1016/j.pestbp.2018.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 06/09/2023]
Abstract
Certain biorational chemical agents used against insect pests impact essential stages or processes in insect life cycles when applied for pest management. Development of resistance to these agents, while involving maintenance of the natural role of the chemical agent, frequently requires the evolution of a new chemical structure by the resistant organism. When considering the process of resistance development, one could theoretically consider biorational structural determination rather than the less predictable or feasible generation of a novel replacement insecticide. At first consideration, this process might exclude toxicants such as typical pest control agents and rather be a phenomenon reserved principally for signalling processes such as are fulfilled by pheromones and other semiochemicals. However, because there is a unique co-evolutionary relationship between chemical defence and the physiology of the antagonistic organism, this process can be further explored for potential to overcome resistance to toxins. Given further consideration, newly evolved chemical defences may rationally provide options for new resistance-defeating chemistry. This review therefore discusses the potential for overcoming insecticide resistance through targeted application of this approach. Potential for use of a similar approach to counteract fungicide and herbicide resistance is also considered. Furthermore, the possible applications of this approach to address drug or pharmaceutic resistance are also considered.
Collapse
Affiliation(s)
- John A Pickett
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom.
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
6
|
Pappas ML, Broekgaarden C, Broufas GD, Kant MR, Messelink GJ, Steppuhn A, Wäckers F, van Dam NM. Induced plant defences in biological control of arthropod pests: a double-edged sword. PEST MANAGEMENT SCIENCE 2017; 73:1780-1788. [PMID: 28387028 PMCID: PMC5575458 DOI: 10.1002/ps.4587] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 05/21/2023]
Abstract
Biological control is an important ecosystem service delivered by natural enemies. Together with breeding for plant defence, it constitutes one of the most promising alternatives to pesticides for controlling herbivores in sustainable crop production. Especially induced plant defences may be promising targets in plant breeding for resistance against arthropod pests. Because they are activated upon herbivore damage, costs are only incurred when defence is needed. Moreover, they can be more specific than constitutive defences. Nevertheless, inducible defence traits that are harming plant pest organisms may interfere with biological control agents, such as predators and parasitoids. Despite the vast fundamental knowledge on plant defence mechanisms and their effects on natural enemies, our understanding of the feasibility of combining biological control with induced plant defence in practice is relatively poor. In this review, we focus on arthropod pest control and present the most important features of biological control with natural enemies and of induced plant defence. Furthermore, we show potential synergies and conflicts among them and, finally, identify gaps and list opportunities for their combined use in crop protection. We suggest that breeders should focus on inducible resistance traits that are compatible with the natural enemies of arthropod pests, specifically traits that help communities of natural enemies to build up. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria L Pappas
- Democritus University of Thrace, Faculty of Agricultural and Forestry SciencesDepartment of Agricultural DevelopmentOrestiadaGreece
| | - Colette Broekgaarden
- Utrecht University, Faculty of ScienceDepartment of Biology, Plant − Microbe InteractionsUtrechtThe Netherlands
| | - George D Broufas
- Democritus University of Thrace, Faculty of Agricultural and Forestry SciencesDepartment of Agricultural DevelopmentOrestiadaGreece
| | - Merijn R Kant
- University of AmsterdamInstitute for Biodiversity and Ecosystem Dynamics, Section Molecular and Chemical EcologyAmsterdamThe Netherlands
| | | | - Anke Steppuhn
- Freie Universität BerlinInstitute of Biology, Molecular Ecology, Dahlem Centre of Plant SciencesBerlinGermany
| | - Felix Wäckers
- BiobestWesterloBelgium
- Lancaster UniversityLancaster Environment CentreUK
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Friedrich Schiller University JenaInstitute of EcologyJenaGermany
| |
Collapse
|
7
|
