1
|
Obel HO, Zhou X, Liu S, Yang Y, Liu J, Zhuang Y. Genome-Wide Identification of Glutathione S-Transferase Genes in Eggplant ( Solanum melongena L.) Reveals Their Potential Role in Anthocyanin Accumulation on the Fruit Peel. Int J Mol Sci 2024; 25:4260. [PMID: 38673847 PMCID: PMC11050406 DOI: 10.3390/ijms25084260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Anthocyanins are ubiquitous pigments derived from the phenylpropanoid compound conferring red, purple and blue pigmentations to various organs of horticultural crops. The metabolism of flavonoids in the cytoplasm leads to the biosynthesis of anthocyanin, which is then conveyed to the vacuoles for storage by plant glutathione S-transferases (GST). Although GST is important for transporting anthocyanin in plants, its identification and characterization in eggplant (Solanum melongena L.) remains obscure. In this study, a total of 40 GST genes were obtained in the eggplant genome and classified into seven distinct chief groups based on the evolutionary relationship with Arabidopsis thaliana GST genes. The seven subgroups of eggplant GST genes (SmGST) comprise: dehydroascorbate reductase (DHAR), elongation factor 1Bγ (EF1Bγ), Zeta (Z), Theta(T), Phi(F), Tau(U) and tetra-chlorohydroquinone dehalogenase TCHQD. The 40 GST genes were unevenly distributed throughout the 10 eggplant chromosomes and were predominantly located in the cytoplasm. Structural gene analysis showed similarity in exons and introns within a GST subgroup. Six pairs of both tandem and segmental duplications have been identified, making them the primary factors contributing to the evolution of the SmGST. Light-related cis-regulatory elements were dominant, followed by stress-related and hormone-responsive elements. The syntenic analysis of orthologous genes indicated that eggplant, Arabidopsis and tomato (Solanum lycopersicum L.) counterpart genes seemed to be derived from a common ancestry. RNA-seq data analyses showed high expression of 13 SmGST genes with SmGSTF1 being glaringly upregulated on the peel of purple eggplant but showed no or low expression on eggplant varieties with green or white peel. Subsequently, SmGSTF1 had a strong positive correlation with anthocyanin content and with anthocyanin structural genes like SmUFGT (r = 0.9), SmANS (r = 0.85), SmF3H (r = 0.82) and SmCHI2 (r = 0.7). The suppression of SmGSTF1 through virus-induced gene silencing (VIGs) resulted in a decrease in anthocyanin on the infiltrated fruit surface. In a nutshell, results from this study established that SmGSTF1 has the potential of anthocyanin accumulation in eggplant peel and offers viable candidate genes for the improvement of purple eggplant. The comprehensive studies of the SmGST family genes provide the foundation for deciphering molecular investigations into the functional analysis of SmGST genes in eggplant.
Collapse
Affiliation(s)
- Hesbon Ochieng Obel
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.O.O.); (X.Z.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xiaohui Zhou
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.O.O.); (X.Z.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Songyu Liu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.O.O.); (X.Z.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Yan Yang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.O.O.); (X.Z.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jun Liu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.O.O.); (X.Z.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Yong Zhuang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.O.O.); (X.Z.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
2
|
Caccamo A, Vega de Luna F, Wahni K, Volkov AN, Przybyla-Toscano J, Amelii A, Kriznik A, Rouhier N, Messens J, Remacle C. Ascorbate Peroxidase 2 (APX2) of Chlamydomonas Binds Copper and Modulates the Copper Insertion into Plastocyanin. Antioxidants (Basel) 2023; 12:1946. [PMID: 38001799 PMCID: PMC10669542 DOI: 10.3390/antiox12111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Recent phylogenetic studies have unveiled a novel class of ascorbate peroxidases called "ascorbate peroxidase-related" (APX-R). These enzymes, found in green photosynthetic eukaryotes, lack the amino acids necessary for ascorbate binding. This study focuses on the sole APX-R from Chlamydomonas reinhardtii referred to as ascorbate peroxidase 2 (APX2). We used immunoblotting to locate APX2 within the chloroplasts and in silico analysis to identify key structural motifs, such as the twin-arginine transport (TAT) motif for lumen translocation and the metal-binding MxxM motif. We also successfully expressed recombinant APX2 in Escherichia coli. Our in vitro results showed that the peroxidase activity of APX2 was detected with guaiacol but not with ascorbate as an electron donor. Furthermore, APX2 can bind both copper and heme, as evidenced by spectroscopic, and fluorescence experiments. These findings suggest a potential interaction between APX2 and plastocyanin, the primary copper-containing enzyme within the thylakoid lumen of the chloroplasts. Predictions from structural models and evidence from 1H-NMR experiments suggest a potential interaction between APX2 and plastocyanin, emphasizing the influence of APX2 on the copper-binding abilities of plastocyanin. In summary, our results propose a significant role for APX2 as a regulator in copper transfer to plastocyanin. This study sheds light on the unique properties of APX-R enzymes and their potential contributions to the complex processes of photosynthesis in green algae.
