1
|
Roe AD, Wardlaw AA, Butterson S, Marshall KE. Diapause survival requires a temperature-sensitive preparatory period. CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100073. [PMID: 38371385 PMCID: PMC10869763 DOI: 10.1016/j.cris.2024.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Diapause is a form of internally-controlled dormancy that allows insects to avoid stressful conditions and periods of low food availability. Eastern spruce budworm (Choristoneura fumiferana Clemens), like many cold-adapted insects, enter diapause well in advance of winter conditions, thus exposing them to elevated temperatures during fall that can deplete energy stores and impact post-diapause survival. We explored the impact of fall conditions on C. fumiferana by manipulating the length of the fall period and exposure temperatures during the diapause initiation phase of second instar larvae in a factorial design. We exposed second instar larvae to four fall temperatures (10, 15, 20, and 25°C) and five exposure times (1, 2, 4, 6, and 10 weeks) prior to standardized diapause conditions. We measured metabolites (glycogen, glycerol, and protein) prior to and during diapause for a subset of individuals. We also measured post-diapause survival by quantifying emergence following diapause conditions for a subset of individuals. We found that long, warm fall conditions depleted glycogen content and lowered post-diapause survival. We also found that short, cool conditions impacted post-diapause survival, although glycogen content remained high. Our results showed that fall conditions have substantial fitness consequences to overwintering insects. Optimal fall conditions struck a balance between exposure time and temperature. Our findings point to a potentially adaptive reason for early diapause onset: that an undescribed, but temperature-sensitive process is occurring in C. fumiferana larvae during the diapause initiation period that is essential for overwintering survival and successful post-diapause emergence.
Collapse
Affiliation(s)
- Amanda D. Roe
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON P6A 2E5
| | - Ashlyn A. Wardlaw
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON P6A 2E5
| | - Skye Butterson
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4
| | - Katie E. Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4
| |
Collapse
|
2
|
Kagawa O, Hirota SK, Saito T, Uchida S, Watanabe H, Miyazoe R, Yamaguchi T, Matsuno T, Araki K, Wakasugi H, Suzuki S, Kobayashi G, Miyazaki H, Suyama Y, Hanyuda T, Chiba S. Host-Shift Speciation Proceeded with Gene Flow in Algae Covering Shells. Am Nat 2023; 202:721-732. [PMID: 37963116 DOI: 10.1086/726221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractHost shifts represent the advancement of a novel niche and often lead to speciation in symbionts. However, its mechanisms are not well understood. Here, we focused on the alga Pseudocladophora conchopheria growing on the shells of intertidal snails. Previous surveys have shown that the alga has host specificity-only attaching to the shell of Lunella correensis-but we discovered that the alga attaches to the shells of multiple sympatric snails. A genome-wide single-nucleotide polymorphism analysis (MIG-seq) was performed to determine whether host-associated speciation occurred in the algae. As a result, there was no gene flow or limited gene flow among the algae from different hosts, and some algae were genetically differentiated among hosts. In addition, the demographic estimate revealed that speciation with gene flow occurred between the algae from different hosts. Therefore, these results support the idea that host-shift speciation gradually proceeded with gene flow in the algae, providing insight into the early evolution of host shifts.
Collapse
|
3
|
Manawaduge CG, Clarke AR, Hurwood DA. Divergent east-west lineages in an Australian fruit fly, (Bactrocera jarvisi), associated with the Carpentaria Basin divide. PLoS One 2023; 18:e0276247. [PMID: 37267327 DOI: 10.1371/journal.pone.0276247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/14/2023] [Indexed: 06/04/2023] Open
Abstract
Bactrocera jarvisi is an endemic Australian fruit fly species (Diptera: Tephritidae). It occurs commonly across tropical and subtropical coastal Australia, from far-northern Western Australia, across the 'Top End' of the Northern Territory, and then down the Queensland east coast. Across this range, its distribution crosses several well documented biogeographic barriers. In order to better understand factors leading to the divergence of Australian fruit fly lineages, we carried out a population genetic study of B. jarvisi from across its range using genome-wide SNP analysis, utilising adult specimens gained from trapping and fruit rearing. Populations from the Northern Territory (NT) and Western Australia were genetically similar to each other, but divergent from the genetically uniform east-coast (= Queensland, QLD) population. Phylogenetic analysis demonstrated that the NT population derived from the QLD population. We infer a role for the Carpentaria Basin as a biogeographic barrier restricting east-west gene flow. The QLD populations were largely panmictic and recognised east-coast biogeographic barriers play no part in north-south population structuring. While the NT and QLD populations were genetically distinct, there was evidence for the historically recent translocation of flies from each region to the other. Flies reared from different host fruits collected in the same location showed no genetic divergence. While a role for the Carpentaria Basin as a barrier to gene flow for Australian fruit flies agrees with existing work on the related B. tryoni, the reason(s) for population panmixia for B. jarvisi (and B. tryoni) over the entire Queensland east coast, a linear north-south distance of >2000km, remains unknown.
