1
|
Kumar A, Singh J, Panwar D, Singh A, Thapa RS, Kumar R, Pratap D. An improved DNA extraction method in okra for rapid PCR detection of Okra enation leaf curl virus from diverse Indian regions. Arch Microbiol 2024; 206:468. [PMID: 39542900 DOI: 10.1007/s00203-024-04176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The extraction of DNA from okra (Abelmoschus esculentus) is challenging due to its high mucilage and polysaccharide content, which can hinder both the yield and quality of DNA. In this study, an improved DNA isolation method is described incorporating a key modification being the use of solution I (1 M NaCl and 2% Sarcosyl) as a pre-treatment before applying the CTAB buffer, resulting in high-purity genomic DNA in just 1 h and 45 min., making it suitable for handling large sample sizes due to its rapid processing capabilities. This enhanced DNA extraction method was crucial for the accurate and rapid molecular detection of Okra enation leaf curl virus (OELCuV), a monopartite begomovirus that has spread across various regions of India. Transmitted by the whitefly (Bemisia tabaci), OELCuV causes leaf curling, enations, and stunted growth in okra, leading to significant yield losses. The surveys conducted during the 2020-21 and 2021-22 sowing seasons revealed disease incidence ranging from 14.03 to 67.57%. The extracted DNA via the improved DNA extraction method enhanced the speed of PCR based molecular identification of OELCuV, using virus-specific coat protein primers. The amplified CP genes were cloned and sequenced to study the CP gene based diversity among OELCuV isolates from different states of India. The CP gene nucleotide identity among the studied OELCuV isolates ranged from 95.57 to 99.27%, while comparison with previously reported Indian OELCuV CP sequences, the nucleotide identity ranged from 89.35 to 98.83%. The successful application of this optimized DNA extraction method sped up the detection process but also holds promise for broader use in the molecular study of okra and other mucilaginous crops, particularly in the rapid and reliable identification of begomoviruses. The optimized DNA extraction method significantly accelerated the detection of OELCuV, demonstrating its efficiency and reliability. This method shows strong potential for broader applications in the molecular study of okra and other mucilaginous crops, making it a valuable tool for future research and disease management.
Collapse
Affiliation(s)
- Ankit Kumar
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Jyoti Singh
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Deepak Panwar
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Anupma Singh
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Ravi Singh Thapa
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
- School of Agricultural Sciences, IIMT University, Meerut, UP, 250001, India
| | - Rakesh Kumar
- Division of Biotechnology, JK Agri Genetics Ltd, Hyderabad, India
| | - Dharmendra Pratap
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India.
| |
Collapse
|
2
|
Ciołek J, Orłowska A, Smreczak M. Determination of the rabies virus variants circulating in Poland in 2021-2023 and their phylogeny with analysis of the strains in the Mazowieckie and Podkarpackie voivodeships. J Vet Res 2024; 68:175-180. [PMID: 38947152 PMCID: PMC11212032 DOI: 10.2478/jvetres-2024-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Rabies is endemic in Europe and red foxes are the vector and reservoir of the rabies virus (RABV). Based on classification established in the early 1990s, four variants of the rabies virus have been distinguished in Europe. Rabies broke out in January 2021 in the Mazowieckie voivodeship in central north-eastern Poland. The virus spread rapidly, reaching the Świętokrzyskie voivodeship in the central southern part and the Lubelskie voivodeship in the eastern part in the next months. Nine rabies cases were reported in the Podkarpackie voivodeship in south-eastern Poland between 2021 and 2023, mainly in red foxes but also in dogs and wildcat. The aim of the study was the identification of RABV variants in wildlife and domestic animals in Poland between 2021 and 2023. Material and Methods The study involved 157 animal brains tested positive for rabies using a fluorescent antibody test. From 10% w/v brain homogenates, RNA was isolated and full-length RABV genomes were high-throughput sequenced with an RABV-enriched approach. Complete genomes of RABV isolates were phylogenetically analysed and the variants were estimated. Results Molecular and phylogenetic studies revealed 147 (93.6%) of the RABV strains out of 157 which had rapidly spread in the wildlife of the Mazowieckie, Świętokrzyskie and Lubelskie voivodeships to be Central European strains. Nine RABVs (5.7%) detected in foxes, a wildcat and a dog in the Podkarpackie voivodeship were identified as North-Eastern European. A vaccine-induced rabies case was detected in a red fox in the Lubelskie voivodeship in May 2023. Conclusion Central European and North-Eastern European RABVs were circulating in Poland between 2021 and 2023.
