1
|
Jin H, Wang X, Li L, Rui C, Gan H, Wang Q, Tao F, Zhu Y. Integrated proteomic and transcriptomic landscape of human placenta in small for gestational age infants. iScience 2024; 27:111423. [PMID: 39687015 PMCID: PMC11648249 DOI: 10.1016/j.isci.2024.111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/01/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Small for gestational age (SGA) infants affected by placental insufficiency are exposed to the risk of stillbirth and long-term complications. Based on RNA-seq and mass spectrometry, we identified dysregulated RNAs and proteins from the comparisons of SGA placental tissues and controls. We revealed two SGA-relevant co-expression modules (SRMs) that also significantly distinguished SGA from controls. Then we performed an integrated analysis of transcriptomic and proteomic profiles to trace their links to SGA as well as their significant correlations. For the core functional molecules we screened, we revealed their potential upstream regulators and validated them experimentally in an independent cohort. Overall, we pointed out insights into different molecular pathways for the pathological mechanisms of SGA and indicated potential target molecules that may be drivers of placental aberrations in the SGA infants.
Collapse
Affiliation(s)
- Heyue Jin
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
- Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xianyan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Lingyu Li
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chen Rui
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hong Gan
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Qunan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yumin Zhu
- Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
2
|
Shinde U, Khambata K, Raut S, Rao A, Bansal V, Mayadeo N, Das DK, Madan T, Prasanna Gunasekaran V, Balasinor NH. Methylation and expression of imprinted genes in circulating extracellular vesicles from women experiencing early onset preeclampsia. Placenta 2024; 158:206-215. [PMID: 39488931 DOI: 10.1016/j.placenta.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Preeclampsia (PE) is a pregnancy complication marked by high blood pressure, posing risk to maternal and fetal health. "Genomic imprinting", an epigenetic phenomenon regulated by DNA methylation at Differently Methylated Regions (DMR's), influences placental development. Research on circulating extracellular vesicles (EVs) in PE suggests them as potential source for early biomarkers, but methylation status of EV-DNA in Preeclampsia is not reported yet. METHODS This study examines the methylation and expression profile of imprinted genes - PEG10, PEG3, MEST, and DLK1 in circulating EVs of 1st and 3rd trimester control and early onset preeclampsia (EOPE) pregnant women (n = 15) using pyrosequencing and qRT-PCR respectively. RESULTS In 1st trimester, PEG3 was significantly hypermethylated, whereas no significant methylation changes were noted in PEG10 and MEST in EOPE. In 3rd trimester, significant hypomethylation in PEG10, PEG3 and IGDMR was observed whereas significant hypermethyaltion noted in MEST. mRNA expression of PEG10, PEG3 and DLK1 was not affected in circulating EVs of 1st trimester EOPE. However, in 3rd trimester significant increased expression in PEG10, PEG3 and DLK1 noted. MEST expression was reduced in 3rd trimester EOPE. No correlation was observed between average DNA methylation and gene expression in PEG10 and PEG3 in 1st trimester. However, in 3rd trimester, significant negative correlation was noted in PEG10 (r = -0.426, p = 0.04), PEG3 (r = -0.496, p = 0.01), MEST (r = -0.398, p = 0.03) and DLK1 (r = -0.403, p = 0.03). DISCUSSION The results of our study strengthen the potential of circulating EVs from maternal serum as non-invasive indicators of placental pathophysiology, including preeclampsia.
Collapse
Affiliation(s)
- Uma Shinde
- Centre for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Maharashtra (AUM), Mumbai, India
| | - Kushaan Khambata
- ICMR-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Parel, Mumbai, India
| | - Sanketa Raut
- ICMR-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Parel, Mumbai, India
| | - Aishwarya Rao
- ICMR-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Parel, Mumbai, India
| | - Vandana Bansal
- Nowrosjee Wadia Maternity Hospital (NWMH), Parel, Mumbai, India
| | - Niranjan Mayadeo
- King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Parel, Mumbai, India
| | - Dhanjit Kumar Das
- ICMR-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Parel, Mumbai, India
| | - Taruna Madan
- Development Research, Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, New Delhi, India
| | - Vinoth Prasanna Gunasekaran
- Centre for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Maharashtra (AUM), Mumbai, India.
| | - Nafisa Huseni Balasinor
- ICMR-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Parel, Mumbai, India.
| |
Collapse
|
3
|
Datar M, Bansal V, Samant P, Nishi K, Balasinor NH. Methylation Status at DMRs of C14MC and C19MC in Spermatozoa and Chorionic Villi of Individuals Experiencing Recurrent Spontaneous Abortions. Reprod Sci 2024:10.1007/s43032-024-01737-y. [PMID: 39578336 DOI: 10.1007/s43032-024-01737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/26/2024] [Indexed: 11/24/2024]
Abstract
Recurrent spontaneous abortions (RSA) is defined as a loss of two or more consecutive clinically recognized pregnancies before the 20th week of gestation. In RSA, several causative maternal factors are known, but still, 50% of the cases remain unexplained. Evidence suggests that paternal factors are also equally important. Epigenetic phenomenon such as genomic imprinting and regulation of gene expression by miRNAs plays an important role in embryonic and placental development. Two large miRNA clusters, C14MC (Chromosome 14 microRNA cluster) and C19MC (Chromosome 19 microRNA cluster) are imprinted and expressed in the placenta during pregnancy and are known to regulate functionally important processes such as the trophoblast proliferation, adhesion, and migration. Hence, we studied the DNA methylation at the Differentially Methylated Regions (DMRs) of these clusters in spermatozoa and chorionic villi by pyrosequencing. In Spermatozoa, few Cytosine followed by Guanosine (CpG) sites at DMRs of C14MC and C19MC showed significant hypermethylation. In Chorionic villi, CpG sites showed significant hypomethylation in the RSA group as compared to control group. Semen parameters like sperm concentration, sperm motility, morphology, and chromatin compaction were comparable in control and RSA groups. The study suggests aberrant DNA methylation in spermatozoa and chorionic villi at DMRs of both miRNA coding clusters to be associated with RSA.
Collapse
Affiliation(s)
- Mamata Datar
- Neuroendocrinology Department, Indian Council of Medical Research-National Institute for Research in Reproductive Health, J. M. Street, Parel, Mumbai, 40012, India
| | - Vandana Bansal
- Department of Obstetrics and Gynecology, Nowrosjee Wadia Maternity Hospital, Mumbai, India
| | - Padmaja Samant
- Department of Obstetrics and Gynecology, Seth G. S. Medical College & King Edward Memorial Hospital (KEM), Mumbai, India
| | - Kumari Nishi
- Neuroendocrinology Department, Indian Council of Medical Research-National Institute for Research in Reproductive Health, J. M. Street, Parel, Mumbai, 40012, India.
| | - Nafisa H Balasinor
- Neuroendocrinology Department, Indian Council of Medical Research-National Institute for Research in Reproductive Health, J. M. Street, Parel, Mumbai, 40012, India.
| |
Collapse
|
4
|
Guo X, Yang J. Advances in DNA methylation of imprinted genes and folic acid regulation of growth and development. Epigenomics 2024; 16:1117-1127. [PMID: 39140401 PMCID: PMC11418287 DOI: 10.1080/17501911.2024.2384833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
DNA methylation is closely related to folate levels and acts as a mechanism linking developmental disorders to chronic diseases. Folic acid supplementation can impact DNA methylation levels of imprinted genes crucial for neonatal development. Imprinted genes are vital for regulating embryonic and postnatal fetal growth. This review summarizes imprinted genes, DNA methylation, folic acid's influence on growth and development and their correlation. It aims to provide a comprehensive overview of research advancements on imprinted genes, DNA methylation and folic acid regulation concerning growth and development.
Collapse
Affiliation(s)
- Xiaojing Guo
- Department of Biostatistics, School of Public Health & Management, Guangxi Traditional Chinese Medical University, Nanning, Guangxi, China
| | - Junwei Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Starr AL, Nishimura T, Igarashi KJ, Funamoto C, Nakauchi H, Fraser HB. Disentangling cell-intrinsic and extrinsic factors underlying evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592777. [PMID: 38798687 PMCID: PMC11118348 DOI: 10.1101/2024.05.06.592777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A key goal of developmental biology is to determine the extent to which cells and organs develop autonomously, as opposed to requiring interactions with other cells or environmental factors. Chimeras have played a foundational role in this by enabling qualitative classification of cell-intrinsically vs. extrinsically driven processes. Here, we extend this framework to precisely decompose evolutionary divergence in any quantitative trait into cell-intrinsic, extrinsic, and intrinsic-extrinsic interaction components. Applying this framework to thousands of gene expression levels in reciprocal rat-mouse chimeras, we found that the majority of their divergence is attributable to cell-intrinsic factors, though extrinsic factors also play an integral role. For example, a rat-like extracellular environment extrinsically up-regulates the expression of a key transcriptional regulator of the endoplasmic reticulum (ER) stress response in some but not all cell types, which in turn strongly predicts extrinsic up-regulation of its target genes and of the ER stress response pathway as a whole. This effect is also seen at the protein level, suggesting propagation through multiple regulatory levels. Applying our framework to a cellular trait, neuronal differentiation, revealed a complex interaction of intrinsic and extrinsic factors. Finally, we show that imprinted genes are dramatically mis-expressed in species-mismatched environments, suggesting that mismatch between rapidly evolving intrinsic and extrinsic mechanisms controlling gene imprinting may contribute to barriers to interspecies chimerism. Overall, our conceptual framework opens new avenues to investigate the mechanistic basis of developmental processes and evolutionary divergence across myriad quantitative traits in any multicellular organism.
Collapse
Affiliation(s)
| | - Toshiya Nishimura
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, 565-0871, Japan (current address for T.N.)
- Division of Stem Cell and Organoid Medicine, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Kyomi J. Igarashi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chihiro Funamoto
- Division of Stem Cell and Organoid Medicine, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Tan B, Xiao L, Wang Y, Zhou C, Huang H, Li Z, Hong L, Cai G, Wu Z, Gu T. Comprehensive Analysis of Placental DNA Methylation Changes and Fetal Birth Weight in Pigs. Int J Mol Sci 2024; 25:7702. [PMID: 39062945 PMCID: PMC11276634 DOI: 10.3390/ijms25147702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Birth weight is a complex multifactorial trait relevant to health states and disease risks in later life. The placenta is essential for proper fetal growth and facilitates gas, nutrient, and waste exchange between the mother and developing fetus. How changes in placental DNA methylation affect fetal birth weight remains to be fully elucidated. In this study, we used whole-genome bisulfite sequencing and RNA sequencing to reveal a global map of DNA methylation and gene expression changes between the placentas of highest birth weight and lowest birth weight piglets in the same litters. The transcriptome analysis identified 1682 differential expressed genes and revealed key transcriptional properties in distinct placentas. We also identified key transcription factors that may drive the differences in DNA methylome patterns between placentas. The decrease in DNA methylation level in the promoter was associated with the transcriptional activation of genes associated with angiogenesis, extracellular matrix remodeling, and transmembrane transport. Our results revealed the regulatory role of DNA methylation in gene transcription activity leading to the differences in placental morphological structures and birth weights of piglets. These results could provide novel clues to clarify the underlying regulatory mechanisms of placental development and fetal growth.
