1
|
Wen S, Zhao Y, Qi X, Cai M, Huang K, Liu H, Kong DX. Conformational plasticity of SpyCas9 induced by AcrIIA4 and AcrIIA2: Insights from molecular dynamics simulation. Comput Struct Biotechnol J 2024; 23:537-548. [PMID: 38235361 PMCID: PMC10791570 DOI: 10.1016/j.csbj.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
CRISPR-Cas9 systems constitute bacterial adaptive immune systems that protect against phage infections. Bacteriophages encode anti-CRISPR proteins (Acrs) that mitigate the bacterial immune response. However, the structural basis for their inhibitory actions from a molecular perspective remains elusive. In this study, through microsecond atomistic molecular dynamics simulations, we demonstrated the remarkable flexibility of Streptococcus pyogenes Cas9 (SpyCas9) and its conformational adaptability during interactions with AcrIIA4 and AcrIIA2. Specifically, we demonstrated that the binding of AcrIIA4 and AcrIIA2 to SpyCas9 induces a conformational rearrangement that causes spatial separation between the nuclease and cleavage sites, thus making the endonuclease inactive. This separation disrupts the transmission of signals between the protospacer adjacent motif recognition and nuclease domains, thereby impeding the efficient processing of double-stranded DNA. The simulation also reveals that AcrIIA4 and AcrIIA2 cause different structural variations of SpyCas9. Our research illuminates the precise mechanisms underlying the suppression of SpyCas9 by AcrIIA4 and AcrIIA2, thus presenting new possibilities for controlling genome editing with higher accuracy.
Collapse
Affiliation(s)
- Shuixiu Wen
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Yuxin Zhao
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Xinyu Qi
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Mingzhu Cai
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Kaisheng Huang
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Hui Liu
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - De-Xin Kong
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
2
|
Li P, Dong D, Gao F, Xie Y, Huang H, Sun S, Ma Z, He C, Lai J, Du X, Wu S. Versatile and efficient mammalian genome editing with Type I-C CRISPR System of Desulfovibrio vulgaris. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2471-2487. [PMID: 39126615 DOI: 10.1007/s11427-023-2682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
CRISPR-Cas tools for mammalian genome editing typically rely on single Cas9 or Cas12a proteins. While type I CRISPR systems in Class I may offer greater specificity and versatility, they are not well-developed for genome editing. Here, we present an alternative type I-C CRISPR system from Desulfovibrio vulgaris (Dvu) for efficient and precise genome editing in mammalian cells and animals. We optimized the Dvu type I-C editing complex to generate precise deletions at multiple loci in various cell lines and pig primary fibroblast cells using a paired PAM-in crRNA strategy. These edited pig cells can serve as donors for generating transgenic cloned piglets. The Dvu type I-C editor also enabled precise large fragment replacements with homology-directed repair. Additionally, we adapted the Dvu-Cascade effector for cytosine and adenine base editing, developing Dvu-CBE and Dvu-ABE systems. These systems efficiently induced C-to-T and A-to-G substitutions in human genes without double-strand breaks. Off-target analysis confirmed the high specificity of the Dvu type I-C editor. Our findings demonstrate the Dvu type I-C editor's potential for diverse mammalian genome editing applications, including deletions, fragment replacement, and base editing, with high efficiency and specificity for biomedicine and agriculture.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Dingcai Dong
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Fei Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Yuyang Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Honglin Huang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Siwei Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhao Ma
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Cheng He
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jinsheng Lai
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Sen Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| |
Collapse
|
3
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Lemak S, Brown G, Makarova KS, Koonin EV, Yakunin AF. Biochemical plasticity of the Escherichia coli CRISPR Cascade revealed by in vitro reconstitution of Cascade activities from purified Cas proteins. FEBS J 2024. [PMID: 39375921 DOI: 10.1111/febs.17295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
The most abundant clustered regularly interspaced short palindromic repeats (CRISPR) type I systems employ a multisubunit RNA-protein effector complex (Cascade), with varying protein composition and activity. The Escherichia coli Cascade complex consists of 11 protein subunits and functions as an effector through CRISPR RNA (crRNA) binding, protospacer adjacent motif (PAM)-specific double-stranded DNA targeting, R-loop formation, and Cas3 helicase-nuclease recruitment for target DNA cleavage. Here, we present a biochemical reconstruction of the E. coli Cascade from purified Cas proteins and analyze its activities including crRNA binding, dsDNA targeting, R-loop formation, and Cas3 recruitment. Affinity purification of 6His-tagged Cas7 coexpressed with untagged Cas5 revealed the physical association of these proteins, thus producing the Cas5-Cas7 subcomplex that was able to bind specifically to type I-E crRNA with an efficiency comparable to that of the complete Cascade. The crRNA-loaded Cas5-7 was found to bind specifically to the target dsDNA in a PAM-independent manner, albeit with a lower affinity than the complete Cascade, with both spacer sequence complementarity and repeat handles contributing to the DNA targeting specificity. The crRNA-loaded Cas5-7 targeted the complementary dsDNA with detectable formation of R-loops, which was stimulated by the addition of Cas8 and/or Cas11 acting synergistically. Cascade activity reconstitution using purified Cas5-7 and other Cas proteins showed that Cas8 was essential for specific PAM recognition, whereas the addition of Cas11 was required for Cas3 recruitment and target DNA nicking. Thus, although the core Cas5-7 subcomplex is sufficient for specific crRNA binding and basal DNA targeting, both Cas8 and Cas11 make unique contributions to efficient target recognition and cleavage.
Collapse
Affiliation(s)
- Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, UK
| |
Collapse
|
5
|
Ranasinghe W, Gillette D, Ho A, Cho H, Choudhary M. Taxonomic Distribution, Phylogenetic Relationship, and Domain Conservation of CRISPR-Associated Cas Proteins. Bioinform Biol Insights 2024; 18:11779322241274961. [PMID: 39397878 PMCID: PMC11468465 DOI: 10.1177/11779322241274961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024] Open
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a naturally occurring genetic defense system in bacteria and archaea. It is comprised of a series of DNA sequence repeats with spacers derived from previous exposures to plasmid or phage. Further understanding and applications of CRISPR system have revolutionized our capacity for gene or genome editing of prokaryotes and eukaryotes. The CRISPR systems are classified into 3 distinct types: type I, type II, and type III, each of which possesses an associated signature protein, Cas3, Cas9, and Cas10, respectively. As the CRISPR loci originated from earlier independent exposures of foreign genetic elements, it is likely that their associated signature proteins may have evolved rapidly. Also, their functional domain structures might have experienced different selective pressures, and therefore, they have differentially diverged in their amino acid sequences. We employed genomic, phylogenetic, and structure-function constraint analyses to reveal the evolutionary distribution, phylogenetic relationship, and structure-function constraints of Cas3, Cas9, and Cas10 proteins. Results reveal that all 3 Cas-associated proteins are highly represented in the phyla Bacteroidetes, Firmicutes, and Proteobacteria, including both pathogenic and non-pathogenic species. Genomic analysis of homologous proteins demonstrates that the proteins share 30% to 50% amino acid identity; therefore, they are low to moderately conserved and evolved rapidly. Phylogenetic analysis shows that 3 proteins originated monophyletically; however, the evolution rates were different among different branches of the clades. Furthermore, structure-function constraint analysis reveals that both Cas3 and Cas9 proteins experiences low to moderate levels of negative selection, and several protein domains of Cas3 and Cas9 proteins are highly conserved. To the contrary, most protein domains of Cas10 proteins experience neutral or positive selection, which supports rapid genetic divergence and less structure-function constraints.
Collapse
Affiliation(s)
- Weerakkody Ranasinghe
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Dorcie Gillette
- Department of Surgery, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Alexis Ho
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Hyuk Cho
- Department of Computer Science, Sam Houston State University, Huntsville, TX, USA
| | - Madhusudan Choudhary
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| |
Collapse
|
6
|
Giovannuzzi S, Shyamal SS, Bhowmik R, Ray R, Manaithiya A, Carta F, Parrkila S, Aspatwar A, Supuran CT. Physiological modeling of the metaverse of the Mycobacterium tuberculosis β-CA inhibition mechanism. Comput Biol Med 2024; 181:109029. [PMID: 39173489 DOI: 10.1016/j.compbiomed.2024.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Tuberculosis (TB) is an infectious disease that primarily affects the lungs of humans and accounts for Mycobacterium tuberculosis (Mtb) bacteria as the etiologic agent. In this study, we introduce a computational framework designed to identify the important chemical features crucial for the effective inhibition of Mtb β-CAs. Through applying a mechanistic model, we elucidated the essential features pivotal for robust inhibition. Using this model, we engineered molecules that exhibit potent inhibitory activity and introduce relevant novel chemistry. The designed molecules were prioritized for synthesis based on their predicted pKi values via the QSAR (Quantitative Structure-Activity Relationship) model. All the rationally designed and synthesized compounds were evaluated in vitro against different carbonic anhydrase isoforms expressed from the pathogen Mtb; moreover, the off-target and widely human-expressed CA I and II were also evaluated. Among the reported derivatives, 2, 4, and 5 demonstrated the most valuable in vitro activity, resulting in promising candidates for the treatment of TB infection. All the synthesized molecules exhibited favorable pharmacokinetic and toxicological profiles based on in silico predictions. Docking analysis confirmed that the zinc-binding groups bind effectively into the catalytic triad of the Mtb β-Cas, supporting the in vitro outcomes with these binding interactions. Furthermore, molecules with good prediction accuracies according to previously established mechanistic and QSAR models were utilized to delve deeper into the realm of systems biology to understand their mechanism in combating tuberculotic pathogenesis. The results pointed to the key involvement of the compounds in modulating immune responses via NF-κβ1, SRC kinase, and TNF-α to modulate granuloma formation and clearance via T cells. This dual action, in which the pathogen's enzyme is inhibited while modulating the human immune machinery, represents a paradigm shift toward more effective and comprehensive treatment approaches for combating tuberculosis.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Sagar Singh Shyamal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Rajarshi Ray
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ajay Manaithiya
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Fabrizio Carta
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Seppo Parrkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
7
|
Raddaoui A, Chebbi Y, Frigui S, Latorre J, Ammeri RW, Abdejlil NB, Torres C, Abbassi MS, Achour W. Genetic characterization of vancomycin-resistant Enterococcus faecium isolates from neutropenic patients in Tunisia: spread of the pandemic CC17 clone associated with high genetic diversity in Tn1546-like structures. J Appl Microbiol 2024; 135:lxae225. [PMID: 39210508 DOI: 10.1093/jambio/lxae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
AIMS In Tunisia, limited research has focused on characterizing clinical vancomycin-resistant Enterococcus faecium (VREfm). This study aimed to bridge this knowledge gap by molecular characterization of antimicrobial resistance, determining the genetic elements mediating vancomycin-resistance, and whole-genome sequencing of one representative VREfm isolate. METHODS AND RESULTS Over 6 years (2011-2016), a total of eighty VREfm isolates responsible for infection or colonization were identified from hospitalized patients, with the incidence rate increasing from 2% in 2011 to 27% in 2016. All of these strains harbored the vanA gene. The screening for antimicrobial resistance genes revealed the predominance of ermB, tetM, and aac(6')-Ie-aph(2'')-Ia genes and 81.2% of strains harbored the Tn1545. Pulsed-field gel electrophoresis identified seven clusters, with two major clusters (belonging to ST117 and ST80) persisting throughout the study period. Seven Tn1546 types were detected, with type VI (truncated transposon) being the most prevalent (57.5%). Whole-genome sequencing revealed a 3 028 373 bp chromosome and five plasmids. Mobile genetic elements and a type I CRISPR-cas locus were identified. Notably, the vanA gene was carried by the classic Tn1546 transposon with ISL3 insertion on a rep17pRUM plasmid. CONCLUSION A concerning trend in the prevalence of VREfm essentially attributed to CC17 persistence and to horizontal transfer of multiple genetic variants of truncated vanA-Tn1546.