Collapse
Affiliation(s)
- Janusz Ciołek
- Regional Veterinary Inspectorate Krosno, 38-400KrosnoPoland
| | - Anna Orłowska
- Department of Virology, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
3
|
Makwana M, Patel AM. Identification of microbes using single-layer graphene-based nano biosensors. J Mol Model 2023; 29:382. [PMID: 37987806 DOI: 10.1007/s00894-023-05748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/03/2023] [Indexed: 11/22/2023]
Abstract
CONTEXT Graphene based nano sensors have huge potential in an era of sensor technology. The objective of this study is to create a sensor by investigating the vibration responses of cantilever and bridged boundary conditioned single layer graphene sheets (SLGS) with various attached microorganisms on the tip and at the centre of the sheet. The Parvoviridae, Flaviviridae, and Polyomaviridae biological substances have been comprehensively investigated here. For the Parvoviridae, Polyomaviridae, and Flaviviridae categories of targeted microbes, the sizes are 21nm, 40nm, and 45nm, respectively. The Parvoviridae family has a maximum frequency of 1.87x107 Hz with a cantilever condition and a mass of 4.2441 Zg, and for a bridged condition, it demonstrates a maximum frequency of 1.23x108 Hz with the same mass on armchair SLG (5 5). The data analysis shows that 3.0041 Zg mass of the Mimivirus has the lowest frequency. It demonstrates explicitly that the rate of frequency decreases as the value of mass increases. When compared to chiral SLG, the armchair single layer graphene sheet performs better. The research indicates that the dynamic properties are significantly influenced by the mass of various biological organisms. The application of this sensor will enable the detection of microorganisms or viruses that can be connected to SLG. METHODS In this research, the application of Single Layer Graphene (SLG) as a virus sensing device is explored. Atomistic finite element method (AFEM) has been used to carry out the dynamic analysis of SLG. Molecular dynamic analysis and simulations have been performed to see how SLG behaves when employed as sensors for biological entities and when they are exposed to bridged and cantilever boundary conditions. The frequency analysis was performed using ANSYS APDL software. SLG of various chirality has been utilised in the investigation. By altering the applied mass of a biological object, the difference in frequency observed. The idea behind mass detection employing nano biosensors is built on the concept that the stiffness of a biomolecule changes as its mass changes, making the resonant frequency extremely sensitive to that change. A shift in the resonance frequency results from a change in the associated mass on the graphene sheet. The main challenge in mass detection is estimating the variation in resonant frequency driven by the mass of the connected molecule. The SLG-based biosensor has a specific application in the early identification of diseases. The biosensor investigated in this article is novel, whereas the biosensors that are presently on the market operate using the ionization method. The simulations result shows SLG based biosensor's sensitivity considerably faster than an existing one.
Collapse
Affiliation(s)
- Manisha Makwana
- Mechanical Engineering Department, A D Patel Institute of Technology, Vallabh Vidyanagar, Gujarat, India.
| | - Ajay M Patel
- Mechatronics Engineering Department, G.H. Patel College of Engineering & Technology, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
4
|
Zhang K, Shen Y, Wang T, Wang Y, Xue S, Luan H, Wang L, Li K, Guo D, Zhi H. GmGSTU13 Is Related to the Development of Mosaic Symptoms in Soybean Plants Infected with Soybean Mosaic Virus. PHYTOPATHOLOGY 2022; 112:452-459. [PMID: 34077233 DOI: 10.1094/phyto-11-20-0498-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The leaves of soybean cultivar ZheA8901 show various symptoms (necrosis, mosaic, and symptomless) when infected with different strains of soybean mosaic virus (SMV). Based on a proteomic analysis performed with tandem mass tags (TMT), 736 proteins were differentially expressed from soybean samples that showed asymptomatic, mosaic, and necrosis symptoms induced by SMV strains SC3, SC7, and SC15, respectively. Among these, GmGSTU13 and ascorbate peroxidase (APX) were only upregulated in mosaic and symptomless leaves, respectively. The protein level of GmGSTU13 determined by western blot analysis was consistent with TMT analysis, and quantitative reverse transcriptase PCR analysis showed that GmGSTU13 mRNA levels in mosaic plants were 5.26- and 3.75-fold higher than those in necrotic and symptomless plants, respectively. Additionally, the expression of the viral coat protein (CP) gene was increased, and serious mosaic symptoms were observed in GmGSTU13-overexpressing plants inoculated with all three SMV strains. These results showed that GmGSTU13 is associated with the development of SMV-induced mosaic symptoms in soybean and that APX is upregulated in symptomless leaves at both the transcriptional and protein levels. In APX gene-silenced soybean plants, the relative expression of the viral CP gene was 1.50, 7.59, and 1.30 times higher than in positive control plants inoculated with the three SMV strains, suggesting that the upregulation of APX may be associated with lack of symptoms in soybean infected with SMV. This work provides a useful dataset for identifying key proteins responsible for symptom development in soybean infected with different SMV strains.