Sobhy IS, Woodcock CM, Powers SJ, Caulfield JC, Pickett JA, Birkett MA. cis-Jasmone Elicits Aphid-Induced Stress Signalling in Potatoes. J Chem Ecol 2017; 43:39-52. [PMID: 28130741 PMCID: PMC5331074 DOI: 10.1007/s10886-016-0805-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/16/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
Abstract
Elicitation of plant defense signaling that results in altered emission of volatile organic compounds (VOCs) offers opportunities for protecting plants against arthropod pests. In this study, we treated potato, Solanum tuberosum L., with the plant defense elicitor cis-jasmone (CJ), which induces the emission of defense VOCs and thus affects the behavior of herbivores. Using chemical analysis, electrophysiological and behavioral assays with the potato-feeding aphid Macrosiphum euphorbiae, we showed that CJ treatment substantially increased the emission of defense VOCs from potatoes compared to no treatment. Coupled GC-electroantennogram (GC-EAG) recordings from the antennae of M. euphorbiae showed robust responses to 14 compounds present in induced VOCs, suggesting their behavioral role in potato/aphid interactions. Plants treated with CJ and then challenged with M. euphorbiae were most repellent to alate M. euphorbiae. Principal component analysis (PCA) of VOC collections suggested that (E)-2-hexenal, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), (E)-β-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate (MeSA), CJ, and methyl benzoate (MeBA) were the main VOCs contributing to aphid behavioral responses, and that production of TMTT, (E)-β-farnesene, CJ, and DMNT correlated most strongly with aphid repellency. Our findings confirm that CJ can enhance potato defense against aphids by inducing production of VOCs involved in aphid-induced signalling.
Collapse
Affiliation(s)
- Islam S Sobhy
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK.,Department of Plant Protection, Public Service Center of Biological Control (PSCBC), Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt.,Department of Microbial & Molecular Systems, KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Leuven, Belgium
| | | | - Stephen J Powers
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK
| | - John C Caulfield
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK
| | - John A Pickett
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK
| | - Michael A Birkett
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK.
| |
Collapse
|
8
|
Kergunteuil A, Bakhtiari M, Formenti L, Xiao Z, Defossez E, Rasmann S. Biological Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores. INSECTS 2016; 7:E70. [PMID: 27916820 PMCID: PMC5198218 DOI: 10.3390/insects7040070] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022]
Abstract
Sustainable agriculture is certainly one of the most important challenges at present, considering both human population demography and evidence showing that crop productivity based on chemical control is plateauing. While the environmental and health threats of conventional agriculture are increasing, ecological research is offering promising solutions for crop protection against herbivore pests. While most research has focused on aboveground systems, several major crop pests are uniquely feeding on roots. We here aim at documenting the current and potential use of several biological control agents, including micro-organisms (viruses, bacteria, fungi, and nematodes) and invertebrates included among the macrofauna of soils (arthropods and annelids) that are used against root herbivores. In addition, we discuss the synergistic action of different bio-control agents when co-inoculated in soil and how the induction and priming of plant chemical defense could be synergized with the use of the bio-control agents described above to optimize root pest control. Finally, we highlight the gaps in the research for optimizing a more sustainable management of root pests.
Collapse
Affiliation(s)
- Alan Kergunteuil
- Functional Ecology Laboratory, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland.
| | - Moe Bakhtiari
- Functional Ecology Laboratory, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland.
| | - Ludovico Formenti
- Functional Ecology Laboratory, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland.
| | - Zhenggao Xiao
- Functional Ecology Laboratory, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland.
| | - Emmanuel Defossez
- Functional Ecology Laboratory, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland.
| | - Sergio Rasmann
- Functional Ecology Laboratory, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
9
|
Anderson JA, Gipmans M, Hurst S, Layton R, Nehra N, Pickett J, Shah DM, Souza TLPO, Tripathi L. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:383-393. [PMID: 26785813 DOI: 10.1021/acs.jafc.5b04543] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.
