1
|
Li B, Jia Y, Xu L, Zhang S, Long Z, Wang R, Guo Y, Zhang W, Jiao C, Li C, Xu Y. Transcriptional convergence after repeated duplication of an amino acid transporter gene leads to the independent emergence of the black husk/pericarp trait in barley and rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1282-1298. [PMID: 38124464 PMCID: PMC11022822 DOI: 10.1111/pbi.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
The repeated emergence of the same trait (convergent evolution) in distinct species is an interesting phenomenon and manifests visibly the power of natural selection. The underlying genetic mechanisms have important implications to understand how the genome evolves under environmental challenges. In cereal crops, both rice and barley can develop black-coloured husk/pericarp due to melanin accumulation. However, it is unclear if this trait shares a common origin. Here, we fine-mapped the barley HvBlp gene controlling the black husk/pericarp trait and confirmed its function by gene silencing. The result was further supported by a yellow husk/pericarp mutant with deletion of the HvBlp gene, derived from gamma ray radiation of the wild-type W1. HvBlp encodes a putative tyrosine transporter homologous to the black husk gene OsBh4 in rice. Surprisingly, synteny and phylogenetic analyses showed that HvBlp and OsBh4 belonged to different lineages resulted from dispersed and tandem duplications, respectively, suggesting that the black husk/pericarp trait has emerged independently. The dispersed duplication (dated at 21.23 MYA) yielding HvBlp occurred exclusively in the common ancestor of Triticeae. HvBlp and OsBh4 displayed converged transcription in husk/pericarp tissues, contributing to the black husk/pericarp trait. Further transcriptome and metabolome data identified critical candidate genes and metabolites related to melanin production in barley. Taken together, our study described a compelling case of convergent evolution resulted from transcriptional convergence after repeated gene duplication, providing valuable genetic insights into phenotypic evolution. The identification of the black husk/pericarp genes in barley also has great potential in breeding for stress-resilient varieties with higher nutritional values.
Collapse
Affiliation(s)
- Bo Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Yong Jia
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Le Xu
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Shuo Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Zhoukai Long
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Rong Wang
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Ying Guo
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Wenying Zhang
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Chunhai Jiao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Chengdao Li
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
- Department of Primary Industries and Regional DevelopmentSouth PerthWestern AustraliaAustralia
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| |
Collapse
|
2
|
Bohutínská M, Peichel CL. Divergence time shapes gene reuse during repeated adaptation. Trends Ecol Evol 2024; 39:396-407. [PMID: 38155043 DOI: 10.1016/j.tree.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
When diverse lineages repeatedly adapt to similar environmental challenges, the extent to which the same genes are involved (gene reuse) varies across systems. We propose that divergence time among lineages is a key factor driving this variability: as lineages diverge, the extent of gene reuse should decrease due to reductions in allele sharing, functional differentiation among genes, and restructuring of genome architecture. Indeed, we show that many genomic studies of repeated adaptation find that more recently diverged lineages exhibit higher gene reuse during repeated adaptation, but the relationship becomes less clear at older divergence time scales. Thus, future research should explore the factors shaping gene reuse and their interplay across broad divergence time scales for a deeper understanding of evolutionary repeatability.
Collapse
Affiliation(s)
- Magdalena Bohutínská
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland; Department of Botany, Faculty of Science, Charles University, Prague, 12800, Czech Republic.
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland
| |
Collapse
|
3
|
Lipánová V, Kabátová KN, Zeisek V, Kolář F, Chrtek J. Evolution of the Sabulina verna group (Caryophyllaceae) in Europe: A deep split, followed by secondary contacts, multiple allopolyploidization and colonization of challenging substrates. Mol Phylogenet Evol 2023; 189:107940. [PMID: 37820762 DOI: 10.1016/j.ympev.2023.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
One of the major goals of contemporary evolutionary biology is to elucidate the relative roles of allopatric and ecological differentiation and polyploidy in speciation. In this study, we address the taxonomically intricate Sabulina verna group, which has a disjunct Arctic-alpine postglacial range in Europe and occupies a broad range of ecological niches, including substrates toxic to plants. Using genome-wide ddRAD sequencing combined with morphometric analyses based on extensive sampling of 111 natural populations, we aimed to disentangle internal evolutionary relationships and examine their correspondence with the pronounced edaphic and ploidy diversity within the group. We identified two spatially distinct groups of diploids: a widespread Arctic-alpine group and a spatially restricted yet diverse Balkan group. Most tetraploids exhibited a considerably admixed ancestry derived from both these groups, suggesting their allopolyploid origin. Four genetic clusters in congruence with geography and mostly supported by morphological traits were recognized in the diploid Arctic-alpine group. Tetraploids are split into two distinct and geographically vicariant groups, indicating their repeated polytopic origin. Furthermore, our results also revealed at least five-fold parallel colonization of toxic substrates (serpentine and metalliferous), altogether demonstrating a complex interaction between geography, challenging substrates and polyploidy in the evolution of the group. Finally, we propose a new taxonomic treatment of this complex.
