1
|
Aras A, Fonagy P, Campbell C, Rosan C. What do we know about parental embodied mentalizing? A systematic review of the construct, assessment, empirical findings, gaps and further steps. Attach Hum Dev 2024:1-37. [PMID: 39565089 DOI: 10.1080/14616734.2024.2421432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
Before the maturation of higher-order cognitive functions, infants primarily communicate via bodily expressions. Their behavior adjustments are also shaped by caregiver reactions, which differ in timing, intensity, and nature. Although mentalizing, or reflective functioning, is thought to influence caregiver interactions, the literature has largely focused on mentalizing as an explicit, cognitive process. Given the inherently embodied nature of early parent-infant exchanges, this emphasis left a clear gap in capturing the implicit facets of parental mentalizing. Addressing this, the concept of "parental embodied mentalizing" (PEM) was developed, which pertains to a caregiver's implicit capacity to discern and respond to an infant's emotional states, thoughts, and intents through bodily movements, gauged via real-time, shared, kinesthetic interplays. This systematic narrative review explores the PEM construct, scrutinizing its theoretical foundations and empirical basis. We aggregate insights from relevant studies, review the current research landscape's strengths and limitations, and pinpoint areas ripe for further investigation.
Collapse
Affiliation(s)
- Aylin Aras
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
- Anna Freud, London, UK
| | - Peter Fonagy
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
- Anna Freud, London, UK
| | - Chloe Campbell
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
- Anna Freud, London, UK
| | - Camilla Rosan
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
- Anna Freud, London, UK
| |
Collapse
|
2
|
Ciaramidaro A, Toppi J, Vogel P, Freitag CM, Siniatchkin M, Astolfi L. Synergy of the mirror neuron system and the mentalizing system in a single brain and between brains during joint actions. Neuroimage 2024; 299:120783. [PMID: 39187218 DOI: 10.1016/j.neuroimage.2024.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems-MENT and MNS-during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels. In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.
Collapse
Affiliation(s)
- Angela Ciaramidaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Viale Allegri 9, 42121 Reggio Emilia, Italy; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany.
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Pascal Vogel
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Institute of Neurophysiology, Neuroscience Center, Goethe University, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt/M, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Laura Astolfi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| |
Collapse
|
3
|
Xue C, Chen Y, Thompson WF, Liu F, Jiang C. Time-varying similarity of neural responses to musical tension is shaped by physical features and musical themes. Int J Psychophysiol 2024; 202:112387. [PMID: 38909958 DOI: 10.1016/j.ijpsycho.2024.112387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The similarity of understanding is important for music experience and communication, but little is understood about the sources of this common knowledge. Although neural responses to the same piece of music are known to be similar across listeners, it remains unclear whether this neural response similarity is linked to musical understanding and the role of dynamic musical attributes in shaping it. Our study addresses this gap by investigating the relationship between neural response similarity, musical tension, and dynamic musical attributes. Using electroencephalography-based inter-subject correlation (EEG-ISC), we examined how the neural response similarity among listeners varies throughout the evaluation of musical tension in the first movement of Beethoven's Piano Sonata No. 8. Participants continuously rated the degree of alignment between musical events and their expectations, while neural activity was recorded using electroencephalography (EEG). The results showed that neural response similarity fluctuated in tandem with musical tension, with increased similarity observed during moments of heightened tension. This time-varying neural response similarity was influenced by two dynamic attributes contributing to musical tension: physical features and musical themes. Specifically, its fluctuation was driven by physical features, and the patterns of its variation were modulated by musical themes, with similar time-varying patterns observed across similar thematic materials. These findings offer valuable insight into the role of dynamic musical attributes in shaping neural response similarity, and reveal an important source and mechanism of shared musical understandings.
Collapse
Affiliation(s)
- Chao Xue
- Department of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Yiran Chen
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Fang Liu
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK
| | - Cunmei Jiang
- Music College, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
4
|
Hyder A, Weik E, Handy T, Tipper CM. Microstate analysis reveals the temporal alignment of mirroring and mentalizing systems. Soc Neurosci 2024; 19:202-214. [PMID: 39439254 DOI: 10.1080/17470919.2024.2401180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/29/2024] [Indexed: 10/25/2024]
Abstract
The aim of the study is to understand how Mirror Neuron System (MNS) and Mentalizing Network (MZN) interact with each other. EEG data was collected during a photo judgment task with pictures of actions or facial expressions. Participants (N = 30, 63% women) were asked to either identify how the shown action/expression was being performed (MNS) or what the goal or intention behind the action was (MZN). Data were analyzed using microstate analysis, source localization and Event-Related Potentials. When comparing the action types, we found early divergence between the brain states of MNS and MZN when comparing the same action type. There was temporal alignment between the start and end time of the induced microstates, among the same action type. Between different action types, the timing was slightly shifted. Temporally, there was a greater overlap between the timing of the states between networks within the same action type as compared to within networks across action types. The MNS and MZN are acting in parallel rather then subsequently and possibly feed into each other. Furthermore, the MNS and MZN do not specifically react to one action type over the other, but their activity is influenced by the action type.
Collapse
Affiliation(s)
- Amna Hyder
- Department of Psychiatry, BC Mental Health and Addictions Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ella Weik
- Department of Psychiatry, BC Mental Health and Addictions Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Todd Handy
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Christine M Tipper
- Department of Psychiatry, BC Mental Health and Addictions Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Kamashita R, Setsu R, Numata N, Koga Y, Nakazato M, Matsumoto K, Ando H, Masuda Y, Maral S, Shimizu E, Hirano Y. Atypical social cognition processing in bulimia nervosa: an fMRI study of patients thinking of others' mental states. Biopsychosoc Med 2024; 18:5. [PMID: 38383440 PMCID: PMC10880368 DOI: 10.1186/s13030-023-00297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Feeding and eating disorders are severe mental disorders that gravely affect patients' lives. In particular, patients with anorexia nervosa (AN) or bulimia nervosa (BN) appear to have poor social cognition. Many studies have shown the relationship between poor social cognition and brain responses in AN. However, few studies have examined the relationship between social cognition and BN. Therefore, we examined which brain regions impact the ability for social cognition in patients with BN. METHODS We used task-based functional magnetic resonance imaging (fMRI) to examine brain responses during a social cognition task and the Reading Mind in the Eyes Test (RMET). During the fMRI, 22 women with BN and 22 healthy women (HW) took the RMET. Participants also completed the eating disorder clinical measures Bulimic Investigatory Test, Edinburgh (BITE) and Eating Disorders Examination Questionnaire (EDE-Q), the Patient Health Questionnaire (PHQ-9) measure of depression; and the Generalized Anxiety Disorder (GAD-7) measure of anxiety. RESULTS No difference was observed in the RMET scores between women with BN and HW. Both groups showed activation in brain regions specific to social cognition. During the task, no differences were shown between the groups in the BOLD signal (p < 0.05, familywise error corrected for multiple comparisons). However, there was a tendency of more robust activation in the right angular gyrus, ventral diencephalon, thalamus proper, temporal pole, and middle temporal gyrus in BN (p < 0.001, uncorrected for multiple comparisons). Moreover, HW showed a positive correlation between RMET scores and the activation of two regions: medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC); however, no significant correlation was observed in women with BN. CONCLUSIONS While activation in the mPFC and ACC positively correlated to the RMET scores in HW, no correlation was observed in BN patients. Therefore, women with BN might display modulated neural processing when thinking of others' mental states. Further examination is needed to investigate neural processing in BN patients to better understand their social cognition abilities. TRIAL REGISTRATION UMIN, UMIN000010220. Registered 13 March 2013, https://rctportal.niph.go.jp/s/detail/um?trial_id=UMIN000010220.
Collapse
Affiliation(s)
- Rio Kamashita
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Rikukage Setsu
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Sato Hospital, Nanyo, Japan
| | - Noriko Numata
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuko Koga
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Michiko Nakazato
- Department of Clinical Psychiatry, Chiba University Hospital, Chiba, Japan
- International University of Health and Welfare, Narita, Department of Psychiatry, Narita, Japan
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Hiroki Ando
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Yoshitada Masuda
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Sertap Maral
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Eiji Shimizu
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Chiba, Japan.