Collapse
Affiliation(s)
- Chapa G Manawaduge
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane City, Queensland, Australia
| | - Anthony R Clarke
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane City, Queensland, Australia
| | - David A Hurwood
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane City, Queensland, Australia
| |
Collapse
|
4
|
Chaturvedi S, Gompert Z, Feder JL, Osborne OG, Muschick M, Riesch R, Soria-Carrasco V, Nosil P. Climatic similarity and genomic background shape the extent of parallel adaptation in Timema stick insects. Nat Ecol Evol 2022; 6:1952-1964. [PMID: 36280782 PMCID: PMC7613875 DOI: 10.1038/s41559-022-01909-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
Abstract
Evolution can repeat itself, resulting in parallel adaptations in independent lineages occupying similar environments. Moreover, parallel evolution sometimes, but not always, uses the same genes. Two main hypotheses have been put forth to explain the probability and extent of parallel evolution. First, parallel evolution is more likely when shared ecologies result in similar patterns of natural selection in different taxa. Second, parallelism is more likely when genomes are similar because of shared standing variation and similar mutational effects in closely related genomes. Here we combine ecological, genomic, experimental and phenotypic data with Bayesian modelling and randomization tests to quantify the degree of parallelism and its relationship with ecology and genetics. Our results show that the extent to which genomic regions associated with climate are parallel among species of Timema stick insects is shaped collectively by shared ecology and genomic background. Specifically, the extent of genomic parallelism decays with divergence in climatic conditions (that is, habitat or ecological similarity) and genomic similarity. Moreover, we find that climate-associated loci are likely subject to selection in a field experiment, overlap with genetic regions associated with cuticular hydrocarbon traits and are not strongly shaped by introgression between species. Our findings shed light on when evolution is most expected to repeat itself.
Collapse
Affiliation(s)
- Samridhi Chaturvedi
- Department of Integrative Biology, University of California, Berkeley, CA, USA.
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA.
| | - Zachariah Gompert
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA.
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Owen G Osborne
- Molecular Ecology and Evolution Bangor, Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, UK
| | - Moritz Muschick
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Rüdiger Riesch
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | | | - Patrik Nosil
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
5
|
MacDonald ZG, Snape KL, Roe AD, Sperling F. Host association, environment, and geography underlie genomic differentiation in a major forest pest. Evol Appl 2022; 15:1749-1765. [PMID: 36426133 PMCID: PMC9679251 DOI: 10.1111/eva.13466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Diverse geographic, environmental, and ecological factors affect gene flow and adaptive genomic variation within species. With recent advances in landscape ecological modelling and high-throughput DNA sequencing, it is now possible to effectively quantify and partition their relative contributions. Here, we use landscape genomics to identify determinants of genomic differentiation in the forest tent caterpillar, Malacosoma disstria, a widespread and irruptive pest of numerous deciduous tree species in North America. We collected larvae from multiple populations across Eastern Canada, where the species experiences a diversity of environmental gradients and feeds on a number of different host tree species, including trembling aspen (Populus tremuloides), sugar maple (Acer saccharum), red oak (Quercus rubra), and white birch (Betula papyrifera). Using a combination of reciprocal causal modelling (RCM) and distance-based redundancy analyses (dbRDA), we show that differentiation of thousands of genome-wide single nucleotide polymorphisms (SNPs) among individuals is best explained by a combination of isolation by distance, isolation by environment (spatial variation in summer temperatures and length of the growing season), and differences in host association. Configuration of suitable habitat inferred from ecological niche models was not significantly related to genomic differentiation, suggesting that M. disstria dispersal is agnostic with respect to habitat quality. Although population structure was not discretely related to host association, our modelling framework provides the first molecular evidence of host-associated differentiation in M. disstria, congruent with previous documentation of reduced growth and survival of larvae moved between natal host species. We conclude that ecologically mediated selection is contributing to variation within M. disstria, and that divergent adaptation related to both environmental conditions and host association should be considered in ongoing research and management of this important forest pest.
