1
|
Choi Y, Ando Y, Lee D, Kim NY, Lee OEM, Cho J, Seo I, Chong GO, Park NJY. Profiling of Lymphovascular Space Invasion in Cervical Cancer Revealed PI3K/Akt Signaling Pathway Overactivation and Heterogenic Tumor-Immune Microenvironments. Life (Basel) 2023; 13:2342. [PMID: 38137942 PMCID: PMC10744523 DOI: 10.3390/life13122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Lymphovascular space invasion (LVSI) is the presence of tumor emboli in the endothelial-lined space at the tumor body's invasive edge. LVSI is one of three Sedlis criteria components-a prognostic tool for early cervical cancer (CC)-essential for indicating poor prognosis, such as lymph node metastasis, distant metastasis, or shorter survival rate. Despite its clinical significance, an in-depth comprehension of the molecular mechanisms or immune dynamics underlying LVSI in CC remains elusive. Therefore, this study investigated tumor-immune microenvironment (TIME) dynamics of the LVSI-positive group in CC. RNA sequencing included formalin-fixed paraffin-embedded (FFPE) slides from 21 CC patients, and differentially expressed genes (DEGs) were analyzed. Functional analysis and immune deconvolution revealed aberrantly enriched PI3K/Akt pathway activation and a heterogenic immune composition with a low abundance of regulatory T cells (Treg) between LVSI-positive and LVSI-absent groups. These findings improve the comprehension of LSVI TIME and immune mechanisms, benefiting targeted LVSI therapy for CC.
Collapse
Affiliation(s)
- Yeseul Choi
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Yu Ando
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Donghyeon Lee
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Na Young Kim
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Olive E. M. Lee
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Junghwan Cho
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea; (J.C.); (I.S.)
| | - Incheol Seo
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea; (J.C.); (I.S.)
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Gun Oh Chong
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea; (J.C.); (I.S.)
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Nora Jee-Young Park
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea; (J.C.); (I.S.)
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| |
Collapse
|
2
|
Marini M, Titiz M, Souza Monteiro de Araújo D, Geppetti P, Nassini R, De Logu F. TRP Channels in Cancer: Signaling Mechanisms and Translational Approaches. Biomolecules 2023; 13:1557. [PMID: 37892239 PMCID: PMC10605459 DOI: 10.3390/biom13101557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ion channels play a crucial role in a wide range of biological processes, including cell cycle regulation and cancer progression. In particular, the transient receptor potential (TRP) family of channels has emerged as a promising therapeutic target due to its involvement in several stages of cancer development and dissemination. TRP channels are expressed in a large variety of cells and tissues, and by increasing cation intracellular concentration, they monitor mechanical, thermal, and chemical stimuli under physiological and pathological conditions. Some members of the TRP superfamily, namely vanilloid (TRPV), canonical (TRPC), melastatin (TRPM), and ankyrin (TRPA), have been investigated in different types of cancer, including breast, prostate, lung, and colorectal cancer. TRP channels are involved in processes such as cell proliferation, migration, invasion, angiogenesis, and drug resistance, all related to cancer progression. Some TRP channels have been mechanistically associated with the signaling of cancer pain. Understanding the cellular and molecular mechanisms by which TRP channels influence cancer provides new opportunities for the development of targeted therapeutic strategies. Selective inhibitors of TRP channels are under initial scrutiny in experimental animals as potential anti-cancer agents. In-depth knowledge of these channels and their regulatory mechanisms may lead to new therapeutic strategies for cancer treatment, providing new perspectives for the development of effective targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139 Florence, Italy; (M.M.); (M.T.); (D.S.M.d.A.); (P.G.); (F.D.L.)
| | | |
Collapse
|
3
|
Usseglio J, Dumur A, Pagès E, Renaudie É, Abélanet A, Brie J, Champion É, Magnaudeix A. Microporous Hydroxyapatite-Based Ceramics Alter the Physiology of Endothelial Cells through Physical and Chemical Cues. J Funct Biomater 2023; 14:460. [PMID: 37754874 PMCID: PMC10531673 DOI: 10.3390/jfb14090460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Incorporation of silicate ions in calcium phosphate ceramics (CPC) and modification of their multiscale architecture are two strategies for improving the vascularization of scaffolds for bone regenerative medicine. The response of endothelial cells, actors for vascularization, to the chemical and physical cues of biomaterial surfaces is little documented, although essential. We aimed to characterize in vitro the response of an endothelial cell line, C166, cultivated on the surface CPCs varying either in terms of their chemistry (pure versus silicon-doped HA) or their microstructure (dense versus microporous). Adhesion, metabolic activity, and proliferation were significantly altered on microporous ceramics, but the secretion of the pro-angiogenic VEGF-A increased from 262 to 386 pg/mL on porous compared to dense silicon-doped HA ceramics after 168 h. A tubulogenesis assay was set up directly on the ceramics. Two configurations were designed for discriminating the influence of the chemistry from that of the surface physical properties. The formation of tubule-like structures was qualitatively more frequent on dense ceramics. Microporous ceramics induced calcium depletion in the culture medium (from 2 down to 0.5 mmol/L), which is deleterious for C166. Importantly, this effect might be associated with the in vitro static cell culture. No influence of silicon doping of HA on C166 behavior was detected.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amandine Magnaudeix
- Université de Limoges, CNRS, Institut de Recherche sur les Céramiques, UMR 7315, F-87000 Limoges, France; (J.U.); (A.D.); (E.P.); (É.R.); (A.A.); (J.B.); (É.C.)
