1
|
Edens BM, Bronner ME. Making sense of vertebrate senses from a neural crest and cranial placode evo-devo perspective. Trends Neurosci 2025:S0166-2236(24)00252-2. [PMID: 39848838 DOI: 10.1016/j.tins.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025]
Abstract
The evolution of vertebrates from protochordate ancestors marked the beginning of the gradual transition to predatory lifestyles. Enabled by the acquisition of multipotent neural crest and cranial placode cell populations, vertebrates developed an elaborate peripheral nervous system, equipped with paired sense organs, which aided in adaptive behaviors and ultimately, successful colonization of diverse environmental niches. Underpinning the enduring success of vertebrates is the highly adaptable nature of the peripheral nervous system, which is enabled by the exceptional malleability of the neural crest and placode developmental programs. Here, we explore the embryonic origins of the vertebrate senses from the neural crest and cranial placodes and discuss the evolutionary trajectory of the senses in the context of adaptation to novel environments.
Collapse
Affiliation(s)
- Brittany M Edens
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
2
|
Jaeger ECB, Vijatovic D, Deryckere A, Zorin N, Nguyen AL, Ivanian G, Woych J, Arnold RC, Gurrola AO, Shvartsman A, Barbieri F, Toma FA, Cline HT, Shay TF, Kelley DB, Yamaguchi A, Shein-Idelson M, Tosches MA, Sweeney LB. Adeno-associated viral tools to trace neural development and connectivity across amphibians. Dev Cell 2024:S1534-5807(24)00665-8. [PMID: 39603234 DOI: 10.1016/j.devcel.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Amphibians, by virtue of their phylogenetic position, provide invaluable insights on nervous system evolution, development, and remodeling. The genetic toolkit for amphibians, however, remains limited. Recombinant adeno-associated viral vectors (AAVs) are a powerful alternative to transgenesis for labeling and manipulating neurons. Although successful in mammals, AAVs have never been shown to transduce amphibian cells efficiently. We screened AAVs in three amphibian species-the frogs Xenopus laevis and Pelophylax bedriagae and the salamander Pleurodeles waltl-and identified at least two AAV serotypes per species that transduce neurons. In developing amphibians, AAVs labeled groups of neurons generated at the same time during development. In the mature brain, AAVrg retrogradely traced long-range projections. Our study introduces AAVs as a tool for amphibian research, establishes a generalizable workflow for AAV screening in new species, and expands opportunities for cross-species comparisons of nervous system development, function, and evolution.
Collapse
Affiliation(s)
- Eliza C B Jaeger
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - David Vijatovic
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Astrid Deryckere
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Nikol Zorin
- Department of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Akemi L Nguyen
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Georgiy Ivanian
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jamie Woych
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rebecca C Arnold
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Arik Shvartsman
- Department of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | | | - Florina A Toma
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Hollis T Cline
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Timothy F Shay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Darcy B Kelley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ayako Yamaguchi
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Mark Shein-Idelson
- Department of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Lora B Sweeney
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
3
|
Osvath M, Johansson M. A short natural history of mental time travels: a journey still travelled? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230402. [PMID: 39278257 PMCID: PMC11496716 DOI: 10.1098/rstb.2023.0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 09/18/2024] Open
Abstract
Tulving's introduction of episodic memory and the metaphor of mental time travel has immensely enriched our understanding of human cognition. However, his focus on human psychology, with limited consideration of evolutionary perspectives, led to the entrenched notion that mental time travel is uniquely human. We contend that adopting a phylogenetic perspective offers a deeper insight into cognition, revealing it as a continuous evolutionary process. Adherence to the uniqueness of pre-defined psychological concepts obstructs a more complete understanding. We offer a concise natural history to elucidate how events that occurred hundreds of millions of years ago have been pivotal for our ability to mentally time travel. We discuss how the human brain, utilizing parts with ancient origins in a networked manner, enables mental time travel. This underscores that episodic memories and mental time travel are not isolated mental constructs but integral to our perception and representation of the world. We conclude by examining recent evidence of neuroanatomical correlates found only in great apes, which show great variability, indicating the ongoing evolution of mental time travel in humans.This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
|
4
|
Gmaz JM, Keller JA, Dudman JT, Gallego JA. Integrating across behaviors and timescales to understand the neural control of movement. Curr Opin Neurobiol 2024; 85:102843. [PMID: 38354477 DOI: 10.1016/j.conb.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/03/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
The nervous system evolved to enable navigation throughout the environment in the pursuit of resources. Evolutionarily newer structures allowed increasingly complex adaptations but necessarily added redundancy. A dominant view of movement neuroscientists is that there is a one-to-one mapping between brain region and function. However, recent experimental data is hard to reconcile with the most conservative interpretation of this framework, suggesting a degree of functional redundancy during the performance of well-learned, constrained behaviors. This apparent redundancy likely stems from the bidirectional interactions between the various cortical and subcortical structures involved in motor control. We posit that these bidirectional connections enable flexible interactions across structures that change depending upon behavioral demands, such as during acquisition, execution or adaptation of a skill. Observing the system across both multiple actions and behavioral timescales can help isolate the functional contributions of individual structures, leading to an integrated understanding of the neural control of movement.