Collapse
Affiliation(s)
| | - Martijn Gipmans
- BASF Bioscience Research, c/o metanomics GmbH, Tegeler Weg 33, 10589 Berlin, Germany
| | - Susan Hurst
- Arcadia Biosciences, Seattle, Washington 98119, United States
| | | | - Narender Nehra
- Institute for International Crop Improvement, Donald Danforth Plant Science Center , St. Louis, Missouri 63132, United States
| | - John Pickett
- Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Dilip M Shah
- Donald Danforth Plant Science Center , St. Louis, Missouri 63132, United States
| | - Thiago Lívio P O Souza
- Embrapa Arroz e Feijão, Rod. GO-462, km 12, Santo Antônio de Goiás, GO 75.375-000, Brazil
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| |
Collapse
|
10
|
Johnson D, Gilbert L. Interplant signalling through hyphal networks. THE NEW PHYTOLOGIST 2015; 205:1448-1453. [PMID: 25421970 DOI: 10.1111/nph.13115] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/12/2014] [Indexed: 05/08/2023]
Abstract
Mycorrhizal fungi can form common mycelial networks (CMNs) that interconnect plants. Here, we provide an insight into recent findings demonstrating that CMNs can be conduits for interplant signalling, influencing defence against insect herbivores and foliar necrotrophic fungi. A likely mechanism is direct transfer of signalling molecules within hyphae. However, electrical signals, which can be induced by wounding, may also enable signalling over relatively long distances, because the biophysical constraints imposed by liquid transport in hyphae and interaction with soil are relieved. We do not yet understand the ecological, evolutionary and agronomic implications of interplant signalling via CMNs. Identifying the mechanism of interplant signalling will help to address these gaps.
Collapse
Affiliation(s)
- David Johnson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, UK
| | - Lucy Gilbert
- Ecological Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| |
Collapse
|
11
|
Gurr GM, You M. Conservation Biological Control of Pests in the Molecular Era: New Opportunities to Address Old Constraints. FRONTIERS IN PLANT SCIENCE 2015; 6:1255. [PMID: 26793225 PMCID: PMC4709504 DOI: 10.3389/fpls.2015.01255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/23/2015] [Indexed: 05/18/2023]
Abstract
Biological control has long been considered a potential alternative to pesticidal strategies for pest management but its impact and level of use globally remain modest and inconsistent. A rapidly expanding range of molecular - particularly DNA-related - techniques is currently revolutionizing many life sciences. This review identifies a series of constraints on the development and uptake of conservation biological control and considers the contemporary and likely future influence of molecular methods on these constraints. Molecular approaches are now often used to complement morphological taxonomic methods for the identification and study of biological control agents including microbes. A succession of molecular techniques has been applied to 'who eats whom' questions in food-web ecology. Polymerase chain reaction (PCR) approaches have largely superseded immunological approaches such as enzyme-linked immunosorbent assay (ELISA) and now - in turn - are being overtaken by next generation sequencing (NGS)-based approaches that offer unparalleled power at a rapidly diminishing cost. There is scope also to use molecular techniques to manipulate biological control agents, which will be accelerated with the advent of gene editing tools, the CRISPR/Cas9 system in particular. Gene editing tools also offer unparalleled power to both elucidate and manipulate plant defense mechanisms including those that involve natural enemy attraction to attacked plants. Rapid advances in technology will allow the development of still more novel pest management options for which uptake is likely to be limited chiefly by regulatory hurdles.
Collapse
Affiliation(s)
- Geoff M. Gurr
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFuzhou, China
- Graham Centre, Charles Sturt UniversityOrange, NSW, Australia
- *Correspondence: Geoff M. Gurr,
| | - Minsheng You
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFuzhou, China
| |
Collapse
|
12
|
Poppy GM, Jepson PC, Pickett JA, Birkett MA. Achieving food and environmental security: new approaches to close the gap. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120272. [PMID: 24535384 DOI: 10.1098/rstb.2012.0272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- G M Poppy
- Centre for Biological Sciences, University of Southampton, , Southampton SO17 1BJ, UK
| | | | | | | |
Collapse
|