Collapse
Affiliation(s)
- Baohua Tan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (B.T.); (L.X.); (Y.W.); (C.Z.); (H.H.); (Z.L.); (L.H.); (G.C.); (Z.W.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Liyao Xiao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (B.T.); (L.X.); (Y.W.); (C.Z.); (H.H.); (Z.L.); (L.H.); (G.C.); (Z.W.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongzhong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (B.T.); (L.X.); (Y.W.); (C.Z.); (H.H.); (Z.L.); (L.H.); (G.C.); (Z.W.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (B.T.); (L.X.); (Y.W.); (C.Z.); (H.H.); (Z.L.); (L.H.); (G.C.); (Z.W.)
| | - Huijun Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (B.T.); (L.X.); (Y.W.); (C.Z.); (H.H.); (Z.L.); (L.H.); (G.C.); (Z.W.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zicong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (B.T.); (L.X.); (Y.W.); (C.Z.); (H.H.); (Z.L.); (L.H.); (G.C.); (Z.W.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Linjun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (B.T.); (L.X.); (Y.W.); (C.Z.); (H.H.); (Z.L.); (L.H.); (G.C.); (Z.W.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Gengyuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (B.T.); (L.X.); (Y.W.); (C.Z.); (H.H.); (Z.L.); (L.H.); (G.C.); (Z.W.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (B.T.); (L.X.); (Y.W.); (C.Z.); (H.H.); (Z.L.); (L.H.); (G.C.); (Z.W.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ting Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (B.T.); (L.X.); (Y.W.); (C.Z.); (H.H.); (Z.L.); (L.H.); (G.C.); (Z.W.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Luo QY, Zhang SW, Wu HY, Mo JY, Yu JE, He RK, Jiang ZY, Zhu KJ, Liu XY, Lin ZL, Sheng JZ, Zhang Y, Wu YT, Huang HF. Safety of embryo cryopreservation: insights from mid-term placental transcriptional changes. Reprod Biol Endocrinol 2024; 22:80. [PMID: 38997724 PMCID: PMC11241961 DOI: 10.1186/s12958-024-01241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND In recent years, with benefits from the continuous improvement of clinical technology and the advantage of fertility preservation, the application of embryo cryopreservation has been growing rapidly worldwide. However, amidst this growth, concerns about its safety persist. Numerous studies have highlighted the elevated risk of perinatal complications linked to frozen embryo transfer (FET), such as large for gestational age (LGA) and hypertensive disorders during pregnancy. Thus, it is imperative to explore the potential risk of embryo cryopreservation and its related mechanisms. METHODS Given the strict ethical constraints on clinical samples, we employed mouse models in this study. Three experimental groups were established: the naturally conceived (NC) group, the fresh embryo transfer (Fresh-ET) group, and the FET group. Blastocyst formation rates and implantation rates were calculated post-embryo cryopreservation. The impact of FET on fetal growth was evaluated upon fetal and placental weight. Placental RNA-seq was conducted, encompassing comprehensive analyses of various comparisons (Fresh-ET vs. NC, FET vs. NC, and FET vs. Fresh-ET). RESULTS Reduced rates of blastocyst formation and implantation were observed post-embryo cryopreservation. Fresh-ET resulted in a significant decrease in fetal weight compared to NC group, whereas FET reversed this decline. RNA-seq analysis indicated that the majority of the expression changes in FET were inherited from Fresh-ET, and alterations solely attributed to embryo cryopreservation were moderate. Unexpectedly, certain genes that showed alterations in Fresh-ET tended to be restored in FET. Further analysis suggested that this regression may underlie the improvement of fetal growth restriction in FET. The expression of imprinted genes was disrupted in both FET and Fresh-ET groups. CONCLUSION Based on our experimental data on mouse models, the impact of embryo cryopreservation is less pronounced than other in vitro manipulations in Fresh-ET. However, the impairment of the embryonic developmental potential and the gene alterations in placenta still suggested it to be a risky operation.
Collapse
Affiliation(s)
- Qin-Yu Luo
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Si-Wei Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hai-Yan Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Ying Mo
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jia-En Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ren-Ke He
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Zhao-Ying Jiang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Ke-Jing Zhu
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xue-Ying Liu
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Zhong-Liang Lin
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jian-Zhong Sheng
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, (No.2019RU056), China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, (No.2019RU056), China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
| | - He-Feng Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, (No.2019RU056), China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
| |
Collapse
|
8
|
Hjort L, Bredgaard SS, Manitta E, Marques I, Sørensen AE, Martino D, Grunnet LG, Kelstrup L, Houshmand-Oeregaard A, Clausen TD, Mathiesen ER, Olsen SF, Saffery R, Barrès R, Damm P, Vaag AA, Dalgaard LT. Epigenetics of the non-coding RNA nc886 across blood, adipose tissue and skeletal muscle in offspring exposed to diabetes in pregnancy. Clin Epigenetics 2024; 16:61. [PMID: 38715048 PMCID: PMC11077860 DOI: 10.1186/s13148-024-01673-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. METHODS To identify DMRs, we employed the bump hunter method in samples from young (9-16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28-33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. RESULTS One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring's own adiposity. CONCLUSIONS Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.
Collapse
Affiliation(s)
- Line Hjort
- Novo Nordisk Foundation Center for Basic Metabolic Research, Metabolic Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark.
| | | | - Eleonora Manitta
- Novo Nordisk Foundation Center for Basic Metabolic Research, Metabolic Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene Marques
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | | | - David Martino
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC, Australia
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia
| | - Louise Groth Grunnet
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
| | - Louise Kelstrup
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Gynecology and Obstetrics, Herlev Hospital, Herlev, Denmark
| | - Azadeh Houshmand-Oeregaard
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk A/S, Bagsværd, Denmark
| | - Tine Dalsgaard Clausen
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Reinhardt Mathiesen
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | | | - Richard Saffery
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Metabolic Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Damm
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Allan Arthur Vaag
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | |
Collapse
|
9
|
Fu W, Cui Q, Bu Z, Shi H, Yang Q, Hu L. Elevated sperm DNA fragmentation is correlated with an increased chromosomal aneuploidy rate of miscarried conceptus in women of advanced age undergoing fresh embryo transfer cycle. Front Endocrinol (Lausanne) 2024; 15:1289763. [PMID: 38650716 PMCID: PMC11033384 DOI: 10.3389/fendo.2024.1289763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/20/2024] [Indexed: 04/25/2024] Open
Abstract
Background Male sperm DNA fragmentation (SDF) may be associated with assisted reproductive technology (ART) outcomes, but the impact of SDF on the occurrence of aneuploid-related miscarriage remains controversial. Methods Genome-wide single-nucleotide polymorphism-based chromosomal microarray analysis was performed on 495 miscarried chorionic villus samples undergone IVF/ICSI treatment from the Reproductive Medicine Center of the First Affiliated Hospital of Zhengzhou University. SDF was assessed using sperm chromatin structure assay. Patients were divided into four groups according to embryo transfer cycle type and maternal age, and the correlation between SDF and chromosome aberration was analyzed. A receiver operating characteristic (ROC) curve was utilized to find the optimal threshold. Results Total chromosomal aneuploidy rate was 54.95%, and trisomy was the most common abnormality (71.32%). The chromosomally abnormal group had higher SDF than the normal group (11.42% [6.82%, 16.54%] vs. 12.95% [9.61%, 20.58%], P = 0.032). After grouping, elevated SDF was significantly correlated with an increasing chromosome aneuploidy rate only in women of advanced age who underwent fresh embryo transfer (adjusted odds ratio:1.14 [1.00-1.29], adjusted-P = 0.045). The receiver operating characteristic curve showed that SDF can predict the occurrence of chromosomal abnormality of miscarried conceptus in this group ((area under the curve = 0.76 [0.60-0.91], P = 0.005), and 8.5% was the optimum threshold. When SDF was ≥ 8.5%, the risk of such patients increased by 5.76 times (adjusted odds ratio: 6.76 [1.20-37.99], adjusted-P = 0.030). Conclusion For women of advanced maternal age undergoing fresh embryo transfer, older oocytes fertilized using sperm with high SDF in IVF/ICSI treatment might increase the risk of chromosomal abnormality in miscarried conceptus.
Collapse
Affiliation(s)
- Wanting Fu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuying Cui
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiqin Bu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linli Hu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Zhang Y, Mustieles V, Martin L, Sun Y, Hillcoat A, Fang X, Bibi Z, Torres N, Coburn-Sanderson A, First O, Irene S, Petrozza JC, Botelho JC, Calafat AM, Wang YX, Messerlian C. Maternal and Paternal Preconception Serum Concentrations of Per and Polyfluoroalkyl Substances in Relation to Birth Outcomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2683-2692. [PMID: 38290209 PMCID: PMC10924800 DOI: 10.1021/acs.est.3c07954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Prenatal per and polyfluoroalkyl substances (PFAS) exposure is associated with adverse birth outcomes. There is an absence of evidence on the relationship between maternal and paternal preconception PFAS exposure and birth outcomes. This study included 312 mothers and 145 fathers with a singleton live birth from a preconception cohort of subfertile couples seeking fertility treatment at a U.S. clinic. PFAS were quantified in serum samples collected before conception. Gestational age (GA) and birthweight (BW) were abstracted from delivery records. We also assessed low birthweight (BW < 2500 g) and preterm birth (GA < 37 completed weeks). We utilized multivariable linear regression, logistic regression, and quantile-based g computation to examine maternal or paternal serum concentrations of individual PFAS and mixture with birth outcomes. Maternal serum concentrations of perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHxS), and the total PFAS mixture were inversely associated with birthweight. Maternal PFOS concentration was associated with a higher risk of low birthweight. Conversely, paternal PFOS and PFHxS concentrations were imprecisely associated with higher birthweight. No associations were found for gestational age or preterm birth. The findings have important implications for preconception care. Future research with larger sample sizes would assist in validating these findings.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain. Instituto de Investigación Biosanitaria Ibs GRANADA, Spain. Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Leah Martin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexandra Hillcoat
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xin Fang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zainab Bibi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicole Torres
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ayanna Coburn-Sanderson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Olivia First
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Souter Irene
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
| | - John C. Petrozza
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
| | - Julianne C. Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M. Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yi-Xin Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
| |
Collapse
|
11
|
MacPhillamy C, Chen T, Hiendleder S, Williams JL, Alinejad-Rokny H, Low WY. DNA methylation analysis to differentiate reference, breed, and parent-of-origin effects in the bovine pangenome era. Gigascience 2024; 13:giae061. [PMID: 39435573 PMCID: PMC11484048 DOI: 10.1093/gigascience/giae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/19/2024] [Accepted: 07/25/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Most DNA methylation studies have used a single reference genome with little attention paid to the bias introduced due to the reference chosen. Reference genome artifacts and genetic variation, including single nucleotide polymorphisms (SNPs) and structural variants (SVs), can lead to differences in methylation sites (CpGs) between individuals of the same species. We analyzed whole-genome bisulfite sequencing data from the fetal liver of Angus (Bos taurus taurus), Brahman (Bos taurus indicus), and reciprocally crossed samples. Using reference genomes for each breed from the Bovine Pangenome Consortium, we investigated the influence of reference genome choice on the breed and parent-of-origin effects in methylome analyses. RESULTS Our findings revealed that ∼75% of CpG sites were shared between Angus and Brahman, ∼5% were breed specific, and ∼20% were unresolved. We demonstrated up to ∼2% quantification bias in global methylation when an incorrect reference genome was used. Furthermore, we found that SNPs impacted CpGs 13 times more than other autosomal sites (P < $5 \times {10}^{ - 324}$) and SVs contained 1.18 times (P < $5 \times {10}^{ - 324}$) more CpGs than non-SVs. We found a poor overlap between differentially methylated regions (DMRs) and differentially expressed genes (DEGs) and suggest that DMRs may be impacting enhancers that target these DEGs. DMRs overlapped with imprinted genes, of which 1, DGAT1, which is important for fat metabolism and weight gain, was found in the breed-specific and sire-of-origin comparisons. CONCLUSIONS This work demonstrates the need to consider reference genome effects to explore genetic and epigenetic differences accurately and identify DMRs involved in controlling certain genes.
Collapse
Affiliation(s)
- Callum MacPhillamy
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
| | - Tong Chen
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
| | - Stefan Hiendleder
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
- Robinson Research Institute,, The University of Adelaide, North Adelaide SA 5006, Australia
| | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, Univeristy of New South Wales, Sydney, NSW 2052, Australia
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
| |
Collapse
|
12
|
Derakhshan M, Kessler NJ, Hellenthal G, Silver MJ. Metastable epialleles in humans. Trends Genet 2024; 40:52-68. [PMID: 38000919 DOI: 10.1016/j.tig.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/26/2023]
Abstract
First identified in isogenic mice, metastable epialleles (MEs) are loci where the extent of DNA methylation (DNAm) is variable between individuals but correlates across tissues derived from different germ layers within a given individual. This property, termed systemic interindividual variation (SIV), is attributed to stochastic methylation establishment before germ layer differentiation. Evidence suggests that some putative human MEs are sensitive to environmental exposures in early development. In this review we introduce key concepts pertaining to human MEs, describe methods used to identify MEs in humans, and review their genomic features. We also highlight studies linking DNAm at putative human MEs to early environmental exposures and postnatal (including disease) phenotypes.