Collapse
Affiliation(s)
- Veronika Lipánová
- Department of Botany, Faculty of Science, Charles University, 128 00 Prague, Czech Republic; Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic; Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | | | - Vojtěch Zeisek
- Department of Botany, Faculty of Science, Charles University, 128 00 Prague, Czech Republic; Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, 128 00 Prague, Czech Republic; Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - Jindřich Chrtek
- Department of Botany, Faculty of Science, Charles University, 128 00 Prague, Czech Republic; Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic.
| |
Collapse
|
4
|
Cao Y, Almeida-Silva F, Zhang WP, Ding YM, Bai D, Bai WN, Zhang BW, Van de Peer Y, Zhang DY. Genomic Insights into Adaptation to Karst Limestone and Incipient Speciation in East Asian Platycarya spp. (Juglandaceae). Mol Biol Evol 2023; 40:msad121. [PMID: 37216901 PMCID: PMC10257982 DOI: 10.1093/molbev/msad121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
When challenged by similar environmental conditions, phylogenetically distant taxa often independently evolve similar traits (convergent evolution). Meanwhile, adaptation to extreme habitats might lead to divergence between taxa that are otherwise closely related. These processes have long existed in the conceptual sphere, yet molecular evidence, especially for woody perennials, is scarce. The karst endemic Platycarya longipes and its only congeneric species, Platycarya strobilacea, which is widely distributed in the mountains in East Asia, provide an ideal model for examining the molecular basis of both convergent evolution and speciation. Using chromosome-level genome assemblies of both species, and whole-genome resequencing data from 207 individuals spanning their entire distribution range, we demonstrate that P. longipes and P. strobilacea form two species-specific clades, which diverged around 2.09 million years ago. We find an excess of genomic regions exhibiting extreme interspecific differentiation, potentially due to long-term selection in P. longipes, likely contributing to the incipient speciation of the genus Platycarya. Interestingly, our results unveil underlying karst adaptation in both copies of the calcium influx channel gene TPC1 in P. longipes. TPC1 has previously been identified as a selective target in certain karst-endemic herbs, indicating a convergent adaptation to high calcium stress among karst-endemic species. Our study reveals the genic convergence of TPC1 among karst endemics and the driving forces underneath the incipient speciation of the two Platycarya lineages.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wei-Ping Zhang
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ya-Mei Ding
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Dan Bai
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Bo-Wen Zhang
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
5
|
Bertel C, Kaplenig D, Ralser M, Arc E, Kolář F, Wos G, Hülber K, Holzinger A, Kranner I, Neuner G. Parallel Differentiation and Plastic Adjustment of Leaf Anatomy in Alpine Arabidopsis arenosa Ecotypes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2626. [PMID: 36235492 PMCID: PMC9573220 DOI: 10.3390/plants11192626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Functional and structural adjustments of plants in response to environmental factors, including those occurring in alpine habitats, can result in transient acclimation, plastic phenotypic adjustments and/or heritable adaptation. To unravel repeatedly selected traits with potential adaptive advantage, we studied parallel (ecotypic) and non-parallel (regional) differentiation in leaf traits in alpine and foothill ecotypes of Arabidopsis arenosa. Leaves of plants from eight alpine and eight foothill populations, representing three independent alpine colonization events in different mountain ranges, were investigated by microscopy techniques after reciprocal transplantation. Most traits clearly differed between the foothill and the alpine ecotype, with plastic adjustments to the local environment. In alpine populations, leaves were thicker, with altered proportions of palisade and spongy parenchyma, and had fewer trichomes, and chloroplasts contained large starch grains with less stacked grana thylakoids compared to foothill populations. Geographical origin had no impact on most traits except for trichome and stomatal density on abaxial leaf surfaces. The strong parallel, heritable ecotypic differentiation in various leaf traits and the absence of regional effects suggests that most of the observed leaf traits are adaptive. These trait shifts may reflect general trends in the adaptation of leaf anatomy associated with the colonization of alpine habitats.
Collapse
Affiliation(s)
- Clara Bertel
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| | - Dominik Kaplenig
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| | - Maria Ralser
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| | - Erwann Arc
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| | - Filip Kolář
- Department of Botany, Charles University of Prague, 110 00 Prague, Czech Republic
| | - Guillaume Wos
- Institute of Nature Conservation, Polish Academy of Sciences, 00-901 Krakow, Poland
| | - Karl Hülber
- Department of Botany and Biodiversity Research, University of Vienna, 1010 Vienna, Austria
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| | - Gilbert Neuner
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Konečná V, Šustr M, Požárová D, Čertner M, Krejčová A, Tylová E, Kolář F. Genomic basis and phenotypic manifestation of (non-)parallel serpentine adaptation in Arabidopsis arenosa. Evolution 2022; 76:2315-2331. [PMID: 35950324 DOI: 10.1111/evo.14593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 01/22/2023]
Abstract
Parallel evolution is common in nature and provides one of the most compelling examples of rapid environmental adaptation. In contrast to the recent burst of studies addressing genomic basis of parallel evolution, integrative studies linking genomic and phenotypic parallelism are scarce. Edaphic islands of toxic serpentine soils provide ideal systems for studying rapid parallel adaptation in plants, imposing strong, spatially replicated selection on recently diverged populations. We leveraged threefold independent serpentine adaptation of Arabidopsis arenosa and combined reciprocal transplants, ion uptake phenotyping, and available genome-wide polymorphisms to test if parallelism is manifested to a similar extent at both genomic and phenotypic levels. We found pervasive phenotypic parallelism in functional traits yet with varying magnitude of fitness differences that was congruent with neutral genetic differentiation between populations. Limited costs of serpentine adaptation suggest absence of soil-driven trade-offs. On the other hand, the genomic parallelism at the gene level was significant, although relatively minor. Therefore, the similarly modified phenotypes, for example, of ion uptake arose possibly by selection on different loci in similar functional pathways. In summary, we bring evidence for the important role of genetic redundancy in rapid adaptation involving traits with polygenic architecture.