| |
Collapse
|
4
|
Zhang D, Yin G, Zheng S, Chen Q, Li Y. Construction of a prediction model for prognosis of bladder cancer based on the expression of ion channel-related genes. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:499-509. [PMID: 37643983 PMCID: PMC10495249 DOI: 10.3724/zdxbyxb-2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/06/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVES To construct a prediction model for the prognosis of bladder cancer patients based on the expression of ion channel-related genes (ICRGs). METHODS ICRGs were obtained from the existing researches. The clinical information and the expression of ICRGs mRNA in breast cancer patients were obtained from the Cancer Genome Atlas database. Cox regression analysis, minimum absolute shrinkage and selection operator regression analysis were used to screen breast cancer prognosis related genes, which were verified by immunohistochemistry and qRT-PCR. The risk scoring equation for predicting the prognosis of patients with bladder cancer was constructed, and the patients were divided into high-risk group and low-risk group according to the median risk score. Immune cell infiltration was compared between the two groups. Kaplan-Meier survival curve and receiver operating characteristic (ROC) curve were used to evaluate the accuracy and clinical application value of the risk scoring equation. The factors related to the prognosis of bladder cancer patients were analyzed by univariate and multivariate Cox regression, and a nomogram for predicting the prognosis of bladder cancer patients was constructed. RESULTS By comparing the expression levels of ICRGs in bladder cancer tissues and normal bladder tissues, 73 differentially expressed ICRGs were dentified, of which 11 were related to the prognosis of bladder cancer patients. Kaplan-Meier survival curve suggested that the risk score based on these 11 genes was negatively correlated with the prognosis of patients. The area under the ROC curve of the risk score for predicting the prognosis of patients at 1, 3 and 5 year was 0.634, 0.665 and 0.712, respectively. Stratified analysis showed that the ICRGs-based risk score performed well in predicting the prognosis of patients with American Joint Committee on Cancer (AJCC) stage Ⅲ-Ⅳ bladder cancer (P<0.05), while it had a poor value in predicting the prognosis of patients with AJCC stage Ⅰ-Ⅱ (P>0.05). There were significant differences in the infiltration of plasma cells, activated natural killer cells, resting mast cells and M2 macrophages between the high-risk group and the low-risk group. Cox regression analysis showed that risk score, smoking, age and AJCC stage were independently associated with the prognosis of patients with bladder cancer (P<0.05). The nomogram constructed by combining risk score and clinical parameters has high accuracy in predicting the 1, 3 and 5 year overall survival rate of bladder cancer patients. CONCLUSIONS The study shows the potential value of ICRGs in the prognostic risk assessment of bladder cancer patients. The constructed prognostic nomogram based on ICRGs risk score has high accuracy in predicting the prognosis of bladder cancer patients.
Collapse
Affiliation(s)
- Dianfeng Zhang
- Department of Urology, Xuchang Central Hospital of Henan Province, Xuchang 461000, Henan Province, China.
| | - Guicao Yin
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Shengqi Zheng
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Qiu Chen
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Yifan Li
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China.
| |
Collapse
|
5
|
The Impact of Plasma Membrane Ion Channels on Bone Remodeling in Response to Mechanical Stress, Oxidative Imbalance, and Acidosis. Antioxidants (Basel) 2023; 12:antiox12030689. [PMID: 36978936 PMCID: PMC10045377 DOI: 10.3390/antiox12030689] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
The extracellular milieu is a rich source of different stimuli and stressors. Some of them depend on the chemical–physical features of the matrix, while others may come from the ‘outer’ environment, as in the case of mechanical loading applied on the bones. In addition to these forces, a plethora of chemical signals drives cell physiology and fate, possibly leading to dysfunctions when the homeostasis is disrupted. This variety of stimuli triggers different responses among the tissues: bones represent a particular milieu in which a fragile balance between mechanical and metabolic demands should be tuned and maintained by the concerted activity of cell biomolecules located at the interface between external and internal environments. Plasma membrane ion channels can be viewed as multifunctional protein machines that act as rapid and selective dual-nature hubs, sensors, and transducers. Here we focus on some multisensory ion channels (belonging to Piezo, TRP, ASIC/EnaC, P2XR, Connexin, and Pannexin families) actually or potentially playing a significant role in bone adaptation to three main stressors, mechanical forces, oxidative stress, and acidosis, through their effects on bone cells including mesenchymal stem cells, osteoblasts, osteoclasts, and osteocytes. Ion channel-mediated bone remodeling occurs in physiological processes, aging, and human diseases such as osteoporosis, cancer, and traumatic events.
Collapse
|
6
|
Sakellakis M, Chalkias A. The Role οf Ion Channels in the Development and Progression of Prostate Cancer. Mol Diagn Ther 2023; 27:227-242. [PMID: 36600143 DOI: 10.1007/s40291-022-00636-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/06/2023]
Abstract
Ion channels have major regulatory functions in living cells. Apart from their role in ion transport, they are responsible for cellular electrogenesis and excitability, and may also regulate tissue homeostasis. Although cancer is not officially classified as a channelopathy, it has been increasingly recognized that ion channel aberrations play an important role in virtually all cancer types. Ion channels can exert pro-tumorigenic activities due to genetic or epigenetic alterations, or as a response to molecular signals, such as growth factors, hormones, etc. Increasing evidence suggests that ion channels and pumps play a critical role in the regulation of prostate cancer cell proliferation, apoptosis evasion, migration, epithelial-to-mesenchymal transition, and angiogenesis. There is also evidence suggesting that ion channels might play a role in treatment failure in patients with prostate cancer. Hence, they represent promising targets for diagnosis, staging, and treatment, and their effects may be of particular significance for specific patient populations, including those undergoing anesthesia and surgery. In this article, the role of major types of ion channels involved in the development and progression of prostate cancer are reviewed. Identifying the underlying molecular mechanisms of the pro-tumorigenic effects of ion channels may potentially inform the development of novel therapeutic strategies to counter this malignancy.