Collapse
Affiliation(s)
- Maria Derakhshan
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Noah J Kessler
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Matt J Silver
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia.
| |
Collapse
|
13
|
Yoshikawa C, Ariyani W, Kohno D. DNA Methylation in the Hypothalamic Feeding Center and Obesity. J Obes Metab Syndr 2023; 32:303-311. [PMID: 38124554 PMCID: PMC10786209 DOI: 10.7570/jomes23073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Obesity rates have been increasing worldwide for decades, mainly due to environmental factors, such as diet, nutrition, and exercise. However, the molecular mechanisms through which environmental factors induce obesity remain unclear. Several mechanisms underlie the body's response to environmental factors, and one of the main mechanisms involves epigenetic modifications, such as DNA methylation. The pattern of DNA methylation is influenced by environmental factors, and altered DNA methylation patterns can affect gene expression profiles and phenotypes. DNA methylation may mediate the development of obesity caused by environmental factors. Similar to the factors governing obesity, DNA methylation is influenced by nutrients and metabolites. Notably, DNA methylation is associated with body size and weight programming. The DNA methylation levels of proopiomelanocortin (Pomc) and neuropeptide Y (Npy) in the hypothalamic feeding center, a key region controlling systemic energy balance, are affected by diet. Conditional knockout mouse studies of epigenetic enzymes have shown that DNA methylation in the hypothalamic feeding center plays an indispensable role in energy homeostasis. In this review, we discuss the role of DNA methylation in the hypothalamic feeding center as a potential mechanism underlying the development of obesity induced by environmental factors.
Collapse
Affiliation(s)
- Chiharu Yoshikawa
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
14
|
Simmers MD, Hudson KM, Baptissart M, Cowley M. Epigenetic control of the imprinted growth regulator Cdkn1c in cadmium-induced placental dysfunction. Epigenetics 2023; 18:2088173. [PMID: 35770551 PMCID: PMC10989690 DOI: 10.1080/15592294.2022.2088173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/31/2022] [Indexed: 11/03/2022] Open
Abstract
Cadmium (Cd) is a toxic metal ubiquitous in the environment. In utero, Cd is inefficiently transported to the foetus but causes foetal growth restriction (FGR), likely through impairment of the placenta where Cd accumulates. However, the underlying molecular mechanisms are poorly understood. Cd can modulate the expression of imprinted genes, defined by their transcription from one parental allele, which play critical roles in placental and foetal growth. The expression of imprinted genes is governed by DNA methylation at Imprinting Control Regions (ICRs), which are susceptible to environmental perturbation. The imprinted gene Cdkn1c/CDKN1C is a major regulator of placental development, is implicated in FGR, and shows increased expression in response to Cd exposure in mice. Here, we use a hybrid mouse model of in utero Cd exposure to determine if the increase in placental Cdkn1c expression is caused by changes to ICR DNA methylation and loss of imprinting (LOI). Consistent with prior studies, Cd causes FGR and impacts placental structure and Cdkn1c expression at late gestation. Using polymorphisms to distinguish parental alleles, we demonstrate that increased Cdkn1c expression is not driven by changes to DNA methylation or LOI. We show that Cdkn1c is expressed primarily in the placental labyrinth which is proportionally increased in size in response to Cd. We conclude that the Cd-associated increase in Cdkn1c expression can be fully explained by alterations to placental structure. These results have implications for understanding mechanisms of Cd-induced placental dysfunction and, more broadly, for the study of FGR associated with increased Cdkn1c/CDKN1C expression.
Collapse
Affiliation(s)
- Mark D. Simmers
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NCUSA
| | - Kathleen M. Hudson
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NCUSA
| | - Marine Baptissart
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NCUSA
| | - Michael Cowley
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NCUSA
| |
Collapse
|
15
|
Bresnahan ST, Galbraith D, Ma R, Anton K, Rangel J, Grozinger CM. Beyond conflict: Kinship theory of intragenomic conflict predicts individual variation in altruistic behaviour. Mol Ecol 2023; 32:5823-5837. [PMID: 37746895 DOI: 10.1111/mec.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Behavioural variation is essential for animals to adapt to different social and environmental conditions. The Kinship Theory of Intragenomic Conflict (KTIC) predicts that parent-specific alleles can support different behavioural strategies to maximize allele fitness. Previous studies, including in honey bees (Apis mellifera), supported predictions of the KTIC for parent-specific alleles to promote selfish behaviour. Here, we test the KTIC prediction that for altruism-promoting genes (i.e. those that promote behaviours that support the reproductive fitness of kin), the allele with the higher altruism optimum should be selected to be expressed while the other is silenced. In honey bee colonies, workers act altruistically when tending to the queen by performing a 'retinue' behaviour, distributing the queen's mandibular pheromone (QMP) throughout the hive. Workers exposed to QMP do not activate their ovaries, ensuring they care for the queen's brood instead of competing to lay unfertilized eggs. Due to the haplodiploid genetics of honey bees, the KTIC predicts that response to QMP is favoured by the maternal genome. We report evidence for parent-of-origin effects on the retinue response behaviour, ovarian development and gene expression in brains of worker honey bees exposed to QMP, consistent with the KTIC. Additionally, we show enrichment for genes with parent-of-origin expression bias within gene regulatory networks associated with variation in bees' response to QMP. Our study demonstrates that intragenomic conflict can shape diverse social behaviours and influence expression patterns of single genes as well as gene networks.
Collapse
Affiliation(s)
- Sean T Bresnahan
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Intercollege Graduate Degree Program in Molecular, Cellular, and Integrative Biosciences, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David Galbraith
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rong Ma
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kate Anton
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
16
|
Morgan RK, Wang K, Svoboda LK, Rygiel CA, Lalancette C, Cavalcante R, Bartolomei MS, Prasasya R, Neier K, Perera BP, Jones TR, Colacino JA, Sartor MA, Dolinoy DC. Effects of Developmental Lead and Phthalate Exposures on DNA Methylation in Adult Mouse Blood, Brain, and Liver Identifies Tissue- and Sex-Specific Changes with Implications for Genomic Imprinting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560131. [PMID: 37873115 PMCID: PMC10592650 DOI: 10.1101/2023.09.29.560131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. Objective We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. Methods Female mice were exposed to human relevant doses of either Pb (32ppm) via drinking water or DEHP (5 mg/kg-day) via chow for two weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and Chipenrich were used for genomic annotations and geneset enrichment tests of DMRs, respectively. Results The cortex contained the majority of DMRs associated with Pb (69%) and DEHP (58%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n = 17 and 14 DMRs with Pb and DEHP exposure, respectively) and exposure types (n = 79 and 47 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, with 15 and 17 ICR-located DMRs across cortex, blood, and liver in each gene, respectively. The ICRs were also the location of DMRs replicated across target and surrogate tissues, suggesting epigenetic changes these regions may be potentially viable biomarkers. Conclusions We observed Pb- and DEHP-specific DNAm changes in cortex, blood, and liver, and the greatest degree of overlap in DMR signatures was seen between exposures followed by sex and tissue type. DNAm at imprinted control regions was altered by both Pb and DEHP, highlighting the susceptibility of genomic imprinting to these exposures during the perinatal window of development.
Collapse
Affiliation(s)
- Rachel K. Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christine A. Rygiel
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claudia Lalancette
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Raymond Cavalcante
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rexxi Prasasya
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kari Neier
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bambarendage P.U. Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tamara R Jones
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Argentato PP, Marchesi JAP, Dejani NN, Nakandakare PY, Teles LDFDS, Batista LPR, Leitão MPC, Luzia LA, Ramos ES, Rondó PH. The relationship between obesity-related H19DMR methylation and H19 and IGF2 gene expression on offspring growth and body composition. Front Nutr 2023; 10:1170411. [PMID: 37810933 PMCID: PMC10552537 DOI: 10.3389/fnut.2023.1170411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background and objective Imprinted genes are important for the offspring development. To assess the relationship between obesity-related H19DMR methylation and H19 and IGF2 gene expression and offspring growth and body composition. Methods Thirty-nine overweight/obese and 25 normal weight pregnant women were selected from the "Araraquara Cohort Study" according to their pre-pregnancy BMI. Fetal growth and body composition and newborn growth were assessed, respectively, by ultrasound and anthropometry. The methylation of H19DMR in maternal blood, cord blood, maternal decidua and placental villi tissues was evaluated by methylation-sensitive restriction endonuclease qPCR, and H19 and IGF2 expression by relative real-time PCR quantification. Multiple linear regression models explored the associations of DNA methylation and gene expression with maternal, fetal, and newborn parameters. Results H19DMR was less methylated in maternal blood of the overweight/obese group. There were associations of H19DMR methylation in cord blood with centiles of fetal biparietal diameter (BPD) and abdominal subcutaneous fat thickness and newborn head circumference (HC); H19DMR methylation in maternal decidua with fetal occipitofrontal diameter (OFD), HC, and length; H19DMR methylation in placental villi with fetal OFD, HC and abdominal subcutaneous fat thickness and with newborn HC. H19 expression in maternal decidua was associated with fetal BPD and femur length centiles and in placental villi with fetal OFD and subcutaneous arm fat. IGF2 expression in maternal decidua was associated with fetal BPD and in placental villi with fetal OFD. Conclusion To our knowledge, this is the first study to demonstrate associations of imprinted genes variations at the maternal-fetal interface of the placenta and in cord blood with fetal body composition, supporting the involvement of epigenetic mechanisms in offspring growth and body composition.
Collapse
Affiliation(s)
- Perla Pizzi Argentato
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Brazil
| | | | - Naiara Naiana Dejani
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Liania Alves Luzia
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Ester Silveira Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Patricia Helen Rondó
- Nutrition Department, School of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Lopez-Tello J, Yong HEJ, Sandovici I, Dowsett GKC, Christoforou ER, Salazar-Petres E, Boyland R, Napso T, Yeo GSH, Lam BYH, Constancia M, Sferruzzi-Perri AN. Fetal manipulation of maternal metabolism is a critical function of the imprinted Igf2 gene. Cell Metab 2023; 35:1195-1208.e6. [PMID: 37437545 DOI: 10.1016/j.cmet.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/12/2023] [Accepted: 06/09/2023] [Indexed: 07/14/2023]
Abstract
Maternal-offspring interactions in mammals involve both cooperation and conflict. The fetus has evolved ways to manipulate maternal physiology to enhance placental nutrient transfer, but the mechanisms involved remain unclear. The imprinted Igf2 gene is highly expressed in murine placental endocrine cells. Here, we show that Igf2 deletion in these cells impairs placental endocrine signaling to the mother, without affecting placental morphology. Igf2 controls placental hormone production, including prolactins, and is crucial to establish pregnancy-related insulin resistance and to partition nutrients to the fetus. Consequently, fetuses lacking placental endocrine Igf2 are growth restricted and hypoglycemic. Mechanistically, Igf2 controls protein synthesis and cellular energy homeostasis, actions dependent on the placental endocrine cell type. Igf2 loss also has additional long-lasting effects on offspring metabolism in adulthood. Our study provides compelling evidence for an intrinsic fetal manipulation system operating in placenta that modifies maternal metabolism and fetal resource allocation, with long-term consequences for offspring metabolic health.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Hannah E J Yong
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A(∗)STAR), 30 Medical Drive, Singapore 117609, Singapore
| | - Ionel Sandovici
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK; Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Georgina K C Dowsett
- Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Efthimia R Christoforou
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Esteban Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Rebecca Boyland
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Royal Devon and Exeter Hospital NHS Trust, Barrack Rd, Exeter EX2 5DW, UK
| | - Tina Napso
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Giles S H Yeo
- Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Brian Y H Lam
- Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Miguel Constancia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK; Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
19
|
Muroya S, Otomaru K, Oshima K, Oshima I, Ojima K, Gotoh T. DNA Methylation of Genes Participating in Hepatic Metabolisms and Function in Fetal Calf Liver Is Altered by Maternal Undernutrition during Gestation. Int J Mol Sci 2023; 24:10682. [PMID: 37445858 DOI: 10.3390/ijms241310682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to elucidate the effects of maternal undernutrition (MUN) on epigenetic modification of hepatic genes in Japanese Black fetal calves during gestation. Using a previously established experimental design feeding the dams with 60% (LN) or 120% (HN) of their global nutritional requirements during the 8.5-month gestational period, DNA methylation in the fetal liver was analyzed with reduced representation bisulfite sequencing (RRBS). The promoters and gene bodies in the LN fetuses were hypomethylated compared to HN fetuses. Pathway analysis showed that the genes with DMR in the exon/intron in the LN group were associated with pathways involved in Cushing syndrome, gastric acid secretion, and aldosterone synthesis and secretion. Promoter hypomethylation in the LN group was frequently observed in genes participating in various signaling pathways (thyroid hormone, Ras/Rap1, PIK3-Akt, cAMP), fatty acid metabolism, and cholesterol metabolism. The promoter hypomethylated genes ALPL and GNAS were upregulated in the LN group, whereas the promoter hypermethylated genes GRB10 and POR were downregulated. The intron/exon hypomethylated genes IGF2, IGF2R, ACAD8, TAT, RARB, PINK1, and SOAT2 were downregulated, whereas the hypermethylated genes IGF2BP2, NOS3, and NR2F1 were upregulated. Collectively, MUN alters the promoter and gene body methylation of genes associated with hepatic metabolisms (energy, cholesterol, mitochondria) and function, suggesting an impact of altered gene methylation on the dysregulation of gene expression in the fetal liver.