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan.
| |
Collapse
|
6
|
Siemann J, Kroeger A, Bender S, Muthuraman M, Siniatchkin M. Segregated Dynamical Networks for Biological Motion Perception in the Mu and Beta Range Underlie Social Deficits in Autism. Diagnostics (Basel) 2024; 14:408. [PMID: 38396447 PMCID: PMC10887711 DOI: 10.3390/diagnostics14040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE Biological motion perception (BMP) correlating with a mirror neuron system (MNS) is attenuated in underage individuals with autism spectrum disorder (ASD). While BMP in typically-developing controls (TDCs) encompasses interconnected MNS structures, ASD data hint at segregated form and motion processing. This coincides with less fewer long-range connections in ASD than TDC. Using BMP and electroencephalography (EEG) in ASD, we characterized directionality and coherence (mu and beta frequencies). Deficient BMP may stem from desynchronization thereof in MNS and may predict social-communicative deficits in ASD. Clinical considerations thus profit from brain-behavior associations. METHODS Point-like walkers elicited BMP using 15 white dots (walker vs. scramble in 21 ASD (mean: 11.3 ± 2.3 years) vs. 23 TDC (mean: 11.9 ± 2.5 years). Dynamic Imaging of Coherent Sources (DICS) characterized the underlying EEG time-frequency causality through time-resolved Partial Directed Coherence (tPDC). Support Vector Machine (SVM) classification validated the group effects (ASD vs. TDC). RESULTS TDC showed MNS sources and long-distance paths (both feedback and bidirectional); ASD demonstrated distinct from and motion sources, predominantly local feedforward connectivity, and weaker coherence. Brain-behavior correlations point towards dysfunctional networks. SVM successfully classified ASD regarding EEG and performance. CONCLUSION ASD participants showed segregated local networks for BMP potentially underlying thwarted complex social interactions. Alternative explanations include selective attention and global-local processing deficits. SIGNIFICANCE This is the first study applying source-based connectivity to reveal segregated BMP networks in ASD regarding structure, cognition, frequencies, and temporal dynamics that may explain socio-communicative aberrancies.
Collapse
Affiliation(s)
- Julia Siemann
- Department of Child and Adolescent Psychiatry and Psychotherapy Bethel, Evangelical Hospital Bielefeld, 33617 Bielefeld, Germany;
| | - Anne Kroeger
- Clinic of Child and Adolescent Psychiatry, Goethe-University of Frankfurt am Main, 60389 Frankfurt, Germany (S.B.)
| | - Stephan Bender
- Clinic of Child and Adolescent Psychiatry, Goethe-University of Frankfurt am Main, 60389 Frankfurt, Germany (S.B.)
- Department for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Neural Engineering with Signal Analytics and Artificial Intelligence (NESA-AI), University Clinic Würzburg, 97080 Würzburg, Germany;
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry and Psychotherapy Bethel, Evangelical Hospital Bielefeld, 33617 Bielefeld, Germany;
- University Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
7
|
Verga L, Kotz SA, Ravignani A. The evolution of social timing. Phys Life Rev 2023; 46:131-151. [PMID: 37419011 DOI: 10.1016/j.plrev.2023.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023]
Abstract
Sociality and timing are tightly interrelated in human interaction as seen in turn-taking or synchronised dance movements. Sociality and timing also show in communicative acts of other species that might be pleasurable, but also necessary for survival. Sociality and timing often co-occur, but their shared phylogenetic trajectory is unknown: How, when, and why did they become so tightly linked? Answering these questions is complicated by several constraints; these include the use of divergent operational definitions across fields and species, the focus on diverse mechanistic explanations (e.g., physiological, neural, or cognitive), and the frequent adoption of anthropocentric theories and methodologies in comparative research. These limitations hinder the development of an integrative framework on the evolutionary trajectory of social timing and make comparative studies not as fruitful as they could be. Here, we outline a theoretical and empirical framework to test contrasting hypotheses on the evolution of social timing with species-appropriate paradigms and consistent definitions. To facilitate future research, we introduce an initial set of representative species and empirical hypotheses. The proposed framework aims at building and contrasting evolutionary trees of social timing toward and beyond the crucial branch represented by our own lineage. Given the integration of cross-species and quantitative approaches, this research line might lead to an integrated empirical-theoretical paradigm and, as a long-term goal, explain why humans are such socially coordinated animals.
Collapse
Affiliation(s)
- Laura Verga
- Comparative Bioacoustic Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Sonja A Kotz
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Andrea Ravignani
- Comparative Bioacoustic Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Cavieres A, Acuña V, Arancibia M, Lopetegui N. Differences in social perception in people with schizophrenia and bipolar disorder. Schizophr Res Cogn 2023; 33:100286. [PMID: 37206445 PMCID: PMC10189461 DOI: 10.1016/j.scog.2023.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
People with schizophrenia have difficulties recognizing other people's expressions, emotional states, and intentions; however, much less is known about their ability to perceive and understand social interactions. We used scenes depicting social situations to compare responses from 90 volunteers (healthy controls [HC], schizophrenia [SZ], and bipolar disorder [BD] outpatients from the Hospital del Salvador in Valparaíso, Chile) to the question: "What do you think is happening in the scene?" Independent blind raters assigned a score of 0 (absent), 1 (partial), or 2 (present) for each item based on whether the description identifies a) the context, b) the people, and c) the interaction depicted in the scenes. Regarding the context of the scenes, the SZ and BD groups scored significantly lower than the HC group, with no significant difference between the SZ and BD groups. Regarding the identification of the people and the interactions, the SZ group scored lower than the HC and BD groups, with no significant difference between the HC and BD groups. An ANCOVA was used to examine the relationship between diagnosis, cognitive performance, and the results of the social perception test. The diagnosis had an effect on context (p = .001) and people (p = .0001) but not on interactions (p = .08). Cognitive performance had a significant effect on interactions (p = .008) but not on context (p = .88) or people (p = .62). Our main result is that people with schizophrenia may have significant difficulties perceiving and understanding social encounters between other people.
Collapse
|
9
|
Yang T, Bayless DW, Wei Y, Landayan D, Marcelo IM, Wang Y, DeNardo LA, Luo L, Druckmann S, Shah NM. Hypothalamic neurons that mirror aggression. Cell 2023; 186:1195-1211.e19. [PMID: 36796363 PMCID: PMC10081867 DOI: 10.1016/j.cell.2023.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023]
Abstract
Social interactions require awareness and understanding of the behavior of others. Mirror neurons, cells representing an action by self and others, have been proposed to be integral to the cognitive substrates that enable such awareness and understanding. Mirror neurons of the primate neocortex represent skilled motor tasks, but it is unclear if they are critical for the actions they embody, enable social behaviors, or exist in non-cortical regions. We demonstrate that the activity of individual VMHvlPR neurons in the mouse hypothalamus represents aggression performed by self and others. We used a genetically encoded mirror-TRAP strategy to functionally interrogate these aggression-mirroring neurons. We find that their activity is essential for fighting and that forced activation of these cells triggers aggressive displays by mice, even toward their mirror image. Together, we have discovered a mirroring center in an evolutionarily ancient region that provides a subcortical cognitive substrate essential for a social behavior.
Collapse
Affiliation(s)
- Taehong Yang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Daniel W Bayless
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Yichao Wei
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Dan Landayan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Ivo M Marcelo
- Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal; Department of Psychiatry, Erasmus MC University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Yangpeng Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Laura A DeNardo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Shaul Druckmann
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Nirao M Shah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Fonagy P, Campbell C, Luyten P. Attachment, Mentalizing and Trauma: Then (1992) and Now (2022). Brain Sci 2023; 13:brainsci13030459. [PMID: 36979268 PMCID: PMC10046260 DOI: 10.3390/brainsci13030459] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
This article reviews the current status of research on the relationship between attachment and trauma in developmental psychopathology. Beginning with a review of the major issues and the state-of-the-art in relation to current thinking in the field of attachment about the impact of trauma and the inter-generational transmission of trauma, the review then considers recent neurobiological work on mentalizing and trauma and suggests areas of new development and implications for clinical practice.
Collapse
Affiliation(s)
- Peter Fonagy
- Research Department of Clinical, Educational and Health Psychology, University College London, London WC1E 6BT, UK
- Correspondence:
| | - Chloe Campbell
- Research Department of Clinical, Educational and Health Psychology, University College London, London WC1E 6BT, UK
| | - Patrick Luyten
- Research Department of Clinical, Educational and Health Psychology, University College London, London WC1E 6BT, UK
- Faculty of Psychology and Educational Sciences, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
11
|
Vogel DHV, Jording M, Esser C, Conrad A, Weiss PH, Vogeley K. Temporal binding of social events less pronounced in individuals with Autism Spectrum Disorder. Sci Rep 2022; 12:14853. [PMID: 36050371 PMCID: PMC9437002 DOI: 10.1038/s41598-022-19309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Differences in predictive processing are considered amongst the prime candidates for mechanisms underlying different symptoms of autism spectrum disorder (ASD). A particularly valuable paradigm to investigate these processes is temporal binding (TB) assessed through time estimation tasks. In this study, we report on two separate experiments using a TB task designed to assess the influence of top-down social information on action event related TB. Both experiments were performed with a group of individuals diagnosed with ASD and a matched group without ASD. The results replicate earlier findings on a pronounced social hyperbinding for social action-event sequences and extend them to persons with ASD. Hyperbinding however, is less pronounced in the group with ASD as compared to the group without ASD. We interpret our results as indicative of a reduced predictive processing during social interaction. This reduction most likely results from differences in the integration of top-down social information into action-event monitoring. We speculate that this corresponds to differences in mentalizing processes in ASD.