Collapse
Affiliation(s)
- Zachary G. MacDonald
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- UCLA La Kretz Center for California Conservation ScienceUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Institute of the Environmental and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Kyle L. Snape
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Amanda D. Roe
- Great Lakes Forestry Centre, Canadian Forest ServiceNatural Resources CanadaSault Ste. MarieOntarioCanada
| | | |
Collapse
|
6
|
Non-parallel morphological divergence following colonization of a new host plant. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractAdaptation to new ecological niches is known to spur population diversification and may lead to speciation if gene flow is ceased. While adaptation to the same ecological niche is expected to be parallel, it is more difficult to predict whether selection against maladaptive hybridization in secondary sympatry results in parallel divergence also in traits that are not directly related to the ecological niches. Such parallelisms in response to selection for reproductive isolation can be identified through estimating parallelism in reproductive character displacement across different zones of secondary contact. Here, we use a host shift in the phytophagous peacock fly Tephritis conura, with both host races represented in two geographically separate areas East and West of the Baltic Sea to investigate convergence in morphological adaptations. We asked (i) if there are consistent morphological adaptations to a host plant shift and (ii) if the response to secondary sympatry with the alternate host race is parallel across contact zones. We found surprisingly low and variable, albeit significant, divergence between host races. Only one trait, the length of the female ovipositor, which serves an important function in the interaction with the hosts, was consistently different between host races. Instead, co-existence with the other host race significantly affected the degree of morphological divergence, but the divergence was largely driven by different traits in different contact zones. Thus, local stochastic fixation or reinforcement could generate trait divergence, and additional evidence is needed to conclude whether divergence is locally adaptive.
Collapse
|
7
|
The Build-Up of Population Genetic Divergence along the Speciation Continuum during a Recent Adaptive Radiation of Rhagoletis Flies. Genes (Basel) 2022; 13:genes13020275. [PMID: 35205320 PMCID: PMC8872456 DOI: 10.3390/genes13020275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
New species form through the evolution of genetic barriers to gene flow between previously interbreeding populations. The understanding of how speciation proceeds is hampered by our inability to follow cases of incipient speciation through time. Comparative approaches examining different diverging taxa may offer limited inferences, unless they fulfill criteria that make the comparisons relevant. Here, we test for those criteria in a recent adaptive radiation of the Rhagoletis pomonella species group (RPSG) hypothesized to have diverged in sympatry via adaptation to different host fruits. We use a large-scale population genetic survey of 1568 flies across 33 populations to: (1) detect on-going hybridization, (2) determine whether the RPSG is derived from the same proximate ancestor, and (3) examine patterns of clustering and differentiation among sympatric populations. We find that divergence of each in-group RPSG taxon is occurring under current gene flow, that the derived members are nested within the large pool of genetic variation present in hawthorn-infesting populations of R. pomonella, and that sympatric population pairs differ markedly in their degree of genotypic clustering and differentiation across loci. We conclude that the RPSG provides a particularly robust opportunity to make direct comparisons to test hypotheses about how ecological speciation proceeds despite on-going gene flow.
Collapse
|
8
|
Calvert MB, Doellman MM, Feder JL, Hood GR, Meyers P, Egan SP, Powell THQ, Glover MM, Tait C, Schuler H, Berlocher SH, Smith JJ, Nosil P, Hahn DA, Ragland GJ. Genomically correlated trait combinations and antagonistic selection contributing to counterintuitive genetic patterns of adaptive diapause divergence in Rhagoletis flies. J Evol Biol 2021; 35:146-163. [PMID: 34670006 DOI: 10.1111/jeb.13952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Adaptation to novel environments can result in unanticipated genomic responses to selection. Here, we illustrate how multifarious, correlational selection helps explain a counterintuitive pattern of genetic divergence between the recently derived apple- and ancestral hawthorn-infesting host races of Rhagoletis pomonella (Diptera: Tephritidae). The apple host race terminates diapause and emerges as adults earlier in the season than the hawthorn host race, to coincide with the earlier fruiting phenology of their apple hosts. However, alleles at many loci associated with later emergence paradoxically occur at higher frequencies in sympatric populations of the apple compared to the hawthorn race. We present genomic evidence that historical selection over geographically varying environmental gradients across North America generated genetic correlations between two life history traits, diapause intensity and diapause termination, in the hawthorn host race. Moreover, the loci associated with these life history traits are concentrated in genomic regions in high linkage disequilibrium (LD). These genetic correlations are antagonistic to contemporary selection on local apple host race populations that favours increased initial diapause depth and earlier, not later, diapause termination. Thus, the paradox of apple flies appears due, in part, to pleiotropy or linkage of alleles associated with later adult emergence and increased initial diapause intensity, the latter trait strongly selected for by the earlier phenology of apples. Our results demonstrate how understanding of multivariate trait combinations and the correlative nature of selective forces acting on them can improve predictions concerning adaptive evolution and help explain seemingly counterintuitive patterns of genetic diversity in nature.
