Mishra R, Chen AT, Welsh RM, Szomolanyi-Tsuda E. NK cells and gammadelta T cells mediate resistance to polyomavirus-induced tumors.
PLoS Pathog 2010;
6:e1000924. [PMID:
20523894 PMCID:
PMC2877738 DOI:
10.1371/journal.ppat.1000924]
[Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 04/26/2010] [Indexed: 11/28/2022] Open
Abstract
NK and γδ T cells can eliminate tumor cells in many experimental models, but their effect on the development of tumors caused by virus infections in vivo is not known. Polyomavirus (PyV) induces tumors in neonatally infected mice of susceptible strains and in adult mice with certain immune deficiencies, and CD8+ αβ T cells are regarded as the main effectors in anti-tumor immunity. Here we report that adult TCRβ knockout (KO) mice that lack αβ but have γδ T cells remain tumor-free after PyV infection, whereas TCRβ×δ KO mice that lack all T cells develop tumors. In addition, E26 mice, which lack NK and T cells, develop the tumors earlier than TCRβ×δ KO mice. These observations implicate γδ T and NK cells in the resistance to PyV-induced tumors. Cell lines established from PyV-induced tumors activate NK and γδ T cells both in culture and in vivo and express Rae-1, an NKG2D ligand. Moreover, these PyV tumor cells are killed by NK cells in vitro, and this cytotoxicity is prevented by treatment with NKG2D-blocking antibodies. Our findings demonstrate a protective role for NK and γδ T cells against naturally occurring virus-induced tumors and suggest the involvement of NKG2D-mediated mechanisms.
Virus-induced tumors account for a large fraction of malignancies in both humans and mice. These tumors express viral antigens and have been thought to be controlled mostly by αβ TCR+ CD8 T lymphocytes that are specific for viral peptides. We found that mice lacking αβ T cells are protected from the formation of tumors induced by the small DNA virus polyoma (PyV) if they have γδ T and NK cells. Moreover, cell lines we established from the virus-induced tumors induced NK and γδ T cell activation, and expressed Rae-1, a cellular stress molecule which serves as ligand for NKG2D, an activating receptor on NK and γδ T cells. NK and γδ T cells seemed to mount antitumor but not antiviral responses, as their presence did not change the amount of persisting virus significantly. Our studies suggest that mice have a multipronged host defense against PyV-induced tumors that includes γδ T and NK cells in addition to αβ T cell responses. Merkel cell virus, a tumor causing polyomavirus in humans, is closely related to PyV with a similar biology, making it very important to understand mechanisms involved in host control of tumor development in the course of these life-long persistent infections.
Collapse