Collapse
Affiliation(s)
- Susumu Muroya
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Kazunaga Oshima
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan
| | - Ichiro Oshima
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Koichi Ojima
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan
| | - Takafumi Gotoh
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| |
Collapse
|
20
|
Irani D, Balasinor N, Bansal V, Tandon D, Patil A, Singh D. Whole genome bisulfite sequencing of sperm reveals differentially methylated regions in male partners of idiopathic recurrent pregnancy loss cases. Fertil Steril 2023; 119:420-432. [PMID: 36528109 DOI: 10.1016/j.fertnstert.2022.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To study the genome wide alterations in sperm DNA methylation in male partners of idiopathic recurrent pregnancy loss (iRPL) cases and note regions as potential diagnostic markers. DESIGN Case-control study and methylome analysis of human sperm. SETTING Obstetrics and Gynaecology clinics. PATIENT(S) Control group consists of apparently healthy fertile men having fathered a child within the last 2 years (n = 39); and case group consists of male partners of iRPL cases having ≥2 consecutive 1st trimester pregnancy losses (n = 47). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Sperm DNA samples of controls and cases were selected for whole genome bisulfite sequencing analysis based on the previously set thresholds of global methylation levels and methylation levels of imprinted genes (KvDMR and ZAC). Whole genome bisulfite sequencing of selected sperm genomic DNA was performed to identify differentially methylated CpG sites of iRPL cases compared with fertile controls. Pathway analysis of all the differentially methylated genes was done by Database for Annotation, Visualization, and Integrated Discovery annotation tool and Kyoto Encyclopedia of Genes and Genomes tool. Differentially methylated CpGs within genes relevant to embryo and placenta development were selected to further validate their methylation levels in study population by pyrosequencing. RESULT(S) A total of 9497 differentially methylated CpGs with highest enrichment in intronic regions were obtained. In addition, 5352 differentially methylated regions and 2087 differentially methylated genes were noted. Signaling pathways involved in development were enriched on pathway analysis. Select CpGs within genes PPARG, KCNQ1, SETD2, and MAP3K4 showed distinct hypomethylated subpopulations within iRPL study population. CONCLUSION(S) Our study highlights the altered methylation landscape of iRPL sperm, and their possible implications in pathways of embryo and placental development. The CpG sites that are hypomethylated specifically in sperm of iRPL subpopulation can be further assessed as predictive biomarkers.
Collapse
Affiliation(s)
- Delna Irani
- Department of Neuroendocrinology, ICMR - National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR - National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Vandana Bansal
- Department of Obstetrics and Gynaecology, Nowrosjee Wadia Maternity Hospital, Mumbai, India
| | - Deepti Tandon
- Department of Clinical Research, ICMR - National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Anushree Patil
- Department of Clinical Research, ICMR - National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR - National Institute for Research in Reproductive and Child Health, Mumbai, India.
| |
Collapse
|
21
|
Basak S, Duttaroy AK. Maternal PUFAs, Placental Epigenetics, and Their Relevance to Fetal Growth and Brain Development. Reprod Sci 2023; 30:408-427. [PMID: 35676498 DOI: 10.1007/s43032-022-00989-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022]
Abstract
Dietary polyunsaturated fatty acids (PUFAs), especially omega-3 (n-3) and n-6 long-chain (LC) PUFAs, are indispensable for the fetus' brain supplied by the placenta. Despite being highly unsaturated, n-3 LCPUFA-docosahexaenoic acid (DHA) plays a protective role as an antioxidant in the brain. Deficiency of DHA during fetal development may cause irreversible damages in neurodevelopment programming. Dietary PUFAs can impact placental structure and functions by regulating early placentation processes, such as angiogenesis. They promote remodeling of uteroplacental architecture to facilitate increased blood flow and surface area for nutrient exchange. The placenta's fatty acid transfer depends on the uteroplacental vascular development, ensuring adequate maternal circulatory fatty acids transport to fulfill the fetus' rapid growth and development requirements. Maternal n-3 PUFA deficiency predominantly leads to placental epigenetic changes than other fetal developing organs. A global shift in DNA methylation possibly transmits epigenetic instability in developing fetuses due to n-3 PUFA deficiency. Thus, an optimal level of maternal omega-3 (n-3) PUFAs may protect the placenta's structural and functional integrity and allow fetal growth by controlling the aberrant placental epigenetic changes. This narrative review summarizes the recent advances and underpins the roles of maternal PUFAs on the structure and functions of the placenta and their relevance to fetal growth and brain development.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Jena SR, Nayak J, Kumar S, Kar S, Samanta L. Comparative proteome profiling of seminal components reveal impaired immune cell signalling as paternal contributors in recurrent pregnancy loss patients. Am J Reprod Immunol 2023; 89:e13613. [PMID: 35998016 DOI: 10.1111/aji.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/06/2022] [Accepted: 08/15/2022] [Indexed: 02/01/2023] Open
Abstract
PROBLEM Recurrent pregnancy loss (RPL) is usually evaluated from a women's perspective, however, recent evidence implies involvement of male factors as paternally expressed genes predominate placenta. During fertilization, prior to implantation the immune system purposefully produces early pregnancy factors with potent immunomodulatory properties for adaptation to antigenically dissimilar embryo. Therefore, it is hypothesized that paternal immunological factors play a role in RPL. METHOD OF STUDY Comparative proteome profiling (label free liquid chromatography mass spectroscopy: LC-MS/MS) of the seminal extracellular vesicles (SEVs), extracellular vesicle free seminal plasma (EVF-SP) and spermatozoa was carried out in semen of RPL patients (n = 21) and fertile donors (n = 21). This was followed by pathway and protein-protein interaction analysis, and validation of key proteins' expression (western blot). RESULTS A total of 68, 28 and 49 differentially expressed proteins in SEVs, EVF-SP and spermatozoa of RPL patients, respectively, were found to be involved in inflammatory response, immune cell signalling and apoptosis. In SEVs, underexpressed GDF-15 and overexpressed C3 imply distorted maternal immune response to paternal antigens leading to impaired decidualization. Dysregulated TGFβ signalling in EVF-SP surmises defective modulation of inflammatory response and induction of immune tolerance to seminal antigens in the female reproductive tract through generation of regulatory T cells. Retained histone variants in spermatozoa construe defective expression of early paternal genes, while underexpressed PTN may inflict defective angiogenesis resulting in expulsion of decidua. CONCLUSIONS Impaired modulation of immune response and improper placental development due to altered cytokine levels in seminal components may be the contributing paternal factors in RPL.
Collapse
Affiliation(s)
- Soumya Ranjan Jena
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, College Square, Cuttack, Odisha, India.,Centre of Excellence in Environment and Public Health, Ravenshaw University, College Square, Cuttack, Odisha, India
| | - Jasmine Nayak
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, College Square, Cuttack, Odisha, India.,Centre of Excellence in Environment and Public Health, Ravenshaw University, College Square, Cuttack, Odisha, India
| | - Sugandh Kumar
- School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sujata Kar
- Department of Obstetrics & Gynaecology, Kar Clinic and Hospital Pvt. Ltd., Bhubaneswar, India
| | - Luna Samanta
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, College Square, Cuttack, Odisha, India.,Centre of Excellence in Environment and Public Health, Ravenshaw University, College Square, Cuttack, Odisha, India
| |
Collapse
|
23
|
Juchniewicz P, Kloska A, Portalska K, Jakóbkiewicz-Banecka J, Węgrzyn G, Liss J, Głodek P, Tukaj S, Piotrowska E. X-chromosome inactivation patterns depend on age and tissue but not conception method in humans. Chromosome Res 2023; 31:4. [PMID: 36695960 PMCID: PMC9877087 DOI: 10.1007/s10577-023-09717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023]
Abstract
Female somatic X-chromosome inactivation (XCI) balances the X-linked transcriptional dosages between the sexes, randomly silencing the maternal or paternal X chromosome in each cell of 46,XX females. Skewed XCI toward one parental X has been observed in association with ageing and in some female carriers of X-linked diseases. To address the problem of non-random XCI, we quantified the XCI skew in different biological samples of naturally conceived females of different age groups and girls conceived after in vitro fertilization (IVF). Generally, XCI skew differed between saliva, blood, and buccal swabs, while saliva and blood had the most similar XCI patterns in individual females. XCI skew increased with age in saliva, but not in other tissues. We showed no significant differences in the XCI patterns in tissues of naturally conceived and IVF females. The gene expression profile of the placenta and umbilical cord blood was determined depending on the XCI pattern. The increased XCI skewing in the placental tissue was associated with the differential expression of several genes out of 40 considered herein. Notably, skewed XCI patterns (> 80:20) were identified with significantly increased expression levels of four genes: CD44, KDM6A, PHLDA2, and ZRSR2. The differences in gene expression patterns between samples with random and non-random XCI may shed new light on factors contributing to the XCI pattern outcome and indicate new paths in future research on the phenomenon of XCI skewing.
Collapse
Affiliation(s)
- Patrycja Juchniewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Karolina Portalska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Joanna Liss
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland ,Research and Development Center, INVICTA, Sopot, Poland
| | - Piotr Głodek
- Research and Development Center, INVICTA, Sopot, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
24
|
Tong W, Ganguly E, Villalobos-Labra R, Quon A, Spaans F, Giussani DA, Davidge ST. Sex-Specific Differences in the Placental Unfolded Protein Response in a Rodent Model of Gestational Hypoxia. Reprod Sci 2022; 30:1994-1997. [PMID: 36574145 DOI: 10.1007/s43032-022-01157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
Gestational hypoxia is a major contributor to fetal growth restriction (FGR) and perinatal morbidity and mortality and has been closely linked to the activation of the unfolded protein response (UPR) in the placenta. Recent studies on adverse pregnancy conditions show differential adaptive responses in pregnancies carrying male or female fetuses. Here, we use an established rat model of hypoxic pregnancy and FGR to test the hypothesis that chronic hypoxia promotes sexually dimorphic activation of the placental UPR. Our data showed that gestational hypoxia increased glucose regulatory protein 78 (GRP78) expression in male placentae, increased activating transcription factor 6 activation (ATF6) in female placentae, and did not induce changes in other UPR markers. In addition, gestational hypoxia reduced fetal weight only in males and ATF6 activation correlated with an increase in the fetal crown-rump-length/body weight ratio only in females. These results suggest sex-specific divergence in the placental adaptive response to gestational hypoxia, which may account for the sexual dimorphism observed in placental function and pregnancy outcomes in complicated pregnancies.
Collapse
Affiliation(s)
- Wen Tong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Esha Ganguly
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Roberto Villalobos-Labra
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anita Quon
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Sandra T Davidge
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada.
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
25
|
Zhang Y, Mustieles V, Williams PL, Souter I, Calafat AM, Demokritou M, Lee A, Vagios S, Hauser R, Messerlian C. Association of preconception mixtures of phenol and phthalate metabolites with birthweight among subfertile couples. Environ Epidemiol 2022; 6:e222. [PMID: 36249269 PMCID: PMC9555928 DOI: 10.1097/ee9.0000000000000222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Although parental preconception exposure to some phenols and phthalates have been associated with reduced birthweight, few studies have examined these chemicals as complex mixtures.
Collapse
|
26
|
Hjort L, Novakovic B, Cvitic S, Saffery R, Damm P, Desoye G. Placental DNA Methylation in pregnancies complicated by maternal diabetes and/or obesity: State of the Art and research gaps. Epigenetics 2022; 17:2188-2208. [PMID: 35950598 DOI: 10.1080/15592294.2022.2111755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
SUMMARYMaternal diabetes and/or obesity in pregnancy are undoubtedly associated with later disease-risk in the offspring. The placenta, interposed between the mother and the fetus, is a potential mediator of this risk through epigenetic mechanisms, including DNA methylation. In recent years, multiple studies have identified differentially methylated CpG sites in the placental tissue DNA in pregnancies complicated by diabetes and obesity. We reviewed all published original research relevant to this topic and analyzed our findings with the focus of identifying overlaps, contradictions and gaps. Most studies focused on the association of gestational diabetes and/or hyperglycemia in pregnancy and DNA methylation in placental tissue at term. We identified overlaps in results related to specific candidate genes, but also observed a large research gap of pregnancies affected by type 1 diabetes. Other unanswered questions relate to analysis of specific placental cell types and the timing of DNA methylation change in response to diabetes and obesity during pregnancy. Maternal metabolism is altered already in the first trimester involving structural and functional changes in the placenta, but studies into its effects on placental DNA methylation during this period are lacking and urgently needed. Fetal sex is also an important determinant of pregnancy outcome, but only few studies have taken this into account. Collectively, we provide a reference work for researchers working in this large and evolving field. Based on the results of the literature review, we formulate suggestions for future focus of placental DNA methylation studies in pregnancies complicated by diabetes and obesity.