Collapse
Affiliation(s)
- Veronika Konečná
- Department of Botany, Faculty of Science, Charles University, Prague, 128 00, Czech Republic.,Institute of Botany, Czech Academy of Sciences, Průhonice, 252 43, Czech Republic
| | - Marek Šustr
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, 128 00, Czech Republic
| | - Doubravka Požárová
- Department of Botany, Faculty of Science, Charles University, Prague, 128 00, Czech Republic
| | - Martin Čertner
- Department of Botany, Faculty of Science, Charles University, Prague, 128 00, Czech Republic.,Institute of Botany, Czech Academy of Sciences, Průhonice, 252 43, Czech Republic
| | - Anna Krejčová
- Faculty of Chemical Technology, University of Pardubice, Pardubice, 532 10, Czech Republic
| | - Edita Tylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, 128 00, Czech Republic
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, 128 00, Czech Republic.,Institute of Botany, Czech Academy of Sciences, Průhonice, 252 43, Czech Republic
| |
Collapse
|
7
|
Morgan C, Knight E, Bomblies K. The meiotic cohesin subunit REC8 contributes to multigenic adaptive evolution of autopolyploid meiosis in Arabidopsis arenosa. PLoS Genet 2022; 18:e1010304. [PMID: 35830475 PMCID: PMC9312919 DOI: 10.1371/journal.pgen.1010304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/25/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Genome duplication, which leads to polyploidy, poses challenges to the meiotic segregation of the now-multiple homologous chromosome copies. Genome scan data showed previously that adaptation to polyploid meiosis in autotetraploid Arabidopsis arenosa is likely multigenic, involving genes encoding interacting proteins. But what does this really mean? Functional follow-up studies to genome scans for multigenic traits remain rare in most systems, and thus many mysteries remain about the "functional architecture" of polygenic adaptations. Do different genes all contribute subtle and additive progression towards a fitness optimum, or are there more complex interactions? We previously showed that derived alleles of genes encoding two interacting meiotic axis proteins (ASY1 and ASY3) have additive functional consequences for meiotic adaptation. Here we study derived versus ancestral alleles of the meiotic cohesin subunit REC8, which has roles in chromatin condensation, recruiting the axes, and other critical functions in meiosis. We use genetic and cytological approaches to assess the functional effects of REC8 diploid versus tetraploid alleles, as well as their interaction with ancestral versus derived alleles of ASY1 and ASY3. We show that homozygotes for derived (tetraploid) REC8 alleles have significantly fewer unpaired univalents, a common problem in neotetraploids. Interactions with ASY1 and ASY3 are complex, with the genes in some cases affecting distinct traits, and additive or even antagonistic effects on others. These findings suggest that the road to meiotic adaptation in A. arenosa was perhaps neither straight nor smooth.
Collapse
Affiliation(s)
| | | | - Kirsten Bomblies
- Plant Evolutionary Genetics, Institute of Plant Molecular Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Casola C, Li J. Beyond RuBisCO: convergent molecular evolution of multiple chloroplast genes in C 4 plants. PeerJ 2022; 10:e12791. [PMID: 35127287 PMCID: PMC8801178 DOI: 10.7717/peerj.12791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The recurrent evolution of the C4 photosynthetic pathway in angiosperms represents one of the most extraordinary examples of convergent evolution of a complex trait. Comparative genomic analyses have unveiled some of the molecular changes associated with the C4 pathway. For instance, several key enzymes involved in the transition from C3 to C4 photosynthesis have been found to share convergent amino acid replacements along C4 lineages. However, the extent of convergent replacements potentially associated with the emergence of C4 plants remains to be fully assessed. Here, we conducted an organelle-wide analysis to determine if convergent evolution occurred in multiple chloroplast proteins beside the well-known case of the large RuBisCO subunit encoded by the chloroplast gene rbcL. METHODS Our study was based on the comparative analysis of 43 C4 and 21 C3 grass species belonging to the PACMAD clade, a focal taxonomic group in many investigations of C4 evolution. We first used protein sequences of 67 orthologous chloroplast genes to build an accurate phylogeny of these species. Then, we inferred amino acid replacements along 13 C4 lineages and 9 C3 lineages using reconstructed protein sequences of their reference branches, corresponding to the branches containing the most recent common ancestors of C4-only clades and C3-only clades. Pairwise comparisons between reference branches allowed us to identify both convergent and non-convergent amino acid replacements between C4:C4, C3:C3 and C3:C4 lineages. RESULTS The reconstructed phylogenetic tree of 64 PACMAD grasses was characterized by strong supports in all nodes used for analyses of convergence. We identified 217 convergent replacements and 201 non-convergent replacements in 45/67 chloroplast proteins in both C4 and C3 reference branches. C4:C4 branches showed higher levels of convergent replacements than C3:C3 and C3:C4 branches. Furthermore, we found that more proteins shared unique convergent replacements in C4 lineages, with both RbcL and RpoC1 (the RNA polymerase beta' subunit 1) showing a significantly higher convergent/non-convergent replacements ratio in C4 branches. Notably, more C4:C4 reference branches showed higher numbers of convergent vs. non-convergent replacements than C3:C3 and C3:C4 branches. Our results suggest that, in the PACMAD clade, C4 grasses experienced higher levels of molecular convergence than C3 species across multiple chloroplast genes. These findings have important implications for our understanding of the evolution of the C4 photosynthesis pathway.