Collapse
Affiliation(s)
- Anis Raddaoui
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Yosra Chebbi
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Siwar Frigui
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Javier Latorre
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño 26006, Spain
| | - Rim Werhani Ammeri
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Nour Ben Abdejlil
- Department of hematology and transplantationtion, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
| | - Carmen Torres
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño 26006, Spain
| | - Mohamed Salah Abbassi
- Faculty of Medicine of Tunis, Laboratory of Antibiotic Resistance LR99ES09, University of Tunis El Manar, Tunis 1006, Tunisia
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis1006, Tunisia
| | - Wafa Achour
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| |
Collapse
|
8
|
Khmeleva SA, Ptitsyn KG, Kurbatov LK, Timoshenko OS, Suprun EV, Radko SP, Lisitsa AV. Biosensing platforms for DNA diagnostics based on CRISPR/Cas nucleases: towards the detection of nucleic acids at the level of single molecules in non-laboratory settings. BIOMEDITSINSKAIA KHIMIIA 2024; 70:287-303. [PMID: 39324194 DOI: 10.18097/pbmc20247005287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The use of CRISPR/Cas nucleases for the development of DNA diagnostic systems in out-of-laboratory conditions (point-of-need testing, PONT) has demonstrated rapid growth in the last few years, starting with the appearance in 2017-2018 of the first diagnostic platforms known as DETECTR and SHERLOCK. The platforms are based on a combination of methods of nucleic acid isothermal amplification with selective CRISPR/Cas detection of target amplicons. This significantly improves the sensitivity and specificity of PONT, making them comparable with or even superior to the sensitivity and specificity of polymerase chain reaction, considered as the "gold standard" of DNA diagnostics. The review considers modern approaches to the coupling of CRISPR/Cas detection using Cas9, Cas12a, Cas12b, Cas13a, Cas14, and Cas3 nucleases to various methods of nucleic acid isothermal amplification, with an emphasis on works in which sensitivity at the level of single molecules (attomolar and subattomolar concentrations of the target) is achieved. The properties of CRISPR/Cas nucleases used for targeted DNA diagnostics and the features of methods of nucleic acid isothermal amplification are briefly considered in the context of the development of diagnostic biosensing platforms. Special attention is paid to the most promising directions for the development of DNA diagnostics using CRISPR/Cas nuclease.
Collapse
Affiliation(s)
- S A Khmeleva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - K G Ptitsyn
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - E V Suprun
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Moscow, Russia
| | - S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
9
|
Moody ERR, Álvarez-Carretero S, Mahendrarajah TA, Clark JW, Betts HC, Dombrowski N, Szánthó LL, Boyle RA, Daines S, Chen X, Lane N, Yang Z, Shields GA, Szöllősi GJ, Spang A, Pisani D, Williams TA, Lenton TM, Donoghue PCJ. The nature of the last universal common ancestor and its impact on the early Earth system. Nat Ecol Evol 2024; 8:1654-1666. [PMID: 38997462 PMCID: PMC11383801 DOI: 10.1038/s41559-024-02461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/04/2024] [Indexed: 07/14/2024]
Abstract
The nature of the last universal common ancestor (LUCA), its age and its impact on the Earth system have been the subject of vigorous debate across diverse disciplines, often based on disparate data and methods. Age estimates for LUCA are usually based on the fossil record, varying with every reinterpretation. The nature of LUCA's metabolism has proven equally contentious, with some attributing all core metabolisms to LUCA, whereas others reconstruct a simpler life form dependent on geochemistry. Here we infer that LUCA lived ~4.2 Ga (4.09-4.33 Ga) through divergence time analysis of pre-LUCA gene duplicates, calibrated using microbial fossils and isotope records under a new cross-bracing implementation. Phylogenetic reconciliation suggests that LUCA had a genome of at least 2.5 Mb (2.49-2.99 Mb), encoding around 2,600 proteins, comparable to modern prokaryotes. Our results suggest LUCA was a prokaryote-grade anaerobic acetogen that possessed an early immune system. Although LUCA is sometimes perceived as living in isolation, we infer LUCA to have been part of an established ecological system. The metabolism of LUCA would have provided a niche for other microbial community members and hydrogen recycling by atmospheric photochemistry could have supported a modestly productive early ecosystem.
Collapse
Affiliation(s)
- Edmund R R Moody
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| | | | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - James W Clark
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | - Holly C Betts
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Lénárd L Szánthó
- Department of Biological Physics, Eötvös University, Budapest, Hungary
- MTA-ELTE 'Lendulet' Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, HUN-REN Center for Ecological Research, Budapest, Hungary
| | | | - Stuart Daines
- Global Systems Institute, University of Exeter, Exeter, UK
| | - Xi Chen
- Department of Earth Sciences, University College London, London, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Graham A Shields
- Department of Earth Sciences, University College London, London, UK
| | - Gergely J Szöllősi
- MTA-ELTE 'Lendulet' Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, HUN-REN Center for Ecological Research, Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
10
|
Zhang C, Chen F, Wang F, Xu H, Xue J, Li Z. Mechanisms for HNH-mediated target DNA cleavage in type I CRISPR-Cas systems. Mol Cell 2024; 84:3141-3153.e5. [PMID: 39047725 DOI: 10.1016/j.molcel.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The metagenome-derived type I-E and type I-F variant CRISPR-associated complex for antiviral defense (Cascade) complexes, fused with HNH domains, precisely cleave target DNA, representing recently identified genome editing tools. However, the underlying working mechanisms remain unknown. Here, structures of type I-FHNH and I-EHNH Cascade complexes at different states are reported. In type I-FHNH Cascade, Cas8fHNH loosely attaches to Cascade head and is adjacent to the 5' end of the target single-stranded DNA (ssDNA). Formation of the full R-loop drives the Cascade head to move outward, allowing Cas8fHNH to detach and rotate ∼150° to accommodate target ssDNA for cleavage. In type I-EHNH Cascade, Cas5eHNH domain is adjacent to the 5' end of the target ssDNA. Full crRNA-target pairing drives the lift of the Cascade head, widening the substrate channel for target ssDNA entrance. Altogether, these analyses into both complexes revealed that crRNA-guided positioning of target DNA and target DNA-induced HNH unlocking are two key factors for their site-specific cleavage of target DNA.
Collapse
Affiliation(s)
- Chendi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Fugen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Feng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Haijiang Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Jialin Xue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Zhuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China.
| |
Collapse
|
11
|
Ilyas M, Shah Q, Gul A, Ibrahim H, Fatima R, Babar MM, Rajadas J. Advances in CRISPR-Cas systems for epigenetics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:185-209. [PMID: 39266182 DOI: 10.1016/bs.pmbts.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The CRISPR-Cas9 method has revolutionized the gene editing. Epigenetic changes, including DNA methylation, RNA modification, and changes in histone proteins, have been intensively studied and found to play a key role in the pathogenesis of human diseases. CRISPR-While the utility of DNA and chromatin modifications, known as epigenetics, is well understood, the functional significance of various alterations of RNA nucleotides has recently gained attention. Recent advancements in improving CRISPR-based epigenetic modifications has resulted in the availability of a powerful source that can selectively modify DNA, allowing for the maintenance of epigenetic memory over several cell divisions. Accurate identification of DNA methylation at specific locations is crucial for the prompt detection of cancer and other diseases, as DNA methylation is strongly correlated to the onset as well as the advancement of such conditions. Genetic or epigenetic perturbations can disrupt the regulation of imprinted genes, resulting in the development of diseases. When histone code editors and DNA de-/ methyltransferases are coupled with catalytically inactive Cas9 (dCas9), and CRISPRa and CRISPRi, they demonstrate excellent efficacy in editing the epigenome of eukaryotic cells. Advancing and optimizing the extracellular delivery platform can, hence, further facilitate the manipulation of CRISPR-Cas9 gene editing technique in upcoming clinical studies. The current chapter focuses on how the CRISP/ Cas9 system provides an avenue for the epigenetic modifications and its employability for human benefit.
Collapse
Affiliation(s)
- Mahnoor Ilyas
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Qasim Shah
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Huzaifa Ibrahim
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Rania Fatima
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States.
| | - Jayakumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Lab, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States.
| |
Collapse
|
12
|
Murjani K, Tripathi R, Singh V. An overview and potential of CRISPR-Cas systems for genome editing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:1-17. [PMID: 39266179 DOI: 10.1016/bs.pmbts.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Genome editing involves altering of the DNA in organisms including bacteria, plants, and animals using molecular scissors that helps in treatment and diagnosis of various diseases. Genome editing technology is exponentially growing and have been developed for enabling precise genomic alterations and the addition, removal, and correction of genes. These modifications begin with the creation of double-stranded breaks (DSBs) that is generated by nucleases and can be joined through homology-directed repair (HDR) or non-homologous end-joining (NHEJ). NHEJ is quick but increases mutation chances due to deletions and insertions of nucleotides at the break site, while HDR uses homologous templates for precise repair and targeted DNA specific to the gene or sequence. Other methods such as zinc-finger protein is a transcription factor that binds with DNA and binds specific to that sequence, which uniquely recognise 3-base pairs of DNA. TALENs consists of two domains: TALE domain, a transcription activator and FokI that is a restriction endonuclease that cuts the DNA at specific sites. CRISPR-Cas systems are clustered regularly interspersed short palindromic repeats present in various bacterial species. These sequences activate RNA-guided DNA cleavage, aiding in the development of an adaptive immune defence against foreign DNA. CRISPR-Cas9 is widely used for genome editing, regulation, diagnostic and many.