Collapse
Affiliation(s)
- Minas Sakellakis
- Hellenic GU Cancer Group, Athens, Greece. .,Department of Medical Oncology, Metropolitan Hospital, 9 Ethnarchou Makariou, 18547, Athens, Greece.
| | - Athanasios Chalkias
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Outcomes Research Consortium, Cleveland, OH, USA
| |
Collapse
|
7
|
Bioelectronic medicines: Therapeutic potential and advancements in next-generation cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188808. [DOI: 10.1016/j.bbcan.2022.188808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
8
|
Buchanan PJ, Vandier C. Bioelectricity of the Tumor Microenvironment. Bioelectricity 2022; 4:73-74. [PMID: 39350773 PMCID: PMC11441356 DOI: 10.1089/bioe.2022.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Paul J. Buchanan
- DCU Cancer Research Group, National Institute Cellular Biotechnology, School of Nursing, Psychotherapy and Community Health, Dublin City University (DCU), Dublin, Ireland
| | | |
Collapse
|
9
|
Rajaratinam H, Rasudin NS, Al Astani TAD, Mokhtar NF, Yahya MM, Wan Zain WZ, Asma-Abdullah N, Mohd Fuad WE. Breast cancer therapy affects the expression of antineonatal Nav1.5 antibodies in the serum of patients with breast cancer. Oncol Lett 2021; 21:108. [PMID: 33376541 PMCID: PMC7751336 DOI: 10.3892/ol.2020.12369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/05/2020] [Indexed: 11/06/2022] Open
Abstract
Neonatal Nav1.5 (nNav1.5) is the alternative splice variant of Nav1.5 and it has been widely associated with the progression of breast cancer. The immunological context of nNav1.5 with respect to breast cancer metastases remains unexplored. The presence of antibodies against nNav1.5 may highlight the immunogenicity of nNav1.5. Hence, the aim of the present study was to detect the presence of antineonatal Nav1.5 antibodies (antinNav1.5-Ab) in the serum of patients with breast cancer and to elucidate the effects of breast cancer therapy on its expression. A total of 32 healthy female volunteers and 64 patients with breast cancer were randomly recruited into the present study as the control and breast cancer group, respectively. Patients with breast cancer were divided equally based on their pre- and ongoing-treatment status. Serum samples were tested with in-house indirect enzyme-linked immunosorbent assay (ELISA) to detect antinNav1.5-Ab, CD25 (T regulatory cell marker) using an ELISA kit and Luminex assay to detect the expression of metastasis-associated cytokines, such as vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-10, IL-8, chemokine (C-C motif) ligand 2 and tumor necrosis factor-alpha (TNF-α) The mean difference in the expression of antinNav1.5-Ab among the three groups (control, pretreatment and ongoing-treatment) was significant (P=0.0005) and the pretreatment breast cancer group exhibited the highest expression. The concentration of CD25 was highest in the pretreatment breast cancer group compared with the control and ongoing-treatment groups. There was a significant positive correlation between antinNav1.5-Ab and IL-6 in the pretreatment group (r=0.7260; P=0.0210) and a significant negative correlation between antinNav1.5-Ab and VEGF in the ongoing-treatment group (r=-0.842; P-value=0.0040). The high expression of antinNav1.5-Ab in the pretreatment group was in accordance with the uninterrupted presence of metastasis and highlighted the immunogenicity of nNav1.5 whereas the low expression of antinNav1.5-Ab in the ongoing-treatment group reflected the efficacy of breast cancer therapy in eliminating metastases. The augmented manifestation of T regulatory cells in the pretreatment group highlighted the functional role of nNav1.5 in promoting metastasis. The parallel expression of antinNav1.5-Ab with the imbalanced expression of cytokines promoting metastasis (IL-8, IL-6 and TNF-α) and cytokines that prevent metastasis (IL-10) indicated the role of nNav1.5 in breast cancer growth. The expression of antinNav1.5-Ab in accordance to the metastatic microenvironment indicates the immunogenicity of the protein and highlights the influence of breast cancer therapy on its expression level.
Collapse
Affiliation(s)
- Harishini Rajaratinam
- School of Health Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Nur Syahmina Rasudin
- School of Health Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Tengku Ahmad Damitri Al Astani
- Department of Chemical Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
- Breast Cancer Awareness and Research (BestARi) Unit, Hospital Universiti Sains Malaysia (HUSM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Maya Mazuwin Yahya
- Department of Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Wan Zainira Wan Zain
- Department of Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Nurul Asma-Abdullah
- School of Health Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| | - Wan Ezumi Mohd Fuad
- School of Health Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
10
|
Moccia F, Antognazza MR, Lodola F. Towards Novel Geneless Approaches for Therapeutic Angiogenesis. Front Physiol 2021; 11:616189. [PMID: 33551844 PMCID: PMC7855168 DOI: 10.3389/fphys.2020.616189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Such a widespread diffusion makes the conditions affecting the heart and blood vessels a primary medical and economic burden. It, therefore, becomes mandatory to identify effective treatments that can alleviate this global problem. Among the different solutions brought to the attention of the medical-scientific community, therapeutic angiogenesis is one of the most promising. However, this approach, which aims to treat cardiovascular diseases by generating new blood vessels in ischemic tissues, has so far led to inadequate results due to several issues. In this perspective, we will discuss cutting-edge approaches and future perspectives to alleviate the potentially lethal impact of cardiovascular diseases. We will focus on the consolidated role of resident endothelial progenitor cells, particularly endothelial colony forming cells, as suitable candidates for cell-based therapy demonstrating the importance of targeting intracellular Ca2+ signaling to boost their regenerative outcome. Moreover, we will elucidate the advantages of physical stimuli over traditional approaches. In particular, we will critically discuss recent results obtained by using optical stimulation, as a novel strategy to drive endothelial colony forming cells fate and its potential in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Francesco Lodola
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
11
|
Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐Alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andie J. Robinson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Akhil Jain
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Harry G. Sherman
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Richard J. M. Hague
- Centre for Additive Manufacturing, Faculty of Engineering University of Nottingham Nottingham NG8 1BB UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine University of Nottingham Nottingham NG7 2RD UK
| | - Paola Sanjuan‐Alberte
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences, Instituto Superior Técnico Universidade de Lisboa Lisbon 1049‐001 Portugal
| | - Frankie J. Rawson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