Collapse
Affiliation(s)
- Kai Zhang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yingchao Shen
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Handan Academy of Agricultural Science, Handan 056001, China
| | - Yu Wang
- Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Song Xue
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hexiang Luan
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Liqun Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongquan Guo
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Haijian Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Diao P, Sun H, Bao Z, Li W, Niu N, Li W, Wuriyanghan H. Expression of an Antiviral Gene GmRUN1 from Soybean Is Regulated via Intron-Mediated Enhancement (IME). Viruses 2021; 13:2032. [PMID: 34696462 PMCID: PMC8539222 DOI: 10.3390/v13102032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022] Open
Abstract
Most of R (resistance) genes encode the protein containing NBS-LRR (nucleotide binding site and leucine-rich repeat) domains. Here, N. benthamiana plants were used for transient expression assays at 3-4 weeks of age. We identified a TNL (TIR-NBS-LRR) encoding gene GmRUN1 that was resistant to both soybean mosaic virus (SMV) and tobacco mosaic virus (TMV). Truncation analysis indicated the importance of all three canonical domains for GmRUN1-mediated antiviral activity. Promoter-GUS analysis showed that GmRUN1 expression is inducible by both salicylic acid (SA) and a transcription factor GmDREB3 via the cis-elements as-1 and ERE (ethylene response element), which are present in its promoter region. Interestingly, GmRUN1 gDNA (genomic DNA) shows higher viral resistance than its cDNA (complementary DNA), indicating the existence of intron-mediated enhancement (IME) for GmRUN1 regulation. We provided evidence that intron2 of GmRUN1 increased the mRNA level of native gene GmRUN1, a soybean antiviral gene SRC7 and also a reporter gene Luciferase, indicating the general transcriptional enhancement of intron2 in different genes. In summary, we identified an antiviral TNL type soybean gene GmRUN1, expression of which was regulated at different layers. The investigation of GmRUN1 gene regulatory network would help to explore the mechanism underlying soybean-SMV interactions.
Collapse
Affiliation(s)
- Pengfei Diao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Hongyu Sun
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Zhuo Bao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Wenxia Li
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Niu Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| |
Collapse
|
6
|
Zhang X, Chen T, Chen S, Nie Y, Xie Z, Feng K, Zhang H, Xie Q. The Efficacy of a Live Attenuated TW I-Type Infectious Bronchitis Virus Vaccine Candidate. Virol Sin 2021; 36:1431-1442. [PMID: 34251605 PMCID: PMC8273854 DOI: 10.1007/s12250-021-00419-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bronchitis (IB) is a highly contagious avian disease caused by infection with infectious bronchitis virus (IBV), which seriously affects the development of the global poultry industry. The distribution of TW I-type IBV in China has increased in recent years, becoming a widespread genotype. We previously isolated a TW I-type IBV strain termed CK/CH/GD/GZ14 in 2014, but its pathogenicity and possibility for vaccine development were not explored. Therefore, this research aimed to develop a live-attenuated virus vaccine based on the CK/CH/GD/GZ14 strain. The wild type IBV CK/CH/GD/GZ14 strain was serially passaged in SPF embryos for 145 generations. The morbidity and mortality rate of wild-type strain in 14 day-old chickens is 100% and 80% respectively, while the morbidity rate in the attenuated strain was 20% in the 95th and 105th generations and there was no death. Histopathological observations showed that the pathogenicity of the 95th and 105th generations in chickens was significantly weakened. Further challenge experiments confirmed that the attenuated CK/CH/GD/GZ14 strain in the 95th and 105th generations could resist CK/CH/GD/GZ14 (5th generation) infection and the protection rate was 80%. Tracheal cilia stagnation, virus shedding, and viral load experiments confirmed that the 95th and 105th generations provide good immune protection in chickens, and the immunogenicity of the 105th generation is better than that of the 95th generation. These data suggest that the attenuated CK/CH/GD/GZ14 strain in the 105th generation may be applied as a vaccine candidate against TW I-type IBV.