Collapse
Affiliation(s)
- Line Hjort
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Environmental Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Silvija Cvitic
- Department of Pediatrics and Adolescent Medicine, Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Austria
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Peter Damm
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gernot Desoye
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept. of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
27
|
Wyss P, Song C, Bina M. Along the Bos taurus genome, uncover candidate imprinting control regions. BMC Genomics 2022; 23:478. [PMID: 35764919 PMCID: PMC9241299 DOI: 10.1186/s12864-022-08694-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In mammals, Imprinting Control Regions (ICRs) regulate a subset of genes in a parent-of-origin-specific manner. In both human and mouse, previous studies identified a set of CpG-rich motifs occurring as clusters in ICRs and germline Differentially Methylated Regions (gDMRs). These motifs consist of the ZFP57 binding site (ZFBS) overlapping a subset of MLL binding units known as MLL morphemes. MLL or MLL1 (Mixed Lineage Leukemia 1) is a relatively large multidomain protein that plays a central role in the regulation of transcription. The structures of both MLL1 and MLL2 include a domain (MT) that binds CpG-rich DNA and a conserved domain (SET) that methylates lysine 4 in histone H3 producing H3K4me3 marks in chromatin. RESULTS Since genomic imprinting impacts many developmental and key physiological processes, we followed a previous bioinformatics strategy to pinpoint ICR positions in the Bos taurus genome. Initial genome-wide analyses involved finding the positions of ZFP57 binding sites, and the CpG-rich motifs (ZFBS-morph overlaps) along cattle chromosomal DNA. By creating plots displaying the density of ZFBS-morph overlaps, we removed background noise and thus improved signal detection. With the density-plots, we could view the positions of peaks locating known and candidate ICRs in cattle DNA. Our evaluations revealed the correspondence of peaks in plots to reported known and inferred ICRs/DMRs in cattle. Beside peaks pinpointing such ICRs, the density-plots also revealed additional peaks. Since evaluations validated the robustness of our approach, we inferred that the additional peaks may correspond to candidate ICRs for imprinted gene expression. CONCLUSION Our bioinformatics strategy offers the first genome-wide approach for systematically localizing candidate ICRs. Furthermore, we have tailored our datasets for upload onto the UCSC genome browser so that researchers could find known and candidate ICRs with respect to a wide variety of annotations at all scales: from the positions of Single Nucleotide Polymorphisms (SNPs), to positions of genes, transcripts, and repeated DNA elements. Furthermore, the UCSC genome browser offers tools to produce enlarged views: to uncover the genes in the vicinity of candidate ICRs and thus discover potential imprinted genes for experimental validations.
Collapse
Affiliation(s)
- Phillip Wyss
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Carol Song
- Information Technology, Purdue University, West Lafayette, IN, 47907, USA
| | - Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
28
|
Genetic Aspects of Small for Gestational Age Infants Using Targeted-Exome Sequencing and Whole-Exome Sequencing: A Single Center Study. J Clin Med 2022; 11:jcm11133710. [PMID: 35806993 PMCID: PMC9267512 DOI: 10.3390/jcm11133710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The etiology of small for gestational age (SGA) is multifactorial and includes maternal/uterine-placental factors, fetal epigenetics, and genetic abnormalities. We evaluated the genetic causes and diagnostic effectiveness of targeted-panel sequencing (TES) or whole-exome sequencing (WES) in SGA infants without a known cause. Methods: A prospective study was conducted on newborn infants born with a birth weight of less than the 10th percentile for gestational age between January 2019 and December 2020 at the Pusan National University Hospital. We excluded infants with known causes of SGA, including maternal causes or major congenital anomalies or infections. SGA infants without a known etiology underwent genetic evaluation, including karyotyping, chromosomal microarray (CMA), and TES/WES. Results: During the study period, 82 SGA infants were born at our hospital. Among them, 61 patients were excluded. A total of 21 patients underwent karyotyping and chromosomal CMA, and aberrations were detected in two patients, including one chromosomal anomaly and one copy number variation. Nineteen patients with normal karyotype and CMA findings underwent TES or WES, which identified three pathogenic or likely pathogenic single-gene mutations, namely LHX3, TLK2, and MED13L. Conclusions: In SGA infants without known risk factors, the prevalence of genetic causes was 22% (5/21). The diagnostic yield of TES or WES in SGA infants with normal karyotype and CMA was 15.7% (3/19). TES or WES was quite helpful in identifying the etiology in SGA infants without a known cause.
Collapse
|
29
|
Influences of fresh and frozen embryo transfer on neonatal birthweight and the expression of imprinted genes PEG10 /L3MBTL1 in placenta. Reprod Biol 2022; 22:100665. [PMID: 35714554 DOI: 10.1016/j.repbio.2022.100665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022]
Abstract
To investigate the influences of fresh embryo transfer (ET) and frozen embryo transfer (FET) on neonatal birthweight and the expression of imprinted genes PEG10 and L3MBTL1 in the placenta after in vitro fertilization-embryo transfer (IVF-ET), we analyzed the neonatal birthweight between fresh ET and FET transfer cycles. Then, we collected placentas delivered by fresh ET and FET, and real-time quantitative PCR, Western blotting and immunohistochemistry were used to detect the expression of PEG10 and L3MBTL1. The mean neonatal birthweight of fresh ET was lower than that of FET(3348.48 ± 521.05 vs. 3450.34 ± 524.13, P < 0.001). The risks of low birthweight (LBW) and small-for-gestational age (SGA) were lower after FET (3.9 % vs. 5.4 %; 7.2 % vs. 10.3 %), with adjusted rate ratios of 0.74 (95 % CI, 0.59-0.93; P = 0.003) and 0.70 (95 % CI, 0.59-0.84; P < 0.001), respectively. FET resulted in higher frequencies of macrosomia and large-for-gestational age (LGA) (14.2 % vs. 10.3; 11.0 % vs. 7.1 %) than fresh ET, with adjusted rate ratios of 1.45 (95 % CI, 1.26-1.68; P < 0.001) and 1.62 (95 % CI, 1.37-1.91; P < 0.001), respectively. We also observed PEG10 mRNA and protein expression levels in placentas delivered by fresh ET and FET were significantly different, but there were no significant differences in L3MBTL1 between the two groups. Fresh ET may affect the expression of the imprinted gene PEG10 in the placenta and adverse to placental implantation and development, resulting to increasing incidences of LBW and SGA.
Collapse
|
30
|
Petry CJ, Hughes IA, Ong KK. Increased basal insulin sensitivity in late pregnancy in women carrying a male fetus: a cohort study. Biol Sex Differ 2022; 13:20. [PMID: 35509032 PMCID: PMC9069709 DOI: 10.1186/s13293-022-00429-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been suggested that fetal sex may be able to modify maternal metabolism and physiology during pregnancy. Recently pregnant women carrying a male fetus were reported to be more insulin sensitive than those carrying females, although related evidence is inconsistent. METHODS In this study we administered a 75 g oral glucose tolerance test at around week 28 of pregnancy in 813 pregnant women from a contemporary birth cohort (the Cambridge Baby Growth Study), derived surrogate indices of insulin secretion and sensitivity, and related them to the fetal sex. RESULTS Carrying a male fetus was associated with lower fasting glucose (difference in mean concentrations ≈ 0.1 mmol/L; β' = 0.063; p = 0.02) and insulin (≈ 1.1 pmol/L; β' = 0.075; p = 0.01) concentrations but not with post-load glucose or insulin concentrations. Male fetal sex was also associated with lower HOMA IR (≈ 1.08 units; β' = 0.071; p = 0.02) and higher QUICKI (≈ 1.06 units; β' = 0.080; p = 0.007) values suggesting increased basal insulin sensitivity. There were no differences in indices of insulin secretion, except for the insulin disposition index which was higher in women carrying a male fetus (≈ 1.15 units; β' = 0.090; p = 0.007). Birth weights were higher in male offspring. CONCLUSIONS Women carrying a male fetus were relatively more insulin sensitive in the fasting state and secreted more insulin relative to this degree of insulin sensitivity. These results are consistent with the idea that the fetal sex may be able to modify the maternal glucose-insulin axis.
Collapse
Affiliation(s)
- Clive J. Petry
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Box 116, Cambridge, CB2 0QQ UK
| | - Ieuan A. Hughes
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Box 116, Cambridge, CB2 0QQ UK
| | - Ken K. Ong
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Box 116, Cambridge, CB2 0QQ UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Cui K, Zhu Y, Shi Y, Chen T, Wang H, Guo Y, Deng P, Liu H, Shao X, Qin J. Establishment of Trophoblast-Like Tissue Model from Human Pluripotent Stem Cells in Three-Dimensional Culture System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2100031. [PMID: 34813178 PMCID: PMC8787386 DOI: 10.1002/advs.202100031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The placenta has a lifelong impact on the health of both the mother and fetus. Despite its significance, human early placental development is poorly understood due to the limited models. The models that can reflect the key features of early human placental development, especially at early gestation, are still lacking. Here, the authors report the generation of trophoblast-like tissue model from human pluripotent stem cells (hPSCs) in three-dimensional (3D) cultures. hPSCs efficiently self-organize into blastocoel-like cavities under defined conditions, which produce different trophoblast subtypes, including cytotrophoblasts (CTBs), syncytiotrophoblasts (STBs), and invasive extravillous trophoblasts (EVTs). The 3D cultures can exhibit microvilli structure and secrete human placenta-specific hormone. Single-cell RNA sequencing analysis further identifies the presence of major cell types of trophoblast-like tissue as existing in vivo. The results reveal the feasibility to establish 3D trophoblast-like tissue model from hPSCs in vitro, which is not obtained by monolayer culture. This new model system can not only facilitate to dissect the underlying mechanisms of early human placental development, but also imply its potential for study in developmental biology and gestational disorders.
Collapse
Affiliation(s)
- Kangli Cui
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yujuan Zhu
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yang Shi
- Dalian Municipal Women and Children's Medical CenterDalian116037China
| | - Tingwei Chen
- Yunnan Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunming650031China
| | - Hui Wang
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yaqiong Guo
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Pengwei Deng
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Haitao Liu
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiaoguang Shao
- Dalian Municipal Women and Children's Medical CenterDalian116037China
| | - Jianhua Qin
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| |
Collapse
|
32
|
Mutamba AK, He X, Wang T. Therapeutic advances in overcoming intrauterine growth restriction induced metabolic syndrome. Front Pediatr 2022; 10:1040742. [PMID: 36714657 PMCID: PMC9875160 DOI: 10.3389/fped.2022.1040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Intrauterine growth restriction (IUGR) remains a great public health challenge as it affects neonatal survival and influences their normal biological development and metabolism. Several clinical researches have revealed the occurrence of metabolic syndrome, such as insulin resistance, obesity, type 2 diabetes mellitus, oxidative stress, dyslipidemia, as direct results of IUGR. Therefore, it is essential to understand its underlying mechanism, impact and develop effective therapies. The purpose of this work is to review the current knowledge on IUGR induced metabolic syndrome and relevant therapies. Here in, we elaborate on the characteristics and causes of IUGR by pointing out recent research findings. Furthermore, we discuss the impact of IUGR on different organs of the body, followed by preclinical studies on IUGR using suitable animal models. Additionally, various metabolic disorders with their genetic implications, such as insulin resistance, type 2 diabetes mellitus, dyslipidemia, obesity are detailed. Finally, the current therapeutic options used in the treatment of IUGR are summarized with some prospective therapies highlighted.