Collapse
Affiliation(s)
- David H V Vogel
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM3), Research Center Juelich, Jülich, Germany. .,Faculty of Medicine and University Hospital Cologne, Department of Psychiatry, University of Cologne, Cologne, Germany.
| | - Mathis Jording
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM3), Research Center Juelich, Jülich, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Carolin Esser
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Amelie Conrad
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Peter H Weiss
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM3), Research Center Juelich, Jülich, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Kai Vogeley
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM3), Research Center Juelich, Jülich, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Psychiatry, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Falter-Wagner CM, Bloch C, Burghof L, Lehnhardt FG, Vogeley K. Autism traits outweigh alexithymia traits in the explanation of mentalising performance in adults with autism but not in adults with rejected autism diagnosis. Mol Autism 2022; 13:32. [PMID: 35804399 PMCID: PMC9264711 DOI: 10.1186/s13229-022-00510-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022] Open
Abstract
Background Pronounced alexithymia traits have been found in autism spectrum disorder (ASD) and recent research has been carving out the impact alexithymia traits might have on mentalising deficits associated with ASD. Method In this cross-sectional study, a large representative referral population for diagnostic examination for possible ASD (n = 400) was screened for clinical alexithymia with a German version of the Reading the Mind in the Eyes test (RME). In contrast to previous attempts to carve out the impact of alexithymia traits on mentalising deficits though, we employed dominance analysis to account for the correlation between predictors. The relative relationship between alexithymia traits and autism traits with RME performance was investigated in the group of individuals with confirmed ASD diagnosis (N = 281) and compared to the clinical referral sample in which ASD was ruled out (N = 119). Results Dominance analysis revealed autism traits to be the strongest predictor for reduced mentalising skills in the ASD sample, whereas alexithymia contributed significantly less. In the sample of individuals with ruled out diagnosis, autism traits were the strongest predictor, but alexithymia traits were in sum equally associated to mentalising, with the External-Oriented Thinking subscale as an important predictor of this association. Limitations It needs to be considered that the cross-sectional study design does not allow for causal inference. Furthermore, mentalising is a highly facetted capacity and measurements need to reduce this complexity into simple quantities which limits the generalizability of results. Discussion While alexithymia traits should be considered for their mental health importance, they do not dominate the explanation of reduced mentalising skills in individuals with ASD, but they might do to a larger degree in individuals with ruled out ASD. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00510-9.
Collapse
Affiliation(s)
- Christine M Falter-Wagner
- Department of Psychiatry and Psychotherapy, Medical Faculty, LMU Munich, Nussbaumstr. 7, 80336, Munich, Germany.
| | - Carola Bloch
- Department of Psychiatry and Psychotherapy, Medical Faculty, LMU Munich, Nussbaumstr. 7, 80336, Munich, Germany.,Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lana Burghof
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fritz-Georg Lehnhardt
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kai Vogeley
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
13
|
Cavieres Á, López-Silva P. Social Perception Deficit as a Factor of Vulnerability to Psychosis: A Brief Proposal for a Definition. Front Psychol 2022; 13:805795. [PMID: 35645890 PMCID: PMC9131014 DOI: 10.3389/fpsyg.2022.805795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Disturbances in social cognition are a core feature of schizophrenia. While most research in the field has focused on emotion perception, social knowledge, theory of mind, and attribution styles, the domain of social perception has received little specific attention. In this paper, we suggest that this issue can be explained by the lack of a precise and unitary definition of the concept, this leads to the existence of different competing uses of the concept and their conflation with other domains of social cognition. Relying on resources coming from the ecological approach to psychology and the phenomenological tradition in psychiatry, we propose that the concept of Social Perception should be used to refer to low-level pre-reflective processes underlying the awareness of interpersonal interactions with and between others. Clinical data suggests that people with schizophrenia have problems perceiving social situations as opportunities for social engagement, so, in order to fulfil this explanatory need, we propose that the term should be used to capture this important-yet neglected-domain of social cognition. We conclude with the discussion of some future directions for research derived from our proposal.
Collapse
Affiliation(s)
- Álvaro Cavieres
- Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | | |
Collapse
|
14
|
Prinsen J, Alaerts K. Broken or socially mistuned mirroring in ASD? An investigation via transcranial magnetic stimulation. Autism Res 2022; 15:1056-1067. [PMID: 35384338 DOI: 10.1002/aur.2720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/07/2022]
Abstract
Individuals with an autism spectrum disorder (ASD) experience persistent difficulties during social interactions and communication. Previously, it has been suggested that deficits in the so-called "mirror system," active during both action execution and observation, may underlie these social difficulties. It is still a topic of debate however whether deficiencies in the simulation of others' actions (i.e., "broken" mirroring) forms a general feature of ASD, or whether these mostly reflect a lack of social attunement. The latter would suggest an overall intact mirror system, but an impaired modulation of mirror activity according to variable social contexts. In this study, 25 adults with ASD and 28 age- and IQ-matched control participants underwent transcranial magnetic stimulation during the observation of hand movements under variable conditions. Hand movements were presented via a live interaction partner, either without social context to assess basic motor mirroring or in combination with direct and averted gaze from the actor to assess socially modulated mirroring. Overall, no significant group differences were revealed, indicating no generally diminished mirror activity in ASD. Interestingly however, regression analyses revealed that, among ASD participants, higher symptom severity was associated with both reduced basic motor mirroring and aberrant socially modulated mirroring (i.e., no enhancement of mirror system activity upon observation of the interaction partner's direct vs. averted gaze). These findings further challenge the notion that mirror system dysfunctions constitute a principal feature of ASD, but demonstrate that variations in mirroring may be related to differential expressions of ASD symptom severity. LAY SUMMARY: Our findings show similar activity levels in brain regions responsible for action simulation and understanding in adults with autism, compared to adults without autism. However, the presence of more severe autism symptoms was linked to reduced activity in these regions. This suggests lower levels of brain activity during action understanding in some, but not all, persons with autism, which may contribute to the social difficulties these persons experience in daily life.
Collapse
Affiliation(s)
- Jellina Prinsen
- Neurorehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Leuven Autism Research Consortium (LAuRes), KU Leuven, Belgium
| | - Kaat Alaerts
- Neurorehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Leuven Autism Research Consortium (LAuRes), KU Leuven, Belgium
| |
Collapse
|
15
|
Csulak T, Hajnal A, Kiss S, Dembrovszky F, Varjú-Solymár M, Sipos Z, Kovács MA, Herold M, Varga E, Hegyi P, Tényi T, Herold R. Implicit Mentalizing in Patients With Schizophrenia: A Systematic Review and Meta-Analysis. Front Psychol 2022; 13:790494. [PMID: 35185724 PMCID: PMC8847732 DOI: 10.3389/fpsyg.2022.790494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Mentalizing is a key aspect of social cognition. Several researchers assume that mentalization has two systems, an explicit one (conscious, relatively slow, flexible, verbal, inferential) and an implicit one (unconscious, automatic, fast, non-verbal, intuitive). In schizophrenia, several studies have confirmed the deficit of explicit mentalizing, but little data are available on non-explicit mentalizing. However, increasing research activity can be detected recently in implicit mentalizing. The aim of this systematic review and meta-analysis is to summarize the existing results of implicit mentalizing in schizophrenia. METHODS A systematic search was performed in four major databases: MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science. Eleven publications were selected. Five studies were found to be eligible for quantitative synthesis, and 9 studies were included in qualitative synthesis. RESULTS The meta-analysis revealed significantly lower accuracy, slower reaction time during implicit mentalizing in patients with schizophrenia. The systematic review found different brain activation pattern, further alterations in visual scanning, cue fixation, face looking time, and difficulties in perspective taking. DISCUSSION Overall, in addition to the deficit of explicit mentalization, implicit mentalization performance is also affected in schizophrenia, if not to the same extent. It seems likely that some elements of implicit mentalization might be relatively unaffected (e.g., detection of intentionality), but the effectiveness is limited by certain neurocognitive deficits. These alterations in implicit mentalizing can also have potential therapeutic consequences.Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier: CRD42021231312.
Collapse
Affiliation(s)
- Timea Csulak
- Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Pécs, Hungary.,Doctoral School of Clinical Neurosciences, Medical School, University of Pécs, Pécs, Hungary
| | - András Hajnal
- Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Szabolcs Kiss
- Medical School, Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| | - Fanni Dembrovszky
- Medical School, Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| | - Margit Varjú-Solymár
- Medical School, Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| | - Zoltán Sipos
- Medical School, Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| | - Márton Aron Kovács
- Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Pécs, Hungary.,Doctoral School of Clinical Neurosciences, Medical School, University of Pécs, Pécs, Hungary
| | - Márton Herold
- Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Pécs, Hungary.,Doctoral School of Clinical Neurosciences, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Varga
- Department of Pediatrics, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Medical School, Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| | - Tamás Tényi
- Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Róbert Herold
- Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
16
|
Firestein MR, Myers MM, Feder KJ, Ludwig RJ, Welch MG. Effects of Family Nurture Intervention in the NICU on Theory of Mind Abilities in Children Born Very Preterm: A Randomized Controlled Trial. CHILDREN (BASEL, SWITZERLAND) 2022; 9:284. [PMID: 35205004 PMCID: PMC8870221 DOI: 10.3390/children9020284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/21/2023]
Abstract
Preterm infants are at risk for socioemotional deficits, neurodevelopmental disorders, and potentially theory of mind (ToM) deficits. Preterm infants enrolled in a randomized controlled trial in the neonatal intensive care unit (NICU) received Standard Care (SC) or Family Nurture Intervention (FNI). Children (N = 72; median age 61.8 ± 2.6 months; FNI: 35 (55%), SC:2 9 (45%)) completed a ToM task, of whom 64 (54% male; born to White (43.8%), Black (18.7%), and Hispanic (25.0%) mothers) contributed to this analysis. FNI and SC infants born extremely preterm to very preterm differed significantly: 78% (14 of 18) of FNI children passed vs. 30% (3 of 10) SC children (p = 0.01, effect size = 1.06). This large effect size suggests that FNI in the NICU may ameliorate deficits in social-cognitive skills of extreme to very preterm infants by school age.
