1
|
Masoudi A, Joseph RA, Keyhani NO. Viral- and fungal-mediated behavioral manipulation of hosts: summit disease. Appl Microbiol Biotechnol 2024; 108:492. [PMID: 39441364 PMCID: PMC11499535 DOI: 10.1007/s00253-024-13332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Summit disease, in which infected hosts seek heights (gravitropism), first noted in modern times by nineteenth-century naturalists, has been shown to be induced by disparate pathogens ranging from viruses to fungi. Infection results in dramatic changes in normal activity patterns, and such parasite manipulation of host behaviors suggests a strong selection for convergent outcomes albeit evolved via widely divergent mechanisms. The two best-studied examples involve a subset of viral and fungal pathogens of insects that induce "summiting" in infected hosts. Summiting presumably functions as a means for increasing the dispersal of the pathogen, thus significantly increasing fitness. Here, we review current advances in our understanding of viral- and fungal-induced summit disease and the host behavioral manipulation involved. Viral genes implicated in this process include a host hormone-targeting ecdysteroid UDP-glucosyltransferase (apparently essential for mediating summit disease induced by some viruses but not all) and a protein tyrosine phosphatase, with light dependance implicated. For summit disease-causing fungi, though much remains obscure, targeting of molting, circadian rhythms, sleep, and responses to light patterns appear involved. Targeting of host neuronal pathways by summit-inducing fungi also appears to involve the production of effector molecules and secondary metabolites that affect host muscular, immune, and/or neurological processes. It is hypothesized that host brain structures, particularly Mushroom Bodies (no relation to the fungus itself), important for olfactory association learning and control of locomotor activity, are critical targets for mediating summiting during infection. This phenomenon expands the diversity of microbial pathogen-interactions and host dynamics. KEY POINTS: • Summit disease or height seeking (gravitropism) results from viral and fungal pathogens manipulating insect host behaviors presumably to increase pathogen dispersal. • Insect baculoviruses and select fungal pathogens exhibit convergent evolution in host behavioral manipulation but use disparate molecular mechanisms. • Targets for affecting host behavior include manipulation of host hormones, feeding, locomotion, and immune, circadian, and neurological pathways.
Collapse
Affiliation(s)
- Abolfazl Masoudi
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA
| | - Ross A Joseph
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
2
|
Sharafutdinov I, Friedrich B, Rottner K, Backert S, Tegtmeyer N. Cortactin: A major cellular target of viral, protozoal, and fungal pathogens. Mol Microbiol 2024; 122:165-183. [PMID: 38868928 DOI: 10.1111/mmi.15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Many viral, protozoal, and fungal pathogens represent major human and animal health problems due to their great potential of causing infectious diseases. Research on these pathogens has contributed substantially to our current understanding of both microbial virulence determinants and host key factors during infection. Countless studies have also shed light on the molecular mechanisms of host-pathogen interactions that are employed by these microbes. For example, actin cytoskeletal dynamics play critical roles in effective adhesion, host cell entry, and intracellular movements of intruding pathogens. Cortactin is an eminent host cell protein that stimulates actin polymerization and signal transduction, and recently emerged as fundamental player during host-pathogen crosstalk. Here we review the important role of cortactin as major target for various prominent viral, protozoal and fungal pathogens in humans, and its role in human disease development and cancer progression. Most if not all of these important classes of pathogens have been reported to hijack cortactin during infection through mediating up- or downregulation of cortactin mRNA and protein expression as well as signaling. In particular, pathogen-induced changes in tyrosine and serine phosphorylation status of cortactin at its major phospho-sites (Y-421, Y-470, Y-486, S-113, S-298, S-405, and S-418) are addressed. As has been reported for various Gram-negative and Gram-positive bacteria, many pathogenic viruses, protozoa, and fungi also control these regulatory phospho-sites, for example, by activating kinases such as Src, PAK, ERK1/2, and PKD, which are known to phosphorylate cortactin. In addition, the recruitment of cortactin and its interaction partners, like the Arp2/3 complex and F-actin, to the contact sites between pathogens and host cells is highlighted, as this plays an important role in the infection process and internalization of several pathogens. However, there are also other ways in which the pathogens can exploit the function of cortactin for their needs, as the cortactin-mediated regulation of cellular processes is complex and involves numerous different interaction partners. Here, the current state of knowledge is summarized.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Friedrich
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Han J, Cui M, Withycombe J, Schmidtbauer M, Chiginsky J, Neher OT, Strausbaugh CA, Majumdar R, Nalam VJ, Nachappa P. Beet curly top virus affects vector biology: the first transcriptome analysis of the beet leafhopper. J Gen Virol 2024; 105. [PMID: 39073409 DOI: 10.1099/jgv.0.002012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Curly top disease, caused by beet curly top virus (BCTV), is among the most serious viral diseases affecting sugar beets in western USA. The virus is exclusively transmitted by the beet leafhopper (BLH, Circulifer tenellus) in a circulative and non-propagative manner. Despite the growing knowledge on virus-vector interactions, our understanding of the molecular interactions between BCTV and BLH is hampered by limited information regarding the virus impact on the vector and the lack of genomic and transcriptomic resources for BLH. This study unveils the significant impact of BCTV on both the performance and transcriptome response of BLHs. Viruliferous BLHs had higher fecundity than non-viruliferous counterparts, which was evident by upregulation of differentially expressed transcripts (DETs) associated with development, viability and fertility of germline and embryos in viruliferous insects. Conversely, most DETs associated with muscle movement and locomotor activities were downregulated in viruliferous insects, implying potential behavioural modifications by BCTV. Additionally, a great proportion of DETs related to innate immunity and detoxification were upregulated in viruliferous insects. Viral infection also induced notable alterations in primary metabolisms, including energy metabolism, namely glucosidases, lipid digestion and transport, and protein degradation, along with other cellular functions, particularly in chromatin remodelling and DNA repair. This study represents the first comprehensive transcriptome analysis for BLH. The presented findings provide new insights into the multifaceted effects of viral infection on various biological processes in BLH, offering a foundation for future investigations into the complex virus-vector relationship and potential management strategies for curly top disease.