Collapse
Affiliation(s)
- Alpha Kalonda Mutamba
- Department of Pediatrics, Neonatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaori He
- Department of Pediatrics, Neonatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Wang
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, China
| |
Collapse
|
33
|
Parveen A, Mishra S, Srivastava M, Chaudhary DK, Kapoor D, Gupta A, Tiwari S. Circulating Placental Alkaline Phosphatase Expressing Exosomes in Maternal Blood Showed Temporal Regulation of Placental Genes. Front Med (Lausanne) 2021; 8:758971. [PMID: 35004728 PMCID: PMC8739800 DOI: 10.3389/fmed.2021.758971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Analysis of placental genes could unravel maternal-fetal complications. However, inaccessibility to placental tissue during early pregnancy has limited this effort. We tested if exosomes (Exo) released by human placenta in the maternal circulation harbor crucial placental genes. Methods: Placental alkaline phosphate positive exosomes (ExoPLAP) were enriched from maternal blood collected at the following gestational weeks; 6-8th (T1), 12-14th (T2), 20-24th (T3), and 28th-32nd (T4). Nanotracking analysis, electron microscopy, dynamic light scattering, and immunoblotting were used for characterization. We used microarray for transcriptome and quantitative PCR (qPCR) for gene analysis in ExoPLAP. Results: Physical characterization and presence of CD63 and CD9 proteins confirmed the successful ExoPLAP enrichment. Four of the selected 36 placental genes did not amplify in ExoPLAP, while 32 showed regulations (n = 3-8/time point). Most genes in ExoPLAP showed significantly lower expression at T2-T4, relative to T1 (p < 0.05), such as NOS3, TNFSF10, OR5H6, APOL3, and NEDD4L. In contrast, genes, such as ATF6, NEDD1, and IGF2, had significantly higher expression at T2-T4 relative to T1. Unbiased gene profiling by microarray also confirmed expression of above genes in ExoPLAP-transcriptome. In addition, repeated measure ANOVA showed a significant change in the ExoPLAP transcriptome from T2 to T4 (n = 5/time point). Conclusion: Placental alkaline phosphate positive exosomes transcriptome changed with gestational age advancement in healthy women. The transcriptome expressed crucial placental genes involved in early embryonic development, such as actin cytoskeleton organization, appropriate cell positioning, DNA replication, and B-cell regulation for protecting mammalian fetuses from rejection. Thus, ExoPLAP in maternal blood could be a promising source to study the placental genes regulation for non-invasive monitoring of placental health.
Collapse
Affiliation(s)
- Arshiya Parveen
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Suman Mishra
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Medha Srivastava
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Dharmendra K. Chaudhary
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Deepa Kapoor
- General Hospital, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Amrit Gupta
- Department of Maternal & Reproductive Health, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
34
|
Rondini EA, Ramseyer VD, Burl RB, Pique-Regi R, Granneman JG. Single cell functional genomics reveals plasticity of subcutaneous white adipose tissue (WAT) during early postnatal development. Mol Metab 2021; 53:101307. [PMID: 34298199 PMCID: PMC8385178 DOI: 10.1016/j.molmet.2021.101307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The current study addresses the cellular complexity and plasticity of subcutaneous (inguinal) white adipose tissue (iWAT) in mice during the critical periods of perinatal growth and establishment. METHODS We performed a large-scale single cell transcriptomic (scRNA-seq) and epigenomic (snATAC-seq) characterization of cellular subtypes (adipose stromal cells (ASC) and adipocyte nuclei) during inguinal WAT (subcutaneous; iWAT) development in mice, capturing the early postnatal period (postnatal days (PND) 06 and 18) through adulthood (PND56). RESULTS Perinatal and adult iWAT contain 3 major ASC subtypes that can be independently identified by RNA expression profiles and DNA transposase accessibility. Furthermore, the transcriptomes and enhancer landscapes of both ASC and adipocytes dynamically change during postnatal development. Perinatal ASC (PND06) are highly enriched for several imprinted genes (IGs; e.g., Mest, H19, Igf2) and extracellular matrix proteins whose expression then declines prior to weaning (PND18). By comparison, adult ASC (PND56) are more enriched for transcripts associated with immunoregulation, oxidative stress, and integrin signaling. Two clusters of mature adipocytes, identified through single nuclei RNA sequencing (snRNA-seq), were distinctive for proinflammatory/immune or metabolic gene expression patterns that became more transcriptionally diverse in adult animals. Single nuclei assay for transposase-accessible chromatin (snATAC-seq) revealed that differences in gene expression were associated with developmental changes in chromatin accessibility and predicted transcription factor motifs (e.g., Plagl1, Ar) in both stromal cells and adipocytes. CONCLUSIONS Our data provide new insights into transcriptional and epigenomic signaling networks important during iWAT establishment at a single cell resolution, with important implications for the field of metabolic programming.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Vanesa D Ramseyer
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Rayanne B Burl
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Center for Integrative Metabolic and Endocrine Research, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
35
|
Epigenetic processes during preeclampsia and effects on fetal development and chronic health. Clin Sci (Lond) 2021; 135:2307-2327. [PMID: 34643675 DOI: 10.1042/cs20190070] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 01/12/2023]
Abstract
Preeclampsia (PE), the leading cause of maternal and fetal morbidity and mortality, is associated with poor fetal growth, intrauterine growth restriction (IUGR) and low birth weight (LBW). Offspring of women who had PE are at increased risk for cardiovascular (CV) disease later in life. However, the exact etiology of PE is unknown. Moreover, there are no effective interventions to treat PE or alleviate IUGR and the developmental origins of chronic disease in the offspring. The placenta is critical to fetal growth and development. Epigenetic regulatory processes such as histone modifications, microRNAs and DNA methylation play an important role in placental development including contributions to the regulation of trophoblast invasion and remodeling of the spiral arteries. Epigenetic processes that lead to changes in placental gene expression in PE mediate downstream effects that contribute to the development of placenta dysfunction, a critical mediator in the onset of PE, impaired fetal growth and IUGR. Therefore, this review will focus on epigenetic processes that contribute to the pathogenesis of PE and IUGR. Understanding the epigenetic mechanisms that contribute to normal placental development and the initiating events in PE may lead to novel therapeutic targets in PE that improve fetal growth and mitigate increased CV risk in the offspring.
Collapse
|
36
|
D’ Fonseca NMM, Gibson CME, van Doorn DA, Roelfsema E, de Ruijter-Villani M, Stout TAE. Effect of Overfeeding Shetland Pony Mares on Embryonic Glucose and Lipid Accumulation, and Expression of Imprinted Genes. Animals (Basel) 2021; 11:ani11092504. [PMID: 34573470 PMCID: PMC8470267 DOI: 10.3390/ani11092504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary In pregnant individuals, maternal overnutrition is associated with disturbances in the expression of specific genes and nutrient transporters in the early embryo, which can affect both fetal and placental development and have lasting effects on the health of resulting offspring. To examine how maternal overfeeding affects the equine embryo, Shetland pony mares were fed either a high-energy (HE: 200% of net energy requirements) or maintenance (control) diet. Mares from both groups were inseminated, and day-seven embryos were recovered and transferred to recipients from the same or the alternate group. The expression of several genes, nutrient transporters and DNA methyltransferases (DNMTs; play an important role in regulating gene expression) were determined in extra-embryonic membranes after recovery on day 28 of gestation. The expression of nutrient transporters was also assessed in endometrium recovered from recipient mares immediately after embryo removal. In addition, glucose uptake by day-28 extra-embryonic membranes, and lipid droplet accumulation in day-seven embryos were assessed. Maternal overfeeding resulted in elevated expression of several genes, DNMTs and nutrient transporters following embryo transfer from an HE to a control mare. The expression of two amino acid transporters was also elevated in the endometrium after embryo transfer from HE to control. Maternal overfeeding did not affect lipid droplet accumulation in day-seven embryos, or glucose uptake by membranes of day-28 embryos. It remains to be seen whether the alterations in gene expression are maintained throughout gestation and into postnatal life. Abstract Maternal overfeeding is associated with disturbances in early embryonic epigenetic reprogramming, leading to altered expression of imprinted genes and nutrient transporters, which can affect both fetal and placental development and have lasting effects on the health of resulting offspring. To examine how maternal overfeeding affects the equine embryo, Shetland pony mares were fed either a high-energy (HE: 200% of net energy requirements) or maintenance (control) diet. Mares from both groups were inseminated, and day-seven embryos were recovered and transferred to recipients from the same or the alternate group. The expression of a panel of imprinted genes, glucose and amino acid transporters, and DNA methyltransferases (DNMTs) were determined in conceptus membranes after recovery on day 28 of gestation (late pre-implantation phase). The expression of nutrient transporters was also assessed in endometrium recovered from recipient mares immediately after conceptus removal. In addition, glucose uptake by day-28 extra-embryonic membranes, and lipid droplet accumulation in day-seven blastocysts were assessed. Maternal overfeeding resulted in elevated expression of imprinted genes (IGF2, IGF2R, H19, GRB10, PEG10 and SNRPN), DNMTs (DNMT1 and DNMT3B), glucose (SLC2A1), fructose (SLC2A5) and amino acid (SLC7A2) transporters following ET from an HE to a control mare. Expression of amino acid transporters (SLC1A5 and SLC7A1) was also elevated in the endometrium after ET from HE to control. Maternal overfeeding did not affect lipid droplet accumulation in blastocysts, or glucose uptake by day-28 membranes. It remains to be seen whether the alterations in gene expression are maintained throughout gestation and into postnatal life.
Collapse
Affiliation(s)
- Nicky M. M. D’ Fonseca
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
- Correspondence:
| | - Charlotte M. E. Gibson
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
| | - David A. van Doorn
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Ellen Roelfsema
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
| | - Marta de Ruijter-Villani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
| | - Tom A. E. Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
| |
Collapse
|
37
|
Comparison of Histone H3K4me3 between IVF and ICSI Technologies and between Boy and Girl Offspring. Int J Mol Sci 2021; 22:ijms22168574. [PMID: 34445278 PMCID: PMC8395251 DOI: 10.3390/ijms22168574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Epigenetics play a vital role in early embryo development. Offspring conceived via assisted reproductive technologies (ARTs) have a three times higher risk of epigenetic diseases than naturally conceived children. However, investigations into ART-associated placental histone modifications or sex-stratified analyses of ART-associated histone modifications remain limited. In the current study, we carried out immunohistochemistry, chip-sequence analysis, and a series of in vitro experiments. Our results demonstrated that placentas from intra-cytoplasmic sperm injection (ICSI), but not in vitro fertilization (IVF), showed global tri-methylated-histone-H3-lysine-4 (H3K4me3) alteration compared to those from natural conception. However, for acetylated-histone-H3-lysine-9 (H3K9ac) and acetylated-histone-H3-lysine-27 (H3K27ac), no significant differences between groups could be found. Further, sex -stratified analysis found that, compared with the same-gender newborn cord blood mononuclear cell (CBMC) from natural conceptions, CBMC from ICSI-boys presented more genes with differentially enriched H3K4me3 (n = 198) than those from ICSI-girls (n = 79), IVF-girls (n = 5), and IVF-boys (n = 2). We also found that varying oxygen conditions, RNA polymerase II subunit A (Polr2A), and lysine demethylase 5A (KDM5A) regulated H3K4me3. These findings revealed a difference between IVF and ICSI and a difference between boys and girls in H3K4me3 modification, providing greater insight into ART-associated epigenetic alteration.
Collapse
|
38
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
39
|
Barberet J, Binquet C, Guilleman M, Doukani A, Choux C, Bruno C, Bourredjem A, Chapusot C, Bourc'his D, Duffourd Y, Fauque P. Do assisted reproductive technologies and in vitro embryo culture influence the epigenetic control of imprinted genes and transposable elements in children? Hum Reprod 2021; 36:479-492. [PMID: 33319250 DOI: 10.1093/humrep/deaa310] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Do assisted reproductive technologies (ART) and in vitro embryo culture influence the epigenetic control of imprinted genes (IGs) and transposable elements (TEs) in children? SUMMARY ANSWER Significant differences in the DNA methylation of IGs or transposon families were reported between ART and naturally conceived children, but there was no difference between culture media. WHAT IS KNOWN ALREADY There is concern that ART may play a role in increasing the incidence of adverse health outcomes in children, probably through epigenetic mechanisms. It is crucial to assess epigenetic control, especially following non-optimal in vitro culture conditions and to compare epigenetic analyses from ART-conceived and naturally conceived children. STUDY DESIGN, SIZE, DURATION This follow-up study was based on an earlier randomized study comparing in vitro fertilization outcomes following the use of two distinct culture media. We compared the epigenetic profiles of children from the initial randomized study according to the mode of conception [i.e. ART singletons compared with those of a cohort of naturally conceived singleton children (CTL)], the type of embryo culture medium used [global medium (LifeGlobal) and single step medium (Irvine Scientific)] and the mode of in vitro fertilization (i.e. IVF versus ICSI). PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 57 buccal smears were collected from 7- to 8-year-old children. The DNA methylation profiles of four differentially methylated regions (DMRs) of IGs (H19/IGF2: IG-DMR, KCNQ1OT1: TSS-DMR, SNURF: TSS-DMR, and PEG3: TSS-DMR) and two TEs (AluYa5 and LINE-1) were first assessed by pyrosequencing. We further explored IGs and TEs' methylation changes through methylation array (Human MethylationEPIC BeadChip referred as EPIC array, Illumina). MAIN RESULTS AND THE ROLE OF CHANCE Changes in the IGs' DNA methylation levels were found in ART children compared to controls. DNA methylation levels of H19/IGF2 DMR were significantly lower in ART children than in CTL children [52% versus 58%, P = 0.003, false discovery rate (FDR) P = 0.018] while a significantly higher methylation rate was observed for the PEG3 DMR (51% versus 48%, P = 0.007, FDR P = 0.021). However, no differences were found between the culture media. After observing these targeted modifications, analyses were performed at wider scale. Again, no differences were detected according to the culture media, but imprinted-related DMRs overlapping promoter region near the genes major for the development (MEG3, BLCAP, and DLX5) were detected between the ART and CTL children. LIMITATIONS, REASONS FOR CAUTION The sample size could seem relatively small, but the high consistency of our results was ensured by the homogeneity of the cohort from the initial randomized study, the standardized laboratory techniques and the robust statistical analyses accounting for multiple testing. WIDER IMPLICATIONS OF THE FINDINGS Although this study did not report DNA methylation differences depending on the culture medium, it sheds light on epigenetic changes that could be observed in some children conceived by ART as compared to CTL children. The clinical relevance of such differences remains largely unknown, and it is still unclear whether such changes are due to some specific ART procedures and/or to parental infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by funding from the Agence Nationale pour la Recherche ('CARE'-ANR JCJC 2017). The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER Not concerned.