Collapse
Affiliation(s)
- Karan Murjani
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Renu Tripathi
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
13
|
Khan FA, Ali A, Wu D, Huang C, Zulfiqar H, Ali M, Ahmed B, Yousaf MR, Putri EM, Negara W, Imran M, Pandupuspitasari NS. Editing microbes to mitigate enteric methane emissions in livestock. World J Microbiol Biotechnol 2024; 40:300. [PMID: 39134917 DOI: 10.1007/s11274-024-04103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 10/17/2024]
Abstract
Livestock production significantly contributes to greenhouse gas (GHG) emissions particularly methane (CH4) emissions thereby influencing climate change. To address this issue further, it is crucial to establish strategies that simultaneously increase ruminant productivity while minimizing GHG emissions, particularly from cattle, sheep, and goats. Recent advancements have revealed the potential for modulating the rumen microbial ecosystem through genetic selection to reduce methane (CH4) production, and by microbial genome editing including CRISPR/Cas9, TALENs (Transcription Activator-Like Effector Nucleases), ZFNs (Zinc Finger Nucleases), RNA interference (RNAi), Pime editing, Base editing and double-stranded break-free (DSB-free). These technologies enable precise genetic modifications, offering opportunities to enhance traits that reduce environmental impact and optimize metabolic pathways. Additionally, various nutrition-related measures have shown promise in mitigating methane emissions to varying extents. This review aims to present a future-oriented viewpoint on reducing methane emissions from ruminants by leveraging CRISPR/Cas9 technology to engineer the microbial consortia within the rumen. The ultimate objective is to develop sustainable livestock production methods that effectively decrease methane emissions, while maintaining animal health and productivity.
Collapse
Affiliation(s)
- Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Azhar Ali
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Hamza Zulfiqar
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Muhammad Ali
- Institute of Animal and Diary sciences, Faculty of Animal Husbandry, Agriculture University, Faisalabad, Pakistan
| | - Bilal Ahmed
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Muhammad Rizwan Yousaf
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Ezi Masdia Putri
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
14
|
Soczek KM, Cofsky JC, Tuck OT, Shi H, Doudna JA. CRISPR-Cas12a bends DNA to destabilize base pairs during target interrogation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606079. [PMID: 39131396 PMCID: PMC11312533 DOI: 10.1101/2024.07.31.606079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
RNA-guided endonucleases are involved in processes ranging from adaptive immunity to site-specific transposition and have revolutionized genome editing. CRISPR-Cas9, -Cas12 and related proteins use guide RNAs to recognize ~20-nucleotide target sites within genomic DNA by mechanisms that are not yet fully understood. We used structural and biochemical methods to assess early steps in DNA recognition by Cas12a protein-guide RNA complexes. We show here that Cas12a initiates DNA target recognition by bending DNA to induce transient nucleotide flipping that exposes nucleobases for DNA-RNA hybridization. Cryo-EM structural analysis of a trapped Cas12a-RNA-DNA surveillance complex and fluorescence-based conformational probing show that Cas12a-induced DNA helix destabilization enables target discovery and engagement. This mechanism of initial DNA interrogation resembles that of CRISPR-Cas9 despite distinct evolutionary origins and different RNA-DNA hybridization directionality of these enzyme families. Our findings support a model in which RNA-mediated DNA engineering begins with local helix distortion by transient CRISPR-Cas protein binding.
Collapse
Affiliation(s)
- Katarzyna M. Soczek
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Joshua C. Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
| | - Owen T. Tuck
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley; Berkeley, CA, USA
| | - Honglue Shi
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley CA, USA
| | - Jennifer A. Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley; Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley CA, USA
- Gladstone-UCSF Institute of Genomic Immunology; San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA, USA
| |
Collapse
|
15
|
Chasov V, Ganeeva I, Zmievskaya E, Davletshin D, Gilyazova E, Valiullina A, Bulatov E. Cell-Based Therapy and Genome Editing as Emerging Therapeutic Approaches to Treat Rheumatoid Arthritis. Cells 2024; 13:1282. [PMID: 39120313 PMCID: PMC11312096 DOI: 10.3390/cells13151282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints. Although much remains unknown about the pathogenesis of RA, there is evidence that impaired immune tolerance and the development of RA are related. And it is precisely the restoration of immune tolerance at the site of the inflammation that is the ultimate goal of the treatment of RA. Over the past few decades, significant progress has been made in the treatment of RA, with higher rates of disease remission and improved long-term outcomes. Unfortunately, despite these successes, the proportion of patients with persistent, difficult-to-treat disease remains high, and the task of improving our understanding of the basic mechanisms of disease development and developing new ways to treat RA remains relevant. This review focuses on describing new treatments for RA, including cell therapies and gene editing technologies that have shown potential in preclinical and early clinical trials. In addition, we discuss the opportunities and limitations associated with the use of these new approaches in the treatment of RA.
Collapse
Affiliation(s)
- Vitaly Chasov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Irina Ganeeva
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Ekaterina Zmievskaya
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Damir Davletshin
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Elvina Gilyazova
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Aygul Valiullina
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Emil Bulatov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119048, Russia
| |
Collapse
|
16
|
Wang Y, Wang Y, Tang N, Wang Z, Pan D, Ji Q. Characterization and Engineering of a Novel Miniature Eubacterium siraeum CRISPR-Cas12f System. ACS Synth Biol 2024; 13:2115-2127. [PMID: 38941613 DOI: 10.1021/acssynbio.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Cas12f nucleases are one of the most compact genome editors, exhibiting promising potential for in vivo therapeutic applications. However, the availability of active Cas12f genome editors remains relatively limited in the field. Here, we report the characterization and engineering of a novel miniature Cas12f endonuclease from Eubacterium siraeum (EsCas12f1, 433 amino acids). We elucidate the specific Protospacer Adjacent Motifs preference and the detailed biochemical properties for DNA targeting and cleavage. By employing rational design strategies, we systematically optimize the guide RNA of EsCas12f1, converting the initially ineffective CRISPR-EsCas12f1 system into an efficient bacterial genome editor. Furthermore, we demonstrate the capacity of EsCas12f1 for in vitro nucleic-acid diagnostics. In summary, our results enrich the miniature CRISPR-Cas toolbox and pave the way for the application of EsCas12f1 for both genome editing and in vitro diagnostics.
Collapse
Affiliation(s)
- Yannan Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yujue Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Na Tang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhipeng Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Deng Pan
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Quanjiang Ji
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
17
|
Wiegand T, Hoffmann FT, Walker MWG, Tang S, Richard E, Le HC, Meers C, Sternberg SH. TnpB homologues exapted from transposons are RNA-guided transcription factors. Nature 2024; 631:439-448. [PMID: 38926585 DOI: 10.1038/s41586-024-07598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Transposon-encoded tnpB and iscB genes encode RNA-guided DNA nucleases that promote their own selfish spread through targeted DNA cleavage and homologous recombination1-4. These widespread gene families were repeatedly domesticated over evolutionary timescales, leading to the emergence of diverse CRISPR-associated nucleases including Cas9 and Cas12 (refs. 5,6). We set out to test the hypothesis that TnpB nucleases may have also been repurposed for novel, unexpected functions other than CRISPR-Cas adaptive immunity. Here, using phylogenetics, structural predictions, comparative genomics and functional assays, we uncover multiple independent genesis events of programmable transcription factors, which we name TnpB-like nuclease-dead repressors (TldRs). These proteins use naturally occurring guide RNAs to specifically target conserved promoter regions of the genome, leading to potent gene repression in a mechanism akin to CRISPR interference technologies invented by humans7. Focusing on a TldR clade found broadly in Enterobacteriaceae, we discover that bacteriophages exploit the combined action of TldR and an adjacently encoded phage gene to alter the expression and composition of the host flagellar assembly, a transformation with the potential to impact motility8, phage susceptibility9, and host immunity10. Collectively, this work showcases the diverse molecular innovations that were enabled through repeated exaptation of transposon-encoded genes, and reveals the evolutionary trajectory of diverse RNA-guided transcription factors.
Collapse
Affiliation(s)
- Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Florian T Hoffmann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W G Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Egill Richard
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Hoang C Le
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Owaid HA, Al-Ouqaili MT. Molecular and bacteriological investigations for the co-existence CRISPR/Cas system and β-lactamases of types extended-spectrum and carbapenemases in Multidrug, extensive drug and Pandrug-Resistant Klebsiella pneumoniae. Saudi J Biol Sci 2024; 31:104022. [PMID: 38817398 PMCID: PMC11137337 DOI: 10.1016/j.sjbs.2024.104022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
The recent approach towards combating the antimicrobial resistance has led to the use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and associated sequence to overcome the challenges of antimicrobial resistance. Thus, this study aimed to detect the underlying resistance mechanisms such as ESBLs and carbapenemases and whether there is a correlation between multidrug, extensive drug and pan drug resistance and the occurrence of CRISPR loci. A total of one hundred study isolates were subjected to antimicrobial susceptibility testing using the AST card of the Vitek technique to detect resistance patterns involving ESBLs and carbapenemase (CRE). An investigation of the genes encoding CRISPR/Cas systems using PCR was achieved. Out of 81 (81.0%) resistant Klebsiella pneumoniae isolates, 71 (71%) and 21 (21.0%) produced ESBLs and carbapenemases, respectively. Also, 53 (53.0%), 19 (19.0%) and 9 (9.0%) were MDR, XDR, and PDR respectively. It was noted that Cas1, Cas3, CRISPR1, CRISPR2 and CRISPR3 were positive in 38 (38.0%) of the isolates, while CRISPR1 for incomplete CRISPR1-Cas systems alone was detected in 78 (78.0%). Further, the number of intact CRISPR1, intact CRISPR2 and intact CRISPR3 types were 7 (27.0%), 34 (34%) and 18 (18.0%) respectively. It is concluded that antibiotic resistance levels were inversely correlated with the existence of CRISPR/Cas systems. The absence of the CRISPR/Cas system increases the prevalence of MDR, XDR and PDR in ESBL and carbapenem-producing Klebsiella pneumoniae. With the increase in the degree of antibiotic resistance (MDR, XDR to PDR), the occurrence ratio of the (CRISPR)/CRISPR-associated sequence decreased.