12
|
Wilson C, Zhang X, Lee MD, MacDonald M, Heathcote HR, Alorfi NMN, Buckley C, Dolan S, McCarron JG. Disrupted endothelial cell heterogeneity and network organization impair vascular function in prediabetic obesity. Metabolism 2020; 111:154340. [PMID: 32791171 PMCID: PMC7538703 DOI: 10.1016/j.metabol.2020.154340] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Obesity is a major risk factor for diabetes and cardiovascular diseases such as hypertension, heart failure, and stroke. Impaired endothelial function occurs in the earliest stages of obesity and underlies vascular alterations that give rise to cardiovascular disease. However, the mechanisms that link weight gain to endothelial dysfunction are ill-defined. Increasing evidence suggests that endothelial cells are not a population of uniform cells but are highly heterogeneous and are organized as a communicating multicellular network that controls vascular function. PURPOSE To investigate the hypothesis that disrupted endothelial heterogeneity and network-level organization contribute to impaired vascular reactivity in obesity. METHODS AND RESULTS To study obesity-related vascular function without complications associated with diabetes, a state of prediabetic obesity was induced in rats. Small artery diameter recordings confirmed nitric-oxide mediated vasodilator responses were dependent on increases in endothelial calcium levels and were impaired in obese animals. Single-photon imaging revealed a linear relationship between blood vessel relaxation and population-wide calcium responses. Obesity did not alter the slope of this relationship, but impaired calcium responses in the endothelial cell network. The network comprised structural and functional components. The structural architecture, a hexagonal lattice network of connected cells, was unchanged in obesity. The functional network contained sub-populations of clustered specialized agonist-sensing cells from which signals were communicated through the network. In obesity there were fewer but larger clusters of sensory cells and communication path lengths between clusters increased. Communication between neighboring cells was unaltered in obesity. Altered network organization resulted in impaired, population-level calcium signaling and deficient endothelial control of vascular tone. CONCLUSIONS The distribution of cells in the endothelial network is critical in determining overall vascular response. Altered cell heterogeneity and arrangement in obesity decreases endothelial function and provides a novel framework for understanding compromised endothelial function in cardiovascular disease.
Collapse
Affiliation(s)
- Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Margaret MacDonald
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Helen R Heathcote
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Nasser M N Alorfi
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Sharron Dolan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
13
|
HUANG CHOULONG, JIAN XIE, YUH CHIOUHWA. WNK1-OSR1/SPAK KINASE CASCADE IS IMPORTANT FOR ANGIOGENESIS. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2020; 131:140-146. [PMID: 32675854 PMCID: PMC7358493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
WNK [with-no-lysine (K)] kinases are a family of four members of serine and threonine kinases that regulate renal Na+ and K+ transport. Mutations of WNK1 and WNK4 cause a hereditary hypertensive and hyperkalemic disease known as pseudohypoaldosteronism type II (PHA2). Unlike other WNK isoforms, WNK1 is ubiquitously expressed and regulates many other cellular processes outside the kidney. Oxidative stress response kinase (OSR1) and related STE 20/SPS1-related proline alanine-rich kinase (SPAK) are downstream kinases of WNK kinases. To examine the role of WNK kinase cascade in vivo, we generated global Wnk1-deleted mice and found that Wnk1-ablated mice die in utero from embryonic angiogenesis and cardiac developmental defects. Endothelial-specific Wnk1 deletion reveals that angiogenesis defect is due to WNK1 requirement in endothelium. We further showed that global and endothelial-deletion of Osr1 phenocopies Wnk1 deletion. Furthermore, expression of a catalytic constitutively active Osr1 transgene rescues angiogenesis defects and embryonic lethality of Wnk1-ablated mice. In zebrafish, Wnk1 knockdown causes similar angiogenesis defects to Vegf2 (Flk1) knockdown and that expression of WNK1 partially rescues Flk1 angiogenesis defects. The results indicate that WNK1 is downstream of VEGF signaling cascade. T-lymphocytes isolated from Wnk1-null mice exhibit migration defects. Inhibition of WNK1-OSR1 downstream target Na-K-2Cl cotransporter NKCC1 mimics migration defect of WNK1-deficient T-lymphocytes. Thus, WNK1-OSR1/SPAK cascade is important for angiogenesis. Regulation of ion homeostasis and cell volume may underlie the mechanism for WNK1 regulation of endothelial cell migration and angiogenesis.
Collapse
|
14
|
Calcium-Permeable Channels in Tumor Vascularization: Peculiar Sensors of Microenvironmental Chemical and Physical Cues. Rev Physiol Biochem Pharmacol 2020; 182:111-137. [DOI: 10.1007/112_2020_32] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019; 25:5732-5772. [PMID: 31636470 PMCID: PMC6801186 DOI: 10.3748/wjg.v25.i38.5732] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell. The functions of ion channels in the gastrointestinal (GI) tract influence a variety of cellular processes, many of which overlap with these hallmarks of cancer. In this review we focus on the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle, apoptosis, and migration. Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6 and TRPM2, have been implicated in GI cancers, especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer. Voltage-gated sodium channels (VGSCs) are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples. Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression. Zn2+ transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer (PC). More than 70 K+ channel genes, clustered in four families, are found expressed in the GI tract, where they regulate a range of cellular processes, including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract. Several distinct types of K+ channels are found dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are critical for a range of cellular and tissue processes in the GI tract, especially fluid balance in the colon. Most notable is CFTR, whose deficiency leads to mucus blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant risk for CRC and low levels of CFTR expression are associated with poor overall disease-free survival in sporadic CRC. Two other classes of chloride channels that are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 & 4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins have been reported to be down-regulated in CRC. In summary, it is clear, from the diverse influences of ion channels, that their aberrant expression and/or activity can contribute to malignant transformation and tumor progression. Further, because ion channels are often localized to the plasma membrane and subject to multiple layers of regulation, they represent promising clinical targets for therapeutic intervention including the repurposing of current drugs.