Collapse
Affiliation(s)
- Xinheng Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China
| | - Tong Chen
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China
| | - Sheng Chen
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Yu Nie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Zi Xie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Keyu Feng
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Huanmin Zhang
- United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Qingmei Xie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China. .,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Evolutionary Relationships of Ljungan Virus Variants Circulating in Multi-Host Systems across Europe. Viruses 2021; 13:v13071317. [PMID: 34372523 PMCID: PMC8310206 DOI: 10.3390/v13071317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The picornavirus named 'Ljungan virus' (LV, species Parechovirus B) has been detected in a dozen small mammal species from across Europe, but detailed information on its genetic diversity and host specificity is lacking. Here, we analyze the evolutionary relationships of LV variants circulating in free-living mammal populations by comparing the phylogenetics of the VP1 region (encoding the capsid protein and associated with LV serotype) and the 3Dpol region (encoding the RNA polymerase) from 24 LV RNA-positive animals and a fragment of the 5' untranslated region (UTR) sequence (used for defining strains) in sympatric small mammals. We define three new VP1 genotypes: two in bank voles (Myodes glareolus) (genotype 8 from Finland, Sweden, France, and Italy, and genotype 9 from France and Italy) and one in field voles (Microtus arvalis) (genotype 7 from Finland). There are several other indications that LV variants are host-specific, at least in parts of their range. Our results suggest that LV evolution is rapid, ongoing and affected by genetic drift, purifying selection, spillover and host evolutionary history. Although recent studies suggest that LV does not have zoonotic potential, its widespread geographical and host distribution in natural populations of well-characterized small mammals could make it useful as a model for studying RNA virus evolution and transmission.
Collapse
|
8
|
Aljabali AA, Obeid MA. Inorganic-organic Nanomaterials for Therapeutics and Molecular Imaging Applications. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210681209666190807145229] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Surface modification of nanoparticles with targeting moieties can be
achieved through bioconjugation chemistries to impart new Functionalities. Various polymeric
nanoparticles have been used for the formulation of nanoparticles such as naturally-occurring
protein cages, virus-like particles, polymeric saccharides, and liposomes. These polymers have
been proven to be biocompatible, side effects free and degradable with no toxicity.
Objectives::
This paper reviews available literature on the nanoparticles pharmaceutical and medical
applications. The review highlights and updates the customized solutions for selective drug
delivery systems that allow high-affinity binding between nanoparticles and the target receptors.
Methods::
Bibliographic databases and web-search engines were used to retrieve studies that assessed
the usability of nanoparticles in the pharmaceutical and medical fields. Data were extracted
on each system in vivo and in vitro applications, its advantages and disadvantages, and its ability to
be chemically and genetically modified to impart new functionalities. Finally, a comparison
between naturally occurring and their synthetic counterparts was carried out.
Results::
The results showed that nanoparticles-based systems could have promising applications in
diagnostics, cell labeling, contrast agents (Magnetic Resonance Imaging and Computed Tomography),
antimicrobial agents, and as drug delivery systems. However, precautions should be taken
to avoid or minimize toxic effect or incompatibility of nanoparticles-based systems with the biological
systems in case of pharmaceutical or medical applications.
Conclusion::
This review presented a summary of recent developments in the field of pharmaceutical
nanotechnology and highlighted the challenges and the merits that some of the nanoparticles-
based systems both in vivo and in vitro systems.