Collapse
Affiliation(s)
- Claudio Casola
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States of America
- Interdisciplinary Graduate Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, United States of America
| | - Jingjia Li
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
9
|
Fasani E, DalCorso G, Zorzi G, Vitulo N, Furini A. Comparative analysis identifies micro-RNA associated with nutrient homeostasis, development and stress response in Arabidopsis thaliana upon high Zn and metal hyperaccumulator Arabidopsis halleri. PHYSIOLOGIA PLANTARUM 2021; 173:920-934. [PMID: 34171137 PMCID: PMC8597110 DOI: 10.1111/ppl.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/21/2021] [Indexed: 05/05/2023]
Abstract
miRNAs have been found to be key players in mineral homeostasis, both in the control of nutrient balance and in the response to toxic trace elements. However, the effect of Zn excess on miRNAs has not been elucidated; moreover, no data are present regarding miRNAs in hyperaccumulator species, where metal homeostasis is tightly regulated. Therefore, expression levels of mature miRNAs were measured by RNA-Seq in Zn-sensitive Arabidopsis thaliana grown in control conditions and upon high Zn, in soil and in Zn-hyperaccumulator Arabidopsis halleri grown in control conditions. Differential expression of notable miRNAs and their targets was confirmed by real-time RT-PCR. The comparison in A. thaliana revealed a small subset modulated upon Zn treatment that is associated with stress response and nutrient homeostasis. On the other hand, a more consistent group of miRNAs was differentially expressed in A. halleri compared with A. thaliana, reflecting inherent differences in nutritional requirements and response to stresses and plant growth and development. Overall, these results confirm the involvement of miRNAs in Zn homeostasis and support the hypothesis of distinct regulatory pathways in hyperaccumulator species.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | | - Gianluca Zorzi
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Nicola Vitulo
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | |
Collapse
|
10
|
Wang L, Josephs EB, Lee KM, Roberts LM, Rellán-Álvarez R, Ross-Ibarra J, Hufford MB. Molecular Parallelism Underlies Convergent Highland Adaptation of Maize Landraces. Mol Biol Evol 2021; 38:3567-3580. [PMID: 33905497 PMCID: PMC8382895 DOI: 10.1093/molbev/msab119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Convergent phenotypic evolution provides some of the strongest evidence for adaptation. However, the extent to which recurrent phenotypic adaptation has arisen via parallelism at the molecular level remains unresolved, as does the evolutionary origin of alleles underlying such adaptation. Here, we investigate genetic mechanisms of convergent highland adaptation in maize landrace populations and evaluate the genetic sources of recurrently selected alleles. Population branch excess statistics reveal substantial evidence of parallel adaptation at the level of individual single-nucleotide polymorphism (SNPs), genes, and pathways in four independent highland maize populations. The majority of convergently selected SNPs originated via migration from a single population, most likely in the Mesoamerican highlands, while standing variation introduced by ancient gene flow was also a contributor. Polygenic adaptation analyses of quantitative traits reveal that alleles affecting flowering time are significantly associated with elevation, indicating the flowering time pathway was targeted by highland adaptation. In addition, repeatedly selected genes were significantly enriched in the flowering time pathway, indicating their significance in adapting to highland conditions. Overall, our study system represents a promising model to study convergent evolution in plants with potential applications to crop adaptation across environmental gradients.
Collapse
Affiliation(s)
- Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - Emily B Josephs
- The Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Kristin M Lee
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - Lucas M Roberts
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Rubén Rellán-Álvarez
- Langebio, Irapuato, Gto., Mexico
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
- Genome Center and Center for Population Biology, University of California, Davis, Davis, CA, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
11
|
Parallel adaptation in autopolyploid Arabidopsis arenosa is dominated by repeated recruitment of shared alleles. Nat Commun 2021; 12:4979. [PMID: 34404804 PMCID: PMC8370997 DOI: 10.1038/s41467-021-25256-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/21/2021] [Indexed: 01/26/2023] Open
Abstract
Relative contributions of pre-existing vs de novo genomic variation to adaptation are poorly understood, especially in polyploid organisms. We assess this in high resolution using autotetraploid Arabidopsis arenosa, which repeatedly adapted to toxic serpentine soils that exhibit skewed elemental profiles. Leveraging a fivefold replicated serpentine invasion, we assess selection on SNPs and structural variants (TEs) in 78 resequenced individuals and discover significant parallelism in candidate genes involved in ion homeostasis. We further model parallel selection and infer repeated sweeps on a shared pool of variants in nearly all these loci, supporting theoretical expectations. A single striking exception is represented by TWO PORE CHANNEL 1, which exhibits convergent evolution from independent de novo mutations at an identical, otherwise conserved site at the calcium channel selectivity gate. Taken together, this suggests that polyploid populations can rapidly adapt to environmental extremes, calling on both pre-existing variation and novel polymorphisms. Relative contributions of pre-existing versus de novo genomic variation to adaptation remain unclear. Here, the authors address this problem by examining the adaptation of autotetraploid Arabidopsis arenosa to serpentine soils and find that both types of variations contribute to rapid adaptation.