Collapse
Affiliation(s)
- Morgan R. Firestein
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.M.M.); (M.G.W.)
| | - Michael M. Myers
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.M.M.); (M.G.W.)
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | | | - Robert J. Ludwig
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Martha G. Welch
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.M.M.); (M.G.W.)
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA;
| |
Collapse
|
17
|
Takeuchi N. Perspectives on Rehabilitation Using Non-invasive Brain Stimulation Based on Second-Person Neuroscience of Teaching-Learning Interactions. Front Psychol 2022; 12:789637. [PMID: 35069374 PMCID: PMC8769209 DOI: 10.3389/fpsyg.2021.789637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Recent advances in second-person neuroscience have allowed the underlying neural mechanisms involved in teaching-learning interactions to be better understood. Teaching is not merely a one-way transfer of information from teacher to student; it is a complex interaction that requires metacognitive and mentalizing skills to understand others’ intentions and integrate information regarding oneself and others. Physiotherapy involving therapists instructing patients on how to improve their motor skills is a clinical field in which teaching-learning interactions play a central role. Accumulating evidence suggests that non-invasive brain stimulation (NIBS) modulates cognitive functions; however, NIBS approaches to teaching-learning interactions are yet to be utilized in rehabilitation. In this review, I evaluate the present research into NIBS and its role in enhancing metacognitive and mentalizing abilities; I then review hyperscanning studies of teaching-learning interactions and explore the potential clinical applications of NIBS in rehabilitation. Dual-brain stimulation using NIBS has been developed based on findings of brain-to-brain synchrony in hyperscanning studies, and it is delivered simultaneously to two individuals to increase inter-brain synchronized oscillations at the stimulated frequency. Artificial induction of brain-to-brain synchrony has the potential to promote instruction-based learning. The brain-to-brain interface, which induces inter-brain synchronization by adjusting the patient’s brain activity, using NIBS, to the therapist’s brain activity, could have a positive effect on both therapist-patient interactions and rehabilitation outcomes. NIBS based on second-person neuroscience has the potential to serve as a useful addition to the current neuroscientific methods used in complementary interventions for rehabilitation.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, Akita, Japan
| |
Collapse
|
18
|
Measuring social cognition in frontotemporal lobar degeneration: a clinical approach. J Neurol 2021; 269:2227-2244. [PMID: 34797433 DOI: 10.1007/s00415-021-10889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Alterations in social cognition, a broad term indicating our ability to understand others and adapt our behavior accordingly, have been the focus of growing attention in the past years. Some neurological conditions, such as those belonging to the frontotemporal lobar degeneration (FTLD) spectrum, are associated to varying degrees with social cognition deficits, encompassing problems with theory of mind (ToM), empathy, perception of social stimuli, and social behavior. In this review, we outline a clinical framework for the evaluation of social cognition and discuss its role in the assessment of patients affected by a range of FTLD conditions.
Collapse
|
19
|
Henry A, Raucher-Chéné D, Obert A, Gobin P, Vucurovic K, Barrière S, Sacré S, Portefaix C, Gierski F, Caillies S, Kaladjian A. Investigation of the neural correlates of mentalizing through the Dynamic Inference Task, a new naturalistic task of social cognition. Neuroimage 2021; 243:118499. [PMID: 34438254 DOI: 10.1016/j.neuroimage.2021.118499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/19/2022] Open
Abstract
Understanding others' intentions requires both the identification of social cues (e.g., emotional facial expressions, gaze direction) and the attribution of a mental state to another. The neural substrates of these processes have often been studied separately, and results are heterogeneous, in part attributable to the variety of paradigms used. The aim of the present study was to explore the neural regions underlying these sociocognitive processes, using a novel naturalistic task in which participants engage with human protagonists featured in videos. A total of 51 right-handed volunteers underwent functional magnetic resonance imaging while performing the Dynamic Inference Task (DIT), manipulating the degree of inference (high vs. low), the presence of emotion (emotional vs. nonemotional), and gaze direction (direct vs. averted). High nonemotional inference elicited neural activation in temporal regions encompassing the right posterior superior temporal sulcus. The presence (vs. absence) of emotion in the high-inference condition elicited a bilateral pattern of activation in internal temporal areas around the amygdala and orbitofrontal structures, as well as activation in the right dorsomedial part of the superior frontal gyrus and the left precuneus. On account of its dynamic, naturalistic approach, the DIT seems a suitable task for exploring social interactions and the way we interact with others, both in nonclinical and clinical populations.
Collapse
Affiliation(s)
- Audrey Henry
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé et Société, B.P. 30, 57 Rue Pierre Taittinger, Reims Cedex 51571, France; Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 8 Rue Roger Aubry, Reims 51100, France.
| | - Delphine Raucher-Chéné
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé et Société, B.P. 30, 57 Rue Pierre Taittinger, Reims Cedex 51571, France; Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 8 Rue Roger Aubry, Reims 51100, France; Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, Montreal, Canada.
| | - Alexandre Obert
- Cognition Sciences, Technology & Ergonomics Laboratory, Champollion National University Institute, University of Toulouse, Place de Verdun, Albi 81000, France.
| | - Pamela Gobin
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé et Société, B.P. 30, 57 Rue Pierre Taittinger, Reims Cedex 51571, France; Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 8 Rue Roger Aubry, Reims 51100, France.
| | - Ksenija Vucurovic
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé et Société, B.P. 30, 57 Rue Pierre Taittinger, Reims Cedex 51571, France; Centre Rémois de Psychothérapie et Neuromodulation, 15 rue Baillia Rolland, Reims 51100, France
| | - Sarah Barrière
- Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 8 Rue Roger Aubry, Reims 51100, France.
| | - Séverine Sacré
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé et Société, B.P. 30, 57 Rue Pierre Taittinger, Reims Cedex 51571, France
| | - Christophe Portefaix
- Radiology Department, Maison Blanche Hospital, Reims University Hospital, 45 rue Cognacq-Jay, Reims 51092, France; Université de Reims Champagne Ardenne, Laboratoire CReSTIC, Campus Moulin de la Housse, Chemin des Rouliers, Reims 51680, France.
| | - Fabien Gierski
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé et Société, B.P. 30, 57 Rue Pierre Taittinger, Reims Cedex 51571, France; Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 8 Rue Roger Aubry, Reims 51100, France; INSERM U1247 GRAP, Research Group on Alcohol and Drugs, Université de Picardie Jules Verne, Avenue Laennec, Amiens 80054, France.
| | - Stéphanie Caillies
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé et Société, B.P. 30, 57 Rue Pierre Taittinger, Reims Cedex 51571, France.
| | - Arthur Kaladjian
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé et Société, B.P. 30, 57 Rue Pierre Taittinger, Reims Cedex 51571, France; Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 8 Rue Roger Aubry, Reims 51100, France; Faculty of Medicine, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, Reims 51100, France.
| |
Collapse
|
20
|
Ferrucci L, Nougaret S, Falcone R, Cirillo R, Ceccarelli F, Genovesio A. Dedicated Representation of Others in the Macaque Frontal Cortex: From Action Monitoring and Prediction to Outcome Evaluation. Cereb Cortex 2021; 32:891-907. [PMID: 34428277 PMCID: PMC8841564 DOI: 10.1093/cercor/bhab253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
Social neurophysiology has increasingly addressed how several aspects of self and other are distinctly represented in the brain. In social interactions, the self–other distinction is fundamental for discriminating one’s own actions, intentions, and outcomes from those that originate in the external world. In this paper, we review neurophysiological experiments using nonhuman primates that shed light on the importance of the self–other distinction, focusing mainly on the frontal cortex. We start by examining how the findings are impacted by the experimental paradigms that are used, such as the type of social partner or whether a passive or active interaction is required. Next, we describe the 2 sociocognitive systems: mirror and mentalizing. Finally, we discuss how the self–other distinction can occur in different domains to process different aspects of social information: the observation and prediction of others’ actions and the monitoring of others’ rewards.
Collapse
Affiliation(s)
- Lorenzo Ferrucci
- Department of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Simon Nougaret
- Department of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Falcone
- Department of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Cirillo
- Institut des Sciences Cognitives Marc Jeannerod, Département de Neuroscience Cognitive, CNRS, UMR 5229, 69500 Bron Cedex, France
| | - Francesco Ceccarelli
- Department of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.,PhD program in Behavioral Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
21
|
Abstract
Temporal binding (TB) refers to an underestimation of time intervals between two events, most commonly for actions and their effects. This temporal contraction is measurable for both perceived changes in social stimuli such as faces, as well as for interactions with a partner. We investigated TB in two separate experiments to uncover the individual influences of (i) participants’ belief in an interaction with a human partner (as compared to a computer), and (ii) a face-like stimulus versus an abstract stimulus mediating the interaction. The results show that TB is more pronounced when self-initiated actions result in a personal event as opposed to a mere physical effect, being suggestive of a “social hyperbinding.” The social hyperbinding effect appeared to be driven both by the belief in interacting with another person and by a face-like stimulus. However, there seemed to be no further enhancing effect when combining the top-down processes (“beliefs”) with the bottom-up processes (“perceptions”). These findings suggest a prioritization of social information for TB regardless of whether this information is introduced by top-down (beliefs) or bottom-up information (stimuli). Our results add to existing literature demonstrating an increase in action-event monitoring for social cues.