Collapse
Affiliation(s)
- J Barberet
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| | - C Binquet
- CHU Dijon Bourgogne, Centre d'Investigation Clinique, module Epidémiologie Clinique/essais cliniques (CIC-EC), Dijon, France.,INSERM, CIC1432, module épidémiologie clinique, Dijon, France
| | - M Guilleman
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| | - A Doukani
- Faculté de Médecine Sorbonne Université, Site Pitié-Salpêtrière, Paris, France
| | - C Choux
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Service de Gynécologie-Obstétrique, Dijon, France
| | - C Bruno
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| | - A Bourredjem
- CHU Dijon Bourgogne, Centre d'Investigation Clinique, module Epidémiologie Clinique/essais cliniques (CIC-EC), Dijon, France.,INSERM, CIC1432, module épidémiologie clinique, Dijon, France
| | - C Chapusot
- CHU Dijon Bourgogne, Plateforme de génétique des Cancers de bourgogne, Dijon, France
| | - D Bourc'his
- Institut Curie, PSL University, CNRS, INSERM, Paris, France
| | - Y Duffourd
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France
| | - P Fauque
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| |
Collapse
|
40
|
Ozmen A, Kipmen-Korgun D, Isenlik BS, Erman M, Sakinci M, Berkkanoglu M, Coetzee K, Ozgur K, Cetindag E, Yanar K, Korgun ET. Does fresh or frozen embryo transfer affect imprinted gene expressions in human term placenta? Acta Histochem 2021; 123:151694. [PMID: 33571695 DOI: 10.1016/j.acthis.2021.151694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/28/2022]
Abstract
Our research aimed to compare the epigenetic alterations between placentae of in vitro fertilization (IVF) patients and spontaneous pregnancies. Additionally, the expression levels of proliferation markers (PCNA, Ki67) and glucose transporter proteins (GLUT1, GLUT3) were assessed in control and IVF placentae to examine the possible consequences of epigenetic alterations on placental development. Control group placentae were obtained from spontaneous pregnancies of healthy women (n = 16). IVF placentae were obtained from fresh (n = 16) and frozen (n = 16) embryo transfer pregnancies. A group of maternal and paternal imprint genes H19, IGF2, IGF2, IGF2R, PHLDA2, PLAGL1, MASH2, GRB10, PEG1, PEG3, and PEG10 were detected by Real-Time PCR. Additionally, PCNA, Ki67, GLUT1, and GLUT3 protein levels were assessed by immunohistochemistry and western blot. In the fresh embryo transfer placenta group (fETP), gene expression of paternal PEG1 and PEG10 was upregulated compared with the control group. Increased gene expression in paternal PEG1 and maternal IGFR2 genes was detected in the frozen embryo transfer placenta group (FET) compared with the control group. Conversely, expression levels of H19 and IGF2 genes were downregulated in the FET group. On the other hand, GLUT3 and PCNA expression was increased in FET group placentae. IVF techniques affect placental imprinted gene expressions which are important for proper placental development. Imprinted genes are differently expressed in fresh ET placentae and frozen ET placentae. In conclusion, these data indicate that altered imprinted gene expression may affect glucose transport and cell proliferation, therefore play an important role in placental development.
Collapse
Affiliation(s)
- Asli Ozmen
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Dijle Kipmen-Korgun
- Department of Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Bekir Sitki Isenlik
- Department of Obstetrics and Gynecology, Training and Research Hospital, Health Sciences University, Antalya, Turkey
| | - Munire Erman
- Department of Obstetrics and Gynecology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Mehmet Sakinci
- Department of Obstetrics and Gynecology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | | | - Kevin Coetzee
- Antalya IVF, Halide Edip Cd. No:7, Kanal Mh., Antalya, Turkey
| | - Kemal Ozgur
- Antalya IVF, Halide Edip Cd. No:7, Kanal Mh., Antalya, Turkey
| | - Emre Cetindag
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Kerem Yanar
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
41
|
Caniçais C, Vasconcelos S, Ramalho C, Marques CJ, Dória S. Deregulation of imprinted genes expression and epigenetic regulators in placental tissue from intrauterine growth restriction. J Assist Reprod Genet 2021; 38:791-801. [PMID: 33389447 PMCID: PMC8079450 DOI: 10.1007/s10815-020-02047-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Intrauterine growth restriction (IUGR) is a fetal growth complication that can be caused by ineffective nutrient transfer from the mother to the fetus via the placenta. Abnormal placental development and function have been correlated with abnormal expression of imprinted genes, which are regulated by epigenetic modifications at imprinting control regions (ICRs). In this study, we analyzed the expression of imprinted genes known to be involved in fetal growth and epigenetic regulators involved in DNA methylation, as well as DNA methylation at the KvDMR1 imprinting control region and global levels of DNA hydroxymethylation, in IUGR cases. METHODS Expression levels of imprinted genes and epigenetic regulators were analyzed in term placental samples from 21 IUGR cases and 9 non-IUGR (control) samples, by RT-qPCR. Additionally, KvDMR1 methylation was analyzed by bisulfite sequencing and combined bisulfite restriction analysis (COBRA) techniques. Moreover, global DNA methylation and hydroxymethylation levels were also measured. RESULTS We observed increased expression of PHLDA2, CDKN1C, and PEG10 imprinted genes and of DNMT1, DNMT3A, DNMT3B, and TET3 epigenetic regulators in IUGR placentas. No differences in methylation levels at the KvDMR1 were observed between the IUGR and control groups; similarly, no differences in global DNA methylation and hydromethylation were detected. CONCLUSION Our study shows that deregulation of epigenetic mechanisms, namely increased expression of imprinted genes and epigenetic regulators, might be associated with IUGR etiology. Therefore, this study adds knowledge to the molecular mechanisms underlying IUGR, which may contribute to novel prediction tools and future therapeutic options for the management of IUGR pregnancies.
Collapse
Affiliation(s)
- Carla Caniçais
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Sara Vasconcelos
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Carla Ramalho
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hospital São João, Porto, Portugal
| | - C Joana Marques
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| | - Sofia Dória
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| |
Collapse
|
42
|
Desoye G, Wells JCK. Pregnancies in Diabetes and Obesity: The Capacity-Load Model of Placental Adaptation. Diabetes 2021; 70:823-830. [PMID: 33741605 PMCID: PMC7980199 DOI: 10.2337/db20-1111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
Excess nutritional supply to the growing fetus, resulting from maternal diabetes and obesity, is associated with increased risks of fetal maldevelopment and adverse metabolic conditions in postnatal life. The placenta, interposed between mother and fetus, serves as the gateway between the two circulations and is usually considered to mediate maternal exposures to the fetus through a direct supply line. In this Perspective, however, we argue that the placenta is not an innocent bystander and mounts responses to fetal "signals of distress" to sustain its own adequate function and protect the fetus. We describe several types of protection that the placenta can offer the fetus against maternal metabolic perturbations and offer a theoretical model of how the placenta responds to the intrauterine environment in maternal diabetes and obesity to stabilize the fetal environment. Our approach supports growing calls for early screening and control of pregnancy metabolism to minimize harmful fetal outcomes.
Collapse
|
43
|
Salimi M, Shirazi A, Norouzian M, Jafari A, Edalatkhah H, Mehravar M, Majidi M, Mehrazar MM. H19/Igf2 Expression and Methylation of Histone 3 in Mice Chimeric Blastocysts. Rep Biochem Mol Biol 2021; 9:357-365. [PMID: 33649730 DOI: 10.29252/rbmb.9.3.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background Currently, the efficient production of chimeric mice and their survival are still challenging. Recent researches have indicated that preimplantation embryo culture media and manipulation lead to abnormal methylation of histone in the H19/Igf2 promotor region and consequently alter their gene expression pattern. This investigation was designed to evaluate the relationship between the methylation state of histone H3 and H19/Igf2 expression in mice chimeric blastocysts. Methods Mouse 129/Sv embryonic stem cells (mESCs) expressing the green fluorescent protein (mESCs-GFP) were injected into the perivitelline space of 2.5 days post-coitis (dpc) embryos (C57BL/6) using a micromanipulator. H3K4 and H3K9 methylation, and H19 and Igf2 expression was measured by immunocytochemistry and q-PCR, respectively, in blastocysts. Results Histone H3 trimethylation in H3K4 and H3K9 in chimeric blastocysts was significantly less and greater, respectively (p< 0.05), than in controls. H19 expression was significantly less (p< 0.05), while Igf2 expression was less, but not significantly so, in chimeric than in control blastocysts. Conclusion Our results showed, that the alteration ofH3K4me3 and H3K9me3 methylation, change H19/Igf2 expression in chimeric blastocysts.
Collapse
Affiliation(s)
- Maryam Salimi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Mohsen Norouzian
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ameneh Jafari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Maryam Mehravar
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Majidi
- Food and Drug Laboratory Research Center, Food and Drug Organization, MOH & ME, Tehran, Iran
| | - Mohammad Mahdi Mehrazar
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
44
|
Oveisi A, Vahdati A, Shahhoseini M, Favaedi R, Maroufizadeh S, Movaghar B. Ovulation Induction Changes Epigenetic Marks of Imprinting Genes in Mice Fetus Organs. CELL JOURNAL 2021; 23:99-108. [PMID: 33650826 PMCID: PMC7944133 DOI: 10.22074/cellj.2021.6953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/03/2019] [Indexed: 11/26/2022]
Abstract
Objective Genomic imprinting is an epigenetic phenomenon that plays a critical role in normal development of embryo.
Using exogenous hormones during assisted reproductive technology (ART) can change an organism hormonal profile
and subsequently affect epigenetic events. Ovarian stimulation changes gene expression and epigenetic pattern of
imprinted genes in the organs of mouse fetus.
Materials and Methods For this experimental study, expression of three imprinted genes H19, Igf2 (Insulin-like growth
factor 2) and Cdkn1c (Cyclin-dependent kinase inhibitor 1C), which have important roles in development of placenta
and embryo, and the epigenetic profile of their regulatory region in some tissues of 19-days-old female fetuses, from
female mice subjected to ovarian stimulation, were evaluated by quantitative reverse-transcription PCR (qRT-PCR)
and Chromatin immunoprecipitation (ChIP) methods.
Results H19 gene was significantly lower in heart (P<0.05), liver (P<0.05), lung (P<0.01), placenta (P<0.01) and ovary
(P<0.01). It was significantly higher in kidney of ovarian stimulation group compared to control fetuses (P<0.05). Igf2
expression was significantly higher in brain (P<0.05) and kidney (P<0.05), while it was significantly lower in lung of
experimental group fetuses in comparison with control fetuses (P<0.05). Cdkn1c expression was significantly higher in
lung (P<0.05). It was significantly decreased in placenta of experimental group fetuses rather than the control fetuses
(P<0.05). Histone modification data and DNA methylation data were in accordance to the gene expression profiles.
Conclusion Results showed altered gene expressions in line with changes in epigenetic pattern of their promoters in
the ovarian stimulation group, compared to normal cycle.