Collapse
Affiliation(s)
- Kyle J Anderson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Robert T Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| |
Collapse
|
16
|
Store-Operated Ca 2+ Entry in Tumor Progression: From Molecular Mechanisms to Clinical Implications. Cancers (Basel) 2019; 11:cancers11070899. [PMID: 31252656 PMCID: PMC6678533 DOI: 10.3390/cancers11070899] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
The remodeling of Ca2+ homeostasis has been implicated as a critical event in driving malignant phenotypes, such as tumor cell proliferation, motility, and metastasis. Store-operated Ca2+ entry (SOCE) that is elicited by the depletion of the endoplasmic reticulum (ER) Ca2+ stores constitutes the major Ca2+ influx pathways in most nonexcitable cells. Functional coupling between the plasma membrane Orai channels and ER Ca2+-sensing STIM proteins regulates SOCE activation. Previous studies in the human breast, cervical, and other cancer types have shown the functional significance of STIM/Orai-dependent Ca2+ signals in cancer development and progression. This article reviews the information on the regulatory mechanisms of STIM- and Orai-dependent SOCE pathways in the malignant characteristics of cancer, such as proliferation, resistance, migration, invasion, and metastasis. The recent investigations focusing on the emerging importance of SOCE in the cells of the tumor microenvironment, such as tumor angiogenesis and antitumor immunity, are also reviewed. The clinical implications as cancer therapeutics are discussed.
Collapse
|
17
|
Prevarskaya N, Skryma R, Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol Rev 2018; 98:559-621. [PMID: 29412049 DOI: 10.1152/physrev.00044.2016] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is a primary cause and fundamental feature of human cancer. However, all cancer cell genotypes generally translate into several common pathophysiological features, often referred to as cancer hallmarks. Although nowadays the catalog of cancer hallmarks is quite broad, the most common and obvious of them are 1) uncontrolled proliferation, 2) resistance to programmed cell death (apoptosis), 3) tissue invasion and metastasis, and 4) sustained angiogenesis. Among the genes affected by cancer, those encoding ion channels are present. Membrane proteins responsible for signaling within cell and among cells, for coupling of extracellular events with intracellular responses, and for maintaining intracellular ionic homeostasis ion channels contribute to various extents to pathophysiological features of each cancer hallmark. Moreover, tight association of these hallmarks with ion channel dysfunction gives a good reason to classify them as special type of channelopathies, namely oncochannelopathies. Although the relation of cancer hallmarks to ion channel dysfunction differs from classical definition of channelopathies, as disease states causally linked with inherited mutations of ion channel genes that alter channel's biophysical properties, in a broader context of the disease state, to which pathogenesis ion channels essentially contribute, such classification seems absolutely appropriate. In this review the authors provide arguments to substantiate such point of view.
Collapse
Affiliation(s)
- Natalia Prevarskaya
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Roman Skryma
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Yaroslav Shuba
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| |
Collapse
|
18
|
Endothelial Ca 2+ Signaling and the Resistance to Anticancer Treatments: Partners in Crime. Int J Mol Sci 2018; 19:ijms19010217. [PMID: 29324706 PMCID: PMC5796166 DOI: 10.3390/ijms19010217] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 02/06/2023] Open
Abstract
Intracellular Ca2+ signaling drives angiogenesis and vasculogenesis by stimulating proliferation, migration, and tube formation in both vascular endothelial cells and endothelial colony forming cells (ECFCs), which represent the only endothelial precursor truly belonging to the endothelial phenotype. In addition, local Ca2+ signals at the endoplasmic reticulum (ER)-mitochondria interface regulate endothelial cell fate by stimulating survival or apoptosis depending on the extent of the mitochondrial Ca2+ increase. The present article aims at describing how remodeling of the endothelial Ca2+ toolkit contributes to establish intrinsic or acquired resistance to standard anti-cancer therapies. The endothelial Ca2+ toolkit undergoes a major alteration in tumor endothelial cells and tumor-associated ECFCs. These include changes in TRPV4 expression and increase in the expression of P2X7 receptors, Piezo2, Stim1, Orai1, TRPC1, TRPC5, Connexin 40 and dysregulation of the ER Ca2+ handling machinery. Additionally, remodeling of the endothelial Ca2+ toolkit could involve nicotinic acetylcholine receptors, gasotransmitters-gated channels, two-pore channels and Na⁺/H⁺ exchanger. Targeting the endothelial Ca2+ toolkit could represent an alternative adjuvant therapy to circumvent patients' resistance to current anti-cancer treatments.