Collapse
Affiliation(s)
- Anna Caccamo
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Félix Vega de Luna
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Alexander N. Volkov
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Jonathan Przybyla-Toscano
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Antonello Amelii
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Alexandre Kriznik
- CNRS, IMoPA and IBSLor, Université de Lorraine, F-54000 Nancy, France;
| | | | - Joris Messens
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| |
Collapse
|
3
|
Dard A, Weiss A, Bariat L, Auverlot J, Fontaine V, Picault N, Pontvianne F, Riondet C, Reichheld JP. Glutathione-mediated thermomorphogenesis and heat stress responses in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2707-2725. [PMID: 36715641 DOI: 10.1093/jxb/erad042] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/28/2023] [Indexed: 06/06/2023]
Abstract
In the context of climate change, the global rise of temperature and intense heat waves affect plant development and productivity. Among the molecular perturbations that high temperature induces in living cells is the accumulation of reactive oxygen species (ROS), which perturbs the cellular redox state. In plants, the dynamics of the cellular and subcellular redox state have been poorly investigated under high temperature. Glutathione plays a major role in maintaining the cellular redox state. We investigated its contribution in adaptation of Arabidopsis thaliana to contrasting high temperature regimes: high ambient temperature inducing thermomorphogenesis and heat stress affecting plant viability. Using the genetically encoded redox marker roGFP2, we show that high temperature regimes lead to cytoplasmic and nuclear oxidation and impact the glutathione pool. This pool is restored within a few hours, which probably contributes to plant adaptation to high temperatures. Moreover, low glutathione mutants fail to adapt to heat stress and to induce thermomorphogenesis, suggesting that glutathione is involved in both heat adaptation mechanisms. We also evaluate the transcriptomic signature in the two high temperature regimes and identified gene expression deviations in low glutathione mutants, which might contribute to their sensitivity to high temperature. Thus, we define glutathione as a major player in the adaptation of Arabidopsis to contrasting high temperature regimes.
Collapse
Affiliation(s)
- Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Alizée Weiss
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Laetitia Bariat
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Juline Auverlot
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Valentine Fontaine
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Nathalie Picault
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Frédéric Pontvianne
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Christophe Riondet
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
4
|
Vaish S, Parveen R, Singh N, Gupta D, Basantani MK. Computational insights into diverse aspects of glutathione S-transferase gene family in Papaver somniferum. JOURNAL OF PLANT RESEARCH 2022; 135:823-852. [PMID: 36066757 DOI: 10.1007/s10265-022-01408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Plant glutathione S-transferases are an ancient protein superfamily having antioxidant activity. These proteins are primarily involved in diverse plant functions such as plant growth and development, secondary metabolism, signaling pathways and defense against biotic and abiotic stresses. The current study aimed to comprehensively identify and characterize the GST gene family in the medicinally important crop Papaver somniferum. A total of 93 GST proteins were identified belonging to eight GST classes and found to be majorly localized in the cytoplasm. All GST genes were found on eleven opium chromosomes. Gene duplication analysis showed segmental duplication as a key factor for opium GST gene family expansion under strong purifying selection. Phylogenetic analysis with gymnosperm, angiosperm and bryophyte revealed the evolution of GSTs earlier than their division into separate groups and also prior to the divergence of monocot and dicot. The secondary structure prediction showed the dominance of α-helices indicative of PsomGSTs as structurally stable and elastic proteins. Gene architecture showed the conservation of number of exons across the classes. MEME analysis revealed only a few class specific and many across class conserved motifs. Ser was found to be the active site residue of tau, phi, theta and zeta class and Cys was catalytic residue of DHAR, lambda and GHR class. Promoter analyses identified many cis-acting regulatory elements related to hormonal, cellular, stress and light response functions. Ser was the key phosphorylation site. Only three glycosylation sites were found across the 93 PsomGSTs. 3D structure prediction was also performed and was validated. Interactome analyses revealed the correlation of PsomGSTs with glutathione metabolizing proteins. Gene enrichment analysis and KEGG pathway analyzed the involvement of PsomGSTs in three major pathways i.e. glutathione metabolism, tyrosine metabolism and ascorbate metabolism. The outcome revealed high model quality of PsomGSTs. The results of the current study will be of potential significance to understand the functional and structural importance of the GST gene family in opium, a medicinally important crop.