Collapse
Affiliation(s)
- Jinlong Han
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Meihua Cui
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Jordan Withycombe
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Max Schmidtbauer
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Judith Chiginsky
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | | | | | | | - Vamsi J Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Yan L, Nur Faidah A, Sun L, Cao C. Hemolin increases the immune response of a caterpillar to NPV infection. JOURNAL OF INSECT PHYSIOLOGY 2024; 155:104651. [PMID: 38763360 DOI: 10.1016/j.jinsphys.2024.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Hemolin, a member of the immunoglobulin superfamily, plays a crucial role in the immune responses of insects against pathogens. However, the innate immune response of Hemolin to baculovirus infection varies among different insects, and the antiviral effects of Hemolin in Hyphantria cunea (HcHemolin) remain poorly understood. Our results showed that HcHemolin was expressed throughout all developmental stages, with higher expressions observed during pupal and adult stages of H. cunea. Additionally, HcHemolin was expressed in reproductive and digestive organs. The expression levels of the HcHemolin were induced significantly following H. cunea nucleopolyhedrovirus (HcNPV) infection. The susceptibility of H. cunea larvae to HcNPV decreased upon silencing of HcHemolin, resulting in a 40% reduction in median lifespan compared to the control group. The relative growth rate (RGR), the relative efficiency of consumption rate (RCR), the efficiency of the conversion of ingested food (ECI), and efficiency of the conversion of digested food (ECD) of silenced H. cunea larvae were significantly lower than those of the control group. Immune challenge assays showed that the median lifespan of treated H. cunea larvae was two-fold longer than the control group after HcNPV and HcHemolin protein co-injection. Therefore, we propose that HcHemolin plays a crucial role in regulating the growth, development, and food utilization of H. cunea, as well as in the antiviral immune response against HcNPV. These findings provide implications for the development of targeted nucleic acid pesticides and novel strategies for pollution-free biological control synergists for HcNPV.
Collapse
Affiliation(s)
- Liqiong Yan
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| | - Arina Nur Faidah
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
5
|
Hu ZG, Cao MY, Zhu Y, Wang J, Lin Y, Chen P, Lu C, Dong ZQ, Pan MH. BmNPV Bm60 is a key target gene used by a resistant strain of Bombyx mori to inhibit BmNPV proliferation. Int J Biol Macromol 2024; 264:130842. [PMID: 38484820 DOI: 10.1016/j.ijbiomac.2024.130842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes significant losses to the silkworm industry. Numerous antiviral genes and proteins have been identified by studying silkworm resistance to BmNPV. However, the molecular mechanism of silkworm resistance to BmNPV is unclear. We analyzed the differences between the susceptible strain 871 and a near-isogenic resistant strain 871C. The survival of strain 871C was significantly greater than that of 871 after oral and subcutaneous exposure to BmNPV. Strain 871C exhibited a nearly 10,000-fold higher LD50 for BmNPV compared to 871. BmNPV proliferation was significantly inhibited in all tested tissues of strain 871C using HE strain and fluorescence analysis. Strain 871C exhibited cellular resistance to BmNPV rather than peritrophic membrane or serum resistance. Strain 871C suppressed the expression of the viral early gene Bm60. This led to the inhibition of BmNPV DNA replication and late structural gene transcription based on the cascade regulation of baculovirus gene expression. Bm60 could also interact with the viral DNA binding protein and alkaline nuclease, as well as host proteins Methylcrotonoyl-CoA carboxylase subunit alpha, mucin-2-like protein, and 30 K-8. Overexpression of 30 K-8 significantly inhibited BmNPV proliferation. These results increase understanding of the molecular mechanism behind silkworm resistance to BmNPV and suggest targets for the breeding of resistant silkworm strains and the controlling pest of Lepidoptera.
Collapse
Affiliation(s)
- Zhi-Gang Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Ming-Ya Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng 475004, China
| | - Yan Zhu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Jie Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Yu Lin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
6
|
Awais MM, Fei S, Xia J, Feng M, Sun J. Insights into midgut cell types and their crucial role in antiviral immunity in the lepidopteran model Bombyx mori. Front Immunol 2024; 15:1349428. [PMID: 38420120 PMCID: PMC10899340 DOI: 10.3389/fimmu.2024.1349428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
The midgut, a vital component of the digestive system in arthropods, serves as an interface between ingested food and the insect's physiology, playing a pivotal role in nutrient absorption and immune defense mechanisms. Distinct cell types, including columnar, enteroendocrine, goblet and regenerative cells, comprise the midgut in insects and contribute to its robust immune response. Enterocytes/columnar cells, the primary absorptive cells, facilitate the immune response through enzyme secretions, while regenerative cells play a crucial role in maintaining midgut integrity by continuously replenishing damaged cells and maintaining the continuity of the immune defense. The peritrophic membrane is vital to the insect's innate immunity, shielding the midgut from pathogens and abrasive food particles. Midgut juice, a mixture of digestive enzymes and antimicrobial factors, further contributes to the insect's immune defense, helping the insect to combat invading pathogens and regulate the midgut microbial community. The cutting-edge single-cell transcriptomics also unveiled previously unrecognized subpopulations within the insect midgut cells and elucidated the striking similarities between the gastrointestinal tracts of insects and higher mammals. Understanding the intricate interplay between midgut cell types provides valuable insights into insect immunity. This review provides a solid foundation for unraveling the complex roles of the midgut, not only in digestion but also in immunity. Moreover, this review will discuss the novel immune strategies led by the midgut employed by insects to combat invading pathogens, ultimately contributing to the broader understanding of insect physiology and defense mechanisms.