Collapse
|
19
|
Coupling between the TRPC3 ion channel and the NCX1 transporter contributed to VEGF-induced ERK1/2 activation and angiogenesis in human primary endothelial cells. Cell Signal 2017; 37:12-30. [DOI: 10.1016/j.cellsig.2017.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/05/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022]
|
20
|
Wei W, Huang W, Lin Y, Becker EBE, Ansorge O, Flockerzi V, Conti D, Cenacchi G, Glitsch MD. Functional expression of calcium-permeable canonical transient receptor potential 4-containing channels promotes migration of medulloblastoma cells. J Physiol 2017; 595:5525-5544. [PMID: 28627017 PMCID: PMC5556167 DOI: 10.1113/jp274659] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/15/2017] [Indexed: 12/29/2022] Open
Abstract
KEY POINTS The proton sensing ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) promotes expression of the canonical transient receptor potential channel subunit TRPC4 in normal and transformed cerebellar granule precursor (DAOY) cells. OGR1 and TRPC4 are prominently expressed in healthy cerebellar tissue throughout postnatal development and in primary cerebellar medulloblastoma tissues. Activation of TRPC4-containing channels in DAOY cells, but not non-transformed granule precursor cells, results in prominent increases in [Ca2+ ]i and promotes cell motility in wound healing and transwell migration assays. Medulloblastoma cells not arising from granule precursor cells show neither prominent rises in [Ca2+ ]i nor enhanced motility in response to TRPC4 activation unless they overexpressTRPC4. Our results suggest that OGR1 enhances expression of TRPC4-containing channels that contribute to enhanced invasion and metastasis of granule precursor-derived human medulloblastoma. ABSTRACT Aberrant intracellular Ca2+ signalling contributes to the formation and progression of a range of distinct pathologies including cancers. Rises in intracellular Ca2+ concentration occur in response to Ca2+ influx through plasma membrane channels and Ca2+ release from intracellular Ca2+ stores, which can be mobilized in response to activation of cell surface receptors. Ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) is a proton-sensing Gq -coupled receptor that is most highly expressed in cerebellum. Medulloblastoma (MB) is the most common paediatric brain tumour that arises from cerebellar precursor cells. We found that nine distinct human MB samples all expressed OGR1. In both normal granule cells and the transformed human cerebellar granule cell line DAOY, OGR1 promoted expression of the proton-potentiated member of the canonical transient receptor potential (TRPC) channel family, TRPC4. Consistent with a role for TRPC4 in MB, we found that all MB samples also expressed TRPC4. In DAOY cells, activation of TRPC4-containing channels resulted in large Ca2+ influx and enhanced migration, while in normal cerebellar granule (precursor) cells and MB cells not derived from granule precursors, only small levels of Ca2+ influx and no enhanced migration were observed. Our results suggest that OGR1-dependent increases in TRPC4 expression may favour formation of highly Ca2+ -permeable TRPC4-containing channels that promote transformed granule cell migration. Increased motility of cancer cells is a prerequisite for cancer invasion and metastasis, and our findings may point towards a key role for TRPC4 in progression of certain types of MB.
Collapse
Affiliation(s)
- Wei‐Chun Wei
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
| | - Wan‐Chen Huang
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipei115Taiwan
| | - Yu‐Ping Lin
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
| | - Esther B. E. Becker
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
| | - Olaf Ansorge
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordOX3 9DUUK
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and ToxicologySaarland UniversityHomburgGermany
| | - Daniele Conti
- Department of Biomedical and Neuromotor ScienceUniversity of BolognaItaly
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor ScienceUniversity of BolognaItaly
| | - Maike D. Glitsch
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
| |
Collapse
|
21
|
Genova T, Grolez GP, Camillo C, Bernardini M, Bokhobza A, Richard E, Scianna M, Lemonnier L, Valdembri D, Munaron L, Philips MR, Mattot V, Serini G, Prevarskaya N, Gkika D, Pla AF. TRPM8 inhibits endothelial cell migration via a non-channel function by trapping the small GTPase Rap1. J Cell Biol 2017; 216:2107-2130. [PMID: 28550110 PMCID: PMC5496606 DOI: 10.1083/jcb.201506024] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/26/2016] [Accepted: 04/12/2017] [Indexed: 01/30/2023] Open
Abstract
Endothelial cell adhesion and migration are critical steps of the angiogenic process, whose dysfunction is associated with tumor growth and metastasis. The TRPM8 channel has recently been proposed to play a protective role in prostate cancer by impairing cell motility. However, the mechanisms by which it could influence vascular behavior are unknown. Here, we reveal a novel non-channel function for TRPM8 that unexpectedly acts as a Rap1 GTPase inhibitor, thereby inhibiting endothelial cell motility, independently of pore function. TRPM8 retains Rap1 intracellularly through direct protein-protein interaction, thus preventing its cytoplasm-plasma membrane trafficking. In turn, this mechanism impairs the activation of a major inside-out signaling pathway that triggers the conformational activation of integrin and, consequently, cell adhesion, migration, in vitro endothelial tube formation, and spheroid sprouting. Our results bring to light a novel, pore-independent molecular mechanism by which endogenous TRPM8 expression inhibits Rap1 GTPase and thus plays a critical role in the behavior of vascular endothelial cells by inhibiting migration.
Collapse
Affiliation(s)
- Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Department of Surgical Sciences, C.I.R. Dental School, University of Torino, Torino, Italy
| | - Guillaume P Grolez
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Chiara Camillo
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Michela Bernardini
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Alexandre Bokhobza
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Elodie Richard
- BICeL Campus Lille1, FR3688 FRABio, Université de Lille, Villeneuve d'Ascq, France
| | - Marco Scianna
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| | - Loic Lemonnier
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Donatella Valdembri
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino, Torino, Italy
| | - Mark R Philips
- Cancer Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Virginie Mattot
- Centre National de la Recherche Scientifique, Institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Target Therapies, Universite de Lille, Lille, France
| | - Guido Serini
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Natalia Prevarskaya
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Dimitra Gkika
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy .,Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino, Torino, Italy.,Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| |
Collapse
|
22
|
Iamshanova O, Fiorio Pla A, Prevarskaya N. Molecular mechanisms of tumour invasion: regulation by calcium signals. J Physiol 2017; 595:3063-3075. [PMID: 28304082 DOI: 10.1113/jp272844] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular calcium (Ca2+ ) signals are key regulators of multiple cellular functions, both healthy and physiopathological. It is therefore unsurprising that several cancers present a strong Ca2+ homeostasis deregulation. Among the various hallmarks of cancer disease, a particular role is played by metastasis, which has a critical impact on cancer patients' outcome. Importantly, Ca2+ signalling has been reported to control multiple aspects of the adaptive metastatic cancer cell behaviour, including epithelial-mesenchymal transition, cell migration, local invasion and induction of angiogenesis (see Abstract Figure). In this context Ca2+ signalling is considered to be a substantial intracellular tool that regulates the dynamicity and complexity of the metastatic cascade. In the present study we review the spatial and temporal organization of Ca2+ fluxes, as well as the molecular mechanisms involved in metastasis, analysing the key steps which regulate initial tumour spread.