Collapse
|
12
|
Gieroń Ż, Sitko K, Małkowski E. The Different Faces of Arabidopsis arenosa-A Plant Species for a Special Purpose. PLANTS (BASEL, SWITZERLAND) 2021; 10:1342. [PMID: 34209450 PMCID: PMC8309363 DOI: 10.3390/plants10071342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/01/2022]
Abstract
The following review article collects information on the plant species Arabidopsis arenosa. Thus far, A. arenosa has been known as a model species for autotetraploidy studies because, apart from diploid individuals, there are also tetraploid populations, which is a unique feature of this Arabidopsis species. In addition, A arenosa has often been reported in heavy metal-contaminated sites, where it occurs together with a closely related species A. halleri, a model plant hyperaccumulator of Cd and Zn. Recent studies have shown that several populations of A. arenosa also exhibit Cd and Zn hyperaccumulation. However, it is assumed that the mechanism of hyperaccumulation differs between these two Arabidopsis species. Nevertheless, this phenomenon is still not fully understood, and thorough research is needed. In this paper, we summarize the current state of knowledge regarding research on A. arenosa.
Collapse
Affiliation(s)
| | - Krzysztof Sitko
- Plant Ecophysiology Team, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska Str., 40-032 Katowice, Poland;
| | - Eugeniusz Małkowski
- Plant Ecophysiology Team, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska Str., 40-032 Katowice, Poland;
| |
Collapse
|
13
|
Gieroń Ż, Sitko K, Zieleźnik-Rusinowska P, Szopiński M, Rojek-Jelonek M, Rostański A, Rudnicka M, Małkowski E. Ecophysiology of Arabidopsis arenosa, a new hyperaccumulator of Cd and Zn. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125052. [PMID: 33516105 DOI: 10.1016/j.jhazmat.2021.125052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Arabidopsis arenosa is a pseudo-metallophyte, closely related to the model hyperaccumulator of Cd and Zn Arabidopsis halleri. A. arenosa occurs naturally in both diploid (2C) and tetraploid (4C) form, in contrast to A. halleri in which only diploid forms were found. Moreover, A. arenosa similarly to A. halleri often occupies heavy metal (HM) contaminated sites. Nevertheless, knowledge about the ecophysiology of this species is very limited. Therefore, we examined fourteen populations of A. arenosa of different ploidy from Central Europe in situ, focusing on photosynthetic efficiency, pigment content and ability to accumulate selected elements. The presented results indicate that several tetraploid populations exhibit the features of Cd and Zn hyperaccumulation. On the one hand, we noted differences in physiological parameters between the studied populations, on the other, harshness of the environment caused similar physiological response such as high HM pollution. All these features suggest that A. arenosa, especially as a new hyperaccumulator of Cd and Zn and autopolyploidyzation model, may be considered a very interesting research object, particularly when investigating the mechanisms of HMs accumulation and tolerance in plants.
Collapse
Affiliation(s)
- Żaneta Gieroń
- Plant Ecophysiology Team, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Krzysztof Sitko
- Plant Ecophysiology Team, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Paulina Zieleźnik-Rusinowska
- Plant Ecophysiology Team, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Michał Szopiński
- Plant Ecophysiology Team, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Adam Rostański
- Botany and Nature Protection Team, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Małgorzata Rudnicka
- Plant Ecophysiology Team, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Eugeniusz Małkowski
- Plant Ecophysiology Team, University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
14
|
Bohutínská M, Vlček J, Yair S, Laenen B, Konečná V, Fracassetti M, Slotte T, Kolář F. Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Proc Natl Acad Sci U S A 2021; 118:e2022713118. [PMID: 34001609 PMCID: PMC8166048 DOI: 10.1073/pnas.2022713118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parallel adaptation provides valuable insight into the predictability of evolutionary change through replicated natural experiments. A steadily increasing number of studies have demonstrated genomic parallelism, yet the magnitude of this parallelism varies depending on whether populations, species, or genera are compared. This led us to hypothesize that the magnitude of genomic parallelism scales with genetic divergence between lineages, but whether this is the case and the underlying evolutionary processes remain unknown. Here, we resequenced seven parallel lineages of two Arabidopsis species, which repeatedly adapted to challenging alpine environments. By combining genome-wide divergence scans with model-based approaches, we detected a suite of 151 genes that show parallel signatures of positive selection associated with alpine colonization, involved in response to cold, high radiation, short season, herbivores, and pathogens. We complemented these parallel candidates with published gene lists from five additional alpine Brassicaceae and tested our hypothesis on a broad scale spanning ∼0.02 to 18 My of divergence. Indeed, we found quantitatively variable genomic parallelism whose extent significantly decreased with increasing divergence between the compared lineages. We further modeled parallel evolution over the Arabidopsis candidate genes and showed that a decreasing probability of repeated selection on the same standing or introgressed alleles drives the observed pattern of divergence-dependent parallelism. We therefore conclude that genetic divergence between populations, species, and genera, affecting the pool of shared variants, is an important factor in the predictability of genome evolution.
Collapse
Affiliation(s)
- Magdalena Bohutínská
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic;
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - Jakub Vlček
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic
- Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Department of Zoology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Sivan Yair
- Center for Population Biology, University of California, Davis, CA 95616
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Veronika Konečná
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - Marco Fracassetti
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic;
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| |
Collapse
|
15
|
Ferris KG, Chavez AS, Suzuki TA, Beckman EJ, Phifer-Rixey M, Bi K, Nachman MW. The genomics of rapid climatic adaptation and parallel evolution in North American house mice. PLoS Genet 2021; 17:e1009495. [PMID: 33914747 PMCID: PMC8084166 DOI: 10.1371/journal.pgen.1009495] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
Parallel changes in genotype and phenotype in response to similar selection pressures in different populations provide compelling evidence of adaptation. House mice (Mus musculus domesticus) have recently colonized North America and are found in a wide range of environments. Here we measure phenotypic and genotypic differentiation among house mice from five populations sampled across 21° of latitude in western North America, and we compare our results to a parallel latitudinal cline in eastern North America. First, we show that mice are genetically differentiated between transects, indicating that they have independently colonized similar environments in eastern and western North America. Next, we find genetically-based differences in body weight and nest building behavior between mice from the ends of the western transect which mirror differences seen in the eastern transect, demonstrating parallel phenotypic change. We then conduct genome-wide scans for selection and a genome-wide association study to identify targets of selection and candidate genes for body weight. We find some genomic signatures that are unique to each transect, indicating population-specific responses to selection. However, there is significant overlap between genes under selection in eastern and western house mouse transects, providing evidence of parallel genetic evolution in response to similar selection pressures across North America.