Collapse
|
22
|
Zardi A, Carlotti EG, Pontremoli A, Morese R. Dancing in Your Head: An Interdisciplinary Review. Front Psychol 2021; 12:649121. [PMID: 34002113 PMCID: PMC8123236 DOI: 10.3389/fpsyg.2021.649121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022] Open
Abstract
The aim of this review is to highlight the most relevant contributions on dance in neuroscientific research. Neuroscience has analyzed the mirror system through neuroimaging techniques, testing its role in imitative learning, in the recognition of other people's emotions and especially in the understanding of the motor behavior of others. This review analyses the literature related to five general areas: (I) breakthrough studies on the mirror system, and subsequent studies on its involvement in the prediction, the execution, the control of movement, and in the process of "embodied simulation" within the intersubjective relationship; (II) research focused on investigating the neural networks in action observation, and the neural correlates of motor expertise highlighted by comparative studies on different dance styles; (III) studies dealing with the viewer's experience of dance according to specific dance repertoires, which revealed the relevance of choreographic choices for aesthetic appreciation; (IV) studies focused on dance as an aesthetic experience, where both the emotional and the cultural dimension play a significant role, and whose investigation paves the way to further progress both in empirical and in phenomenological research methodologies; (V) collaboration-based experiments, in which neuroscientists and choreographers developed expertise-related questions, especially focusing on the multiple phenomena that underlie motor imagery.
Collapse
Affiliation(s)
- Andrea Zardi
- Department of Humanities, School of Human Sciences, University of Turin, Turin, Italy
| | | | - Alessandro Pontremoli
- Department of Humanities, School of Human Sciences, University of Turin, Turin, Italy
| | - Rosalba Morese
- Faculty of Communication, Culture and Society, Università della Svizzera Italiana, Lugano, Switzerland
- Faculty of Biomedical Sciences, Institute of Public Health, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
23
|
Kaiser N, Butler E. Introducing Social Breathing: A Model of Engaging in Relational Systems. Front Psychol 2021; 12:571298. [PMID: 33897512 PMCID: PMC8060442 DOI: 10.3389/fpsyg.2021.571298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
We address what it means to "engage in a relationship" and suggest Social Breathing as a model of immersing ourselves in the metaphorical social air around us, which is necessary for shared intention and joint action. We emphasize how emergent properties of social systems arise, such as the shared culture of groups, which cannot be reduced to the individuals involved. We argue that the processes involved in Social Breathing are: (1) automatic, (2) implicit, (3) temporal, (4) in the form of mutual bi-directional interwoven exchanges between social partners and (5) embodied in the coordination of the brains and behaviors of social partners. We summarize cross-disciplinary evidence suggesting that these processes involve a multi-person whole-brain-body network which is critical for the development of both we-ness and relational skills. We propose that Social Breathing depends on each individual's ability to sustain multimodal interwovenness, thus providing a theoretical link between social neuroscience and relational/multi-person psychology. We discuss how the model could guide research on autism, relationships, and psychotherapy.
Collapse
Affiliation(s)
- Niclas Kaiser
- Department of Psychology, Faculty of Social Sciences, Umeå University, Umeå, Sweden
| | - Emily Butler
- Family Studies and Human Development, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
24
|
Harris I, Küssner MB. Come on Baby, Light My Fire: Sparking Further Research in Socio-Affective Mechanisms of Music Using Computational Advancements. Front Psychol 2020; 11:557162. [PMID: 33363492 PMCID: PMC7753094 DOI: 10.3389/fpsyg.2020.557162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ilana Harris
- Centre for Music and Science, Faculty of Music, University of Cambridge, Cambridge, United Kingdom
| | - Mats B Küssner
- Department of Musicology and Media Studies, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
25
|
Arioli M, Ricciardi E, Cattaneo Z. Social cognition in the blind brain: A coordinate-based meta-analysis. Hum Brain Mapp 2020; 42:1243-1256. [PMID: 33320395 PMCID: PMC7927293 DOI: 10.1002/hbm.25289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/05/2020] [Accepted: 10/31/2020] [Indexed: 01/04/2023] Open
Abstract
Social cognition skills are typically acquired on the basis of visual information (e.g., the observation of gaze, facial expressions, gestures). In light of this, a critical issue is whether and how the lack of visual experience affects neurocognitive mechanisms underlying social skills. This issue has been largely neglected in the literature on blindness, despite difficulties in social interactions may be particular salient in the life of blind individuals (especially children). Here we provide a meta-analysis of neuroimaging studies reporting brain activations associated to the representation of self and others' in early blind individuals and in sighted controls. Our results indicate that early blindness does not critically impact on the development of the "social brain," with social tasks performed on the basis of auditory or tactile information driving consistent activations in nodes of the action observation network, typically active during actual observation of others in sighted individuals. Interestingly though, activations along this network appeared more left-lateralized in the blind than in sighted participants. These results may have important implications for the development of specific training programs to improve social skills in blind children and young adults.
Collapse
Affiliation(s)
- Maria Arioli
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | | | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
26
|
Enhanced mirroring upon mutual gaze: multimodal evidence from TMS-assessed corticospinal excitability and the EEG mu rhythm. Sci Rep 2020; 10:20449. [PMID: 33235329 PMCID: PMC7687883 DOI: 10.1038/s41598-020-77508-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
Previous research has demonstrated that eye contact between actor and observer specifically enhances the 'mirroring' of others' actions, as measured by transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs). However, it remains unknown whether other markers of mirror system activation, such as suppression of the EEG mu rhythm (8-13 Hz) over the sensorimotor strip, are also susceptible to perceived eye contact. Here, both TMS-induced MEPs and EEG mu suppression indices were assessed (in separate sessions) while 32 participants (mean age: 24y; 8m) observed a simple hand movement combined with direct or averted gaze from the actor. Both measures were significantly modulated by perceived eye gaze during action observation; showing an increase in MEP amplitude and an attenuation of the mu rhythm during direct vs. averted gaze. Importantly, while absolute MEP and mu suppression scores were not related, a significant association was identified between gaze-related changes in MEPs and mu suppression, indicating that both measures are similarly affected by the modulatory impact of gaze cues. Our results suggest that although the neural substrates underlying TMS-induced MEPs and the EEG mu rhythm may differ, both are sensitive to the social relevance of the observed actions, which might reflect a similar neural gating mechanism.
Collapse
|
27
|
A causal role for frontal cortico-cortical coordination in social action monitoring. Nat Commun 2020; 11:5233. [PMID: 33067461 PMCID: PMC7568569 DOI: 10.1038/s41467-020-19026-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/25/2020] [Indexed: 12/05/2022] Open
Abstract
Decision-making via monitoring others’ actions is a cornerstone of interpersonal exchanges. Although the ventral premotor cortex (PMv) and the medial prefrontal cortex (MPFC) are cortical nodes in social brain networks, the two areas are rarely concurrently active in neuroimaging, inviting the hypothesis that they are functionally independent. Here we show in macaques that the ability of the MPFC to monitor others’ actions depends on input from the PMv. We found that delta-band coherence between the two areas emerged during action execution and action observation. Information flow especially in the delta band increased from the PMv to the MPFC as the biological nature of observed actions increased. Furthermore, selective blockade of the PMv-to-MPFC pathway using a double viral vector infection technique impaired the processing of observed, but not executed, actions. These findings demonstrate that coordinated activity in the PMv-to-MPFC pathway has a causal role in social action monitoring. Social interactions require monitoring others’ actions to optimally organise one’s own actions. Here, the authors show that the pathway from the ventral premotor cortex (PMv) to the medial prefrontal cortex (MPFC) is causally involved in monitoring observed, but not executed, actions.