Collapse
Affiliation(s)
- Alaa A.A. Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| |
Collapse
|
9
|
Sphingomyelin Is Essential for the Structure and Function of the Double-Membrane Vesicles in Hepatitis C Virus RNA Replication Factories. J Virol 2020; 94:JVI.01080-20. [PMID: 32938759 DOI: 10.1128/jvi.01080-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Some plus-stranded RNA viruses generate double-membrane vesicles (DMVs), one type of the membrane replication factories, as replication sites. Little is known about the lipid components involved in the biogenesis of these vesicles. Sphingomyelin (SM) is required for hepatitis C virus (HCV) replication, but the mechanism of SM involvement remains poorly understood. SM biosynthesis starts in the endoplasmic reticulum (ER) and gives rise to ceramide, which is transported from the ER to the Golgi by the action of ceramide transfer protein (CERT), where it can be converted to SM. In this study, inhibition of SM biosynthesis, either by using small-molecule inhibitors or by knockout (KO) of CERT, suppressed HCV replication in a genotype-independent manner. This reduction in HCV replication was rescued by exogenous SM or ectopic expression of the CERT protein, but not by ectopic expression of nonfunctional CERT mutants. Observing low numbers of DMVs in stable replicon cells treated with a SM biosynthesis inhibitor or in CERT-KO cells transfected with either HCV replicon or with constructs that drive HCV protein production in a replication-independent system indicated the significant importance of SM to DMVs. The degradation of SM of the in vitro-isolated DMVs affected their morphology and increased the vulnerability of HCV RNA and proteins to RNase and protease treatment, respectively. Poliovirus, known to induce DMVs, showed decreased replication in CERT-KO cells, while dengue virus, known to induce invaginated vesicles, did not. In conclusion, these findings indicated that SM is an essential constituent of DMVs generated by some plus-stranded RNA viruses.IMPORTANCE Previous reports assumed that sphingomyelin (SM) is essential for HCV replication, but the mechanism was unclear. In this study, we showed for the first time that SM and ceramide transfer protein (CERT), which is in the SM biosynthesis pathway, are essential for the biosynthesis of double-membrane vesicles (DMVs), the sites of viral replication. Low numbers of DMVs were observed in CERT-KO cells transfected with replicon RNA or with constructs that drive HCV protein production in a replication-independent system. HCV replication was rescued by ectopic expression of the CERT protein, but not by CERT mutants, that abolishes the binding of CERT to vesicle-associated membrane protein-associated protein (VAP) or phosphatidylinositol 4-phosphate (PI4P), indicating new roles for VAP and PI4P in HCV replication. The biosynthesis of DMVs has great importance to replication by a variety of plus-stranded RNA viruses. Understanding of this process is expected to facilitate the development of diagnosis and antivirus.
Collapse
|
10
|
Nomura S, Taniura T, Ito T. Extracellular Vesicle-Related Thrombosis in Viral Infection. Int J Gen Med 2020; 13:559-568. [PMID: 32904587 PMCID: PMC7457561 DOI: 10.2147/ijgm.s265865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Although the outcomes of viral infectious diseases are remarkably varied, most infections cause acute diseases after a short period. Novel coronavirus disease 2019, which recently spread worldwide, is no exception. Extracellular vesicles (EVs) are small circulating membrane-enclosed entities shed from the cell surface in response to cell activation or apoptosis. EVs transport various kinds of bioactive molecules between cells, including functional RNAs, such as viral RNAs and proteins. Therefore, when EVs are at high levels, changes in cell activation, inflammation, angioplasty and transportation suggest that EVs are associated with various diseases. Clinical research on EVs includes studies on the coagulatory system. In particular, abnormal enhancement of the coagulatory system through EVs can cause thrombosis. In this review, we address the functions of EVs, thrombosis, and their involvement in viral infection.
Collapse
Affiliation(s)
- Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | | | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
11
|
Shao G, Chen T, Feng K, Zhao Q, Zhang X, Li H, Lin W, Xie Q. Efficacy of commercial polyvalent avian infectious bronchitis vaccines against Chinese QX-like and TW-like strain via different vaccination strategies. Poult Sci 2020; 99:4786-4794. [PMID: 32988513 PMCID: PMC7380215 DOI: 10.1016/j.psj.2020.06.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/28/2020] [Accepted: 06/04/2020] [Indexed: 12/02/2022] Open
Abstract
The infectious bronchitis virus (IBV) is an acute and highly contagious disease, which affects chickens of all ages. Vaccination is the most important way to control this disease. Nevertheless, novel variant strains are constantly reported because of the lack of proofreading capabilities of RNA polymerase and high frequency of homologous RNA recombination. Cross-protection studies has demonstrated that the vaccines could provide great protective effects against viruses of same serotype or genotype. However, the protective effect of different commercial vaccines and vaccine combinations against the prevalent IBV strains in China has rarely been studied. Owing to the multiple genotype or serotype IBV strains prevalence in China, the polyvalent vaccines and their composition were used to expanding the protection spectrum of vaccine in practical application. To evaluate the protection of Chinese commercial IBV polyvalent vaccines against prevalent strains (QX-like and TW I-like), an immune challenge test was conducted. Four polyvalent vaccines, containing 4/91, H120, YX10p90, LDT3-A, and 28/86, were combined to form 8 vaccination strategies, almost all of which could provide more than 70% protection effects against challenge with QX-like strain. Particularly, the best protection rate (93%) was generated by administration the polyvalent vaccine C (H120 + 28/86 + 4/91) at 1 D of age and the polyvalent vaccine B (H120 + 4/91 + YX10p90) at 10 D of age. However, all the vaccination strategies in this study cannot provide great protective effects against TW-like strain, and more vaccines should be included in studies to expand the protection spectrum of vaccine. Therefore, for the newly emerging IBV strains, immunization with polyvalent vaccines via different vaccination strategies could be used to control the prevalence of IBV in a short time, whereas developing the homologous vaccines was not always necessary.