Collapse
Affiliation(s)
- Jimmie M Gmaz
- Department of Bioengineering, Imperial College London, London, UK. https://twitter.com/j_gmaz
| | - Jason A Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA. https://twitter.com/jakNeurd
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA.
| | - Juan A Gallego
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
5
|
Lai AT, Espinosa G, Wink GE, Angeloni CF, Dombeck DA, MacIver MA. A robot-rodent interaction arena with adjustable spatial complexity for ethologically relevant behavioral studies. Cell Rep 2024; 43:113671. [PMID: 38280195 DOI: 10.1016/j.celrep.2023.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 01/29/2024] Open
Abstract
Outside of the laboratory, animals behave in spaces where they can transition between open areas and coverage as they interact with others. Replicating these conditions in the laboratory can be difficult to control and record. This has led to a dominance of relatively simple, static behavioral paradigms that reduce the ethological relevance of behaviors and may alter the engagement of cognitive processes such as planning and decision-making. Therefore, we developed a method for controllable, repeatable interactions with others in a reconfigurable space. Mice navigate a large honeycomb lattice of adjustable obstacles as they interact with an autonomous robot coupled to their actions. We illustrate the system using the robot as a pseudo-predator, delivering airpuffs to the mice. The combination of obstacles and a mobile threat elicits a diverse set of behaviors, such as increased path diversity, peeking, and baiting, providing a method to explore ethologically relevant behaviors in the laboratory.
Collapse
Affiliation(s)
- Alexander T Lai
- Department of Biomedical Engineering, Technological Institute E311, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - German Espinosa
- Department of Computer Science, Northwestern University, Seeley Mudd 3219, 2233 Tech Drive, Evanston, IL 60208, USA
| | - Gabrielle E Wink
- Department of Mechanical Engineering, Technological Institute B224, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Christopher F Angeloni
- Department of Neurobiology, Northwestern University, Hogan 2-160, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Hogan 2-160, 2205 Tech Drive, Evanston, IL 60208, USA.
| | - Malcolm A MacIver
- Department of Biomedical Engineering, Technological Institute E311, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Computer Science, Northwestern University, Seeley Mudd 3219, 2233 Tech Drive, Evanston, IL 60208, USA; Department of Mechanical Engineering, Technological Institute B224, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Neurobiology, Northwestern University, Hogan 2-160, 2205 Tech Drive, Evanston, IL 60208, USA.
| |
Collapse
|
6
|
MacIver MA. Evolution: Blinking through deep time. Curr Biol 2023; 33:R1292-R1293. [PMID: 38113840 DOI: 10.1016/j.cub.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Terrestrial vertebrates blink, but most aquatic vertebrates do not. How and why did blinking evolve? A recent study looks at this through the eyes of a mudskipper, fish that stay on land for long periods and blink.