Collapse
Affiliation(s)
| | | | | | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Yang X, Peng X, Lei C, Min Y, Hu J, Sun X. Virus-host coevolutionary analyses of an Alphabaculovirus with a wide host range. J Gen Virol 2024; 105. [PMID: 38314674 DOI: 10.1099/jgv.0.001959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Baculoviruses are highly host specific, and their host range is usually restricted to a single or a few closely related insect species, except for few virus species, e.g. Alphabaculovirus aucalifonicae and Alphabaculovirus mabrassicae. In this study, two new alphabaculovirus isolates were isolated from the larvae of Mamestra brassicae and Mythimna separata, which were named as Mamestra brassicae multiple nucleopolyhedrovirus isolate QD (MbMNPV-QD) and Mythimna separata multiple nucleopolyhedrovirus isolate Hb (MyseMNPV-Hb), respectively. The Kimura two-parameter values based on the concatenated 38 core genes of baculovirus revealed that MbMNPV (isolates QD/CHb1/K1/CTa), MyseMNPV-Hb, Helicoverpa armigera multiple nucleopolyhedrovirus (HearMNPV) and Mamestra configurata nucleopolyhedrovirus B (MacoNPV-B) were different isolates of a same virus species. A phylogenetic tree of baculoviruses and nudiviruses constructed from their 20 homologous gene sequences, and that of their isolated hosts constructed from 13 protein-coding genes of the insect mitochondrial genomes, were used to analyse the coevolution of baculoviruses with their isolated hosts. The results showed that M. brassicae was the most likely ancestral host of these virus isolates, included MbMNPV isolates, MyseMNPV-Hb, HearMNPV, and MacoNPV-B. Therefore, we concluded that these virus isolates belong to the existing virus species - Alphabaculovirus mabrassicae with M. brassicae as their ancestral host.
Collapse
Affiliation(s)
- Xiaoqin Yang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaowei Peng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yuanqin Min
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Jia Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Xiulian Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
8
|
Tian Z, Guo X, Michaud JP, Zha M, Zhu L, Liu X, Liu X. The gut microbiome of Helicoverpa armigera enhances immune response to baculovirus infection via suppression of Duox-mediated reactive oxygen species. PEST MANAGEMENT SCIENCE 2023; 79:3611-3621. [PMID: 37184157 DOI: 10.1002/ps.7546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Baculoviruses such as Helicoverpa armigera nucleopolyhedrovirus (HearNPV) infect their lepidopteran hosts via the larval midgut where they interact with host immune responses and gut microbiota. Here we demonstrate that gut microbiota proliferating in response to HearNPV infection promote larval immune responses which impede the infection process. RESULTS The microbial load of the larval midgut increased following HearNPV infection, due primarily to increases in Enterococcus spp., whereas most other bacterial genera declined, with Firmicutes replacing Proteobacteria as the dominant phylum. Injection of abdominal prolegs of infected larvae with H2 O2 promoted viral infection, diminished microbial abundance, and accelerated larval death, mimicking the effects of HearNPV infection, which up-regulated dual oxidase (Duox) expression, increasing H2 O2 levels in the midgut. Knockdown of Duox with RNAi reduced H2 O2 production in the guts of infected larvae, increased bacterial loads, decreased viral replication, and improved larval survival. Germ-free larvae were more susceptible to HearNPV than control larvae, exhibiting greater expression of Duox, higher levels of H2 O2 , and lower survival. Replenishment of gut bacteria in germ-free larvae restored the base-line immunity to HearNPV observed in normal larvae. Enterococcus spp., Levilactobacillus brevis, and Lactobacillus sp. bacteria were isolated and implicated in immunity restoration via replenishment in germ-free larvae. CONCLUSION These findings illuminate how gut microbiota play important roles in larval defense against oral baculovirus infection, and suggest novel avenues of investigation to enhance the efficacy of baculoviruses and improve control of lepidopteran pests. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xi Guo
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS, USA
| | - Meng Zha
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lin Zhu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoming Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Ferrelli ML, Salvador R. Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis. Viruses 2023; 15:1838. [PMID: 37766245 PMCID: PMC10534452 DOI: 10.3390/v15091838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Baculoviruses are insect-specific DNA viruses that have been exploited as bioinsecticides for the control of agricultural and forest pests around the world. Mixed infections with two different baculoviruses have been found in nature, infecting the same host. They have been studied to understand the biology of virus interactions, their effects on susceptible insects, and their insecticidal implications. In this work, we summarize and analyze the in vivo baculovirus co-infections reported in the literature, mainly focusing on pest biocontrol applications. We discuss the most common terms used to describe the effects of mixed infections, such as synergism, neutralism, and antagonism, and how to determine them based on host mortality. Frequently, baculovirus co-infections found in nature are caused by a combination of a nucleopolyhedrovirus and a granulovirus. Studies performed with mixed infections indicated that viral dose, larval stage, or the presence of synergistic factors in baculovirus occlusion bodies are important for the type of virus interaction. We also enumerate and discuss technical aspects to take into account in studies on mixed infections, such as statistical procedures, quantification of viral inocula, the selection of instars, and molecular methodologies for an appropriate analysis of baculovirus interaction. Several experimental infections using two different baculoviruses demonstrated increased viral mortality or a synergistic effect on the target larvae compared to single infections. This can be exploited to improve the baculovirus-killing properties of commercial formulations. In this work, we offer a current overview of baculovirus interactions in vivo and discuss their potential applications in pest control strategies.
Collapse
Affiliation(s)
- María Leticia Ferrelli
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Buenos Aires, Argentina
| | - Ricardo Salvador
- Instituto de Microbiología y Zoología Agrícola (IMyZA), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros s/n, Hurlingham 1686, Buenos Aires, Argentina
| |
Collapse
|
10
|
Kelbrick M, Hesse E, O' Brien S. Cultivating antimicrobial resistance: how intensive agriculture ploughs the way for antibiotic resistance. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001384. [PMID: 37606636 PMCID: PMC10482381 DOI: 10.1099/mic.0.001384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to public health, global food security and animal welfare. Despite efforts in antibiotic stewardship, AMR continues to rise worldwide. Anthropogenic activities, particularly intensive agriculture, play an integral role in the dissemination of AMR genes within natural microbial communities - which current antibiotic stewardship typically overlooks. In this review, we examine the impact of anthropogenically induced temperature fluctuations, increased soil salinity, soil fertility loss, and contaminants such as metals and pesticides on the de novo evolution and dissemination of AMR in the environment. These stressors can select for AMR - even in the absence of antibiotics - via mechanisms such as cross-resistance, co-resistance and co-regulation. Moreover, anthropogenic stressors can prime bacterial physiology against stress, potentially widening the window of opportunity for the de novo evolution of AMR. However, research to date is typically limited to the study of single isolated bacterial species - we lack data on how intensive agricultural practices drive AMR over evolutionary timescales in more complex microbial communities. Furthermore, a multidisciplinary approach to fighting AMR is urgently needed, as it is clear that the drivers of AMR extend far beyond the clinical environment.