Collapse
Affiliation(s)
- Kathleen G. Ferris
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Andreas S. Chavez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Taichi A. Suzuki
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Elizabeth J. Beckman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Megan Phifer-Rixey
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Ke Bi
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Michael W. Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
16
|
Bohutínská M, Alston M, Monnahan P, Mandáková T, Bray S, Paajanen P, Kolář F, Yant L. Novelty and convergence in adaptation to whole genome duplication. Mol Biol Evol 2021; 38:3910-3924. [PMID: 33783509 PMCID: PMC8382928 DOI: 10.1093/molbev/msab096] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
Whole genome duplication (WGD) can promote adaptation but is disruptive to conserved processes, especially meiosis. Studies in Arabidopsis arenosa revealed a coordinated evolutionary response to WGD involving interacting proteins controlling meiotic crossovers, which are minimised in an autotetraploid (within-species polyploid) to avoid mis-segregation. Here we test whether this surprising flexibility of a conserved essential process, meiosis, is recapitulated in an independent WGD system, Cardamine amara, 17 million years diverged from A. arenosa. We assess meiotic stability and perform population-based scans for positive selection, contrasting the genomic response to WGD in C. amara with that of A. arenosa. We found in C. amara the strongest selection signals at genes with predicted functions thought important to adaptation to WGD: meiosis, chromosome remodelling, cell cycle, and ion transport. However, genomic responses to WGD in the two species differ: minimal ortholog-level convergence emerged, with none of the meiosis genes found in A. arenosa exhibiting strong signal in C. amara. This is consistent with our observations of lower meiotic stability and occasional clonal spreading in diploid C. amara, suggesting that nascent C. amara autotetraploid lineages were preadapted by their diploid lifestyle to survive while enduring reduced meiotic fidelity. However, in contrast to a lack of ortholog convergence, we see process-level and network convergence in DNA management, chromosome organisation, stress signalling, and ion homeostasis processes. This gives the first insight into the salient adaptations required to meet the challenges of a WGD state and shows that autopolyploids can utilize multiple evolutionary trajectories to adapt to WGD.
Collapse
Affiliation(s)
- Magdalena Bohutínská
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Mark Alston
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Patrick Monnahan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Terezie Mandáková
- CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Sian Bray
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, UK.,School of Biosciences University of Nottingham, Nottingham, UK
| | - Pirita Paajanen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Levi Yant
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, UK.,School of Life Sciences University of Nottingham, Nottingham, UK
| |
Collapse
|
17
|
Konečná V, Yant L, Kolář F. The Evolutionary Genomics of Serpentine Adaptation. FRONTIERS IN PLANT SCIENCE 2020; 11:574616. [PMID: 33391295 PMCID: PMC7772150 DOI: 10.3389/fpls.2020.574616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Serpentine barrens are among the most challenging settings for plant life. Representing a perfect storm of hazards, serpentines consist of broadly skewed elemental profiles, including abundant toxic metals and low nutrient contents on drought-prone, patchily distributed substrates. Accordingly, plants that can tolerate the challenges of serpentine have fascinated biologists for decades, yielding important insights into adaptation to novel ecologies through physiological change. Here we highlight recent progress from studies which demonstrate the power of serpentine as a model for the genomics of adaptation. Given the moderate - but still tractable - complexity presented by the mix of hazards on serpentine, these venues are well-suited for the experimental inquiry of adaptation both in natural and manipulated conditions. Moreover, the island-like distribution of serpentines across landscapes provides abundant natural replicates, offering power to evolutionary genomic inference. Exciting recent insights into the genomic basis of serpentine adaptation point to a partly shared basis that involves sampling from common allele pools available from retained ancestral polymorphism or via gene flow. However, a lack of integrated studies deconstructing complex adaptations and linking candidate alleles with fitness consequences leaves room for much deeper exploration. Thus, we still seek the crucial direct link between the phenotypic effect of candidate alleles and their measured adaptive value - a prize that is exceedingly rare to achieve in any study of adaptation. We expect that closing this gap is not far off using the promising model systems described here.
