1
|
Makarieva AM, Nefiodov AV, Nobre AD, Baudena M, Bardi U, Sheil D, Saleska SR, Molina RD, Rammig A. The role of ecosystem transpiration in creating alternate moisture regimes by influencing atmospheric moisture convergence. GLOBAL CHANGE BIOLOGY 2023; 29:2536-2556. [PMID: 36802091 DOI: 10.1111/gcb.16644] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 05/31/2023]
Abstract
The terrestrial water cycle links the soil and atmosphere moisture reservoirs through four fluxes: precipitation, evaporation, runoff, and atmospheric moisture convergence (net import of water vapor to balance runoff). Each of these processes is essential for sustaining human and ecosystem well-being. Predicting how the water cycle responds to changes in vegetation cover remains a challenge. Recently, changes in plant transpiration across the Amazon basin were shown to be associated disproportionately with changes in rainfall, suggesting that even small declines in transpiration (e.g., from deforestation) would lead to much larger declines in rainfall. Here, constraining these findings by the law of mass conservation, we show that in a sufficiently wet atmosphere, forest transpiration can control atmospheric moisture convergence such that increased transpiration enhances atmospheric moisture import and results in water yield. Conversely, in a sufficiently dry atmosphere increased transpiration reduces atmospheric moisture convergence and water yield. This previously unrecognized dichotomy can explain the otherwise mixed observations of how water yield responds to re-greening, as we illustrate with examples from China's Loess Plateau. Our analysis indicates that any additional precipitation recycling due to additional vegetation increases precipitation but decreases local water yield and steady-state runoff. Therefore, in the drier regions/periods and early stages of ecological restoration, the role of vegetation can be confined to precipitation recycling, while once a wetter stage is achieved, additional vegetation enhances atmospheric moisture convergence and water yield. Recent analyses indicate that the latter regime dominates the global response of the terrestrial water cycle to re-greening. Evaluating the transition between regimes, and recognizing the potential of vegetation for enhancing moisture convergence, are crucial for characterizing the consequences of deforestation as well as for motivating and guiding ecological restoration.
Collapse
Affiliation(s)
- Anastassia M Makarieva
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
- Theoretical Physics Division, Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | - Andrei V Nefiodov
- Theoretical Physics Division, Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | | | - Mara Baudena
- National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Torino, Italy
| | - Ugo Bardi
- Department of Chemistry, University of Florence, Firenze, Italy
| | - Douglas Sheil
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, The Netherlands
- Center for International Forestry Research (CIFOR), Kota Bogor, Indonesia
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Ruben D Molina
- Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia
| | - Anja Rammig
- Technical University of Munich, School of Life Sciences, Freising, Germany
| |
Collapse
|
2
|
Singh A, Varma A, Prasad R, Porwal S. Bioprospecting uncultivable microbial diversity in tannery effluent contaminated soil using shotgun sequencing and bio-reduction of chromium by indigenous chromate reductase genes. ENVIRONMENTAL RESEARCH 2022; 215:114338. [PMID: 36116499 DOI: 10.1016/j.envres.2022.114338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
The tannery industry generates a consequential threat to the environment by producing a large amount of potentially toxic metal-containing waste. Bioremediation has been a promising approach for treating potentially toxic metals, but the efficiency of remediation in microbes is one of the factors limiting their application in tanneries waste treatment. The motivation behind the present work was to explore the microbial diversity and chromate reductase genes present in the tannery effluent-contaminated soil using metagenomics approach. The use of shotgun sequencing enabled the identification of operational parameters that influence microbiome composition and their ability to reduce Chromium (Cr) concentration. The Cr concentration in Kanpur tannery effluent contaminated soil sample was 700 ppm which is many folds than the approved permissible limit by World Health Organisation (WHO) for Cr is 100 ppm. Metagenomic Deoxyribo Nucleic Acid (DNA) was extracted to explore taxonomic community structure, phylogenetic linkages, and functional profile. With a Guanine-Cytosine (GC) abundance of 54%, total of 45,163,604 high-quality filtered reads were obtained. Bacteria (83%), Archaebacteria (14%), and Viruses (3%) were discovered in the structural biodiversity. Bacteria were classified to phylum level, with Proteobacteria (52%) being the dominant population, followed by Bacteriodetes (15%), Chloroflexi (15%), Spirochaetes (7%), Thermotogae (5%), Actinobacteria (4%), and Firmicutes (1%). The OXR genes were cloned and checked for their efficiency to reduce Cr concentration. Insitu validation of OXR8 gene showed a reduction of Cr concentration from 700 ppm to 24 ppm in 72 h (96.51% reduction). The results of this study suggests that there is a huge reservoir of microbes and chromate reductase genes which are unexplored yet.
Collapse
Affiliation(s)
- Ayushi Singh
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201301, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201301, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari-845401, Bihar, India.
| | - Shalini Porwal
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201301, India.
| |
Collapse
|
3
|
Solé R, Levin S. Ecological complexity and the biosphere: the next 30 years. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210376. [PMID: 35757877 PMCID: PMC9234814 DOI: 10.1098/rstb.2021.0376] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Global warming, habitat loss and overexploitation of limited resources are leading to alarming biodiversity declines. Ecosystems are complex adaptive systems that display multiple alternative states and can shift from one to another in abrupt ways. Some of these tipping points have been identified and predicted by mathematical and computational models. Moreover, multiple scales are involved and potential mitigation or intervention scenarios are tied to particular levels of complexity, from cells to human–environment coupled systems. In dealing with a biosphere where humans are part of a complex, endangered ecological network, novel theoretical and engineering approaches need to be considered. At the centre of most research efforts is biodiversity, which is essential to maintain community resilience and ecosystem services. What can be done to mitigate, counterbalance or prevent tipping points? Using a 30-year window, we explore recent approaches to sense, preserve and restore ecosystem resilience as well as a number of proposed interventions (from afforestation to bioengineering) directed to mitigate or reverse ecosystem collapse. The year 2050 is taken as a representative future horizon that combines a time scale where deep ecological changes will occur and proposed solutions might be effective. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 80, Barcelona 08003, Spain.,Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, Barcelona 08003, Spain.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Simon Levin
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|