Collapse
Affiliation(s)
- Malcolm A MacIver
- Center for Robotics and Biosystems, Department of Neurobiology, Department of Mechanical Engineering, Department of Biomedical Engineering and Department of Computer Science, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
7
|
Casartelli L, Maronati C, Cavallo A. From neural noise to co-adaptability: Rethinking the multifaceted architecture of motor variability. Phys Life Rev 2023; 47:245-263. [PMID: 37976727 DOI: 10.1016/j.plrev.2023.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In the last decade, the source and the functional meaning of motor variability have attracted considerable attention in behavioral and brain sciences. This construct classically combined different levels of description, variable internal robustness or coherence, and multifaceted operational meanings. We provide here a comprehensive review of the literature with the primary aim of building a precise lexicon that goes beyond the generic and monolithic use of motor variability. In the pars destruens of the work, we model three domains of motor variability related to peculiar computational elements that influence fluctuations in motor outputs. Each domain is in turn characterized by multiple sub-domains. We begin with the domains of noise and differentiation. However, the main contribution of our model concerns the domain of adaptability, which refers to variation within the same exact motor representation. In particular, we use the terms learning and (social)fitting to specify the portions of motor variability that depend on our propensity to learn and on our largely constitutive propensity to be influenced by external factors. A particular focus is on motor variability in the context of the sub-domain named co-adaptability. Further groundbreaking challenges arise in the modeling of motor variability. Therefore, in a separate pars construens, we attempt to characterize these challenges, addressing both theoretical and experimental aspects as well as potential clinical implications for neurorehabilitation. All in all, our work suggests that motor variability is neither simply detrimental nor beneficial, and that studying its fluctuations can provide meaningful insights for future research.
Collapse
Affiliation(s)
- Luca Casartelli
- Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS E. MEDEA, Italy
| | - Camilla Maronati
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy
| | - Andrea Cavallo
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy; C'MoN Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
8
|
Shaffer C, Barrett LF, Quigley KS. Signal processing in the vagus nerve: Hypotheses based on new genetic and anatomical evidence. Biol Psychol 2023; 182:108626. [PMID: 37419401 PMCID: PMC10563766 DOI: 10.1016/j.biopsycho.2023.108626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Each organism must regulate its internal state in a metabolically efficient way as it interacts in space and time with an ever-changing and only partly predictable world. Success in this endeavor is largely determined by the ongoing communication between brain and body, and the vagus nerve is a crucial structure in that dialogue. In this review, we introduce the novel hypothesis that the afferent vagus nerve is engaged in signal processing rather than just signal relay. New genetic and structural evidence of vagal afferent fiber anatomy motivates two hypotheses: (1) that sensory signals informing on the physiological state of the body compute both spatial and temporal viscerosensory features as they ascend the vagus nerve, following patterns found in other sensory architectures, such as the visual and olfactory systems; and (2) that ascending and descending signals modulate one another, calling into question the strict segregation of sensory and motor signals, respectively. Finally, we discuss several implications of our two hypotheses for understanding the role of viscerosensory signal processing in predictive energy regulation (i.e., allostasis) as well as the role of metabolic signals in memory and in disorders of prediction (e.g., mood disorders).
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| | - Lisa Feldman Barrett
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| |
Collapse
|
9
|
Zeppilli S, Gurrola AO, Demetci P, Brann DH, Attey R, Zilkha N, Kimchi T, Datta SR, Singh R, Tosches MA, Crombach A, Fleischmann A. Mammalian olfactory cortex neurons retain molecular signatures of ancestral cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553130. [PMID: 37645751 PMCID: PMC10461972 DOI: 10.1101/2023.08.13.553130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The cerebral cortex diversified extensively during vertebrate evolution. Intriguingly, the three-layered mammalian olfactory cortex resembles the cortical cytoarchitecture of non-mammals yet evolved alongside the six-layered neocortex, enabling unique comparisons for investigating cortical neuron diversification. We performed single-nucleus multiome sequencing across mouse three- to six-layered cortices and compared neuron types across mice, reptiles and salamander. We identified neurons that are olfactory cortex-specific or conserved across mouse cortical areas. However, transcriptomically similar neurons exhibited area-specific epigenetic states. Additionally, the olfactory cortex showed transcriptomic divergence between lab and wild-derived mice, suggesting enhanced circuit plasticity through adult immature neurons. Finally, olfactory cortex neurons displayed marked transcriptomic similarities to reptile and salamander neurons. Together, these data indicate that the mammalian olfactory cortex retains molecular signatures representative of ancestral cortical traits.