Collapse
Affiliation(s)
- Veronika Konečná
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Pru˚honice, Czechia
| | - Levi Yant
- Future Food Beacon and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Pru˚honice, Czechia
- Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Yadav S, J Stow A, Dudaniec RY. Microgeographical adaptation corresponds to elevational distributions of congeneric montane grasshoppers. Mol Ecol 2020; 30:481-498. [PMID: 33217095 DOI: 10.1111/mec.15739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
Local adaptation can occur at small spatial scales relative to the dispersal capacity of species. Alpine ecosystems have sharp environmental clines that offer an opportunity to investigate the effects of fine-scale shifts in species' niche breadth on adaptive genetic processes. Here we examine two grasshopper species endemic to the Australian Alps (Kosciuscola spp.) that differ in elevational niche breadth: one broader, K. usitatus (1400-2200 m), and one narrower, K. tristis (1600-2000 m). We examine signatures of selection with respect to environmental and morphological variables in two mountain regions using FST outlier tests and environmental association analyses (EAAs) applied to single nucleotide polymorphism (SNP) data (K. usitatus: 9017 SNPs, n = 130; K. tristis: 7363 SNPs, n = 135). Stronger genetic structure was found in the more narrowly distributed K. tristis, which showed almost twice the number of SNPs under putative selection (10.8%) compared with K. usitatus (5.3%). When examining SNPs in common across species (n = 3058), 260 SNPs (8.5%) were outliers shared across species, and these were mostly associated with elevation, a proxy for temperature, suggesting parallel adaptive processes in response to climatic drivers. Additive polygenic scores (an estimate of the cumulative signal of selection across all candidate loci) were nonlinearly and positively correlated with elevation in both species. However, a steeper correlation in K. tristis indicated a stronger signal of spatially varying selection towards higher elevations. Our study illustrates that the niche breadth of co-occurring and related species distributed along the same environmental cline is associated with differences in patterns of microgeographical adaptation.
Collapse
Affiliation(s)
- Sonu Yadav
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Adam J Stow
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
19
|
Szopiński M, Sitko K, Rusinowski S, Zieleźnik-Rusinowska P, Corso M, Rostański A, Rojek-Jelonek M, Verbruggen N, Małkowski E. Different strategies of Cd tolerance and accumulation in Arabidopsis halleri and Arabidopsis arenosa. PLANT, CELL & ENVIRONMENT 2020; 43:3002-3019. [PMID: 32890409 DOI: 10.1111/pce.13883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Pseudometallophytes are commonly used to study the evolution of metal tolerance and accumulation traits in plants. Within the Arabidopsis genus, the adaptation of Arabidopsis halleri to metalliferous soils has been widely studied, which is not the case for the closely related species Arabidopsis arenosa. We performed an in-depth physiological comparison between the A. halleri and A. arenosa populations from the same polluted site, together with the geographically close non-metallicolous (NM) populations of both species. The ionomes, growth, photosynthetic parameters and pigment content were characterized in the plants that were growing on their native site and in a hydroponic culture under Cd treatments. In situ, the metallicolous (M) populations of both species hyperaccumulated Cd and Zn. The NM population of A. halleri hyperaccumulated Cd and Zn while the NM A. arenosa did not. In the hydroponic experiments, the NM populations of both species accumulated more Cd in their shoots than the M populations. Our research suggests that the two Arabidopsis species evolved different strategies of adaptation to extreme metallic environments that involve fine regulation of metal homeostasis, adjustment of the photosynthetic apparatus and accumulation of flavonols and anthocyanins.
Collapse
Affiliation(s)
- Michał Szopiński
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Krzysztof Sitko
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | | | - Paulina Zieleźnik-Rusinowska
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Massimiliano Corso
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Adam Rostański
- Botany and Nature Protection Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Eugeniusz Małkowski
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
20
|
Manara A, Fasani E, Furini A, DalCorso G. Evolution of the metal hyperaccumulation and hypertolerance traits. PLANT, CELL & ENVIRONMENT 2020; 43:2969-2986. [PMID: 32520430 DOI: 10.1111/pce.13821] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 05/21/2023]
Abstract
To succeed in life, living organisms have to adapt to the environmental issues to which they are subjected. Some plants, defined as hyperaccumulators, have adapted to metalliferous environments, acquiring the ability to tolerate and accommodate high amounts of toxic metal into their shoot, without showing symptoms of toxicity. The determinants for these traits and their mode of action have long been the subject of research, whose attention lately moved to the evolution of the hypertolerance and hyperaccumulation traits. Genetic evidence indicates that the evolution of both traits includes significant evolutionary events that result in species-wide tolerant and accumulating backgrounds. Different edaphic environments are responsible for subsequent refinement, by local adaptive processes, leading to specific strategies and various degrees of hypertolerance and hyperaccumulation, which characterize metallicolous from non-metallicolous ecotypes belonging to the same genetic unit. In this review, we overview the most updated concepts regarding the evolution of hyperaccumulation and hypertolerance, highlighting also the ecological context concerning the plant populations displaying this fascinating phenomenon.
Collapse
Affiliation(s)
- Anna Manara
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elisa Fasani
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Antonella Furini
- Department of Biotechnology, University of Verona, Verona, Italy
| | | |
Collapse
|
21
|
Xu S, Wang J, Guo Z, He Z, Shi S. Genomic Convergence in the Adaptation to Extreme Environments. PLANT COMMUNICATIONS 2020; 1:100117. [PMID: 33367270 PMCID: PMC7747959 DOI: 10.1016/j.xplc.2020.100117] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 05/08/2023]
Abstract
Convergent evolution is especially common in plants that have independently adapted to the same extreme environments (i.e., extremophile plants). The recent burst of omics data has alleviated many limitations that have hampered molecular convergence studies of non-model extremophile plants. In this review, we summarize cases of genomic convergence in these taxa to examine the extent and type of genomic convergence during the process of adaptation to extreme environments. Despite being well studied by candidate gene approaches, convergent evolution at individual sites is rare and often has a high false-positive rate when assessed in whole genomes. By contrast, genomic convergence at higher genetic levels has been detected during adaptation to the same extreme environments. Examples include the convergence of biological pathways and changes in gene expression, gene copy number, amino acid usage, and GC content. Higher convergence levels play important roles in the adaptive evolution of extremophiles and may be more frequent and involve more genes. In several cases, multiple types of convergence events have been found to co-occur. However, empirical and theoretical studies of this higher level convergent evolution are still limited. In conclusion, both the development of powerful approaches and the detection of convergence at various genetic levels are needed to further reveal the genetic mechanisms of plant adaptation to extreme environments.