Collapse
Affiliation(s)
- Matthew Kelbrick
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Elze Hesse
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Siobhán O' Brien
- Department of Microbiology, Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
11
|
Bossen J, Kühle JP, Roeder T. The tracheal immune system of insects - A blueprint for understanding epithelial immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103960. [PMID: 37235953 DOI: 10.1016/j.ibmb.2023.103960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The unique design of respiratory organs in multicellular organisms makes them prone to infection by pathogens. To cope with this vulnerability, highly effective local immune systems evolved that are also operative in the tracheal system of insects. Many pathogens and parasites (including viruses, bacteria, fungi, and metazoan parasites) colonize the trachea or invade the host via this route. Currently, only two modules of the tracheal immune system have been characterized in depth: 1) Immune deficiency pathway-mediated activation of antimicrobial peptide gene expression and 2) local melanization processes that protect the structure from wounding. There is an urgent need to increase our understanding of the architecture of tracheal immune systems, especially regarding those mechanisms that enable the maintenance of immune homeostasis. This need for new studies is particularly exigent for species other than Drosophila.
Collapse
Affiliation(s)
- Judith Bossen
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Jan-Philip Kühle
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany
| | - Thomas Roeder
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
12
|
Tian Z, Zhu L, Michaud JP, Zha M, Cheng J, Shen Z, Liu X, Liu X. Metabolic reprogramming of Helicoverpa armigera larvae by HearNPV facilitates viral replication and host immune suppression. Mol Ecol 2023; 32:1169-1182. [PMID: 36479957 DOI: 10.1111/mec.16817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Baculoviruses are highly evolved parasites that genetically reprogram the developing phenotype of their host insect to produce a vessel for virus replication and dispersal. Here we show that larvae of Helicoverpa armigera infected with HearNPV accumulate glucose in the midgut, which reduces food consumption and alters the dynamics of pathways governing metabolism and immunity. We used transcriptomics to demonstrate the role of the insulin signalling pathway in regulating the HearNPV infection process. Dietary restriction decreased mortality of infected larvae and reduced viral replication prior to death, whereas dietary supplementation with glucose produced the opposite effects. The expression of most tricarboxylic acid cycle (TCA) and energy metabolism-related genes was reduced in infected larvae, whereas the expression of immunity-, glycolysis- and insulin-related genes was enhanced. Treatment of infected larvae with insulin increased their survival, reduced viral replication and inhibited climbing behaviour compared to a control treatment with DMSO, whereas RNAi suppression of the insulin receptor gene produced the opposite effects. Inhibition of glycolysis with dichloroacetate (DCA) promoted viral replication and accelerated larval death, but inhibition of the TCA cycle with 2-deoxyglucose (2-DG) did not, although both diminished climbing behaviour. This work demonstrates that successful baculovirus infections hinge on metabolic reprogramming of the host and concurrent suppression of immune responses in the larval midgut, with the insulin signalling pathway mediating a trade-off between glucose metabolism and virus resistance.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lin Zhu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, Kansas, USA
| | - Meng Zha
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Cheng
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhongjian Shen
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoming Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Hu Z, Zhu F, Chen K. The Mechanisms of Silkworm Resistance to the Baculovirus and Antiviral Breeding. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:381-399. [PMID: 36689303 DOI: 10.1146/annurev-ento-120220-112317] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silkworm (Bombyx mori) is not only an economic insect but also a model organism for life science research. Bombyx mori nucleopolyhedrovirus (BmNPV) disease is a major infectious disease in the world's sericulture industry. The cocoon loss caused by this disease accounts for more than 60% of the total loss caused by all silkworm diseases. To date, there has been no effective solution for preventing and treating this disease. The most effective measure is to breed disease-resistant varieties. The quickest way to breed disease-resistant varieties is to apply genetic modification. However, this requires that we obtain disease resistance genes and know the mechanism of disease resistance. Since the discovery of disease-resistant resources in 1989, scholars in the sericulture industry around the world have been inspired to search for resistance genes. In the past two decades, with the help of multi-omics technologies, screening of resistance genes, gene localization, protein modification, virus-host interactions, etc., researchers have found some candidate genes that have been proposed to function at the cellular or individual level. Several disease-resistant varieties have been obtained and used in production through hybrid breeding, RNA interference, and genetic modification. This article summarizes and reviews the discovery of and research advances related to silkworm resistance to BmNPV. It is anticipated that the review will inspire scientific researchers to continue searching for disease resistance genes, clarify the molecular mechanism of silkworm disease resistance, and promote disease-resistant silkworm breeding.
Collapse
Affiliation(s)
- Zhaoyang Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| |
Collapse
|
14
|
Hu M, Zhu Y, Mo Y, Gao X, Miao M, Yu W. Acetylation of citrate synthase inhibits Bombyx mori nucleopolyhedrovirus propagation by affecting energy metabolism. Microb Pathog 2022; 173:105890. [DOI: 10.1016/j.micpath.2022.105890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/08/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
|
15
|
Ji J, Shen D, Zhang S, Wang L, An C. Serpin-4 Facilitates Baculovirus Infection by Inhibiting Melanization in Asian Corn Borer, Ostrinia furnacalis (Guenée). Front Immunol 2022; 13:905357. [PMID: 35757693 PMCID: PMC9218052 DOI: 10.3389/fimmu.2022.905357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Phenoloxidase (PO)-catalyzed melanization is a vital immune response in insects for defense against pathogen infection. This process is mediated by clip domain serine proteases and regulated by members of the serpin superfamily. We here revealed that the infection of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) significantly inhibited the PO activity in Ostrinia furnacalis hemolymph and induced the expression of O. furnacalis serpin-4. Addition of recombinant serpin-4 protein to O. furnacalis hemolymph resulted in a great increase of AcMNPV copies. Serpin-4 significantly suppressed the PO activity and the amidase activity in cleaving colorimetric substrate IEARpNA (IEARase activity) of hemolymph. Further experiments indicated it formed covalent complexes with three serine proteases (SP1, SP13 and SP105) and prevented them from cleaving their cognate downstream proteases in vitro. Altogether, O. furnacalis melanization restricted AcMNPV replication and serpin-4 facilitated AcMNPV infection by inhibiting serine proteases, SP1, SP13, and SP105 which were all involved in the melanization response.