Collapse
Affiliation(s)
- Guanming Shao
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China
| | - Tong Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China
| | - Keyu Feng
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China
| | - Qiqi Zhao
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China
| | - Xinheng Zhang
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China
| | - Hongxin Li
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510642, PR China; College of Animal Science, South China Agricultural University & South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China.
| |
Collapse
|
12
|
Sommer J, Trautner C, Witte AK, Fister S, Schoder D, Rossmanith P, Mester PJ. Don't Shut the Stable Door after the Phage Has Bolted-The Importance of Bacteriophage Inactivation in Food Environments. Viruses 2019; 11:E468. [PMID: 31121941 PMCID: PMC6563225 DOI: 10.3390/v11050468] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/05/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
In recent years, a new potential measure against foodborne pathogenic bacteria was rediscovered-bacteriophages. However, despite all their advantages, in connection to their widespread application in the food industry, negative consequences such as an uncontrolled phage spread as well as a development of phage resistant bacteria can occur. These problems are mostly a result of long-term persistence of phages in the food production environment. As this topic has been neglected so far, this article reviews the current knowledge regarding the effectiveness of disinfectant strategies for phage inactivation and removal. For this purpose, the main commercial phage products, as well as their application fields are first discussed in terms of applicable inactivation strategies and legal regulations. Secondly, an overview of the effectiveness of disinfectants for bacteriophage inactivation in general and commercial phages in particular is given. Finally, this review outlines a possible strategy for users of commercial phage products in order to improve the effectiveness of phage inactivation and removal after application.
Collapse
Affiliation(s)
- Julia Sommer
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Christoph Trautner
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Anna Kristina Witte
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
- HTK Hygiene Technologie Kompetenzzentrum GmbH, Buger Str. 80, 96049 Bamberg, Germany.
| | - Susanne Fister
- Former member of Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animal and Public Veterinary Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Dagmar Schoder
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Peter Rossmanith
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Patrick-Julian Mester
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
13
|
Zhang L, Shang J, Jia Q, Li K, Yang H, Liu H, Tang Z, Chang X, Zhang M, Wang W, Yang W. Genetic evolutionary analysis of soybean mosaic virus populations from three geographic locations in China based on the P1 and CP genes. Arch Virol 2019; 164:1037-1048. [PMID: 30747339 DOI: 10.1007/s00705-019-04165-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Abstract
Soybean mosaic virus (SMV) is one of the major pathogens causing serious soybean losses. Little is known about the genetic structure and evolutionary biology of the SMV population in southwestern China. In this study, 29 SMV isolates were obtained from Sichuan Province, and the genomic regions encoding the first protein (P1) and coat protein (CP) were sequenced. Combined with SMV isolates from the southeastern and northeastern regions of China, the genetic and molecular evolution of SMV was studied. Recombination analysis revealed that intraspecific and interspecific recombination had occurred in the SMV population. A phylogenetic tree based on the P1 gene reflected the geographic origin of the non-interspecific recombinant SMV (SMV-NI), while a tree based on the CP gene did not. Though frequent gene flow of the SMV-NI populations was found between the southeastern and northeastern populations, the southwestern population was relatively independent. Genetic differentiation was significant between the SMV interspecific recombinant (SMV-RI) and the non-interspecific recombinant (SMV-NI) populations. It was interesting to note that there was an almost identical recombination breakpoint in SMV-RI and Watermelon mosaic virus (WMV). Population dynamics showed that SMV-RI might be in an expanding state, while the SMV-NI population is relatively stable.