Collapse
Affiliation(s)
- Oksana Iamshanova
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, University of Lille, 59656, Villeneuve d'Ascq, France
| | - Alessandra Fiorio Pla
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, University of Lille, 59656, Villeneuve d'Ascq, France.,Department of Life Science and Systems Biology, University of Torino, Torino, Italy
| | - Natalia Prevarskaya
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, University of Lille, 59656, Villeneuve d'Ascq, France
| |
Collapse
|
23
|
Zhang R, Wang ZY, Li YH, Lu YH, Wang S, Yu WX, Zhao H. Usefulness of dynamic contrast-enhanced magnetic resonance imaging for predicting treatment response to vinorelbine-cisplatin with or without recombinant human endostatin in bone metastasis of non-small cell lung cancer. Am J Cancer Res 2016; 6:2890-2900. [PMID: 28042508 PMCID: PMC5199762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023] Open
Abstract
Metastatic bone disease is a frequent complication of advanced non-small cell lung cancer (NSCLC) and causes skeletal-related events, which result in a poor prognosis. Currently, no standard method has been developed to precisely assess the therapeutic response of bone metastases (BM) and the early efficacy of anti-angiogenic therapy, which does not conform to the concept of precision medicine. This study aimed to investigate the usefulness of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for precise evaluation of the response to chemotherapy with anti-angiogenic agents in NSCLC patients with BM. Patients were randomly assigned to a treatment group (vinorelbine + cisplatin [NP] + recombinant human endostatin [rh-endostatin]) or a control group (NP + placebo). All patients were evaluated before treatment and after 2 cycles of treatment using DCE-MRI quantitative analysis technology for BM lesions and chest computed tomography (CT). Correlations between changes in the DCE-MRI quantitative parameters and treatment effect were analyzed. We enrolled 33 patients, of whom 28 were evaluable (20 in the treatment group and 8 in the control group). The results suggested a higher objective response rate (30% vs. 0%), better overall survival (21.44 ± 17.28 months vs. 7.71 ± 4.68 months), and a greater decrease in the transport constant (Ktrans) value (60% vs. 4.4%) in the treatment group than in the control group (P < 0.05). The Ktrans values in the "partial remission plus stable disease (PR + SD)" group were significantly lower after treatment (P < 0.05). Patients with a decrease of > 50% in the Ktrans value showed a significantly better overall survival than those with a decrease of ≤ 50% (13.2 vs. 9.8 months, P < 0.05). Ktrans as a DEC-MRI quantitative parameter could be used for the precise evaluation of BM lesions after anti-angiogenic therapy and as a predictor of survival. In addition, we reconfirmed the anti-angiogenic effect of rh-endostatin in NSCLC patients with BM.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Internal Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong UniversityShanghai 200233, People’s Republic of China
| | - Zhi-Yu Wang
- Department of Internal Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong UniversityShanghai 200233, People’s Republic of China
| | - Yue-Hua Li
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong UniversityShanghai 200233, People’s Republic of China
| | - Yao-Hong Lu
- Department of Clinical Skill Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong UniversityShanghai 200233, People’s Republic of China
| | - Shuai Wang
- Department of Internal Oncology, Shanghai Sixth People’s Hospital, Soochow UniversityShanghai 200233, People’s Republic of China
| | - Wen-Xi Yu
- Department of Internal Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong UniversityShanghai 200233, People’s Republic of China
| | - Hui Zhao
- Department of Internal Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong UniversityShanghai 200233, People’s Republic of China
| |
Collapse
|
24
|
Abstract
Although many studies have demonstrated that components of the hemostatic system may be involved in signaling leading to cancer progression, the potential mechanisms by which they contribute to cancer dissemination are not yet precisely understood. Among known coagulant factors, tissue factor (TF) and thrombin play a pivotal role in cancer invasion. They may be generated in the tumor microenvironment independently of blood coagulation and can induce cell signaling through activation of protease-activated receptors (PARs). PARs are transmembrane G-protein-coupled receptors (GPCRs) that are activated by a unique proteolytic mechanism. They play important roles in vascular physiology, neural tube closure, hemostasis, and inflammation. All of these agents (TF, thrombin, PARs—mainly PAR-1 and PAR-2) are thought to promote cancer invasion and metastasis at least in part by facilitating tumor cell migration, angiogenesis, and interactions with host vascular cells, including platelets, fibroblasts, and endothelial cells lining blood vessels. Here, we discuss the role of PARs and their activators in cancer progression, focusing on TF- and thrombin-mediated actions. Therapeutic options tailored specifically to inhibit PAR-induced signaling in cancer patients are presented as well.
Collapse
|
25
|
Fiorio Pla A, Kondratska K, Prevarskaya N. STIM and ORAI proteins: crucial roles in hallmarks of cancer. Am J Physiol Cell Physiol 2016; 310:C509-19. [DOI: 10.1152/ajpcell.00364.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Intracellular Ca2+ signals play a central role in several cellular processes; therefore it is not surprising that altered Ca2+ homeostasis regulatory mechanisms lead to a variety of severe pathologies, including cancer. Stromal interaction molecules (STIM) and ORAI proteins have been identified as critical components of Ca2+ entry in both store-dependent (SOCE mechanism) and independent by intracellular store depletion and have been implicated in several cellular functions. In recent years, both STIMs and ORAIs have emerged as possible molecular targets for cancer therapeutics. In this review we focus on the role of STIM and ORAI proteins in cancer progression. In particular we analyze their role in the different hallmarks of cancer, which represent the organizing principle that describes the complex multistep process of neoplastic diseases.