Collapse
Affiliation(s)
- Jiayue Ji
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dongxu Shen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.,Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Shasha Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lei Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chunju An
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
El-Salamouny S, Wennmann JT, Kleespies RG, Richert-Pöggeler KR, Mansour A, Awad M, Agamy E, Salama R, Jehle JA. Identification of a new nucleopolyhedrovirus isolated from the olive leaf moth, Palpita vitrealis, from two locations in Egypt. J Invertebr Pathol 2022; 192:107770. [PMID: 35597278 DOI: 10.1016/j.jip.2022.107770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 11/25/2022]
Abstract
The olive leaf moth (jasmine moth), Palpita vitrealis (Lepidoptera: Crambidae), is an important insect pest of olives in several Mediterranean countries. A new alphabaculovirus was isolated from diseased larvae of P. vitrealis in Egypt, first in Giza in spring 2005 and again in Marsa Matrouh in 2019.The larvae exhibited typical symptoms of a baculovirus infection. Light and scanning electron microscopy studies revealed polyhedral occlusion bodies. Transmission electron microscopy of ultrathin sections of purified OBs revealed virions with multiple embedded nucleocapsids. The identity of the two virus isolates was confirmed by sequencing the partial polyhedrin and lef-8 genes, and sequence comparison suggested a relationship to group I alphabaculoviruses. Therefore, this virus was termed Palpita vitrealis nucleopolyhedrovirus (PaviNPV). Whole genome sequencing of the PaviNPV isolate from Giza (Gz05) revealed a genome of 117,533 bp, 131 open reading frames (ORFs) and three homologous repeat (hr) regions. Phylogenetic reconstruction and genetic distance analyses using 38 core genes indicated that PaviNPV is most closely related to Thysanoplusia orichalcea nucleopolyhedrovirus (ThorNPV) but should be considered to belong to a novel species within the genus Alphabaculovirus. In bioassays, PaviNPV was highly virulent against second-instar larvae of P. vitrealis. The study reports a novel baculovirus that might have potential as a biological control agent of the olive leaf moth.
Collapse
Affiliation(s)
- Said El-Salamouny
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt; Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany
| | - Jörg T Wennmann
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany
| | - Regina G Kleespies
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany
| | - Katja R Richert-Pöggeler
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Amany Mansour
- Department of Plant Protection Desert Research Center, Ministry of Agriculture, Matariya, 11753 Cairo, Egypt
| | - Mona Awad
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Essam Agamy
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Ramadan Salama
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Johannes A Jehle
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany.
| |
Collapse
|
17
|
Tian Z, Zha M, Cai L, Michaud JP, Cheng J, Shen Z, Liu X, Liu X. FoxO-promoted peroxiredoxin1 expression induced by Helicoverpa armigera single nucleopolyhedrovirus infection mediates host development and defensive responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113414. [PMID: 35305350 DOI: 10.1016/j.ecoenv.2022.113414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Helicoverpa armigera single nucleopolyhedrovirus (HearNPV) has a long coevolutionary history with its host, exerting profound effects on larval development, physiology and immune responses, although the mechanisms mediating these effects remain unclear. We demonstrate that HearNPV infection constrains the growth and development of larvae by inducing high levels of reactive oxygen species (ROS), which increase the expression of forkhead box O transcription factor (FoxO). FoxO upregulates the expression of peroxiredoxin 1 (Prx1) which serves to regulate larval development and immune responses following HearNPV infection. Collectively, our results provide novel insights into the role of Prx1 in larval development and immunity subsequent to HearNPV infection. Further investigation of the oxidative stress induced by HearNPV in H. armigera and its interactions with host immunity could yield novel insights useful in agricultural pest control.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Meng Zha
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Limei Cai
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - J P Michaud
- Department of Entomology, Agricultural Research Center-Hays, Kansas State University, Hays, KS 67601, USA.
| | - Jie Cheng
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Zhongjian Shen
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xiaoming Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xiaoxia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
SUMOylation Regulates BmNPV Replication by Moderating PKIP Intracellular Localization. Processes (Basel) 2022. [DOI: 10.3390/pr10020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
SUMOylation is a reversible covalent process between a small ubiquitin-like modifier (SUMO) and its target protein and has become a crucial regulator of protein functions. Here, we report that Bombyx mori nucleopolyhedrovirus (BmNPV) may take advantage of the host SUMOylation system to enhance its own replication, similar to many other viruses. Both the knockdown of BmSUMO by RNAi and chemical blocking by ginkgolic acid both impaired BmNPV replication. Using site mutation and pull-down assays, we found that lysine K70 of the protein kinase-interacting protein (PKIP), which is conserved in all Alphabaculoviruses, was modified by SUMO. Mutation of K70 in PKIP led to its translocation from the cytoplasm to the nucleus. Knockout and rescue experiments showed that the rescue of PKIP mutant virus with wild-type PKIP restored BmNPV replication to the normal level, but this was not true for the K70R mutation. Altogether, these results show that SUMOylation of PKIP plays a key role in BmNPV replication.
Collapse
|
19
|
Shi X, Zhang Y, Zhu T, Li N, Sun S, Zhu M, Pan J, Shen Z, Hu X, Zhang X, Gong C. Response to Bombyx mori nucleopolyhedrovirus infection in silkworm: Gut metabolites and microbiota. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104227. [PMID: 34363835 DOI: 10.1016/j.dci.2021.104227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The diversity of microbiota and metabolites in the digestive tract gut is important in physiology and homeostasis, nutrient uptake and virus infection. In lepidopteran insect model silkworms, little is known about how microbiota and metabolites are altered after oral infection with BmNPV. Herein, we used 16S rDNA sequencing and metabolomics to show that the gut microbiota and metabolites of silkworm midgut are significantly altered after BmNPV infection. Kyoto Encyclopedia of Genes and Genomes analysis revealed enrichment of flavone and flavonol biosynthesis, glycosyltransferases, and electron transfer carriers signaling pathways, suggesting potential roles in viral infection. Infection also changed the abundance of metabolites in the digestive tract gut, where most pathways were related to metabolism of amino acids, fatty acids and other pathways (e.g., citrate cycle). In addition, a correlation was observed between digestive tract gut microbiota and metabolites. These results shed light on the interaction between digestive tract gut microbiota, metabolites and host-virus interaction, and enhance our understanding of viral infection links to midgut microbiota and metabolic activity in the silkworm.