Collapse
|
28
|
Grigorescu C, Chalah MA, Lefaucheur JP, Kümpfel T, Padberg F, Ayache SS, Palm U. Effects of Transcranial Direct Current Stimulation on Information Processing Speed, Working Memory, Attention, and Social Cognition in Multiple Sclerosis. Front Neurol 2020; 11:545377. [PMID: 33178103 PMCID: PMC7593675 DOI: 10.3389/fneur.2020.545377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 01/17/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Cognitive impairment occurs in 40-65% of patients and could drastically affect their quality of life. Deficits could involve general cognition (e.g., attention and working memory) as well as social cognition. Transcranial direct current stimulation (tDCS), is a novel brain stimulation technique that has been assessed in the context of several neuropsychiatric symptoms, including those described in the context of MS. However, very rare trials have assessed tDCS effects on general cognition in MS, and none has tackled social cognition. The aim of this work was to assess tDCS effects on general and social cognition in MS. Eleven right-handed patients with MS received two blocks (bifrontal tDCS and sham, 2 mA, 20 min, anode/cathode over left/right prefrontal cortex) of 5 daily stimulations separated by a 3-week washout interval. Working memory and attention were, respectively, measured using N-Back Test (0-Back, 1-Back, and 2-Back) and Symbol Digit Modalities Test (SDMT) at the first and fifth day of each block and 1 week later. Social cognition was evaluated using Faux Pas Test and Eyes Test at baseline and 1 week after each block. Interestingly, accuracy of 1-Back test improved following sham but not active bifrontal tDCS. Therefore, active bifrontal tDCS could have impaired working memory via cathodal stimulation of the right prefrontal cortex. No significant tDCS effects were observed on social cognitive measures and SDMT. Admitting the small sample size and the learning (practice) effect that might arise from the repetitive administration of each task, the current results should be considered as preliminary and further investigations in larger patient samples are needed to gain a closer understanding of tDCS effects on cognition in MS.
Collapse
Affiliation(s)
- Christina Grigorescu
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Munich, Germany
| | - Moussa A Chalah
- EA 4391, Excitabilité nerveuse et thérapeutique, Université Paris-Est-Créteil, Créteil, France.,Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Jean-Pascal Lefaucheur
- EA 4391, Excitabilité nerveuse et thérapeutique, Université Paris-Est-Créteil, Créteil, France.,Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Tania Kümpfel
- Institute for Clinical Neuroimmunology, Klinikum der Universität München, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Munich, Germany
| | - Samar S Ayache
- EA 4391, Excitabilité nerveuse et thérapeutique, Université Paris-Est-Créteil, Créteil, France.,Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Munich, Germany.,Medical Park Chiemseeblick, Bernau, Germany
| |
Collapse
|
29
|
Semantic contact and semantic barriers: reactionary responses to disruptive ideas. Curr Opin Psychol 2020; 35:21-25. [DOI: 10.1016/j.copsyc.2020.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 11/18/2022]
|
30
|
Brown S. The "Who" System of the Human Brain: A System for Social Cognition About the Self and Others. Front Hum Neurosci 2020; 14:224. [PMID: 32636738 PMCID: PMC7319088 DOI: 10.3389/fnhum.2020.00224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
Neuroscientists are fond of talking about brain systems for the processing of "what" and "where" information about objects and their locations. What is critically missing is the concept of a "who" system dedicated to the neural processing of information about social agents-both the self and others-and their interactions. I propose here the characterization of such a system, one that functions not only in perception but in production as well, such as when recounting stories about oneself and others. The most human-specific features of the "who" system are two complementary systems that I refer to as the other-as-self mechanism and the self-as-other mechanism. The major function of the other-as-self mechanism is to perceive other people egocentrically as proxies of the self, as occurs through the processes of mentalizing and empathizing in both everyday life and in the experience of the theatrical and literary arts. The major function of the self-as-other mechanism is to overtly depict other people during acts of communication through vocal and gestural processes of mimicry, such as occurs during quotation in conversation and through acting in the theatrical arts. Overall, the "who" system of the human brain mediates both perceptual and behavioral aspects of social cognition, and establishes the existential distinction between self and other in human cognition. I present neural models for the instantiation of the "who" system in the human brain and conclude with a discussion of how narrative serves as a foundation for human cognition more generally, what I refer to as narrative-based cognition.
Collapse
Affiliation(s)
- Steven Brown
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
31
|
Prinsen J, Alaerts K. Eye contact enhances interpersonal motor resonance: comparing video stimuli to a live two-person action context. Soc Cogn Affect Neurosci 2020; 14:967-976. [PMID: 31506688 PMCID: PMC6917019 DOI: 10.1093/scan/nsz064] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/26/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022] Open
Abstract
Previous research has shown a link between eye contact and interpersonal motor resonance, indicating that the mirroring of observed movements is enhanced when accompanied with mutual eye contact between actor and observer. Here, we further explored the role of eye contact within a naturalistic two-person action context. Twenty-two participants observed simple hand movements combined with direct or averted gaze presented via a live model in a two-person setting or via video recordings, while transcranial magnetic stimulation was applied over the primary motor cortex (M1) to measure changes in M1 excitability. Skin conductance responses and gaze behavior were also measured to investigate the role of arousal and visual attention herein. Eye contact significantly enhanced excitability of the observer's M1 during movement observation within a two-person setting. Notably, participants with higher social responsiveness (Social Communication subscale of the Social Responsiveness Scale) displayed a more pronounced modulation of M1 excitability by eye gaze. Gaze-related modulations in M1 excitability were, however, not associated with differences in visual attention or autonomic arousal. In summary, the current study highlights the effectiveness and feasibility of adopting paradigms with high ecological validity for studying the modulation of mirror system processes by subtle social cues, such as eye gaze.
Collapse
Affiliation(s)
- Jellina Prinsen
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Kaat Alaerts
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Fekete J, Pótó Z, Varga E, Csulak T, Zsélyi O, Tényi T, Herold R. Persons With Schizophrenia Misread Hemingway: A New Approach to Study Theory of Mind in Schizophrenia. Front Psychiatry 2020; 11:396. [PMID: 32457668 PMCID: PMC7224255 DOI: 10.3389/fpsyt.2020.00396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/17/2020] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Theory of Mind (ToM) is a key component of social cognition. Recently the Short Story Task (SST) was developed as a new measurement of ToM. SST uses a short story of Ernest Hemingway to assess ToM skills. SST proved to be a suitable tool, and sensitive to individual differences among healthy subjects. Our aim was to test SST to evaluate the ToM skills of persons with schizophrenia. MATERIALS AND METHODS SST was used to assess ToM skills. After reading the short story "The End of Something" a structured interview was done with 14 questions. Spontaneous mental state reasoning, explicit mental state inference and comprehension of nonmental aspects of the story were evaluated. 47 persons with schizophrenia in remission and 48 healthy controls were assessed and compared. RESULTS Persons with schizophrenia performed significantly more poorly in the explicit mental state inference questions. Ceiling effect was not detectable in explicit ToM scores. Patients made less spontaneous mental state references as well, although the occurrence of spontaneous mental state terms was infrequent in both groups. Patients were also less accurate in answering comprehension questions, but the difference was not significant after Bonferroni correction. DISCUSSION Our results lined up with the original findings and we found SST to be a sensitive tool to explore the individual differences in ToM performance, not only among healthy subjects, but also among persons with schizophrenia especially in explicit mental state inferences without observing the ceiling effect. We found, however, SST to be less sensitive to measure spontaneous mental state reasoning and also the lack of the use of another ToM test to assess convergent validity of SST for indicating ToM deficits in schizophrenia stands as a limitation of current study.
Collapse
Affiliation(s)
- Judit Fekete
- Doctoral School of Clinical Neurosciences, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Pótó
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Varga
- Department of Pediatrics, Medical School, University of Pécs, Pécs, Hungary
| | - Tímea Csulak
- Doctoral School of Clinical Neurosciences, Medical School, University of Pécs, Pécs, Hungary
| | - Orsolya Zsélyi
- Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Tényi
- Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Róbert Herold
- Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
33
|
Prounis GS, Ophir AG. One cranium, two brains not yet introduced: Distinct but complementary views of the social brain. Neurosci Biobehav Rev 2020; 108:231-245. [PMID: 31743724 PMCID: PMC6949399 DOI: 10.1016/j.neubiorev.2019.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/04/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
Social behavior is pervasive across the animal kingdom, and elucidating how the brain enables animals to respond to social contexts is of great interest and profound importance. Our understanding of 'the social brain' has been fractured as it has matured. Two drastically different conceptualizations of the social brain have emerged with relatively little awareness of each other. In this review, we briefly recount the history behind the two dominant definitions of a social brain. The divide that has emerged between these visions can, in part, be attributed to differential attention to cortical or sub-cortical regions in the brain, and differences in methodology, comparative perspectives, and emphasis on functional specificity or generality. We discuss how these factors contribute to a lack of communication between research efforts, and propose ways in which each version of the social brain can benefit from the perspectives, tools, and approaches of the other. Interface between the two characterizations of social brain networks is sure to provide essential insight into what the social brain encompasses.