Collapse
Affiliation(s)
- Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiayan Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Yuan M, Stinchcombe JR. Population genomics of parallel adaptation. Mol Ecol 2020; 29:4033-4036. [PMID: 32997363 DOI: 10.1111/mec.15659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
Parallel evolution is one of the striking patterns in nature. The presence of repeated evolution of the same phenotypes, suites of traits, and adaptations suggests a strong role for natural selection in shaping biological diversity. The reasoning is straightforward: each instance of repeated evolution makes it less likely that these features evolved neutrally or due to stochastic forces in each population or species. With the growing sequencing capability, we are now poised to examine the genetic basis of parallel evolution in model and nonmodel systems. On pages 4102-4117 of this issue of Molecular Ecology, van Boheemen and Hodgins (2020) provide an exemplar study of this kind, using common ragweed (Ambrosia artemisiifolia; Figure 1a). Their study is noteworthy and ambitious in many respects, and we think will serve as a model for studying parallel adaptation, even in nonmodel species.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Carvalho CS, Forester BR, Mitre SK, Alves R, Imperatriz-Fonseca VL, Ramos SJ, Resende-Moreira LC, Siqueira JO, Trevelin LC, Caldeira CF, Gastauer M, Jaffé R. Combining genotype, phenotype, and environmental data to delineate site-adjusted provenance strategies for ecological restoration. Mol Ecol Resour 2020; 21:44-58. [PMID: 32419278 DOI: 10.1111/1755-0998.13191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Despite the importance of climate-adjusted provenancing to mitigate the effects of environmental change, climatic considerations alone are insufficient when restoring highly degraded sites. Here we propose a comprehensive landscape genomic approach to assist the restoration of moderately disturbed and highly degraded sites. To illustrate it we employ genomic data sets comprising thousands of single nucleotide polymorphisms from two plant species suitable for the restoration of iron-rich Amazonian Savannas. We first use a subset of neutral loci to assess genetic structure and determine the genetic neighbourhood size. We then identify genotype-phenotype-environment associations, map adaptive genetic variation, and predict adaptive genotypes for restoration sites. Whereas local provenances were found optimal to restore a moderately disturbed site, a mixture of genotypes seemed the most promising strategy to recover a highly degraded mining site. We discuss how our results can help define site-adjusted provenancing strategies, and argue that our methods can be more broadly applied to assist other restoration initiatives.
Collapse
Affiliation(s)
- Carolina S Carvalho
- Instituto Tecnológico Vale, Belém, Pará, Brazil.,Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | - José O Siqueira
- Instituto Tecnológico Vale, Belém, Pará, Brazil.,Departamento de Ciência do Solo, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | | | | | | | - Rodolfo Jaffé
- Instituto Tecnológico Vale, Belém, Pará, Brazil.,Departamento de Ecologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
He Z, Xu S, Shi S. Adaptive convergence at the genomic level-prevalent, uncommon or very rare? Natl Sci Rev 2020; 7:947-951. [PMID: 34692116 PMCID: PMC8289048 DOI: 10.1093/nsr/nwaa076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ziwen He
- School of Life Sciences, Sun Yat-sen University, China
| | - Shaohua Xu
- School of Life Sciences, Sun Yat-sen University, China
| | - Suhua Shi
- School of Life Sciences, Sun Yat-sen University, China
| |
Collapse
|
25
|
Preite V, Sailer C, Syllwasschy L, Bray S, Ahmadi H, Krämer U, Yant L. Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180243. [PMID: 31154972 PMCID: PMC6560266 DOI: 10.1098/rstb.2018.0243] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2019] [Indexed: 01/09/2023] Open
Abstract
It is a plausible hypothesis that parallel adaptation events to the same environmental challenge should result in genetic changes of similar or identical effects, depending on the underlying fitness landscapes. However, systematic testing of this is scarce. Here we examine this hypothesis in two closely related plant species, Arabidopsis halleri and Arabidopsis arenosa, which co-occur at two calamine metalliferous (M) sites harbouring toxic levels of the heavy metals zinc and cadmium. We conduct individual genome resequencing alongside soil elemental analysis for 64 plants from eight populations on M and non-metalliferous (NM) soils, and identify genomic footprints of selection and local adaptation. Selective sweep and environmental association analyses indicate a modest degree of gene as well as functional network convergence, whereby the proximal molecular factors mediating this convergence mostly differ between site pairs and species. Notably, we observe repeated selection on identical single nucleotide polymorphisms in several A. halleri genes at two independently colonized M sites. Our data suggest that species-specific metal handling and other biological features could explain a low degree of convergence between species. The parallel establishment of plant populations on calamine M soils involves convergent evolution, which will probably be more pervasive across sites purposely chosen for maximal similarity in soil composition. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Veronica Preite
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Christian Sailer
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Lara Syllwasschy
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sian Bray
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Hassan Ahmadi
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Levi Yant
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
26
|
Sackton TB, Clark N. Convergent evolution in the genomics era: new insights and directions. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190102. [PMID: 31154976 DOI: 10.1098/rstb.2019.0102] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Nathan Clark
- 2 Computational and Systems Biology, University of Pittsburgh , PA , USA
| |
Collapse
|