Collapse
Affiliation(s)
- Xiu Shi
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Yaxin Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Tianchen Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Nan Li
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Sufei Sun
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zeen Shen
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China.
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
20
|
Yuan C, Xing L, Wang M, Hu Z, Zou Z. Microbiota modulates gut immunity and promotes baculovirus infection in Helicoverpa armigera. INSECT SCIENCE 2021; 28:1766-1779. [PMID: 33463036 DOI: 10.1111/1744-7917.12894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/07/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Baculoviruses are natural enemies of agricultural and forest insect pests and play an important role in biological pest control. Oral infection by baculovirus in the insect midgut is necessary for establishing systemic infection and eventually killing the insect. Since the insect midgut continuously encounters microbiota, the gut microbiota could affect baculovirus infection. Here, we demonstrated that gut microbiota modulates immune responses and promotes baculovirus infection in the cotton bollworm, Helicoverpa armigera. After oral infection, numerous host immunity-related genes including genes encoding Toll and immune deficiency (IMD) pathway components were upregulated in the midgut. Elimination of the gut microbiota significantly increased the resistance to viral infection in H. armigera. Quantitative real-time reverse transcription polymerase chain reaction and proteomic analysis showed that downregulation of the antiviral factor prophenoloxidase (PPO) could be mediated by microbiota during infection. It implied that midgut microbiota diminishes the expression of PPO to facilitate viral infection in H. armigera. Our findings revealed that the microbiota plays an important role in modulating the resistance of H. armigera to baculovirus infection, providing new insights in applying biopesticide.
Collapse
Affiliation(s)
- Chuanfei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Longsheng Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Li Y, Zhang J, Zhao S, Wu X. BmNPV-induced hormone metabolic disorder in silkworm leads to enhanced locomotory behavior. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104036. [PMID: 33545211 DOI: 10.1016/j.dci.2021.104036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Many parasites alter the host locomotory behaviors in a way that increases their fitness and progeny transmission. Baculoviruses can manipulate host physiology and alter the locomotory behavior by inducing 'hyperactivity' (increased locomotion) or 'tree-top disease' (climbing high up to the top before dying). However, the detailed molecular mechanism underlying virus-induced this hyperactive behavior remains elusive. In the present study, we showed that BmNPV invaded into silkworm brain tissue, resulting in severe brain damage. Moreover, BmNPV infection disturbed the insect hormone balance. The content of 20-hydroxyecdysone (20E) in hemolymph was much lower during the hyperactive stage, while the dopamine (DA) titer was higher than mock infection. Exogenous hormone treatment assays demonstrated that 20E inhibits virus-induced ELA (enhanced locomotory activity), while dopamine stimulates this behavior. More specificity, injection of dopamine or its agonist promote this hyperactive behavior in BmNPV-infected larvae. Taking together, our findings revealed the important role of hormone metabolism in BmNPV-induced ELA.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Silkworm and Bee Resource Stilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Jianjia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Silkworm and Bee Resource Stilization and Innovation of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
22
|
Chalivendra S. Microbial Toxins in Insect and Nematode Pest Biocontrol. Int J Mol Sci 2021; 22:ijms22147657. [PMID: 34299280 PMCID: PMC8303606 DOI: 10.3390/ijms22147657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Invertebrate pests, such as insects and nematodes, not only cause or transmit human and livestock diseases but also impose serious crop losses by direct injury as well as vectoring pathogenic microbes. The damage is global but greater in developing countries, where human health and food security are more at risk. Although synthetic pesticides have been in use, biological control measures offer advantages via their biodegradability, environmental safety and precise targeting. This is amply demonstrated by the successful and widespread use of Bacillusthuringiensis to control mosquitos and many plant pests, the latter by the transgenic expression of insecticidal proteins from B. thuringiensis in crop plants. Here, I discuss the prospects of using bacterial and fungal toxins for pest control, including the molecular basis of their biocidal activity.
Collapse
|
23
|
Ricarte-Bermejo A, Simón O, Fernández AB, Williams T, Caballero P. Bacmid Expression of Granulovirus Enhancin En3 Accumulates in Cell Soluble Fraction to Potentiate Nucleopolyhedrovirus Infection. Viruses 2021; 13:1233. [PMID: 34202228 PMCID: PMC8309998 DOI: 10.3390/v13071233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Enhancins are metalloproteinases that facilitate baculovirus infection in the insect midgut. They are more prevalent in granuloviruses (GVs), constituting up to 5% of the proteins of viral occlusion bodies (OBs). In nucleopolyhedroviruses (NPVs), in contrast, they are present in the envelope of the occlusion-derived virions (ODV). In the present study, we constructed a recombinant Autographa californica NPV (AcMNPV) that expressed the Trichoplusia ni GV (TnGV) enhancin 3 (En3), with the aim of increasing the presence of enhancin in the OBs or ODVs. En3 was successfully produced but did not localize to the OBs or the ODVs and accumulated in the soluble fraction of infected cells. As a result, increased OB pathogenicity was observed when OBs were administered in mixtures with the soluble fraction of infected cells. The mixture of OBs and the soluble fraction of Sf9 cells infected with BacPhEn3 recombinant virus was ~3- and ~4.7-fold more pathogenic than BacPh control OBs in the second and fourth instars of Spodoptera exigua, respectively. In contrast, when purified, recombinant BacPhEn3 OBs were as pathogenic as control BacPh OBs. The expression of En3 in the soluble fraction of insect cells may find applications in the development of virus-based insecticides with increased efficacy.
Collapse
Affiliation(s)
- Adriana Ricarte-Bermejo
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain; (A.R.-B.); (A.B.F.); (P.C.)
| | - Oihane Simón
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain; (A.R.-B.); (A.B.F.); (P.C.)
| | - Ana Beatriz Fernández
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain; (A.R.-B.); (A.B.F.); (P.C.)