Collapse
Affiliation(s)
- George S Prounis
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
34
|
Ho SS, Muzik M, Rosenblum KL, Morelen D, Nakamura Y, Swain JE. Potential Neural Mediators of Mom Power Parenting Intervention Effects on Maternal Intersubjectivity and Stress Resilience. Front Psychiatry 2020; 11:568824. [PMID: 33363481 PMCID: PMC7752922 DOI: 10.3389/fpsyt.2020.568824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Stress resilience in parenting depends on the parent's capacity to understand subjective experiences in self and child, namely intersubjectivity, which is intimately related to mimicking other's affective expressions (i. e., mirroring). Stress can worsen parenting by potentiating problems that can impair intersubjectivity, e.g., problems of "over-mentalizing" (misattribution of the child's behaviors) and "under-coupling" (inadequate child-oriented mirroring). Previously we have developed Mom Power (MP) parenting intervention to promote maternal intersubjectivity and reduce parenting stress. This study aimed to elucidate neural mechanisms underlying the effects of MP with a novel Child Face Mirroring Task (CFMT) in functional magnetic-resonance-imaging settings. In CFMT, the participants responded to own and other's child's facial pictures in three task conditions: (1) empathic mirroring (Join), (2) non-mirroring observing (Observe), and (3) voluntary responding (React). In each condition, each child's neutral, ambiguous, distressed, and joyful expressions were repeatedly displayed. We examined the CFMT-related neural responses in a sample of healthy mothers (n = 45) in Study 1, and MP effects on CFMT with a pre-intervention (T1) and post-intervention (T2) design in two groups, MP (n = 19) and Control (n = 17), in Study 2. We found that, from T1 to T2, MP (vs. Control) decreased parenting stress, decreased dorsomedial prefrontal cortex (dmPFC) during own-child-specific voluntary responding (React to Own vs. Other's Child), and increased activity in the frontoparietal cortices, midbrain, nucleus accumbens, and amygdala during own-child-specific empathic mirroring (Join vs. Observe of Own vs. Other's Child). We identified that MP effects on parenting stress were potentially mediated by T1-to-T2 changes in: (1) the left superior-temporal-gyrus differential responses in the contrast of Join vs. Observe of own (vs. other's) child, (2) the dmPFC-PAG (periaqueductal gray) differential functional connectivity in the same contrast, and (3) the left amygdala differential responses in the contrast of Join vs. Observe of own (vs. other's) child's joyful vs. distressed expressions. We discussed these results in support of the notion that MP reduces parenting stress via changing neural activities related to the problems of "over-mentalizing" and "under-coupling." Additionally, we discussed theoretical relationships between parenting stress and intersubjectivity in a novel dyadic active inference framework in a two-agent system to guide future research.
Collapse
Affiliation(s)
- S Shaun Ho
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Maria Muzik
- Departments of Psychiatry, Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, United States
| | - Katherine L Rosenblum
- Departments of Psychiatry, Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, United States
| | - Diana Morelen
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - Yoshio Nakamura
- Department of Anesthesiology, Pain Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - James E Swain
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
35
|
Geiger A, Bente G, Lammers S, Tepest R, Roth D, Bzdok D, Vogeley K. Distinct functional roles of the mirror neuron system and the mentalizing system. Neuroimage 2019; 202:116102. [DOI: 10.1016/j.neuroimage.2019.116102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 02/05/2023] Open
|
36
|
Lammers S, Bente G, Tepest R, Jording M, Roth D, Vogeley K. Introducing ACASS: An Annotated Character Animation Stimulus Set for Controlled (e)Motion Perception Studies. Front Robot AI 2019; 6:94. [PMID: 33501109 PMCID: PMC7805965 DOI: 10.3389/frobt.2019.00094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 09/13/2019] [Indexed: 11/13/2022] Open
Abstract
Others' movements inform us about their current activities as well as their intentions and emotions. Research on the distinct mechanisms underlying action recognition and emotion inferences has been limited due to a lack of suitable comparative stimulus material. Problematic confounds can derive from low-level physical features (e.g., luminance), as well as from higher-level psychological features (e.g., stimulus difficulty). Here we present a standardized stimulus dataset, which allows to address both action and emotion recognition with identical stimuli. The stimulus set consists of 792 computer animations with a neutral avatar based on full body motion capture protocols. Motion capture was performed on 22 human volunteers, instructed to perform six everyday activities (mopping, sweeping, painting with a roller, painting with a brush, wiping, sanding) in three different moods (angry, happy, sad). Five-second clips of each motion protocol were rendered into AVI-files using two virtual camera perspectives for each clip. In contrast to video stimuli, the computer animations allowed to standardize the physical appearance of the avatar and to control lighting and coloring conditions, thus reducing the stimulus variation to mere movement. To control for low level optical features of the stimuli, we developed and applied a set of MATLAB routines extracting basic physical features of the stimuli, including average background-foreground proportion and frame-by-frame pixel change dynamics. This information was used to identify outliers and to homogenize the stimuli across action and emotion categories. This led to a smaller stimulus subset (n = 83 animations within the 792 clip database) which only contained two different actions (mopping, sweeping) and two different moods (angry, happy). To further homogenize this stimulus subset with regard to psychological criteria we conducted an online observer study (N = 112 participants) to assess the recognition rates for actions and moods, which led to a final sub-selection of 32 clips (eight per category) within the database. The ACASS database and its subsets provide unique opportunities for research applications in social psychology, social neuroscience, and applied clinical studies on communication disorders. All 792 AVI-files, selected subsets, MATLAB code, annotations, and motion capture data (FBX-files) are available online.
Collapse
Affiliation(s)
- Sebastian Lammers
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Gary Bente
- Department of Communication, Michigan State University, East Lansing, MI, United States
| | - Ralf Tepest
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mathis Jording
- Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Daniel Roth
- Human-Computer Interaction, Institute for Computer Science, University of Würzburg, Würzburg, Germany
| | - Kai Vogeley
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| |
Collapse
|
37
|
Building blocks of social cognition: Mirror, mentalize, share? Cortex 2019; 118:4-18. [DOI: 10.1016/j.cortex.2018.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/11/2017] [Accepted: 05/03/2018] [Indexed: 01/10/2023]
|
38
|
Rosenthal-von der Pütten AM, Krämer NC, Maderwald S, Brand M, Grabenhorst F. Neural Mechanisms for Accepting and Rejecting Artificial Social Partners in the Uncanny Valley. J Neurosci 2019; 39:6555-6570. [PMID: 31263064 PMCID: PMC6697392 DOI: 10.1523/jneurosci.2956-18.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 12/03/2022] Open
Abstract
Artificial agents are becoming prevalent across human life domains. However, the neural mechanisms underlying human responses to these new, artificial social partners remain unclear. The uncanny valley (UV) hypothesis predicts that humans prefer anthropomorphic agents but reject them if they become too humanlike-the so-called UV reaction. Using fMRI, we investigated neural activity when subjects evaluated artificial agents and made decisions about them. Across two experimental tasks, the ventromedial prefrontal cortex (VMPFC) encoded an explicit representation of subjects' UV reactions. Specifically, VMPFC signaled the subjective likability of artificial agents as a nonlinear function of humanlikeness, with selective low likability for highly humanlike agents. In exploratory across-subject analyses, these effects explained individual differences in psychophysical evaluations and preference choices. Functionally connected areas encoded critical inputs for these signals: the temporoparietal junction encoded a linear humanlikeness continuum, whereas nonlinear representations of humanlikeness in dorsomedial prefrontal cortex (DMPFC) and fusiform gyrus emphasized a human-nonhuman distinction. Following principles of multisensory integration, multiplicative combination of these signals reconstructed VMPFC's valuation function. During decision making, separate signals in VMPFC and DMPFC encoded subjects' decision variable for choices involving humans or artificial agents, respectively. A distinct amygdala signal predicted rejection of artificial agents. Our data suggest that human reactions toward artificial agents are governed by a neural mechanism that generates a selective, nonlinear valuation in response to a specific feature combination (humanlikeness in nonhuman agents). Thus, a basic principle known from sensory coding-neural feature selectivity from linear-nonlinear transformation-may also underlie human responses to artificial social partners.SIGNIFICANCE STATEMENT Would you trust a robot to make decisions for you? Autonomous artificial agents are increasingly entering our lives, but how the human brain responds to these new artificial social partners remains unclear. The uncanny valley (UV) hypothesis-an influential psychological framework-captures the observation that human responses to artificial agents are nonlinear: we like increasingly anthropomorphic artificial agents, but feel uncomfortable if they become too humanlike. Here we investigated neural activity when humans evaluated artificial agents and made personal decisions about them. Our findings suggest a novel neurobiological conceptualization of human responses toward artificial agents: the UV reaction-a selective dislike of highly humanlike agents-is based on nonlinear value-coding in ventromedial prefrontal cortex, a key component of the brain's reward system.
Collapse
Affiliation(s)
- Astrid M Rosenthal-von der Pütten
- Social Psychology: Media and Communication, University Duisburg-Essen, 47048 Duisburg, Germany,
- Individual and Technology, RWTH Aachen University, 52062 Aachen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, 45141 Essen, Germany
| | - Nicole C Krämer
- Social Psychology: Media and Communication, University Duisburg-Essen, 47048 Duisburg, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, 45141 Essen, Germany
| | - Matthias Brand
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, 45141 Essen, Germany
- General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR), University Duisburg-Essen, 47048 Duisburg, Germany, and
| | - Fabian Grabenhorst
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, United Kingdom
| |
Collapse
|
39
|
Arioli M, Canessa N. Neural processing of social interaction: Coordinate-based meta-analytic evidence from human neuroimaging studies. Hum Brain Mapp 2019; 40:3712-3737. [PMID: 31077492 DOI: 10.1002/hbm.24627] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
While the action observation and mentalizing networks are considered to play complementary roles in understanding others' goals and intentions, they might be concurrently engaged when processing social interactions. We assessed this hypothesis via three activation-likelihood-estimation meta-analyses of neuroimaging studies on the neural processing of: (a) social interactions, (b) individual actions by the action observation network, and (c) mental states by the mentalizing network. Conjunction analyses and direct comparisons unveiled overlapping and specific regions among the resulting maps. We report quantitative meta-analytic evidence for a "social interaction network" including key nodes of the action observation and mentalizing networks. An action-social interaction-mentalizing gradient of activity along the posterior temporal cortex highlighted a hierarchical processing of interactions, from visuomotor analyses decoding individual and shared intentions to in-depth inferences on actors' intentional states. The medial prefrontal cortex, possibly in conjunction with the amygdala, might provide additional information concerning the affective valence of the interaction. This evidence suggests that the functional architecture underlying the neural processing of interactions involves the joint involvement of the action observation and mentalizing networks. These data might inform the design of rehabilitative treatments for social cognition disorders in pathological conditions, and the assessment of their outcome in randomized controlled trials.