Collapse
Affiliation(s)
- Swati Vaish
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Reshma Parveen
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Nootan Singh
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Divya Gupta
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Mahesh Kumar Basantani
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India.
| |
Collapse
|
5
|
Genomic and functional insights into the diversification of the elongation factor eEF1Bγ in fungi. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Vaish S, Parveen R, Gupta D, Basantani MK. Genome-wide identification and characterization of glutathione S-transferase gene family in Musa acuminata L. AAA group and gaining an insight to their role in banana fruit development. J Appl Genet 2022; 63:609-631. [PMID: 35689012 DOI: 10.1007/s13353-022-00707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 10/18/2022]
Abstract
Glutathione S-transferases are a multifunctional protein superfamily that is involved in diverse plant functions such as defense mechanisms, signaling, stress response, secondary metabolism, and plant growth and development. Although the banana whole-genome sequence is available, the distribution of GST genes on banana chromosomes, their subcellular localization, gene structure, their evolutionary relation with each other, conserved motifs, and their roles in banana are still unknown. A total of 62 full-length GST genes with the canonical thioredoxin fold have been identified belonging to nine GST classes, namely tau, phi, theta, zeta, lambda, DHAR, EF1G, GHR, and TCHQD. The 62 GST genes were distributed into 11 banana chromosomes. All the MaGSTs were majorly localized in the cytoplasm. Gene architecture showed the conservation of exon numbers in individual GST classes. Multiple Em for Motif Elicitation analyses revealed few class-specific motifs and many motifs were found in all the GST classes. Multiple sequence alignment of banana GST amino acid sequences with rice, Arabidopsis, and soybean sequences revealed the Ser and Cys as conserved catalytic residues. Gene duplication analyses showed the tandem duplication as a driving force for GST gene family expansion in banana. Cis-regulatory element analysis showed the dominance of light-responsive element followed by stress- and hormone-responsive elements. Expression profiling analyses were also done by RNA-seq data. It was observed that MaGSTs are involved in various stages of fruit development. MaGSTU1 was highly upregulated. The comprehensive and organized studies of MaGST gene family provide groundwork for further functional analysis of MaGST genes in banana at molecular level and further for plant breeding approaches.
Collapse
Affiliation(s)
- Swati Vaish
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Reshma Parveen
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Divya Gupta
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Mahesh Kumar Basantani
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India.