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Polígono Industrial Mocholi Plaza Cein 5, Nave A14, 31110 Noain, Navarra, Spain
| | | | - Primitivo Caballero
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain; (A.R.-B.); (A.B.F.); (P.C.)
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Polígono Industrial Mocholi Plaza Cein 5, Nave A14, 31110 Noain, Navarra, Spain
| |
Collapse
|
24
|
Jiang L, Goldsmith MR, Xia Q. Advances in the Arms Race Between Silkworm and Baculovirus. Front Immunol 2021; 12:628151. [PMID: 33633750 PMCID: PMC7900435 DOI: 10.3389/fimmu.2021.628151] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Insects are the largest group of animals. Nearly all organisms, including insects, have viral pathogens. An important domesticated economic insect is the silkworm moth Bombyx mori. B. mori nucleopolyhedrovirus (BmNPV) is a typical baculovirus and a primary silkworm pathogen. It causes major economic losses in sericulture. Baculoviruses are used in biological pest control and as a bioreactor. Silkworm and baculovirus comprise a well-established model of insect–virus interactions. Several recent studies have focused on this model and provided novel insights into viral infections and host defense. Here, we focus on baculovirus invasion, silkworm immune response, baculovirus evasion of host immunity, and enhancement of antiviral efficacy. We also discuss major issues remaining and future directions of research on silkworm antiviral immunity. Elucidation of the interaction between silkworm and baculovirus furnishes a theoretical basis for targeted pest control, enhanced pathogen resistance in economically important insects, and bioreactor improvement.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Marian R Goldsmith
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Inglis PW, Santos LAVM, Craveiro SR, Ribeiro BM, Castro MEB. Mosaic genome evolution and phylogenetics of Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) and virulence of seven new isolates from the Brazilian states of Minas Gerais and Mato Grosso. Arch Virol 2021; 166:125-138. [PMID: 33111162 DOI: 10.1007/s00705-020-04858-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
In a comparative analysis of genome sequences from isolates of the baculovirus Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) from Brazil and Guatemala, we identified a subset of isolates possessing chimeric genomes. We identified six distinct phylogenetically incongruous regions (PIRs) dispersed in the genomes, of between 279 and 3345 bp in length. The individual PIRs possessed high sequence similarity among the affected ChinNPV isolates but varied in coverage in some instances. The donor for four of the PIRs implicated in horizontal gene transfer (HGT) was identified as Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), an alphabaculovirus closely related to ChinNPV, or another unknown but closely related virus. BLAST searches of the other two PIRs returned only ChinNPV sequences, but HGT from an unknown donor baculovirus cannot be excluded. Although Chrysodeixis includens and Trichoplusia ni are frequently co-collected from soybean fields in Brazil, pathogenicity data suggest that natural coinfection of C. includens larvae with ChinNPV and TnSNPV is probably uncommon. Additionally, since the chimeric ChinNPV genomes with tracts of TnSNPV sequence were restricted to a single monophyletic lineage of closely related isolates, a model of progressive restoration of the native DNA sequence by recombination with ChinNPV possessing a fully or partially non-chimeric genome is reasonable. However, multiple independent HGT from TnSNPV to ChinNPV during the evolution of these isolates cannot be excluded. Mortality data suggest that the ChinNPV isolates with chimeric genomes are not significantly different in pathogenicity towards C. includens when compared to most other ChinNPV isolates. Exclusion of the PIRs prior to phylogenetic analysis had a large impact on the topology of part of the maximum-likelihood tree, revealing a homogenous clade of three isolates (IB, IC and ID) from Paraná state in Brazil collected in 2006, together with an isolate from Guatemala collected in 1972 (IA), comprising the lineage uniquely affected by HGT from TnSNPV. The other 10 Brazilian ChinNPV isolates from Paraná, Mato Grosso, and Minas Gerais states showed higher variability, where only three isolates from Paraná state formed a monophyletic group correlating with geographical origin.
Collapse
Affiliation(s)
- Peter W Inglis
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil.
| | - Luis Arthur V M Santos
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Saluana R Craveiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil
| | - Maria Elita B Castro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| |
Collapse
|
26
|
Increased expression of Suppressor of cytokine signaling 2 (BmSOCS2) is correlated with suppression of Bombyx mori nucleopolyhedrovirus replication in silkworm larval tissues and cells. J Invertebr Pathol 2020; 174:107419. [PMID: 32535001 DOI: 10.1016/j.jip.2020.107419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
The resistance of silkworm to infection by Bombyx mori nuclear polyhedrosis virus (BmNPV) is a main focus of sericultural research. Previously, a BmNPV-resistant strain, NB, was identified among a collection of Chinese silkworm strains in our lab. To better understand the molecular mechanism of NB strain resistance, the patterns of host immune response gene transcription in resistant (NB) and susceptible (306) strains were examined. Quantative real-time PCR (qRT-PCR) revealed that multiple insect innate immune signaling pathways (Toll, Imd and JAK/STAT) were strongly activated upon infection with BmNPV. Notably, Suppressor of cytokine signaling 2 (BmSOCS2) mRNA expression was significantly up-regulated in midgut tissues of the resistant NB strain, suggesting that the BmSOCS2 gene product may be involved in host immune defense against BmNPV infection. A significant inhibition of BmNPV replication was also observed in BmN cells transfected with a vector encoding BmSOCS2. The results suggest that BmSOCS2 is a key gene involved in the resistance of the NB silkworm strain to BmNPV infection.
Collapse
|
27
|
Sosa-Gómez DR, Morgado FS, Corrêa RFT, Silva LA, Ardisson-Araújo DMP, Rodrigues BMP, Oliveira EE, Aguiar RWS, Ribeiro BM. Entomopathogenic Viruses in the Neotropics: Current Status and Recently Discovered Species. NEOTROPICAL ENTOMOLOGY 2020; 49:315-331. [PMID: 32358711 DOI: 10.1007/s13744-020-00770-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
The market for biological control of insect pests in the world and in Brazil has grown in recent years due to the unwanted ecological and human health impacts of chemical insecticides. Therefore, research on biological control agents for pest management has also increased. For instance, insect viruses have been used to protect crops and forests around the world for decades. Among insect viruses, the baculoviruses are the most studied and used viral biocontrol agent. More than 700 species of insects have been found to be naturally infected by baculoviruses, with 90% isolated from lepidopteran insects. In this review, some basic aspects of baculovirus infection in vivo and in vitro infection, gene content, viral replication will be discussed. Furthermore, we provide examples of the use of insect viruses for biological pest control and recently characterized baculoviruses in Brazil.