Collapse
|
10
|
Falcon F, Tanaka EM, Rodriguez-Terrones D. Transposon waves at the water-to-land transition. Curr Opin Genet Dev 2023; 81:102059. [PMID: 37343338 DOI: 10.1016/j.gde.2023.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
The major transitions in vertebrate evolution are associated with significant genomic reorganizations. In contrast to the evolutionary processes that occurred at the origin of vertebrates or prior to the radiation of teleost fishes, no whole-genome duplication events occurred during the water-to-land transition, and it remains an open question how did genome dynamics contribute to this prominent evolutionary event. Indeed, the recent sequencing of sarcopterygian and amphibian genomes has revealed that the extant lineages immediately preceding and succeeding this transition harbor an exceptional number of transposable elements and it is tempting to speculate that these sequences might have catalyzed the adaptations that enabled vertebrates to venture into land. Here, we review the genome dynamics associated with the major transitions in vertebrate evolution and discuss how the highly repetitive genomic landscapes revealed by recent efforts to characterize the genomes of amphibians and sarcopterygians argue for turbulent genome dynamics occurring before the water-to-land transition and possibly enabling it.
Collapse
Affiliation(s)
- Francisco Falcon
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria. https://twitter.com/@FcoJFalcon
| | - Elly M Tanaka
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030, Vienna, Austria.
| | - Diego Rodriguez-Terrones
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030, Vienna, Austria.
| |
Collapse
|
11
|
Shine JM. Adaptively navigating affordance landscapes: How interactions between the superior colliculus and thalamus coordinate complex, adaptive behaviour. Neurosci Biobehav Rev 2022; 143:104921. [DOI: 10.1016/j.neubiorev.2022.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
|
12
|
Yin B, Li X, Lin G, Wang H. High-resolution single-cell analysis paves the cellular path for brain regeneration in salamanders. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:37. [PMID: 36258096 PMCID: PMC9579219 DOI: 10.1186/s13619-022-00144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Salamanders are excellent models for studying vertebrate brain regeneration, with the promise of developing novel therapies for human brain lesions. Yet the molecular and cellular mechanism of salamander brain regeneration remains largely elusive. The insight into the evolution of complex brain structures that lead to advanced functions in the mammalian brain is also inadequate. With high-resolution single-cell RNA sequencing and spatial transcriptomics, three recent studies have reported the differentiation paths of cells in the salamander telencephalon in the journal Science, bringing both old and new cell types into the focus and shedding light on vertebrate brain evolution, development, and regeneration.
Collapse
Affiliation(s)
- Binxu Yin
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Heng Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
13
|
Woych J, Ortega Gurrola A, Deryckere A, Jaeger ECB, Gumnit E, Merello G, Gu J, Joven Araus A, Leigh ND, Yun M, Simon A, Tosches MA. Cell-type profiling in salamanders identifies innovations in vertebrate forebrain evolution. Science 2022; 377:eabp9186. [PMID: 36048957 PMCID: PMC10024926 DOI: 10.1126/science.abp9186] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The evolution of advanced cognition in vertebrates is associated with two independent innovations in the forebrain: the six-layered neocortex in mammals and the dorsal ventricular ridge (DVR) in sauropsids (reptiles and birds). How these innovations arose in vertebrate ancestors remains unclear. To reconstruct forebrain evolution in tetrapods, we built a cell-type atlas of the telencephalon of the salamander Pleurodeles waltl. Our molecular, developmental, and connectivity data indicate that parts of the sauropsid DVR trace back to tetrapod ancestors. By contrast, the salamander dorsal pallium is devoid of cellular and molecular characteristics of the mammalian neocortex yet shares similarities with the entorhinal cortex and subiculum. Our findings chart the series of innovations that resulted in the emergence of the mammalian six-layered neocortex and the sauropsid DVR.