| |
Collapse
|
7
|
Sági-Kazár M, Solymosi K, Solti Á. Iron in leaves: chemical forms, signalling, and in-cell distribution. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1717-1734. [PMID: 35104334 PMCID: PMC9486929 DOI: 10.1093/jxb/erac030] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is an essential transition metal. Based on its redox-active nature under biological conditions, various Fe compounds serve as cofactors in redox enzymes. In plants, the photosynthetic machinery has the highest demand for Fe. In consequence, the delivery and incorporation of Fe into cofactors of the photosynthetic apparatus is the focus of Fe metabolism in leaves. Disturbance of foliar Fe homeostasis leads to impaired biosynthesis of chlorophylls and composition of the photosynthetic machinery. Nevertheless, mitochondrial function also has a significant demand for Fe. The proper incorporation of Fe into proteins and cofactors as well as a balanced intracellular Fe status in leaf cells require the ability to sense Fe, but may also rely on indirect signals that report on the physiological processes connected to Fe homeostasis. Although multiple pieces of information have been gained on Fe signalling in roots, the regulation of Fe status in leaves has not yet been clarified in detail. In this review, we give an overview on current knowledge of foliar Fe homeostasis, from the chemical forms to the allocation and sensing of Fe in leaves.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| |
Collapse
|
8
|
Przybyla-Toscano J, Boussardon C, Law SR, Rouhier N, Keech O. Gene atlas of iron-containing proteins in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:258-274. [PMID: 33423341 DOI: 10.1111/tpj.15154] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 05/27/2023]
Abstract
Iron (Fe) is an essential element for the development and physiology of plants, owing to its presence in numerous proteins involved in central biological processes. Here, we established an exhaustive, manually curated inventory of genes encoding Fe-containing proteins in Arabidopsis thaliana, and summarized their subcellular localization, spatiotemporal expression and evolutionary age. We have currently identified 1068 genes encoding potential Fe-containing proteins, including 204 iron-sulfur (Fe-S) proteins, 446 haem proteins and 330 non-Fe-S/non-haem Fe proteins (updates of this atlas are available at https://conf.arabidopsis.org/display/COM/Atlas+of+Fe+containing+proteins). A fourth class, containing 88 genes for which iron binding is uncertain, is indexed as 'unclear'. The proteins are distributed in diverse subcellular compartments with strong differences per category. Interestingly, analysis of the gene age index showed that most genes were acquired early in plant evolutionary history and have progressively gained regulatory elements, to support the complex organ-specific and development-specific functions necessitated by the emergence of terrestrial plants. With this gene atlas, we provide a valuable and updateable tool for the research community that supports the characterization of the molecular actors and mechanisms important for Fe metabolism in plants. This will also help in selecting relevant targets for breeding or biotechnological approaches aiming at Fe biofortification in crops.
Collapse
Affiliation(s)
| | - Clément Boussardon
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | | | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| |
Collapse
|
9
|
Shimizu T, Masuda T. The Role of Tetrapyrrole- and GUN1-Dependent Signaling on Chloroplast Biogenesis. PLANTS 2021; 10:plants10020196. [PMID: 33494334 PMCID: PMC7911674 DOI: 10.3390/plants10020196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Chloroplast biogenesis requires the coordinated expression of the chloroplast and nuclear genomes, which is achieved by communication between the developing chloroplasts and the nucleus. Signals emitted from the plastids, so-called retrograde signals, control nuclear gene expression depending on plastid development and functionality. Genetic analysis of this pathway identified a set of mutants defective in retrograde signaling and designated genomes uncoupled (gun) mutants. Subsequent research has pointed to a significant role of tetrapyrrole biosynthesis in retrograde signaling. Meanwhile, the molecular functions of GUN1, the proposed integrator of multiple retrograde signals, have not been identified yet. However, based on the interactions of GUN1, some working hypotheses have been proposed. Interestingly, GUN1 contributes to important biological processes, including plastid protein homeostasis, through transcription, translation, and protein import. Furthermore, the interactions of GUN1 with tetrapyrroles and their biosynthetic enzymes have been revealed. This review focuses on our current understanding of the function of tetrapyrrole retrograde signaling on chloroplast biogenesis.
Collapse
|
10
|
Georgakis N, Poudel N, Vlachakis D, Papageorgiou AC, Labrou NE. Phi class glutathione transferases as molecular targets towards multiple-herbicide resistance: Inhibition analysis and pharmacophore design. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:342-352. [PMID: 33257232 DOI: 10.1016/j.plaphy.2020.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Multiple-herbicide resistance (MHR) is a global threat to weed control in cereal crops. MHR weeds express a specific phi class glutathione transferase (MHR-GSTF) that confers resistance against multiple herbicides and therefore represents a promising target against MHR weeds. Kinetics inhibition analysis of MHR-GSTFs from grass weeds Lolium rigidum (LrGSTF) Alopecurus myosuroides (AmGSTF) and crops Hordeum vulgare (HvGSTF) and Triticum aestivum (TaGSTF) allowed the identification of the acetanilide herbicide butachlor as a potent and selective inhibitor towards MHR-GSTFs. Also, butachlor is a stronger inhibitor for LrGSTF and AmGSTF compared to HvGSTF and TaGSTF from crops. The crystal structure of LrGSTF was determined at 1.90 Å resolution in complex with the inhibitor S-(4-nitrobenzyl)glutathione. A specific 3D pharmacophore targeting the MHR-GSTFs was designed and used to identify structural elements important for potent and selective inhibition. Structural analysis of GSTFs revealed a decisive role of conserved Tyr118 in ligand binding and pharmacophore design. Its positioning is dependent on an outer patch of adjacent residues that span from position 132 to 134 which are similar for both LrGSTF and AmGSTF but different in HvGSTF and TaGSTF. The results presented here provide new knowledge that may be adopted to cope with MHR weeds.