Collapse
Affiliation(s)
- McCall B Calvert
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana, USA
| | - Glen R Hood
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Biosciences, Rice University, Houston, Texas, USA.,Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Peter Meyers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Scott P Egan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Biosciences, Rice University, Houston, Texas, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Biological Sciences, Binghamton University (State University of New York), Binghamton, New York, USA
| | - Mary M Glover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Cheyenne Tait
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Hannes Schuler
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen, Italy
| | - Stewart H Berlocher
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - James J Smith
- Department of Entomology, Lyman Briggs College, Michigan State University, East Lansing, Michigan, USA
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,CEFE, CNRS, EPHE, IRD, Univ Montpellier, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
9
|
Yee WL, Forbes AA, Feder JL. Contrast in Post-Chill Eclosion Time Strategies Between Two Specialist Braconid Wasps (Hymenoptera: Braconidae) Attacking Rhagoletis Flies (Diptera: Tephritidae) in Western North America. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1173-1186. [PMID: 34387323 DOI: 10.1093/ee/nvab080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 06/13/2023]
Abstract
Parasitoids comprise a speciose insect group, displaying a wide array of life history strategies. In the Pacific Northwest of the United States, the tephritid fruit flies Rhagoletis tabellaria (Fitch) and Rhagoletis indifferens Curran infest red osier dogwood, Cornus sericea L. (Cornaceae), and bitter cherry, Prunus emarginata (Douglas ex Hooker) Eaton (Rosaceae), respectively. The flies are parasitized by different braconid wasps at different life stages; Utetes tabellariae (Fischer) oviposits into R. tabellaria eggs, whereas Diachasma muliebre (Muesebeck) oviposits into R. indifferens larvae feeding in cherries. Because Rhagoletis only have one major generation a year and the wasps attack temporally distinct fly life stages, we predicted that eclosion times of U. tabellariae should more closely follow that of its host than the larval-attacking D. muliebre. As predicted, U. tabellariae eclosed on average 6.0-12.5 d later than R. tabellaria, whereas D. muliebre eclosed on average 32.1 d after R. indifferens. Unexpectedly, however, longer chill duration differentially affected the systems; longer overwinters minimally influenced eclosion times of R. tabellaria and U. tabellariae but caused earlier eclosion of both R. indifferens and D. muliebre. Results imply that in temperate regions, diapause timing in braconid wasps evolves in response to both host life stage attacked and fly eclosion characteristics, possibly reflecting differential effects of winter on host plant fruiting phenology. Differences in phenological sensitivity of the lower host plant trophic level to variation in environmental conditions may have cascading effects, sequentially and differentially affecting eclosion times in higher frugivore (fly) and parasitoid (wasp) trophic levels.
Collapse
Affiliation(s)
- Wee L Yee
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Rd, Wapato, WA 98951, USA
| | - Andrew A Forbes
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey L Feder
- Department Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
10
|
Bruzzese DJ, Schuler H, Wolfe TM, Glover MM, Mastroni JV, Doellman MM, Tait C, Yee WL, Rull J, Aluja M, Hood GR, Goughnour RB, Stauffer C, Nosil P, Feder JL. Testing the potential contribution of Wolbachia to speciation when cytoplasmic incompatibility becomes associated with host-related reproductive isolation. Mol Ecol 2021; 31:2935-2950. [PMID: 34455644 PMCID: PMC9290789 DOI: 10.1111/mec.16157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023]
Abstract
Endosymbiont‐induced cytoplasmic incompatibility (CI) may play an important role in arthropod speciation. However, whether CI consistently becomes associated or coupled with other host‐related forms of reproductive isolation (RI) to impede the transfer of endosymbionts between hybridizing populations and further the divergence process remains an open question. Here, we show that varying degrees of pre‐ and postmating RI exist among allopatric populations of two interbreeding cherry‐infesting tephritid fruit flies (Rhagoletis cingulata and R. indifferens) across North America. These flies display allochronic and sexual isolation among populations, as well as unidirectional reductions in egg hatch in hybrid crosses involving southwestern USA males. All populations are infected by a Wolbachia strain, wCin2, whereas a second strain, wCin3, only co‐infects flies from the southwest USA and Mexico. Strain wCin3 is associated with a unique mitochondrial DNA haplotype and unidirectional postmating RI, implicating the strain as the cause of CI. When coupled with nonendosymbiont RI barriers, we estimate the strength of CI associated with wCin3 would not prevent the strain from introgressing from infected southwestern to uninfected populations elsewhere in the USA if populations were to come into secondary contact and hybridize. In contrast, cytoplasmic–nuclear coupling may impede the transfer of wCin3 if Mexican and USA populations were to come into contact. We discuss our results in the context of the general paucity of examples demonstrating stable Wolbachia hybrid zones and whether the spread of Wolbachia among taxa can be constrained in natural hybrid zones long enough for the endosymbiont to participate in speciation.