Collapse
Affiliation(s)
- Jamie Woych
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Alonso Ortega Gurrola
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.,Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Astrid Deryckere
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Eliza C B Jaeger
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Elias Gumnit
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Gianluca Merello
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jiacheng Gu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Maximina Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, 01307 Dresden, Germany.,Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
14
|
Kaczmarek EB, Gartner SM, Westneat MW, Brainerd EL. Air Breathing and Suction Feeding Kinematics in the West African Lungfish, Protopterus Annectens. Integr Comp Biol 2022; 62:865-877. [PMID: 35798019 DOI: 10.1093/icb/icac109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Research on the water-to-land transition tends to focus on the locomotor changes necessary for terrestriality. But the evolution from water breathing to air breathing was also a necessary precursor to the invasion of land. Air is approximately 1,000 times less dense, 50 times less viscous, and contains hundreds of times more oxygen than water. However, unlike the transition to terrestrial locomotion, breathing air does not require body weight support, so the evolution of air breathing may have necessitated smaller changes to morphology and function. We used X-ray Reconstruction of Moving Morphology to compare the cranial kinematics of aquatic buccal pumping, such as seen in suction feeding, with the aerial buccal pumping required for lung ventilation in the West African lungfish (Protopterus annectens). During buccal pumping behaviors, the cranial bones and associated soft tissues act as valves and pumps, and the sequence of their motions controls the pattern of fluid flow. Both behaviors are characterized by an anterior-to-posterior wave of expansion and an anterior-to-posterior wave of compression. We found that the pectoral girdle and cranial rib rotate consistently during air breathing and suction feeding, and that the muscle between them shortens during buccal expansion. Overall, we conclude that the major cranial bones maintain the same basic functions (i.e., acting as valves or pumps, or transmitting power) across aquatic and aerial buccal pumping. The cranial morphology that enables aquatic buccal pumping is well-suited to perform air-breathing and accommodates the physical differences between air and water.
Collapse
Affiliation(s)
- Elska B Kaczmarek
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence RI 02912
| | - Samantha M Gartner
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | - Elizabeth L Brainerd
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence RI 02912
| |
Collapse
|
15
|
Abstract
In visually active animals, eye, head, and body movements are coordinated to direct gaze. Given their distinct mechanics, how does the nervous system weight their contribution? By combining experiments in flying flies with control theory, we show that flies implement an elegant solution to this problem: the lower inertia head is recruited for higher-frequency visual tasks and is sensitive to motion acceleration, whereas the higher inertia body is recruited for lower-frequency visual tasks and is sensitive to motion velocity. This complementary division of labor within the nervous system exhibits two hallmarks of optimality: an increase in task performance accompanied with a decrease in mechanical energy expenditure. Our model recapitulates classic primate head-eye coordination responses, suggesting convergent mechanisms across phyla. Visually active animals coordinate vision and movement to achieve spectacular tasks. An essential prerequisite to guide agile locomotion is to keep gaze level and stable. Since the eyes, head and body can move independently to control gaze, how does the brain effectively coordinate these distinct motor outputs? Furthermore, since the eyes, head, and body have distinct mechanical constraints (e.g., inertia), how does the nervous system adapt its control to these constraints? To address these questions, we studied gaze control in flying fruit flies (Drosophila) using a paradigm which permitted direct measurement of head and body movements. By combining experiments with mathematical modeling, we show that body movements are sensitive to the speed of visual motion whereas head movements are sensitive to its acceleration. This complementary tuning of the head and body permitted flies to stabilize a broader range of visual motion frequencies. We discovered that flies implement proportional-derivative (PD) control, but unlike classical engineering control systems, relay the proportional and derivative signals in parallel to two distinct motor outputs. This scheme, although derived from flies, recapitulated classic primate vision responses thus suggesting convergent mechanisms across phyla. By applying scaling laws, we quantify that animals as diverse as flies, mice, and humans as well as bio-inspired robots can benefit energetically by having a high ratio between head, body, and eye inertias. Our results provide insights into the mechanical constraints that may have shaped the evolution of active vision and present testable neural control hypotheses for visually guided behavior across phyla.
Collapse
|
16
|
Abstract
The nervous system is a product of evolution. That is, it was constructed through a long series of modifications, within the strong constraints of heredity, and continuously subjected to intense selection pressures. As a result, the organization and functions of the brain are shaped by its history. We believe that this fact, underappreciated in contemporary systems neuroscience, offers an invaluable aid for helping us resolve the brain's mysteries. Indeed, we think that the consideration of evolutionary history ought to take its place alongside other intellectual tools used to understand the brain, such as behavioural experiments, studies of anatomical structure and functional characterization based on recordings of neural activity. In this introduction, we argue for the importance of evolution by highlighting specific examples of ways that evolutionary theory can enhance neuroscience. The rest of the theme issue elaborates this point, emphasizing the conservative nature of neural evolution, the important consequences of specific transitions that occurred in our history, and the ways in which considerations of evolution can shed light on issues ranging from specific mechanisms to fundamental principles of brain organization. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montréal, 2960 chemin de la tour, local 1107 Montréal, QC H3T 1J4 Canada
| | - Benjamin Y Hayden
- Department of Neuroscience, Department of Biomedical Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|