Collapse
Affiliation(s)
- Nikolaos Georgakis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR, 11855, Athens, Greece
| | - Nirmal Poudel
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20521, Finland
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR, 11855, Athens, Greece
| | | | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR, 11855, Athens, Greece.
| |
Collapse
|
11
|
Vaish S, Gupta D, Mehrotra R, Mehrotra S, Basantani MK. Glutathione S-transferase: a versatile protein family. 3 Biotech 2020; 10:321. [PMID: 32656054 PMCID: PMC7320970 DOI: 10.1007/s13205-020-02312-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Glutathione-S transferase (GST) is a most ancient protein superfamily of multipurpose roles and evolved principally from gene duplication of an ancestral GSH binding protein. They have implemented in diverse plant functions such as detoxification of xenobiotic, secondary metabolism, growth and development, and majorly against biotic and abiotic stresses. The vital structural features of GSTs like highly divergent functional topographies, conserved integrated architecture with separate binding pockets for substrates and ligand, the stringent structural fidelity with high Tm values (50º-60º), and stress-responsive cis-regulatory elements in the promoter region offer this protein as most flexible plant protein for plant breeding approaches, biotechnological applications, etc. This review article summarizes the recent information of GST evolution, and their distribution and structural features with emphasis on the assorted roles of Ser and Cys GSTs with the signature motifs in their active sites, alongside their recent biotechnological application in the area of agriculture, environment, and nanotechnology have been highlighted.
Collapse
Affiliation(s)
- Swati Vaish
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh 225003 India
| | - Divya Gupta
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh 225003 India
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, KK Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726 India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, KK Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726 India
| | - Mahesh Kumar Basantani
- Faculty of Bioscience, Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, Uttar Pradesh India
| |
Collapse
|
12
|
Pfannschmidt T, Terry MJ, Van Aken O, Quiros PM. Retrograde signals from endosymbiotic organelles: a common control principle in eukaryotic cells. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190396. [PMID: 32362267 DOI: 10.1098/rstb.2019.0396] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endosymbiotic organelles of eukaryotic cells, the plastids, including chloroplasts and mitochondria, are highly integrated into cellular signalling networks. In both heterotrophic and autotrophic organisms, plastids and/or mitochondria require extensive organelle-to-nucleus communication in order to establish a coordinated expression of their own genomes with the nuclear genome, which encodes the majority of the components of these organelles. This goal is achieved by the use of a variety of signals that inform the cell nucleus about the number and developmental status of the organelles and their reaction to changing external environments. Such signals have been identified in both photosynthetic and non-photosynthetic eukaryotes (known as retrograde signalling and retrograde response, respectively) and, therefore, appear to be universal mechanisms acting in eukaryotes of all kingdoms. In particular, chloroplasts and mitochondria both harbour crucial redox reactions that are the basis of eukaryotic life and are, therefore, especially susceptible to stress from the environment, which they signal to the rest of the cell. These signals are crucial for cell survival, lifespan and environmental adjustment, and regulate quality control and targeted degradation of dysfunctional organelles, metabolic adjustments, and developmental signalling, as well as induction of apoptosis. The functional similarities between retrograde signalling pathways in autotrophic and non-autotrophic organisms are striking, suggesting the existence of common principles in signalling mechanisms or similarities in their evolution. Here, we provide a survey for the newcomers to this field of research and discuss the importance of retrograde signalling in the context of eukaryotic evolution. Furthermore, we discuss commonalities and differences in retrograde signalling mechanisms and propose retrograde signalling as a general signalling mechanism in eukaryotic cells that will be also of interest for the specialist. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Matthew J Terry
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | | |
Collapse
|