Collapse
Affiliation(s)
- Hekmat A. Owaid
- Department of Biology, College of Science, University of Anbar, Ramadi, Iraq
| | - Mushtak T.S. Al-Ouqaili
- Department of Microbiology, College of Medicine, University of Anbar, Al-Anbar Governorate, Ramadi, Iraq
| |
Collapse
|
19
|
Talukder P, Chanda S, Chaudhuri B, Choudhury SR, Saha D, Dash S, Banerjee A, Chatterjee B. CRISPR-Based Gene Editing: a Modern Approach for Study and Treatment of Cancer. Appl Biochem Biotechnol 2024; 196:4439-4456. [PMID: 37737443 DOI: 10.1007/s12010-023-04708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The development and emergence of clustered regularly interspaced short palindromic repeats (CRISPR) as a genome-editing technology have created a plethora of opportunities in genetic engineering. The ability of sequence-specific addition or removal of DNA in an efficient and cost-effective manner has revolutionized modern research in the field of life science and healthcare. CRISPR is widely used as a genome engineering tool in clinical studies for observing gene expression and metabolic pathway regulations in detail. Even in the case of transgenic research and personalized gene manipulation studies, CRISPR-based technology is used extensively. To understand and even to correct the underlying genetic problem is of cancer, CRISPR-based technology can be used. Various kinds of work is going on throughout the world which are attempting to target different genes in order to discover novel and effective methodologies for the treatment of cancer. In this review, we provide a brief overview on the application of CRISPR gene editing technology in cancer treatment focusing on the key aspects of cancer screening, modelling and therapy techniques.
Collapse
Affiliation(s)
- Pratik Talukder
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, 700156, India.
| | - Sounak Chanda
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, 700156, India
| | - Biswadeep Chaudhuri
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, 700156, India
| | | | - Debanjan Saha
- School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, 632014, India
| | - Sudipta Dash
- Department of Biotechnology, IIT, Kharagpur, West Bengal, 721302, India
| | - Abhineet Banerjee
- Department of Biotechnology, NIT, Durgapur, West Bengal, 713209, India
| | | |
Collapse
|
20
|
Chen Z, Hu J, Dai J, Zhou C, Hua Y, Hua X, Zhao Y. Precise CRISPR/Cpf1 genome editing system in the Deinococcus radiodurans with superior DNA repair mechanisms. Microbiol Res 2024; 284:127713. [PMID: 38608339 DOI: 10.1016/j.micres.2024.127713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Deinococcus radiodurans, with its high homologous recombination (HR) efficiency of double-stranded DNA breaks (DSBs), is a model organism for studying genome stability maintenance and an attractive microbe for industrial applications. Here, we developed an efficient CRISPR/Cpf1 genome editing system in D. radiodurans by evaluating and optimizing double-plasmid strategies and four Cas effector proteins from various organisms, which can precisely introduce different types of template-dependent mutagenesis without off-target toxicity. Furthermore, the role of DNA repair genes in determining editing efficiency in D. radiodurans was evaluated by introducing the CRISPR/Cpf1 system into 13 mutant strains lacking various DNA damage response and repair factors. In addition to the crucial role of RecA-dependent HR required for CRISPR/Cpf1 editing, D. radiodurans showed higher editing efficiency when lacking DdrB, the single-stranded DNA annealing (SSA) protein involved in the RecA-independent DSB repair pathway. This suggests a possible competition between HR and SSA pathways in the CRISPR editing of D. radiodurans. Moreover, off-target effects were observed during the genome editing of the pprI knockout strain, a master DNA damage response gene in Deinococcus species, which suggested that precise regulation of DNA damage response is critical for a high-fidelity genome editing system.
Collapse
Affiliation(s)
- Zijing Chen
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China; MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Hu
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China; MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingli Dai
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China; MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Congli Zhou
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China; MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuejin Hua
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China; MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ye Zhao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China; MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Madugula SS, Pujar P, Nammi B, Wang S, Jayasinghe-Arachchige VM, Pham T, Mashburn D, Artiles M, Liu J. Identification of Family-Specific Features in Cas9 and Cas12 Proteins: A Machine Learning Approach Using Complete Protein Feature Spectrum. J Chem Inf Model 2024; 64:4897-4911. [PMID: 38838358 DOI: 10.1021/acs.jcim.4c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The recent development of CRISPR-Cas technology holds promise to correct gene-level defects for genetic diseases. The key element of the CRISPR-Cas system is the Cas protein, a nuclease that can edit the gene of interest assisted by guide RNA. However, these Cas proteins suffer from inherent limitations such as large size, low cleavage efficiency, and off-target effects, hindering their widespread application as a gene editing tool. Therefore, there is a need to identify novel Cas proteins with improved editing properties, for which it is necessary to understand the underlying features governing the Cas families. In this study, we aim to elucidate the unique protein features associated with Cas9 and Cas12 families and identify the features distinguishing each family from non-Cas proteins. Here, we built Random Forest (RF) binary classifiers to distinguish Cas12 and Cas9 proteins from non-Cas proteins, respectively, using the complete protein feature spectrum (13,494 features) encoding various physiochemical, topological, constitutional, and coevolutionary information on Cas proteins. Furthermore, we built multiclass RF classifiers differentiating Cas9, Cas12, and non-Cas proteins. All the models were evaluated rigorously on the test and independent data sets. The Cas12 and Cas9 binary models achieved a high overall accuracy of 92% and 95% on their respective independent data sets, while the multiclass classifier achieved an F1 score of close to 0.98. We observed that Quasi-Sequence-Order (QSO) descriptors like Schneider.lag and Composition descriptors like charge, volume, and polarizability are predominant in the Cas12 family. Conversely Amino Acid Composition descriptors, especially Tripeptide Composition (TPC), predominate the Cas9 family. Four of the top 10 descriptors identified in Cas9 classification are tripeptides PWN, PYY, HHA, and DHI, which are seen to be conserved across all Cas9 proteins and located within different catalytically important domains of the Streptococcus pyogenes Cas9 (SpCas9) structure. Among these, DHI and HHA are well-known to be involved in the DNA cleavage activity of the SpCas9 protein. Mutation studies have highlighted the significance of the PWN tripeptide in PAM recognition and DNA cleavage activity of SpCas9, while Y450 from the PYY tripeptide plays a crucial role in reducing off-target effects and improving the specificity in SpCas9. Leveraging our machine learning (ML) pipeline, we identified numerous Cas9 and Cas12 family-specific features. These features offer valuable insights for future experimental and computational studies aiming at designing Cas systems with enhanced gene-editing properties. These features suggest plausible structural modifications that can effectively guide the development of Cas proteins with improved editing capabilities.
Collapse
Affiliation(s)
- Sita Sirisha Madugula
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Pranav Pujar
- Department of Industrial, Manufacturing and Systems Engineering, University of Texas at Arlington, 701 South Nedderman Drive, Arlington, Texas 76019, United States
| | - Bharani Nammi
- Department of Industrial, Manufacturing and Systems Engineering, University of Texas at Arlington, 701 South Nedderman Drive, Arlington, Texas 76019, United States
| | - Shouyi Wang
- Department of Industrial, Manufacturing and Systems Engineering, University of Texas at Arlington, 701 South Nedderman Drive, Arlington, Texas 76019, United States
| | - Vindi M Jayasinghe-Arachchige
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Tyler Pham
- School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Dominic Mashburn
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Maria Artiles
- School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
- School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| |
Collapse
|
22
|
Tenjo-Castaño F, Sofos N, Stutzke LS, Temperini P, Fuglsang A, Pape T, Mesa P, Montoya G. Conformational landscape of the type V-K CRISPR-associated transposon integration assembly. Mol Cell 2024; 84:2353-2367.e5. [PMID: 38834066 DOI: 10.1016/j.molcel.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/11/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
CRISPR-associated transposons (CASTs) are mobile genetic elements that co-opt CRISPR-Cas systems for RNA-guided DNA transposition. CASTs integrate large DNA cargos into the attachment (att) site independently of homology-directed repair and thus hold promise for eukaryotic genome engineering. However, the functional diversity and complexity of CASTs hinder an understanding of their mechanisms. Here, we present the high-resolution cryoelectron microscopy (cryo-EM) structure of the reconstituted ∼1 MDa post-transposition complex of the type V-K CAST, together with different assembly intermediates and diverse TnsC filament lengths, thus enabling the recapitulation of the integration complex formation. The results of mutagenesis experiments probing the roles of specific residues and TnsB-binding sites show that transposition activity can be enhanced and suggest that the distance between the PAM and att sites is determined by the lengths of the TnsB C terminus and the TnsC filament. This singular model of RNA-guided transposition provides a foundation for repurposing the system for genome-editing applications.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nicholas Sofos
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Luisa S Stutzke
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Piero Temperini
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anders Fuglsang
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tillmann Pape
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences University of Copenhagen; Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Pablo Mesa
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
23
|
Hu WF, Yang JY, Wang JJ, Yuan SF, Yue XJ, Zhang Z, Zhang YQ, Meng JY, Li YZ. Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria. mSystems 2024; 9:e0121023. [PMID: 38747603 PMCID: PMC11237760 DOI: 10.1128/msystems.01210-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/15/2024] [Indexed: 06/19/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery. IMPORTANCE Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
Collapse
Affiliation(s)
- Wei-Feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jiang-Yu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-Jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shu-Fei Yuan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Qi Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jun-Yan Meng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
24
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
25
|
Cunha-Ferreira IC, Vizzotto CS, Freitas MAM, Peixoto J, Carvalho LS, Tótola MR, Thompson FL, Krüger RH. Genomic and physiological characterization of Kitasatospora sp. nov., an actinobacterium with potential for biotechnological application isolated from Cerrado soil. Braz J Microbiol 2024; 55:1099-1115. [PMID: 38605254 PMCID: PMC11153394 DOI: 10.1007/s42770-024-01324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
An Actinobacteria - Kitasatospora sp. K002 - was isolated from the soil of Cerrado, a savanna-like Brazilian biome. Herein, we conducted a phylogenetic, phenotypic and physiological characterization, revealing its potential for biotechnological applications. Kitasatospora sp. K002 is an aerobic, non-motile, Gram-positive bacteria that forms grayish-white mycelium on solid cultures and submerged spores with vegetative mycelia on liquid cultures. The strain showed antibacterial activity against Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. Genomic analysis indicated that Kitasatospora xanthocidica JCM 4862 is the closest strain to K002, with a dDDH of 32.8-37.8% and an ANI of 86.86% and the pangenome investigations identified a high number of rare genes. A total of 60 gene clusters of 22 different types were detected by AntiSMASH, and 22 gene clusters showed low similarity (< 10%) with known compounds, which suggests the potential production of novel bioactive compounds. In addition, phylogenetic analysis and morphophysiological characterization clearly distinguished Kitasatospora sp. K002 from other related species. Therefore, we propose that Kitasatospora sp. K002 should be recognized as a new species of the genus Kitasatospora - Kitasatospora brasiliensis sp. nov. (type strains = K002).