Collapse
Affiliation(s)
- Daniel J Bruzzese
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Hannes Schuler
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy.,Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| | - Thomas M Wolfe
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mary M Glover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Joseph V Mastroni
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Cheyenne Tait
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Wee L Yee
- United States Department of Agriculture, Temperate Tree Fruit & Vegetable Research Unit, Agricultural Research Service, Wapato, WA, USA
| | - Juan Rull
- Instituto de Ecología A.C., Xalapa, México.,LIEMEN-División Control Biológico de Plagas, PROIMI Biotecnología-CONICET, Tucumán, Argentina
| | | | - Glen Ray Hood
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | | | - Christian Stauffer
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Patrik Nosil
- CEFE, University Montpellier, CNRS, EPHE, IRD, University Paul Valéry Montpellier 3, Montpellier, France.,Department of Biology, Utah State University, UT, USA
| | - Jeffery L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
11
|
Inskeep KA, Doellman MM, Powell THQ, Berlocher SH, Seifert NR, Hood GR, Ragland GJ, Meyers PJ, Feder JL. Divergent diapause life history timing drives both allochronic speciation and reticulate hybridization in an adaptive radiation of Rhagoletis flies. Mol Ecol 2021; 31:4031-4049. [PMID: 33786930 DOI: 10.1111/mec.15908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022]
Abstract
Divergent adaptation to new ecological opportunities can be an important factor initiating speciation. However, as niches are filled during adaptive radiations, trait divergence driving reproductive isolation between sister taxa may also result in trait convergence with more distantly related taxa, increasing the potential for reticulated gene flow across the radiation. Here, we demonstrate such a scenario in a recent adaptive radiation of Rhagoletis fruit flies, specialized on different host plants. Throughout this radiation, shifts to novel hosts are associated with changes in diapause life history timing, which act as "magic traits" generating allochronic reproductive isolation and facilitating speciation-with-gene-flow. Evidence from laboratory rearing experiments measuring adult emergence timing and genome-wide DNA-sequencing surveys supported allochronic speciation between summer-fruiting Vaccinium spp.-infesting Rhagoletis mendax and its hypothesized and undescribed sister taxon infesting autumn-fruiting sparkleberries. The sparkleberry fly and R. mendax were shown to be genetically discrete sister taxa, exhibiting no detectable gene flow and allochronically isolated by a 2-month average difference in emergence time corresponding to host availability. At sympatric sites across the southern USA, the later fruiting phenology of sparkleberries overlaps with that of flowering dogwood, the host of another more distantly related and undescribed Rhagoletis taxon. Laboratory emergence data confirmed broadly overlapping life history timing and genomic evidence supported on-going gene flow between sparkleberry and flowering dogwood flies. Thus, divergent phenological adaptation can drive the initiation of reproductive isolation, while also enhancing genetic exchange across broader adaptive radiations, potentially serving as a source of novel genotypic variation and accentuating further diversification.