Collapse
Affiliation(s)
- A. Fiorio Pla
- Université des Sciences et Technologies de Lille, Inserm, U1003 - PHYCELL - Physiologie Cellulaire, Lille, France; and
- Department of Life Science and Systems Biology, and Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino, Torino, Italy
| | - K. Kondratska
- Université des Sciences et Technologies de Lille, Inserm, U1003 - PHYCELL - Physiologie Cellulaire, Lille, France; and
| | - N. Prevarskaya
- Université des Sciences et Technologies de Lille, Inserm, U1003 - PHYCELL - Physiologie Cellulaire, Lille, France; and
| |
Collapse
|
26
|
Systems biology of ion channels and transporters in tumor angiogenesis: An omics view. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2647-56. [DOI: 10.1016/j.bbamem.2014.10.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 10/20/2014] [Indexed: 01/19/2023]
|
27
|
Barghouth PG, Thiruvalluvan M, Oviedo NJ. Bioelectrical regulation of cell cycle and the planarian model system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2629-37. [PMID: 25749155 DOI: 10.1016/j.bbamem.2015.02.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/13/2015] [Accepted: 02/23/2015] [Indexed: 12/27/2022]
Abstract
Cell cycle regulation through the manipulation of endogenous membrane potentials offers tremendous opportunities to control cellular processes during tissue repair and cancer formation. However, the molecular mechanisms by which biophysical signals modulate the cell cycle remain underappreciated and poorly understood. Cells in complex organisms generate and maintain a constant voltage gradient across the plasma membrane known as the transmembrane potential. This potential, generated through the combined efforts of various ion transporters, pumps and channels, is known to drive a wide range of cellular processes such as cellular proliferation, migration and tissue regeneration while its deregulation can lead to tumorigenesis. These cellular regulatory events, coordinated by ionic flow, correspond to a new and exciting field termed molecular bioelectricity. We aim to present a brief discussion on the biophysical machinery involving membrane potential and the mechanisms mediating cell cycle progression and cancer transformation. Furthermore, we present the planarian Schmidtea mediterranea as a tractable model system for understanding principles behind molecular bioelectricity at both the cellular and organismal level. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Paul G Barghouth
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Quantitative and Systems Biology Graduate Program, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Manish Thiruvalluvan
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Quantitative and Systems Biology Graduate Program, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Quantitative and Systems Biology Graduate Program, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Health Sciences Research Institute, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
28
|
Dragoni S, Guerra G, Fiorio Pla A, Bertoni G, Rappa A, Poletto V, Bottino C, Aronica A, Lodola F, Cinelli MP, Laforenza U, Rosti V, Tanzi F, Munaron L, Moccia F. A functional transient receptor potential vanilloid 4 (TRPV4) channel is expressed in human endothelial progenitor cells. J Cell Physiol 2015; 230:95-104. [PMID: 24911002 DOI: 10.1002/jcp.24686] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/22/2014] [Indexed: 12/11/2022]
Abstract
Endothelial progenitor cells (EPCs) are mobilized into circulation to replace damaged endothelial cells and recapitulate the vascular network of injured tissues. Intracellular Ca(2+) signals are key to EPC activation, but it is yet to be elucidated whether they are endowed with the same blend of Ca(2+) -permeable channels expressed by mature endothelial cells. For instance, endothelial colony forming cells (ECFCs), the only EPC subset truly committed to acquire a mature endothelial phenotype, lack canonical transient receptor potential channels 3, 5 and 6 (TRPC3, 5 and 6), which are widely distributed in vascular endothelium; on the other hand, they express a functional store-operated Ca(2+) entry (SOCE). The present study was undertaken to assess whether human circulating EPCs possess TRP vanilloid channel 4 (TRPV4), which plays a master signalling role in mature endothelium, by controlling both vascular remodelling and arterial pressure. We found that EPCs express both TRPV4 mRNA and protein. Moreover, both GSK1016790A (GSK) and phorbol myristate acetate and, two widely employed TRPV4 agonists, induced intracellular Ca(2+) signals uniquely in presence of extracellular Ca(2+). GSK- and PMA-induced Ca(2+) elevations were inhibited by RN-1734 and ruthenium red, which selectively target TRPV4 in mature endothelium. However, TRPV4 stimulation with GSK did not cause EPC proliferation, while the pharmacological blockade of TRPV4 only modestly affected EPC growth in the presence of a growth factor-enriched culture medium. Conversely, SOCE inhibition with BTP-2, La(3+) and Gd(3+) dramatically decreased cell proliferation. These data indicate that human circulating EPCs possess a functional TRPV4 protein before their engraftment into nascent vessels.
Collapse
Affiliation(s)
- Silvia Dragoni
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lang F, Stournaras C. Ion channels in cancer: future perspectives and clinical potential. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130108. [PMID: 24493756 DOI: 10.1098/rstb.2013.0108] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ion transport across the cell membrane mediated by channels and carriers participate in the regulation of tumour cell survival, death and motility. Moreover, the altered regulation of channels and carriers is part of neoplastic transformation. Experimental modification of channel and transporter activity impacts tumour cell survival, proliferation, malignant progression, invasive behaviour or therapy resistance of tumour cells. A wide variety of distinct Ca(2+) permeable channels, K(+) channels, Na(+) channels and anion channels have been implicated in tumour growth and metastasis. Further experimental information is, however, needed to define the specific role of individual channel isoforms critically important for malignancy. Compelling experimental evidence supports the assumption that the pharmacological inhibition of ion channels or their regulators may be attractive targets to counteract tumour growth, prevent metastasis and overcome therapy resistance of tumour cells. This short review discusses the role of Ca(2+) permeable channels, K(+) channels, Na(+) channels and anion channels in tumour growth and metastasis and the therapeutic potential of respective inhibitors.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tuebingen, , Gmelinstrasse 5, Tübingen 72076, Germany
| | | |
Collapse
|