Collapse
Affiliation(s)
- I C Cunha-Ferreira
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil
| | - C S Vizzotto
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, University of Brasília (UNB), Brasília, Brazil
| | - M A M Freitas
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - J Peixoto
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil
| | - L S Carvalho
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil
| | - M R Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - F L Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - R H Krüger
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil.
| |
Collapse
|
26
|
Sharrar A, Meacham Z, Staples-Ager J, Arake de Tacca L, Rabuka D, Collingwood T, Schelle M. Viral Delivery of Compact CRISPR-Cas12f for Gene Editing Applications. CRISPR J 2024; 7:150-155. [PMID: 38695159 DOI: 10.1089/crispr.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Treating human genetic conditions in vivo requires efficient delivery of the CRISPR gene editing machinery to the affected cells and organs. The gene editing field has seen clinical advances with ex vivo therapies and with in vivo delivery to the liver using lipid nanoparticle technology. Adeno-associated virus (AAV) serotypes have been discovered and engineered to deliver genetic material to nearly every organ in the body. However, the large size of most CRISPR-Cas systems limits packaging into the viral genome and reduces drug development flexibility and manufacturing efficiency. Here, we demonstrate efficient CRISPR gene editing using a miniature CRISPR-Cas12f system with expanded genome targeting packaged into AAV particles. We identified efficient guides for four therapeutic gene targets and encoded the guides and the Cas12f nuclease into a single AAV. We then demonstrate editing in multiple cell lines, patient fibroblasts, and primary hepatocytes. We then screened the cells for off-target editing, demonstrating the safety of the therapeutics. These results represent an important step in applying CRISPR editing to diverse genetic sequences and organs in the body.
Collapse
Affiliation(s)
| | | | | | | | - David Rabuka
- Acrigen Biosciences Inc., Berkeley, California, USA
| | | | | |
Collapse
|
27
|
Wang JH, Huang PT, Huang YT, Mao YC, Lai CH, Yeh TK, Tseng CH, Kao CC. Characterization of CRISPR-Cas Systems in Shewanella algae and Shewanella haliotis: Insights into the Adaptation and Survival of Marine Pathogens. Pathogens 2024; 13:439. [PMID: 38921737 PMCID: PMC11207072 DOI: 10.3390/pathogens13060439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
CRISPR-Cas systems are adaptive immune mechanisms present in most prokaryotes that play an important role in the adaptation of bacteria and archaea to new environments. Shewanella algae is a marine zoonotic pathogen with worldwide distribution, which accounts for the majority of clinical cases of Shewanella infections. However, the characterization of Shewanella algae CRISPR-Cas systems has not been well investigated yet. Through whole genome sequence analysis, we characterized the CRISPR-Cas systems in S. algae. Our results indicate that CRISPR-Cas systems are prevalent in S. algae, with the majority of strains containing the Type I-F system. This study provides new insights into the diversity and function of CRISPR-Cas systems in S. algae and highlights their potential role in the adaptation and survival of these marine pathogens.
Collapse
Affiliation(s)
- Jui-Hsing Wang
- Division of Infectious Disease, Department of Internal Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan;
- Department of Internal Medicine, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Po-Tsang Huang
- Division of Pharmacy, Kaohsiung Armed Forces General Hospital, Kaohsiung 802301, Taiwan;
| | - Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi 621301, Taiwan;
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
| | - Chung-Hsu Lai
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, Kaohsiung 824005, Taiwan;
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840301, Taiwan
| | - Ting-Kuang Yeh
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
- Genomic Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Chien-Hao Tseng
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
- Genomic Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Chih-Chuan Kao
- Division of Infectious Disease, Department of Internal Medicine, Tungs’ Taichung Metroharbor Hospital, Taichung 435403, Taiwan
| |
Collapse
|
28
|
Cao J, Wu K, Wei X, Li J, Liu C, Cheng T. A Simple and Low-Cost CRISPR/Cas9 Knockout System Widely Applicable to Insects. INSECTS 2024; 15:339. [PMID: 38786895 PMCID: PMC11122616 DOI: 10.3390/insects15050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The CRISPR/Cas9 gene-editing system is a standard technique in functional genomics, with widespread applications. However, the establishment of a CRISPR/Cas9 system is challenging. Previous studies have presented numerous methodologies for establishing a CRISPR/Cas9 system, yet detailed descriptions are limited. Additionally, the difficulties in obtaining the necessary plasmids have hindered the replication of CRISPR/Cas9 techniques in other laboratories. In this study, we share a detailed and simple CRISPR/Cas9 knockout system with optimized steps. The results of gene knockout experiments in vitro and in vivo show that this system successfully knocked out the target gene. By sharing detailed information on plasmid sequences, reagent codes, and methods, this study can assist researchers in establishing gene knockout systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (J.C.); (K.W.); (X.W.); (J.L.); (C.L.)
| |
Collapse
|
29
|
Jain I, Kolesnik M, Kuznedelov K, Minakhin L, Morozova N, Shiriaeva A, Kirillov A, Medvedeva S, Livenskyi A, Kazieva L, Makarova KS, Koonin EV, Borukhov S, Severinov K, Semenova E. tRNA anticodon cleavage by target-activated CRISPR-Cas13a effector. SCIENCE ADVANCES 2024; 10:eadl0164. [PMID: 38657076 PMCID: PMC11042736 DOI: 10.1126/sciadv.adl0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Type VI CRISPR-Cas systems are among the few CRISPR varieties that target exclusively RNA. The CRISPR RNA-guided, sequence-specific binding of target RNAs, such as phage transcripts, activates the type VI effector, Cas13. Once activated, Cas13 causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from the phage spread. We show here that the principal form of collateral RNA degradation elicited by Leptotrichia shahii Cas13a expressed in Escherichia coli cells is the cleavage of anticodons in a subset of transfer RNAs (tRNAs) with uridine-rich anticodons. This tRNA cleavage is accompanied by inhibition of protein synthesis, thus providing defense from the phages. In addition, Cas13a-mediated tRNA cleavage indirectly activates the RNases of bacterial toxin-antitoxin modules cleaving messenger RNA, which could provide a backup defense. The mechanism of Cas13a-induced antiphage defense resembles that of bacterial anticodon nucleases, which is compatible with the hypothesis that type VI effectors evolved from an abortive infection module encompassing an anticodon nuclease.
Collapse
Affiliation(s)
- Ishita Jain
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Matvey Kolesnik
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Konstantin Kuznedelov
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Leonid Minakhin
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Natalia Morozova
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Anna Shiriaeva
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
- Saint Petersburg State University, Saint Petersburg, Russia
| | - Alexandr Kirillov
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Sofia Medvedeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alexei Livenskyi
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | | | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health; Bethesda, MD, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health; Bethesda, MD, USA
| | - Sergei Borukhov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine at Stratford; Stratford, NJ, USA
| | - Konstantin Severinov
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Moscow, Russia
| | - Ekaterina Semenova
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
30
|
Wu H, Sun Y, Wang Y, Luo L, Song Y. Advances in miniature CRISPR-Cas proteins and their applications in gene editing. Arch Microbiol 2024; 206:231. [PMID: 38652321 DOI: 10.1007/s00203-024-03962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
The CRISPR-Cas system consists of Cas proteins and single-stranded RNAs that recruit Cas proteins and specifically target the nucleic acid. Some Cas proteins can accurately cleave the target nucleic acid under the guidance of the single-stranded RNAs. Due to its exceptionally high specificity, the CRISPR-Cas system is now widely used in various fields such as gene editing, transcription regulation, and molecular diagnosis. However, the huge size of the most frequently utilized Cas proteins (Cas9, Cas12a, and Cas13, which contain 950-1,400 amino acids) can limit their applicability, especially in eukaryotic gene editing, where larger Cas proteins are difficult to deliver into the target cells. Recently discovered miniature CRISPR-Cas proteins, consisting of only 400 to 800 amino acids, offer the possibility of overcoming this limitation. This article systematically reviews the latest research progress of several miniature CRISPR-Cas proteins (Cas12f, Cas12j, Cas12k, and Cas12m) and their practical applications in the field of gene editing.
Collapse
Affiliation(s)
- Huimin Wu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yixiang Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yimai Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China.
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, China.
| |
Collapse
|
31
|
Schwartz EA, Bravo JPK, Ahsan M, Macias LA, McCafferty CL, Dangerfield TL, Walker JN, Brodbelt JS, Palermo G, Fineran PC, Fagerlund RD, Taylor DW. RNA targeting and cleavage by the type III-Dv CRISPR effector complex. Nat Commun 2024; 15:3324. [PMID: 38637512 PMCID: PMC11026444 DOI: 10.1038/s41467-024-47506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction1-5. Target RNA cleavage at regular intervals is characteristic of type III effector complexes6-8. Here, we determine the structures of the Synechocystis type III-Dv complex, an apparent evolutionary intermediate from multi-protein to single-protein type III effectors9,10, in pre- and post-cleavage states. The structures show how multi-subunit fusion proteins in the effector are tethered together in an unusual arrangement to assemble into an active and programmable RNA endonuclease and how the effector utilizes a distinct mechanism for target RNA seeding from other type III effectors. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we study the structure and dynamics of the three catalytic sites, where a 2'-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Our work provides detailed molecular insight into the mechanisms of RNA targeting and cleavage by an important intermediate in the evolution of type III effector complexes.
Collapse
Affiliation(s)
- Evan A Schwartz
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, USA
| | - Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Mohd Ahsan
- Department of Bioengineering and Department of Chemistry, University of California, Riverside, CA, USA
| | - Luis A Macias
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | - Caitlyn L McCafferty
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, USA
| | - Tyler L Dangerfield
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Jada N Walker
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | | | - Giulia Palermo
- Department of Bioengineering and Department of Chemistry, University of California, Riverside, CA, USA.
| | - Peter C Fineran
- Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Robert D Fagerlund
- Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand.
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin, New Zealand.
- Genetics Otago, University of Otago, PO Box 56, Dunedin, New Zealand.
| | - David W Taylor
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, USA.
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
- LIVESTRONG Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
32
|
Agapov A, Baker KS, Bedekar P, Bhatia RP, Blower TR, Brockhurst MA, Brown C, Chong CE, Fothergill JL, Graham S, Hall JP, Maestri A, McQuarrie S, Olina A, Pagliara S, Recker M, Richmond A, Shaw SJ, Szczelkun MD, Taylor TB, van Houte S, Went SC, Westra ER, White MF, Wright R. Multi-layered genome defences in bacteria. Curr Opin Microbiol 2024; 78:102436. [PMID: 38368839 DOI: 10.1016/j.mib.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Bacteria have evolved a variety of defence mechanisms to protect against mobile genetic elements, including restriction-modification systems and CRISPR-Cas. In recent years, dozens of previously unknown defence systems (DSs) have been discovered. Notably, diverse DSs often coexist within the same genome, and some co-occur at frequencies significantly higher than would be expected by chance, implying potential synergistic interactions. Recent studies have provided evidence of defence mechanisms that enhance or complement one another. Here, we review the interactions between DSs at the mechanistic, regulatory, ecological and evolutionary levels.