Collapse
Affiliation(s)
- D R Sosa-Gómez
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Londrina, PR, Brasil
| | - F S Morgado
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - R F T Corrêa
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - L A Silva
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - D M P Ardisson-Araújo
- Depto de Bioquímica e Biologia Molecular, Univ Federal de Santa Maria, Santa Maria, RS, Brasil
| | - B M P Rodrigues
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - E E Oliveira
- Depto de Entomologia, Univ Federal de Viçosa, Viçosa, MG, Brasil
| | - R W S Aguiar
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - B M Ribeiro
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil.
| |
Collapse
|
28
|
Hou D, Kuang W, Luo S, Zhang F, Zhou F, Chen T, Zhang Y, Wang H, Hu Z, Deng F, Wang M. Baculovirus ODV-E66 degrades larval peritrophic membrane to facilitate baculovirus oral infection. Virology 2019; 537:157-164. [PMID: 31493654 DOI: 10.1016/j.virol.2019.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 11/17/2022]
Abstract
ODV-E66 is a major envelope proteins of baculovirus occlusion derived virus (ODV) with chondroitinase activity. Here, we studied the roles of ODV-E66 during Helicoverpa armigera nucleopolyhedrovirus (HearNPV) primary infection. ODV-E66 is a late viral protein dispensable for BV production and ODV morphogenesis. Deletion of odv-e66 had a profound effect on HearNPV oral infectivity in 4th instar larvae with a 50% lethal concentration (LC50) value of 26 fold higher than that of the repaired virus, compared to in 3rd instar larvae. Calcofluor white, an agent which destroys the peritrophic membrane (PM), could rescue the oral infectivity of odv-e66 deleted HearNPV, implying the PM may be the target of ODV-E66. In vitro assays showed HearNPV ODV-E66 has chondroitinase activity. Electron microscopy demonstrated that odv-e66 deletion alleviated the damage to the PM caused by HearNPV infection. These data suggest an important role of ODV-E66 in the penetration of the PM during oral infection.
Collapse
Affiliation(s)
- Dianhai Hou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Wenhua Kuang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sijiani Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fenghua Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fengqiao Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tong Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanfang Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
29
|
Ribeiro JM, Debat HJ, Boiani M, Ures X, Rocha S, Breijo M. An insight into the sialome, mialome and virome of the horn fly, Haematobia irritans. BMC Genomics 2019; 20:616. [PMID: 31357943 PMCID: PMC6664567 DOI: 10.1186/s12864-019-5984-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The horn fly (Haematobia irritans) is an obligate blood feeder that causes considerable economic losses in livestock industries worldwide. The control of this cattle pest is mainly based on insecticides; unfortunately, in many regions, horn flies have developed resistance. Vaccines or biological control have been proposed as alternative control methods, but the available information about the biology or physiology of this parasite is rather scarce. RESULTS We present a comprehensive description of the salivary and midgut transcriptomes of the horn fly (Haematobia irritans), using deep sequencing achieved by the Illumina protocol, as well as exploring the virome of this fly. Comparison of the two transcriptomes allow for identification of uniquely salivary or uniquely midgut transcripts, as identified by statistically differential transcript expression at a level of 16 x or more. In addition, we provide genomic highlights and phylogenetic insights of Haematobia irritans Nora virus and present evidence of a novel densovirus, both associated to midgut libraries of H. irritans. CONCLUSIONS We provide a catalog of protein sequences associated with the salivary glands and midgut of the horn fly that will be useful for vaccine design. Additionally, we discover two midgut-associated viruses that infect these flies in nature. Future studies should address the prevalence, biological effects and life cycles of these viruses, which could eventually lead to translational work oriented to the control of this economically important cattle pest.
Collapse
Affiliation(s)
- J. M. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway Room 3E28, Rockville, MD 20852 USA
| | - Humberto Julio Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba, Argentina
| | - M. Boiani
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Gral. Flores, 2125 Montevideo, Uruguay
| | - X. Ures
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Gral. Flores, 2125 Montevideo, Uruguay
| | - S. Rocha
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Gral. Flores, 2125 Montevideo, Uruguay
| | - M. Breijo
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Gral. Flores, 2125 Montevideo, Uruguay
| |
Collapse
|
30
|
Kang L. Overview: biotic signalling for smart pest management. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180306. [PMID: 30967024 PMCID: PMC6367148 DOI: 10.1098/rstb.2018.0306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2018] [Indexed: 11/12/2022] Open
Abstract
Biotic signalling refers to species or phylogenetic-clade-specific signals that elicit adaptive and acceptable responses within and among organisms. It is not only the molecular basis of the ecological relationships among different species, such as parasitism, symbiosis and predation, but also serves as ideal targets that can be used to manipulate these ecological relationships. This concept was proposed by a group of scientists from the Chinese Academy of Sciences (CAS) and actively pursued in a five-year research project in 2014 funded by the CAS ($40 million), entitled 'Decoding biotic interactions and mechanism for target management of agricultural pests'. The multi-disciplinary project aimed at a systematic investigation of the intra-species and inter-species and interactions via biotic signalling, with the ultimate goal being the development of novel methods to manage the pest insects and diseases. We hereby propose a topic 'Biotic signalling sheds light on smart pest control' as a theme issue for the Philosophical Transactions of the Royal Society B. It contains a total of 18 reviews and research articles under the topic of signalling manipulation for pest management. Unravelling these complex interactions among plants, microbial pathogens and insects holds promise for developing novel strategies to protect crop plants without compromising agricultural productivity and environmental health. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Le Kang
- State Key Laboratory for Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
- College of Life Science, Hebei University, Baoding City 071002, Hebei, People's Republic of China
| |
Collapse
|