Collapse
Affiliation(s)
- Maria Arioli
- Department of Humanities and Life Sciences, Scuola Universitaria Superiore IUSS, Pavia, Italy.,Cognitive Neuroscience Laboratory, IRCCS ICS Maugeri, Pavia, Italy
| | - Nicola Canessa
- Department of Humanities and Life Sciences, Scuola Universitaria Superiore IUSS, Pavia, Italy.,Cognitive Neuroscience Laboratory, IRCCS ICS Maugeri, Pavia, Italy
| |
Collapse
|
40
|
Did Human Reality Denial Breach the Evolutionary Psychological Barrier of Mortality Salience? A Theory that Can Explain Unusual Features of the Origin and Fate of Our Species. EVOLUTIONARY PSYCHOLOGY 2019. [DOI: 10.1007/978-3-030-25466-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
41
|
Boccignone G, Conte D, Cuculo V, D'Amelio A, Grossi G, Lanzarotti R. Deep Construction of an Affective Latent Space via Multimodal Enactment. IEEE Trans Cogn Dev Syst 2018. [DOI: 10.1109/tcds.2017.2788820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Social Cognition through the Lens of Cognitive and Clinical Neuroscience. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4283427. [PMID: 30302338 PMCID: PMC6158937 DOI: 10.1155/2018/4283427] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Social cognition refers to a set of processes, ranging from perception to decision-making, underlying the ability to decode others' intentions and behaviors to plan actions fitting with social and moral, besides individual and economic considerations. Its centrality in everyday life reflects the neural complexity of social processing and the ubiquity of social cognitive deficits in different pathological conditions. Social cognitive processes can be clustered in three domains associated with (a) perceptual processing of social information such as faces and emotional expressions (social perception), (b) grasping others' cognitive or affective states (social understanding), and (c) planning behaviors taking into consideration others', in addition to one's own, goals (social decision-making). We review these domains from the lens of cognitive neuroscience, i.e., in terms of the brain areas mediating the role of such processes in the ability to make sense of others' behavior and plan socially appropriate actions. The increasing evidence on the “social brain” obtained from healthy young individuals nowadays constitutes the baseline for detecting changes in social cognitive skills associated with physiological aging or pathological conditions. In the latter case, impairments in one or more of the abovementioned domains represent a prominent concern, or even a core facet, of neurological (e.g., acquired brain injury or neurodegenerative diseases), psychiatric (e.g., schizophrenia), and developmental (e.g., autism) disorders. To pave the way for the other papers of this issue, addressing the social cognitive deficits associated with severe acquired brain injury, we will briefly discuss the available evidence on the status of social cognition in normal aging and its breakdown in neurodegenerative disorders. Although the assessment and treatment of such impairments is a relatively novel sector in neurorehabilitation, the evidence summarized here strongly suggests that the development of remediation procedures for social cognitive skills will represent a future field of translational research in clinical neuroscience.
Collapse
|
43
|
Abstract
In recent years, many studies have shown that perceiving other individuals' direct gaze has robust effects on various attentional and cognitive processes. However, considerably less attention has been devoted to investigating the affective effects triggered by eye contact. This article reviews research concerning the effects of others' gaze direction on observers' affective responses. The review focuses on studies in which affective reactions have been investigated in well-controlled laboratory experiments, and in which contextual factors possibly influencing perceivers' affects have been controlled. Two important themes emerged from this review. First, explicit affective evaluations of seeing another's direct versus averted gaze have resulted in rather inconsistent findings; some studies report more positive subjective feelings to direct compared to averted gaze, whereas others report the opposite pattern. These contradictory findings may be related, for example, to differences between studies in terms of the capability of direct-gaze stimuli to elicit feelings of self-involvement. Second, studies relying on various implicit measures have reported more consistent results; they indicate that direct gaze increases affective arousal, and more importantly, that eye contact automatically evokes a positively valenced affective reaction. Based on the review, possible psychological mechanisms for the positive affective reactions elicited by eye contact are described.
Collapse
Affiliation(s)
- Jari K. Hietanen
- Human Information Processing Laboratory, Faculty of Social Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
44
|
Williams B, Jalilianhasanpour R, Matin N, Fricchione GL, Sepulcre J, Keshavan MS, LaFrance WC, Dickerson BC, Perez DL. Individual differences in corticolimbic structural profiles linked to insecure attachment and coping styles in motor functional neurological disorders. J Psychiatr Res 2018; 102:230-237. [PMID: 29702433 PMCID: PMC6005758 DOI: 10.1016/j.jpsychires.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Insecure attachment and maladaptive coping are important predisposing vulnerabilities for Functional Neurological Disorders (FND)/Conversion Disorder, yet no prior structural neuroimaging studies have investigated biomarkers associated with these risk factors in FND populations. This magnetic resonance imaging study examined cortical thickness and subcortical volumes associated with self-reported attachment and coping styles in patients with FND. We hypothesized that insecure attachment and maladaptive coping would relate to limbic-paralimbic structural alterations. METHODS FreeSurfer cortical thickness and subcortical volumetric analyses were performed in 26 patients with motor FND (21 women; 5 men) and 27 healthy controls (22 women; 5 men). For between-group comparisons, patients with FND were stratified by Relationship Scales Questionnaire, Ways of Coping Scale-Revised, and Connor-Davidson Resilience Scale scores. Within-group analyses were also performed in patients with FND. All analyses were performed in the complete cohort and separately in women only to evaluate for gender-specific effects. Cortical thickness analyses were whole-brain corrected at the cluster-wise level; subcortical analyses were Bonferroni corrected. RESULTS In women with FND, dismissing attachment correlated with reduced left parahippocampal cortical thickness. Confrontive coping was associated with reduced right hippocampal volume, while accepting responsibility positively correlated with right precentral gyrus cortical thickness. These findings held adjusting for anti-depressant use. All FND-related findings were within the normal range when compared to healthy women. CONCLUSION These observations connect individual-differences in limbic-paralimbic and premotor structures to attachment and coping styles in FND. The relationship between parahippocampal thickness and dismissing attachment may indicate aberrant social-emotional and contextual appraisal in women with FND.
Collapse
Affiliation(s)
- Benjamin Williams
- Department of Neurology, Functional Neurology Research Group, Cognitive Behavioral Neurology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rozita Jalilianhasanpour
- Department of Neurology, Functional Neurology Research Group, Cognitive Behavioral Neurology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nassim Matin
- Department of Neurology, Functional Neurology Research Group, Cognitive Behavioral Neurology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory L. Fricchione
- Department of Psychiatry, Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jorge Sepulcre
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - W. Curt LaFrance
- Neuropsychiatry and Behavioral Neurology Division, Rhode Island Hospital, Departments of Psychiatry and Neurology, Brown University, Alpert Medical School, Providence, Rhode Island, USA
| | - Bradford C. Dickerson
- Department of Neurology, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David L. Perez
- Department of Neurology, Functional Neurology Research Group, Cognitive Behavioral Neurology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA,Department of Psychiatry, Neuropsychiatry Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Capozzi F, Ristic J. How attention gates social interactions. Ann N Y Acad Sci 2018; 1426:179-198. [PMID: 29799619 DOI: 10.1111/nyas.13854] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/30/2018] [Accepted: 04/24/2018] [Indexed: 01/25/2023]
Abstract
Social interactions are at the core of social life. However, humans selectively choose their exchange partners and do not engage in all available opportunities for social encounters. In this review, we argue that attentional systems play an important role in guiding the selection of social interactions. Supported by both classic and emerging literature, we identify and characterize the three core processes-perception, interpretation, and evaluation-that interact with attentional systems to modulate selective responses to social environments. Perceptual processes facilitate attentional prioritization of social cues. Interpretative processes link attention with understanding of cues' social meanings and agents' mental states. Evaluative processes determine the perceived value of the source of social information. The interplay between attention and these three routes of processing places attention in a powerful role to manage the selection of the vast amount of social information that individuals encounter on a daily basis and, in turn, gate the selection of social interactions.
Collapse
Affiliation(s)
- Francesca Capozzi
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Jelena Ristic
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Seebacher F, Krause J. Physiological mechanisms underlying animal social behaviour. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0231. [PMID: 28673909 DOI: 10.1098/rstb.2016.0231] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission-fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jens Krause
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.,Faculty of Life Sciences Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|