Collapse
Affiliation(s)
- Aleksei Agapov
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Kate S Baker
- Department of Genetics, University of Cambridge, CB2 3EH, UK
| | - Paritosh Bedekar
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Rama P Bhatia
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Michael A Brockhurst
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Dover Street, Manchester M13 9PT, UK
| | - Cooper Brown
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | | | - Joanne L Fothergill
- Dept of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| | - Shirley Graham
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - James Pj Hall
- Dept of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB, UK
| | - Alice Maestri
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Stuart McQuarrie
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Anna Olina
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | | | - Mario Recker
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Anna Richmond
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Steven J Shaw
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS6 7YB, UK
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS6 7YB, UK
| | - Tiffany B Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | - Sam C Went
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Edze R Westra
- ESI, Centre for Ecology and Conservation, University of Exeter, UK.
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Rosanna Wright
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
33
|
Beavogui A, Lacroix A, Wiart N, Poulain J, Delmont TO, Paoli L, Wincker P, Oliveira PH. The defensome of complex bacterial communities. Nat Commun 2024; 15:2146. [PMID: 38459056 PMCID: PMC10924106 DOI: 10.1038/s41467-024-46489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Bacteria have developed various defense mechanisms to avoid infection and killing in response to the fast evolution and turnover of viruses and other genetic parasites. Such pan-immune system (defensome) encompasses a growing number of defense lines that include well-studied innate and adaptive systems such as restriction-modification, CRISPR-Cas and abortive infection, but also newly found ones whose mechanisms are still poorly understood. While the abundance and distribution of defense systems is well-known in complete and culturable genomes, there is a void in our understanding of their diversity and richness in complex microbial communities. Here we performed a large-scale in-depth analysis of the defensomes of 7759 high-quality bacterial population genomes reconstructed from soil, marine, and human gut environments. We observed a wide variation in the frequency and nature of the defensome among large phyla, which correlated with lifestyle, genome size, habitat, and geographic background. The defensome's genetic mobility, its clustering in defense islands, and genetic variability was found to be system-specific and shaped by the bacterial environment. Hence, our results provide a detailed picture of the multiple immune barriers present in environmentally distinct bacterial communities and set the stage for subsequent identification of novel and ingenious strategies of diversification among uncultivated microbes.
Collapse
Affiliation(s)
- Angelina Beavogui
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Auriane Lacroix
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Nicolas Wiart
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 / Tara GOsee, Paris, France
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 / Tara GOsee, Paris, France
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, 8093, Switzerland
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes lab, Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 / Tara GOsee, Paris, France
| | - Pedro H Oliveira
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France.
| |
Collapse
|
34
|
Bischof J, Hierl M, Koller U. Emerging Gene Therapeutics for Epidermolysis Bullosa under Development. Int J Mol Sci 2024; 25:2243. [PMID: 38396920 PMCID: PMC10889532 DOI: 10.3390/ijms25042243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenetic disease epidermolysis bullosa (EB) is characterised by the formation of extended blisters and lesions on the patient's skin upon minimal mechanical stress. Causal for this severe condition are genetic mutations in genes, leading to the functional impairment, reduction, or absence of the encoded protein within the skin's basement membrane zone connecting the epidermis to the underlying dermis. The major burden of affected families justifies the development of long-lasting and curative therapies operating at the genomic level. The landscape of causal therapies for EB is steadily expanding due to recent breakthroughs in the gene therapy field, providing promising outcomes for patients suffering from this severe disease. Currently, two gene therapeutic approaches show promise for EB. The clinically more advanced gene replacement strategy was successfully applied in severe EB forms, leading to a ground-breaking in vivo gene therapy product named beremagene geperpavec (B-VEC) recently approved from the US Food and Drug Administration (FDA). In addition, the continuous innovations in both designer nucleases and gene editing technologies enable the efficient and potentially safe repair of mutations in EB in a potentially permanent manner, inspiring researchers in the field to define and reach new milestones in the therapy of EB.
Collapse
Affiliation(s)
- Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
| | - Markus Hierl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
| |
Collapse
|
35
|
Behrouzian Fard G, Ahmadi MH, Gholamin M, Amirfakhrian R, Saberi Teimourian E, Karimi MA, Hosseini Bafghi M. CRISPR-Cas9 technology: As an efficient genome modification tool in the cancer diagnosis and treatment. Biotechnol Bioeng 2024; 121:472-488. [PMID: 37986642 DOI: 10.1002/bit.28603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Cancer is the second most common cause of death globally and is a major public health concern. Managing this disease is difficult due to its multiple stages and numerous genetic and epigenetic changes. Traditional cancer diagnosis and treatment methods have limitations, making it crucial to develop new modalities to combat the increasing burden of cancer. The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has transformed genetic engineering due to its simplicity, specificity, low cytotoxicity, and cost-effectiveness. It has been proposed as an effective technology to enhance cancer diagnosis and treatment strategies. This article presents the most recent discoveries regarding the structure, mechanism, and delivery methods of the highly powerful genome editing tool, CRISPR-Cas9. In terms of diagnosis, the article examines the role of CRISPR-Cas9 in detecting microRNAs and DNA methylation, and discusses two popular gene detection techniques that utilize the CRISPR-Cas system: DNA endonuclease-targeted CRISPR trans reporter and specific high sensitivity enzymatic reporter unlocking. Regarding treatment, the article explores several genes that have been identified and modified by CRISPR-Cas9 for effective tumorigenesis of common cancers such as breast, lung, and colorectal cancer. The present review also addresses the challenges and ethical issues associated with using CRISPR-Cas9 as a diagnostic and therapeutic tool. Despite some limitations, CRISPR-Cas9-based cancer diagnosis has the potential to become the next generation of cancer diagnostic tools, and the continuous progress of CRISPR-Cas9 can greatly aid in cancer treatment.
Collapse
Affiliation(s)
- Ghazaleh Behrouzian Fard
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Ahmadi
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Gholamin
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Amirfakhrian
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Saberi Teimourian
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali Karimi
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hosseini Bafghi
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Madugula SS, Pujar P, Bharani N, Wang S, Jayasinghe-Arachchige VM, Pham T, Mashburn D, Artilis M, Liu J. Identification of Family-Specific Features in Cas9 and Cas12 Proteins: A Machine Learning Approach Using Complete Protein Feature Spectrum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576286. [PMID: 38328240 PMCID: PMC10849529 DOI: 10.1101/2024.01.22.576286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The recent development of CRISPR-Cas technology holds promise to correct gene-level defects for genetic diseases. The key element of the CRISPR-Cas system is the Cas protein, a nuclease that can edit the gene of interest assisted by guide RNA. However, these Cas proteins suffer from inherent limitations like large size, low cleavage efficiency, and off-target effects, hindering their widespread application as a gene editing tool. Therefore, there is a need to identify novel Cas proteins with improved editing properties, for which it is necessary to understand the underlying features governing the Cas families. In the current study, we aim to elucidate the unique protein attributes associated with Cas9 and Cas12 families and identify the features that distinguish each family from the other. Here, we built Random Forest (RF) binary classifiers to distinguish Cas12 and Cas9 proteins from non-Cas proteins, respectively, using the complete protein feature spectrum (13,495 features) encoding various physiochemical, topological, constitutional, and coevolutionary information of Cas proteins. Furthermore, we built multiclass RF classifiers differentiating Cas9, Cas12, and Non-Cas proteins. All the models were evaluated rigorously on the test and independent datasets. The Cas12 and Cas9 binary models achieved a high overall accuracy of 95% and 97% on their respective independent datasets, while the multiclass classifier achieved a high F1 score of 0.97. We observed that Quasi-sequence-order descriptors like Schneider-lag descriptors and Composition descriptors like charge, volume, and polarizability are essential for the Cas12 family. More interestingly, we discovered that Amino Acid Composition descriptors, especially the Tripeptide Composition (TPC) descriptors, are important for the Cas9 family. Four of the identified important descriptors of Cas9 classification are tripeptides PWN, PYY, HHA, and DHI, which are seen to be conserved across all the Cas9 proteins and were located within different catalytically important domains of the Cas9 protein structure. Among these four tripeptides, tripeptides DHI and HHA are well-known to be involved in the DNA cleavage activity of the Cas9 protein. We therefore propose the the other two tripeptides, PWN and PYY, may also be essential for the Cas9 family. Our identified important descriptors enhanced the understanding of the catalytic mechanisms of Cas9 and Cas12 proteins and provide valuable insights into design of novel Cas systems to achieve enhanced gene-editing properties.
Collapse
Affiliation(s)
- Sita Sirisha Madugula
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Pranav Pujar
- Department of Industrial, Manufacturing and Systems Engineering, University of Texas at Arlington, Arlington, Texas, United States
| | - Nammi Bharani
- Department of Industrial, Manufacturing and Systems Engineering, University of Texas at Arlington, Arlington, Texas, United States
| | - Shouyi Wang
- Department of Industrial, Manufacturing and Systems Engineering, University of Texas at Arlington, Arlington, Texas, United States
| | - Vindi M. Jayasinghe-Arachchige
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Tyler Pham
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | - Dominic Mashburn
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Maria Artilis
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
37
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
38
|
Zhang Y, Yu W, Wang M, Zhang L, Li P. Nanozyme-assisted amplification-free CRISPR/Cas system realizes visual detection. Front Bioeng Biotechnol 2024; 11:1327498. [PMID: 38249803 PMCID: PMC10796770 DOI: 10.3389/fbioe.2023.1327498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated) system has proven to be a powerful tool for nucleic acid detection due to its inherent advantages of effective nucleic acid identification and editing capabilities, and is therefore known as the next-generation of molecular diagnostic technology. However, the detection technologies based on CRISPR/Cas systems require preamplification of target analytes; that is, target gene amplification steps through isothermal amplification or PCR before detection to increase target analyte concentrations. This creates a number of testing limitations, such as extended testing time and the need for more sophisticated testing instruments. To overcome the above limitations, various amplification-free assay strategies based on CRISPR/Cas systems have been explored as alternatives, which omit the preamplification step to increase the concentrations of the target analytes. Nanozymes play a pivotal role in enhancing the sensitivity of CRISPR-based detection, enabling visual and rapid CRISPR assays. The utilization of nanozyme exceptional enzyme-like catalytic activity holds great promise for signal amplification in both electrochemical and optical domains, encompassing strategies for electrochemical signal sensors and colorimetric signal sensors. Rather than relying on converting a single detection target analyte into multiple analytes, these methods focus on signal amplification, the main mechanism of which involves the ability to form a large number of reporter molecules or to improve the performance of the sensor. This exploitation of nanozymes for signal amplification results in the heightened sensitivity and accuracy of detection outcomes. In addition to the strategies that improve sensor performance through the application of nanozymes, additional methods are needed to achieve visual signal amplification strategies without preamplification processes. Herein, we review the strategies for improving CRISPR/Cas systems that do not require preamplification, providing a simple, intuitive and preamplification-free CRISPR/Cas system detection platform by improving in-system one-step amplification programs, or enhancing nanozyme-mediated signal amplification strategies.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China
| | - Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Williams L, Larsen J. Nanoparticle-mediated delivery of non-viral gene editing technology to the brain. Prog Neurobiol 2024; 232:102547. [PMID: 38042249 PMCID: PMC10872436 DOI: 10.1016/j.pneurobio.2023.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Neurological disorders pose a significant burden on individuals and society, affecting millions worldwide. These disorders, including but not limited to Alzheimer's disease, Parkinson's disease, and Huntington's disease, often have limited treatment options and can lead to progressive degeneration and disability. Gene editing technologies, including Zinc Finger Nucleases (ZFN), Transcription Activator-Like Effector Nucleases (TALEN), and Clustered Regularly Interspaced Short Palindromic Repeats-associated Protein 9 (CRISPR-Cas9), offer a promising avenue for potential cures by targeting and correcting the underlying genetic mutations responsible for neurologic disorders. However, efficient delivery methods are crucial for the successful application of gene editing technologies in the context of neurological disorders. The central nervous system presents unique challenges to treatment development due to the blood-brain barrier, which restricts the entry of large molecules. While viral vectors are traditionally used for gene delivery, nonviral delivery methods, such as nanoparticle-mediated delivery, offer safer alternatives that can efficiently transport gene editing components. Herein we aim to introduce the three main gene editing nucleases as nonviral treatments for neurologic disorders, the delivery barriers associated with brain targeting, and the current nonviral techniques used for brain-specific delivery. We highlight the challenges and opportunities for future research in this exciting and growing field that could lead to blood-brain barrier bypassing therapeutic gene editing.