Collapse
Affiliation(s)
- Katherine A Inskeep
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University (State University of New York), Binghamton, NY, USA
| | - Stewart H Berlocher
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicholas R Seifert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Glen R Hood
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Peter J Meyers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
12
|
Smolinský R, Baláž V, Nürnberger B. Tadpoles of hybridising fire-bellied toads (B. bombina and B. variegata) differ in their susceptibility to predation. PLoS One 2020; 15:e0231804. [PMID: 33285552 PMCID: PMC7721483 DOI: 10.1371/journal.pone.0231804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/17/2020] [Indexed: 12/02/2022] Open
Abstract
The role of adaptive divergence in the formation of new species has been the subject of much recent debate. The most direct evidence comes from traits that can be shown to have diverged under natural selection and that now contribute to reproductive isolation. Here, we investigate differential adaptation of two fire-bellied toads (Anura, Bombinatoridae) to two types of aquatic habitat. Bombina bombina and B. variegata are two anciently diverged taxa that now reproduce in predator-rich ponds and ephemeral aquatic sites, respectively. Nevertheless, they hybridise extensively wherever their distribution ranges adjoin. We show in laboratory experiments that, as expected, B. variegata tadpoles are at relatively greater risk of predation from dragonfly larvae, even when they display a predator-induced phenotype. These tadpoles spent relatively more time swimming and so prompted more attacks from the visually hunting predators. We argue in the discussion that genomic regions linked to high activity in B. variegata should be barred from introgression into the B. bombina gene pool and thus contribute to gene flow barriers that keep the two taxa from merging into one.
Collapse
Affiliation(s)
- Radovan Smolinský
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Vojtech Baláž
- Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Beate Nürnberger
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
13
|
Kulmuni J, Butlin RK, Lucek K, Savolainen V, Westram AM. Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190528. [PMID: 32654637 PMCID: PMC7423269 DOI: 10.1098/rstb.2019.0528] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Speciation, that is, the evolution of reproductive barriers eventually leading to complete isolation, is a crucial process generating biodiversity. Recent work has contributed much to our understanding of how reproductive barriers begin to evolve, and how they are maintained in the face of gene flow. However, little is known about the transition from partial to strong reproductive isolation (RI) and the completion of speciation. We argue that the evolution of strong RI is likely to involve different processes, or new interactions among processes, compared with the evolution of the first reproductive barriers. Transition to strong RI may be brought about by changing external conditions, for example, following secondary contact. However, the increasing levels of RI themselves create opportunities for new barriers to evolve and, and interaction or coupling among barriers. These changing processes may depend on genomic architecture and leave detectable signals in the genome. We outline outstanding questions and suggest more theoretical and empirical work, considering both patterns and processes associated with strong RI, is needed to understand how speciation is completed. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Jonna Kulmuni
- Organismal and Evolutionary Biology, University of Helsinki, Finland
| | - Roger K. Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kay Lucek
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Vincent Savolainen
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | | |
Collapse
|
14
|
|
15
|
Meyers PJ, Doellman MM, Ragland GJ, Hood GR, Egan SP, Powell THQ, Nosil P, Feder JL. Can the genomics of ecological speciation be predicted across the divergence continuum from host races to species? A case study in Rhagoletis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190534. [PMID: 32654640 DOI: 10.1098/rstb.2019.0534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Studies assessing the predictability of evolution typically focus on short-term adaptation within populations or the repeatability of change among lineages. A missing consideration in speciation research is to determine whether natural selection predictably transforms standing genetic variation within populations into differences between species. Here, we test whether and how host-related selection on diapause timing associates with genome-wide differentiation during ecological speciation by comparing ancestral hawthorn and newly formed apple-infesting host races of Rhagoletis pomonella to their sibling species Rhagoletis mendax that attacks blueberries. The associations of 57 857 single nucleotide polymorphisms in a diapause genome-wide-association study (GWAS) on the hawthorn race strongly predicted the direction and magnitude of genomic divergence among the three fly populations at a field site in Fennville, MI, USA. The apple race and R. mendax show parallel changes in the frequencies of putative inversions on three chromosomes associated with the earlier fruiting times of apples and blueberries compared to hawthorns. A diapause GWAS on R. mendax revealed compensatory changes throughout the genome accounting for the earlier eclosion of blueberry, but not apple flies. Thus, a degree of predictability, although not complete, exists in the genomics of diapause across the ecological speciation continuum in Rhagoletis. The generality of this result is placed in the context of other similar systems. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Peter J Meyers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gregory J Ragland
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Environmental Change Initiative, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217, USA
| | - Glen R Hood
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Scott P Egan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Biosciences, Rice University, Houston, TX 77005, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Department Biological Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.,Centre d'Ecologie Fonctionnelle and Evolutive, Centre National de la Recherche Scientifique, Montpellier 34293, France
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Environmental Change Initiative, University of Notre Dame, Notre Dame, IN 46556, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|