Collapse
Affiliation(s)
- Anahita Oveisi
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Akbar Vahdati
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Iran
| | - Raha Favaedi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Saman Maroufizadeh
- School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Bahar Movaghar
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
45
|
Interspecific Variation in One-Carbon Metabolism within the Ovarian Follicle, Oocyte, and Preimplantation Embryo: Consequences for Epigenetic Programming of DNA Methylation. Int J Mol Sci 2021; 22:ijms22041838. [PMID: 33673278 PMCID: PMC7918761 DOI: 10.3390/ijms22041838] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
One-carbon (1C) metabolism provides methyl groups for the synthesis and/or methylation of purines and pyrimidines, biogenic amines, proteins, and phospholipids. Our understanding of how 1C pathways operate, however, pertains mostly to the (rat) liver. Here we report that transcripts for all bar two genes (i.e., BHMT, MAT1A) encoding enzymes in the linked methionine-folate cycles are expressed in all cell types within the ovarian follicle, oocyte, and blastocyst in the cow, sheep, and pig; as well as in rat granulosa cells (GCs) and human KGN cells (a granulosa-like tumor cell line). Betaine-homocysteine methyltransferase (BHMT) protein was absent in bovine theca and GCs, as was activity of this enzyme in GCs. Mathematical modeling predicted that absence of this enzyme would lead to more volatile S-adenosylmethionine-mediated transmethylation in response to 1C substrate (e.g., methionine) or cofactor provision. We tested the sensitivity of bovine GCs to reduced methionine (from 50 to 10 µM) and observed a diminished flux of 1C units through the methionine cycle. We then used reduced-representation bisulfite sequencing to demonstrate that this reduction in methionine during bovine embryo culture leads to genome-wide alterations to DNA methylation in >1600 genes, including a cohort of imprinted genes linked to an abnormal fetal-overgrowth phenotype. Bovine ovarian and embryonic cells are acutely sensitive to methionine, but further experimentation is required to determine the significance of interspecific variation in BHMT expression.
Collapse
|
46
|
Choux C, Petazzi P, Sanchez-Delgado M, Hernandez Mora JR, Monteagudo A, Sagot P, Monk D, Fauque P. The hypomethylation of imprinted genes in IVF/ICSI placenta samples is associated with concomitant changes in histone modifications. Epigenetics 2020; 15:1386-1395. [PMID: 32573317 DOI: 10.1080/15592294.2020.1783168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Although more and more children are born by Assisted Reproductive Technologies (ART), ART safety has not fully been demonstrated. Notably, ART could disturb the delicate step of implantation, and trigger placenta-related adverse outcomes with potential long-term effects, through disrupted epigenetic regulation. We have previously demonstrated that placental DNA methylation was significantly lower after IVF/ICSI than following natural conception at two differentially methylated regions (DMRs) associated with imprinted genes (IGs): H19/IGF2 and KCNQ1OT1. As histone modifications are critical for placental physiology, the aim of this study was to profile permissive and repressive histone marks in placenta biopsies to reveal a better understanding of the epigenetic changes in the context of ART. Utilizing chromatin immunoprecipitation (ChIP) coupled with quantitative PCR, permissive (H3K4me3, H3K4me2, and H3K9ac) and repressive (H3K9me3 and H3K9me2) post-translational histone modifications were quantified. The analyses revealed a significantly higher quantity of H3K4me2 precipitation in the IVF/ICSI group than in the natural conception group for H19/IGF2 and KCNQ1OT1 DMRs (P = 0.016 and 0.003, respectively). Conversely, the quantity of both repressive marks at H19/IGF2 and SNURF DMRs was significantly lower in the IVF/ICSI group than in the natural conception group (P = 0.011 and 0.027 for H19/IGF2; and P = 0.010 and 0.035 for SNURF). These novel findings highlight that DNA hypomethylation at imprinted DMRs following ART is linked with increased permissive/decreased repressive histone marks, altogether promoting a more permissive chromatin conformation. This concomitant change in epigenetic state at IGs at birth might be an important developmental event because of ART manipulations.
Collapse
Affiliation(s)
- Cécile Choux
- GAD (Génétique des anomalies du développement), Université Bourgogne Franche-Comté - INSERM UMR1231 , Dijon, France.,CHU Dijon Bourgogne, Service de Gynécologie-Obstétrique , Dijon, France
| | - Paolo Petazzi
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute , Barcelona, Spain
| | - Marta Sanchez-Delgado
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute , Barcelona, Spain
| | - José R Hernandez Mora
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute , Barcelona, Spain
| | - Ana Monteagudo
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute , Barcelona, Spain
| | - Paul Sagot
- CHU Dijon Bourgogne, Service de Gynécologie-Obstétrique , Dijon, France
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute , Barcelona, Spain.,Biomedical Research Centre, University of East Anglia, Norwich Research Park , Norwich Norfolk, UK
| | - Patricia Fauque
- GAD (Génétique des anomalies du développement), Université Bourgogne Franche-Comté - INSERM UMR1231 , Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction , Dijon, France
| |
Collapse
|
47
|
Argyraki M, Damdimopoulou P, Chatzimeletiou K, Grimbizis GF, Tarlatzis BC, Syrrou M, Lambropoulos A. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health. Hum Reprod Update 2020; 25:777-801. [PMID: 31633761 DOI: 10.1093/humupd/dmz025] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetic gene regulatory mechanism; disruption of this process during early embryonic development can have major consequences on both fetal and placental development. The periconceptional period and intrauterine life are crucial for determining long-term susceptibility to diseases. Treatments and procedures in assisted reproductive technologies (ART) and adverse in-utero environments may modify the methylation levels of genomic imprinting regions, including insulin-like growth factor 2 (IGF2)/H19, mesoderm-specific transcript (MEST), and paternally expressed gene 10 (PEG10), affecting the development of the fetus. ART, maternal psychological stress, and gestational exposures to chemicals are common stressors suspected to alter global epigenetic patterns including imprinted genes. OBJECTIVE AND RATIONALE Our objective is to highlight the effect of conception mode and maternal psychological stress on fetal development. Specifically, we monitor fetal programming, regulation of imprinted genes, fetal growth, and long-term disease risk, using the imprinted genes IGF2/H19, MEST, and PEG10 as examples. The possible role of environmental chemicals in genomic imprinting is also discussed. SEARCH METHODS A PubMed search of articles published mostly from 2005 to 2019 was conducted using search terms IGF2/H19, MEST, PEG10, imprinted genes, DNA methylation, gene expression, and imprinting disorders (IDs). Studies focusing on maternal prenatal stress, psychological well-being, environmental chemicals, ART, and placental/fetal development were evaluated and included in this review. OUTCOMES IGF2/H19, MEST, and PEG10 imprinted genes have a broad developmental effect on fetal growth and birth weight variation. Their disruption is linked to pregnancy complications, metabolic disorders, cognitive impairment, and cancer. Adverse early environment has a major impact on the developing fetus, affecting mostly growth, the structure, and subsequent function of the hypothalamic-pituitary-adrenal axis and neurodevelopment. Extensive evidence suggests that the gestational environment has an impact on epigenetic patterns including imprinting, which can lead to adverse long-term outcomes in the offspring. Environmental stressors such as maternal prenatal psychological stress have been found to associate with altered DNA methylation patterns in placenta and to affect fetal development. Studies conducted during the past decades have suggested that ART pregnancies are at a higher risk for a number of complications such as birth defects and IDs. ART procedures involve multiple steps that are conducted during critical windows for imprinting establishment and maintenance, necessitating long-term evaluation of children conceived through ART. Exposure to environmental chemicals can affect placental imprinting and fetal growth both in humans and in experimental animals. Therefore, their role in imprinting should be better elucidated, considering the ubiquitous exposure to these chemicals. WIDER IMPLICATIONS Dysregulation of imprinted genes is a plausible mechanism linking stressors such as maternal psychological stress, conception using ART, and chemical exposures with fetal growth. It is expected that a greater understanding of the role of imprinted genes and their regulation in fetal development will provide insights for clinical prevention and management of growth and IDs. In a broader context, evidence connecting impaired imprinted gene function to common diseases such as cancer is increasing. This implies early regulation of imprinting may enable control of long-term human health, reducing the burden of disease in the population in years to come.
Collapse
Affiliation(s)
- Maria Argyraki
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Pauliina Damdimopoulou
- Karolinska Institutet, Department of Clinical Sciences, Intervention and Technology, Unit of Obstetrics and Gynecology, K57 Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Katerina Chatzimeletiou
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Grigoris F Grimbizis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Basil C Tarlatzis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Maria Syrrou
- Department of Biology, Laboratory of Biology, School of Health Sciences, University of Ioannina, Dourouti University Campus, 45110, Ioannina, Greece
| | - Alexandros Lambropoulos
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| |
Collapse
|
48
|
Wang Z, Liu X, Xu J, Yang Q, Niu W, Dai S, Hu L, Guo Y. Paternal age, body mass index, and semen volume are associated with chromosomal aberrations-related miscarriages in couples that underwent treatment by assisted reproductive technology. Aging (Albany NY) 2020; 12:8459-8472. [PMID: 32385194 PMCID: PMC7244044 DOI: 10.18632/aging.103151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/16/2020] [Indexed: 12/19/2022]
Abstract
We investigated the effects of paternal characteristics, including age, body mass index (BMI), and semen parameters on chromosomal aberration-related miscarriages in couples that underwent treatment with assisted reproductive technology (ART). Single nucleotide polymorphism (SNP) array analysis showed chromosomal aberrations in 60.2% (557/925) of miscarried fetuses, including trisomy in 73.1% (407/557) of cases. There were higher chromosomal aberration rates in fetuses for men aged 20-24 years and ≥30 years compared with controls. After adjusting for age and BMI of the female partners, and the BMI and semen parameters of the males, there was no statistically significant effect of paternal age ≥30 years on the risk of chromosomal aberrations-related miscarriages. However, the odds of chromosomal abnormality-related miscarriage were 148% higher for the youngest fathers (age: 20-24 years) than fathers aged 25-29 years [adjusted odds ratio (OR): 2.48, 95% confidence interval (CI): 1.03-5.96; P=0.042]. Furthermore, high male BMI (adjusted OR: 1.56, 95% CI: 1.14-2.14; P=0.005) and low semen volume (adjusted OR: 2.09, 95% CI: 1.06-4.11; P=0.034) were associated with increased risk of chromosomal aberration-related miscarriages. These findings demonstrate that very young paternal age, high BMI, and low semen volume are associated with increased risk of chromosomal aberration-related miscarriages in couples undergoing ART treatment.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China
| | - Xiaocong Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China
| | - Jiawei Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China.,Department of Preimplantation Genetic Diagnosis, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China.,Department of Preimplantation Genetic Diagnosis, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanjun Dai
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China
| | - Linli Hu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China
| | - Yihong Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China
| |
Collapse
|
49
|
Wang R, Su L, Yu S, Ma X, Jiang C, Yu Y. Inhibition of PHLDA2 transcription by DNA methylation and YY1 in goat placenta. Gene 2020; 739:144512. [DOI: 10.1016/j.gene.2020.144512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022]
|
50
|
Vincenz C, Lovett JL, Wu W, Shedden K, Strassmann BI. Loss of Imprinting in Human Placentas Is Widespread, Coordinated, and Predicts Birth Phenotypes. Mol Biol Evol 2020; 37:429-441. [PMID: 31639821 PMCID: PMC6993844 DOI: 10.1093/molbev/msz226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genomic imprinting leads to mono-allelic expression of genes based on parent of origin. Therian mammals and angiosperms evolved this mechanism in nutritive tissues, the placenta, and endosperm, where maternal and paternal genomes are in conflict with respect to resource allocation. We used RNA-seq to analyze allelic bias in the expression of 91 known imprinted genes in term human placentas from a prospective cohort study in Mali. A large fraction of the imprinted exons (39%) deviated from mono-allelic expression. Loss of imprinting (LOI) occurred in genes with either maternal or paternal expression bias, albeit more frequently in the former. We characterized LOI using binomial generalized linear mixed models. Variation in LOI was predominantly at the gene as opposed to the exon level, consistent with a single promoter driving the expression of most exons in a gene. Some genes were less prone to LOI than others, particularly lncRNA genes were rarely expressed from the repressed allele. Further, some individuals had more LOI than others and, within a person, the expression bias of maternally and paternally imprinted genes was correlated. We hypothesize that trans-acting maternal effect genes mediate correlated LOI and provide the mother with an additional lever to control fetal growth by extending her influence to LOI of the paternally imprinted genes. Limited evidence exists to support associations between LOI and offspring phenotypes. We show that birth length and placental weight were associated with allelic bias, making this the first comprehensive report of an association between LOI and a birth phenotype.
Collapse
Affiliation(s)
- Claudius Vincenz
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Jennie L Lovett
- Department of Anthropology, University of Michigan, Ann Arbor, MI
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI
| | - Kerby Shedden
- Department of Statistics, University of Michigan, Ann Arbor, MI
| | - Beverly I Strassmann
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI
- Department of Anthropology, University of Michigan, Ann Arbor, MI
| |
Collapse
|