Collapse
Affiliation(s)
- Lucian Williams
- Department of Bioengineering, Clemson University, Clemson, SC 29631, USA
| | - Jessica Larsen
- Department of Bioengineering, Clemson University, Clemson, SC 29631, USA; Department of Chemical Engineering, Clemson University, Clemson, SC 29631, USA.
| |
Collapse
|
40
|
Upreti A, Mukherjee S. Therapeutic Potential of CRISPR/Cas in Hashimoto's Thyroiditis: A Comprehensive Review. Curr Gene Ther 2024; 24:179-192. [PMID: 38310457 DOI: 10.2174/0115665232266508231210154930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 11/09/2023] [Indexed: 02/05/2024]
Abstract
Hashimoto's thyroiditis (HT) is a commonly occurring illness of autoimmune endocrine origin. It is usually present in the pediatric age group along with other well-known diseases, such as type 1 insulin-dependent diabetes. The defining feature of this disease is the immune-- mediated attack on the thyroid gland resulting in the destruction of thyroid tissues and cells. Given that HT frequently affects family members, it is well-recognized that individuals are genetically predisposed to this disease. Patients with HT also display a significantly increased risk for several different cancers, justifying the eminent need for the development of therapies for managing and treating HT. Gene editing has made several advancements in the field of molecular biology and has turned out to become a promising approach to correct several autoimmune diseases. Currently, CRISPR/Cas, a nuclease-based editing technique, is publicized as a promising tool for curing several genetic diseases and cancers. However, very limited research has been conducted as of now on autoimmune disease management and cure via CRISPR/Cas technique. This review provides an account of the potential candidate genes associated with Hashimoto's thyroiditis, and only a few animal and human models have been generated via the CRISPR/Cas gene editing technique. Mouse models of autoimmune thyroiditis generated through the CRISPR/Cas gene editing technique by targeting the candidate genes will provide us with a deeper insight into the pathophysiology of HT and further pave the way for the immunomodulation of HT via gene editing.
Collapse
Affiliation(s)
- Apoorva Upreti
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
41
|
Koonin EV, Gootenberg JS, Abudayyeh OO. Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry 2023; 62:3465-3487. [PMID: 37192099 PMCID: PMC10734277 DOI: 10.1021/acs.biochem.3c00159] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Indexed: 05/18/2023]
Abstract
CRISPR systems mediate adaptive immunity in bacteria and archaea through diverse effector mechanisms and have been repurposed for versatile applications in therapeutics and diagnostics thanks to their facile reprogramming with RNA guides. RNA-guided CRISPR-Cas targeting and interference are mediated by effectors that are either components of multisubunit complexes in class 1 systems or multidomain single-effector proteins in class 2. The compact class 2 CRISPR systems have been broadly adopted for multiple applications, especially genome editing, leading to a transformation of the molecular biology and biotechnology toolkit. The diversity of class 2 effector enzymes, initially limited to the Cas9 nuclease, was substantially expanded via computational genome and metagenome mining to include numerous variants of Cas12 and Cas13, providing substrates for the development of versatile, orthogonal molecular tools. Characterization of these diverse CRISPR effectors uncovered many new features, including distinct protospacer adjacent motifs (PAMs) that expand the targeting space, improved editing specificity, RNA rather than DNA targeting, smaller crRNAs, staggered and blunt end cuts, miniature enzymes, promiscuous RNA and DNA cleavage, etc. These unique properties enabled multiple applications, such as harnessing the promiscuous RNase activity of the type VI effector, Cas13, for supersensitive nucleic acid detection. class 1 CRISPR systems have been adopted for genome editing, as well, despite the challenge of expressing and delivering the multiprotein class 1 effectors. The rich diversity of CRISPR enzymes led to rapid maturation of the genome editing toolbox, with capabilities such as gene knockout, base editing, prime editing, gene insertion, DNA imaging, epigenetic modulation, transcriptional modulation, and RNA editing. Combined with rational design and engineering of the effector proteins and associated RNAs, the natural diversity of CRISPR and related bacterial RNA-guided systems provides a vast resource for expanding the repertoire of tools for molecular biology and biotechnology.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Jonathan S. Gootenberg
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Omar O. Abudayyeh
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Tenjo-Castaño F, Montoya G, Carabias A. Transposons and CRISPR: Rewiring Gene Editing. Biochemistry 2023; 62:3521-3532. [PMID: 36130724 PMCID: PMC10734217 DOI: 10.1021/acs.biochem.2c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Indexed: 11/30/2022]
Abstract
CRISPR-Cas is driving a gene editing revolution because of its simple reprogramming. However, off-target effects and dependence on the double-strand break repair pathways impose important limitations. Because homology-directed repair acts primarily in actively dividing cells, many of the current gene correction/replacement approaches are restricted to a minority of cell types. Furthermore, current approaches display low efficiency upon insertion of large DNA cargos (e.g., sequences containing multiple gene circuits with tunable functionalities). Recent research has revealed new links between CRISPR-Cas systems and transposons providing new scaffolds that might overcome some of these limitations. Here, we comment on two new transposon-associated RNA-guided mechanisms considering their potential as new gene editing solutions. Initially, we focus on a group of small RNA-guided endonucleases of the IS200/IS605 family of transposons, which likely evolved into class 2 CRISPR effector nucleases (Cas9s and Cas12s). We explore the diversity of these nucleases (named OMEGA, obligate mobile element-guided activity) and analyze their similarities with class 2 gene editors. OMEGA nucleases can perform gene editing in human cells and constitute promising candidates for the design of new compact RNA-guided platforms. Then, we address the co-option of the RNA-guided activity of different CRISPR effector nucleases by a specialized group of Tn7-like transposons to target transposon integration. We describe the various mechanisms used by these RNA-guided transposons for target site selection and integration. Finally, we assess the potential of these new systems to circumvent some of the current gene editing challenges.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Arturo Carabias
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| |
Collapse
|
43
|
Koonin EV, Krupovic M. New faces of prokaryotic mobile genetic elements: guide RNAs link transposition with host defense mechanisms. CURRENT OPINION IN SYSTEMS BIOLOGY 2023; 36:100473. [PMID: 37779558 PMCID: PMC10538440 DOI: 10.1016/j.coisb.2023.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Most life forms harbor multiple, diverse mobile genetic elements (MGE) that widely differ in their rates and mechanisms of mobility. Recent findings on two classes of MGE in prokaryotes revealed a novel mechanism, RNA-guided transposition, where a transposon-encoded guide RNA directs the transposase to a unique site in the host genome. Tn7-like transposons, on multiple occasions, recruited CRISPR systems that lost the capacity to cleave target DNA and instead mediate RNA-guided transposition via CRISPR RNA. Conversely, the abundant transposon-associated, RNA-guided nucleases IscB and TnpB that appear to promote proliferation of IS200/IS605 and IS607 transposons were the likely evolutionary ancestors of type II and type V CRISPR systems, respectively. Thus, RNA-guided target recognition is a major biological phenomenon that connects MGE with host defense mechanisms. More RNA-guided defensive and MGE-associated functionalities are likely to be discovered.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr Roux, 75015 Paris
| |
Collapse
|
44
|
Zorz J, Paquette AJ, Gillis T, Kouris A, Khot V, Demirkaya C, De La Hoz Siegler H, Strous M, Vadlamani A. Coordinated proteome change precedes cell lysis and death in a mat-forming cyanobacterium. THE ISME JOURNAL 2023; 17:2403-2414. [PMID: 37914776 PMCID: PMC10689466 DOI: 10.1038/s41396-023-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Cyanobacteria form dense multicellular communities that experience transient conditions in terms of access to light and oxygen. These systems are productive but also undergo substantial biomass turnover through cell death, supplementing heightened heterotrophic respiration. Here we use metagenomics and metaproteomics to survey the molecular response of a mat-forming cyanobacterium undergoing mass cell lysis after exposure to dark and anoxic conditions. A lack of evidence for viral, bacterial, or eukaryotic antagonism contradicts commonly held beliefs on the causative agent for cyanobacterial death during dense growth. Instead, proteogenomics data indicated that lysis likely resulted from a genetically programmed response triggered by a failure to maintain osmotic pressure in the wake of severe energy limitation. Cyanobacterial DNA was rapidly degraded, yet cyanobacterial proteins remained abundant. A subset of proteins, including enzymes involved in amino acid metabolism, peptidases, toxin-antitoxin systems, and a potentially self-targeting CRISPR-Cas system, were upregulated upon lysis, indicating possible involvement in the programmed cell death response. We propose this natural form of cell death could provide new pathways for controlling harmful algal blooms and for sustainable bioproduct production.
Collapse
Affiliation(s)
- Jackie Zorz
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada.
| | - Alexandre J Paquette
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Timber Gillis
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Angela Kouris
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
- Synergia Biotech Inc., Calgary, AB, Canada
| | - Varada Khot
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Cigdem Demirkaya
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | | | - Marc Strous
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Agasteswar Vadlamani
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
- Synergia Biotech Inc., Calgary, AB, Canada
| |
Collapse
|
45
|
Wiegand T, Hoffmann FT, Walker MWG, Tang S, Richard E, Le HC, Meers C, Sternberg SH. Emergence of RNA-guided transcription factors via domestication of transposon-encoded TnpB nucleases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569447. [PMID: 38076855 PMCID: PMC10705468 DOI: 10.1101/2023.11.30.569447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Transposon-encoded tnpB genes encode RNA-guided DNA nucleases that promote their own selfish spread through targeted DNA cleavage and homologous recombination1-4. This widespread gene family was repeatedly domesticated over evolutionary timescales, leading to the emergence of diverse CRISPR-associated nucleases including Cas9 and Cas125,6. We set out to test the hypothesis that TnpB nucleases may have also been repurposed for novel, unexpected functions other than CRISPR-Cas. Here, using phylogenetics, structural predictions, comparative genomics, and functional assays, we uncover multiple instances of programmable transcription factors that we name TnpB-like nuclease-dead repressors (TldR). These proteins employ naturally occurring guide RNAs to specifically target conserved promoter regions of the genome, leading to potent gene repression in a mechanism akin to CRISPRi technologies invented by humans7. Focusing on a TldR clade found broadly in Enterobacteriaceae, we discover that bacteriophages exploit the combined action of TldR and an adjacently encoded phage gene to alter the expression and composition of the host flagellar assembly, a transformation with the potential to impact motility8, phage susceptibility9, and host immunity10. Collectively, this work showcases the diverse molecular innovations that were enabled through repeated exaptation of genes encoded by transposable elements, and reveals that RNA-guided transcription factors emerged long before the development of dCas9-based editors.
Collapse
Affiliation(s)
- Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Florian T Hoffmann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W G Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Egill Richard
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Hoang C Le
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
46
|
Altae-Tran H, Shmakov SA, Makarova KS, Wolf YI, Kannan S, Zhang F, Koonin EV. Diversity, evolution, and classification of the RNA-guided nucleases TnpB and Cas12. Proc Natl Acad Sci U S A 2023; 120:e2308224120. [PMID: 37983496 PMCID: PMC10691335 DOI: 10.1073/pnas.2308224120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/19/2023] [Indexed: 11/22/2023] Open
Abstract
The TnpB proteins are transposon-associated RNA-guided nucleases that are among the most abundant proteins encoded in bacterial and archaeal genomes, but whose functions in the transposon life cycle remain unknown. TnpB appears to be the evolutionary ancestor of Cas12, the effector nuclease of type V CRISPR-Cas systems. We performed a comprehensive census of TnpBs in archaeal and bacterial genomes and constructed a phylogenetic tree on which we mapped various features of these proteins. In multiple branches of the tree, the catalytic site of the TnpB nuclease is rearranged, demonstrating structural and probably biochemical malleability of this enzyme. We identified numerous cases of apparent recruitment of TnpB for other functions of which the most common is the evolution of type V CRISPR-Cas effectors on about 50 independent occasions. In many other cases of more radical exaptation, the catalytic site of the TnpB nuclease is apparently inactivated, suggesting a regulatory function, whereas in others, the activity appears to be retained, indicating that the recruited TnpB functions as a nuclease, for example, as a toxin. These findings demonstrate remarkable evolutionary malleability of the TnpB scaffold and provide extensive opportunities for further exploration of RNA-guided biological systems as well as multiple applications.
Collapse
Affiliation(s)
- Han Altae-Tran
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sergey A. Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Soumya Kannan
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Feng Zhang
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| |
Collapse
|
47
|
Maghsoud Y, Jayasinghe-Arachchige VM, Kumari P, Cisneros GA, Liu J. Leveraging QM/MM and Molecular Dynamics Simulations to Decipher the Reaction Mechanism of the Cas9 HNH Domain to Investigate Off-Target Effects. J Chem Inf Model 2023; 63:6834-6850. [PMID: 37877218 DOI: 10.1021/acs.jcim.3c01284] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) technology is an RNA-guided targeted genome-editing tool using Cas family proteins. Two magnesium-dependent nuclease domains of the Cas9 enzyme, termed HNH and RuvC, are responsible for cleaving the target DNA (t-DNA) and nontarget DNA strands, respectively. The HNH domain is believed to determine the DNA cleavage activity of both endonuclease domains and is sensitive to complementary RNA-DNA base pairing. However, the underlying molecular mechanisms of CRISPR-Cas9, by which it rebukes or accepts mismatches, are poorly understood. Thus, investigation of the structure and dynamics of the catalytic state of Cas9 with either matched or mismatched t-DNA can provide insights into improving its specificity by reducing off-target cleavages. Here, we focus on a recently discovered catalytic-active form of the Streptococcus pyogenes Cas9 (SpCas9) and employ classical molecular dynamics and coupled quantum mechanics/molecular mechanics simulations to study two possible mechanisms of t-DNA cleavage reaction catalyzed by the HNH domain. Moreover, by designing a mismatched t-DNA structure called MM5 (C to G at the fifth position from the protospacer adjacent motif region), the impact of single-guide RNA (sgRNA) and t-DNA complementarity on the catalysis process was investigated. Based on these simulations, our calculated binding affinities, minimum energy paths, and analysis of catalytically important residues provide atomic-level details of the differences between matched and mismatched cleavage reactions. In addition, several residues exhibit significant differences in their catalytic roles for the two studied systems, including K253, K263, R820, K896, and K913.
Collapse
Affiliation(s)
- Yazdan Maghsoud
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Vindi M Jayasinghe-Arachchige
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Pratibha Kumari
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
48
|
Aquino-Jarquin G. Genome and transcriptome engineering by compact and versatile CRISPR-Cas systems. Drug Discov Today 2023; 28:103793. [PMID: 37797813 DOI: 10.1016/j.drudis.2023.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Comparative genomics has enabled the discovery of tiny clustered regularly interspaced short palindromic repeat (CRISPR) bacterial immune system effectors with enormous potential for manipulating eukaryotic genomes. Recently, smaller Cas proteins, including miniature Cas9, Cas12, and Cas13 proteins, have been identified and validated as efficient genome editing and base editing tools in human cells. The compact size of these novel CRISPR effectors is highly desirable for generating CRISPR-based therapeutic approaches, mainly to overcome in vivo delivery constraints, providing a promising opportunity for editing pathogenic mutations of clinical relevance and knocking down RNAs in human cells without inducing chromosomal insertions or genome alterations. Thus, these tiny CRISPR-Cas systems represent new and highly programmable, specific, and efficient platforms, which expand the CRISPR toolkit for potential therapeutic opportunities.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section. Research on Genomics, Genetics, and Bioinformatics Laboratory. Hemato-Oncology Building, 4th Floor, Section 2. Children's Hospital of Mexico, Federico Gómez, Mexico City, Mexico.
| |
Collapse
|
49
|
Ullah N, Yang N, Guan Z, Xiang K, Wang Y, Diaby M, Chen C, Gao B, Song C. Comparative Analysis and Phylogenetic Insights of Cas14-Homology Proteins in Bacteria and Archaea. Genes (Basel) 2023; 14:1911. [PMID: 37895260 PMCID: PMC10606334 DOI: 10.3390/genes14101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Type-V-F Cas12f proteins, also known as Cas14, have drawn significant interest within the diverse CRISPR-Cas nucleases due to their compact size. This study involves analyzing and comparing Cas14-homology proteins in prokaryotic genomes through mining, sequence comparisons, a phylogenetic analysis, and an array/repeat analysis. In our analysis, we identified and mined a total of 93 Cas14-homology proteins that ranged in size from 344 aa to 843 aa. The majority of the Cas14-homology proteins discovered in this analysis were found within the Firmicutes group, which contained 37 species, representing 42% of all the Cas14-homology proteins identified. In archaea, the DPANN group had the highest number of species containing Cas14-homology proteins, a total of three species. The phylogenetic analysis results demonstrate the division of Cas14-homology proteins into three clades: Cas14-A, Cas14-B, and Cas14-U. Extensive similarity was observed at the C-terminal end (CTD) through a domain comparison of the three clades, suggesting a potentially shared mechanism of action due to the presence of cutting domains in that region. Additionally, a sequence similarity analysis of all the identified Cas14 sequences indicated a low level of similarity (18%) between the protein variants. The analysis of repeats/arrays in the extended nucleotide sequences of the identified Cas14-homology proteins highlighted that 44 out of the total mined proteins possessed CRISPR-associated repeats, with 20 of them being specific to Cas14. Our study contributes to the increased understanding of Cas14 proteins across prokaryotic genomes. These homologous proteins have the potential for future applications in the mining and engineering of Cas14 proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (N.U.); (N.Y.); (Z.G.); (K.X.); (Y.W.); (M.D.); (C.C.); (B.G.)
| |
Collapse
|
50
|
Meers C, Le HC, Pesari SR, Hoffmann FT, Walker MWG, Gezelle J, Tang S, Sternberg SH. Transposon-encoded nucleases use guide RNAs to promote their selfish spread. Nature 2023; 622:863-871. [PMID: 37758954 DOI: 10.1038/s41586-023-06597-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Insertion sequences are compact and pervasive transposable elements found in bacteria, which encode only the genes necessary for their mobilization and maintenance1. IS200- and IS605-family transposons undergo 'peel-and-paste' transposition catalysed by a TnpA transposase2, but they also encode diverse, TnpB- and IscB-family proteins that are evolutionarily related to the CRISPR-associated effectors Cas12 and Cas9, respectively3,4. Recent studies have demonstrated that TnpB and IscB function as RNA-guided DNA endonucleases5,6, but the broader biological role of this activity has remained enigmatic. Here we show that TnpB and IscB are essential to prevent permanent transposon loss as a consequence of the TnpA transposition mechanism. We selected a family of related insertion sequences from Geobacillus stearothermophilus that encode several TnpB and IscB orthologues, and showed that a single TnpA transposase was broadly active for transposon mobilization. The donor joints formed upon religation of transposon-flanking sequences were efficiently targeted for cleavage by RNA-guided TnpB and IscB nucleases, and co-expression of TnpB and TnpA led to substantially greater transposon retention relative to conditions in which TnpA was expressed alone. Notably, TnpA and TnpB also stimulated recombination frequencies, surpassing rates observed with TnpB alone. Collectively, this study reveals that RNA-guided DNA cleavage arose as a primal biochemical activity to bias the selfish inheritance and spread of transposable elements, which was later co-opted during the evolution of CRISPR-Cas adaptive immunity for antiviral defence.
Collapse
Affiliation(s)
- Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Hoang C Le
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Sanjana R Pesari
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Biochemistry and Molecular Biophysics Program, University of California, San Diego, CA, USA
| | - Florian T Hoffmann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W G Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jeanine Gezelle
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|