Collapse
Affiliation(s)
- Lei Zhang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Shang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qi Jia
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Hui Yang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanhuan Liu
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongqin Tang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Chang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Zhang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenming Wang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
14
|
Evolutionary and network analysis of virus sequences from infants infected with an Australian recombinant strain of human parechovirus type 3. Sci Rep 2017. [PMID: 28634337 PMCID: PMC5478645 DOI: 10.1038/s41598-017-04145-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present the near complete virus genome sequences with phylogenetic and network analyses of potential transmission networks of a total of 18 Australian cases of human parechovirus type 3 (HPeV3) infection in infants in the period from 2012–2015. Overall the results support our previous finding that the Australian outbreak strain/lineage is a result of a major recombination event that took place between March 2012 and November 2013 followed by further virus evolution and possibly recombination. While the nonstructural coding region of unknown provenance appears to evolve significantly both at the nucleotide and amino acid level, the capsid encoding region derived from the Yamagata 2011 lineage of HPeV3 appears to be very stable, particularly at the amino acid level. The phylogenetic and network analyses performed support a temporal evolution from the first Australian recombinant virus sequence from November 2013 to March/April 2014, onto the 2015 outbreak. The 2015 outbreak samples fall into two separate clusters with a possible common ancestor between March/April 2014 and September 2015, with each cluster further evolving in the period from September to November/December 2015.
Collapse
|
15
|
Nelson TM, Vuillermin P, Hodge J, Druce J, Williams DT, Jasrotia R, Alexandersen S. An outbreak of severe infections among Australian infants caused by a novel recombinant strain of human parechovirus type 3. Sci Rep 2017; 7:44423. [PMID: 28290509 PMCID: PMC5349594 DOI: 10.1038/srep44423] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/07/2017] [Indexed: 12/27/2022] Open
Abstract
Human parechovirus types 1–16 (HPeV1–16) are positive strand RNA viruses in the family Picornaviridae. We investigated a 2015 outbreak of HPeV3 causing illness in infants in Victoria, Australia. Virus genome was extracted from clinical material and isolates and sequenced using a combination of next generation and Sanger sequencing. The HPeV3 outbreak genome was 98.7% similar to the HPeV3 Yamagata 2011 lineage for the region encoding the structural proteins up to nucleotide position 3115, but downstream of that the genome varied from known HPeV sequences with a similarity of 85% or less. Analysis indicated that recombination had occurred, may have involved multiple types of HPeV and that the recombination event/s occurred between March 2012 and November 2013. However the origin of the genome downstream of the recombination site is unknown. Overall, the capsid of this virus is highly conserved, but recombination provided a different non-structural protein coding region that may convey an evolutionary advantage. The indication that the capsid encoding region is highly conserved at the amino acid level may be helpful in directing energy towards the development of a preventive vaccine for expecting mothers or antibody treatment of young infants with severe disease.
Collapse
Affiliation(s)
- Tiffanie M Nelson
- Geelong Center for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia.,Deakin University, School of Medicine, Geelong, Victoria 3220, Australia
| | - Peter Vuillermin
- Deakin University, School of Medicine, Geelong, Victoria 3220, Australia.,Barwon Health, University Hospital Geelong, Geelong, Victoria 3220, Australia
| | - Jason Hodge
- Geelong Center for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia.,Barwon Health, University Hospital Geelong, Geelong, Victoria 3220, Australia
| | - Julian Druce
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Doherty Institute, Melbourne, Victoria 3000, Australia
| | - David T Williams
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Rekha Jasrotia
- Barwon Health, University Hospital Geelong, Geelong, Victoria 3220, Australia
| | - Soren Alexandersen
- Geelong Center for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia.,Deakin University, School of Medicine, Geelong, Victoria 3220, Australia.,Barwon Health, University Hospital Geelong, Geelong, Victoria 3220, Australia
| |
Collapse
|
16
|
Wei YD, Gao WH, Sun HL, Yu CF, Pei XY, Sun YP, Liu JH, Pu J. A duplex RT-PCR assay for detection of H9 subtype avian influenza viruses and infectious bronchitis viruses. JOURNAL OF INTEGRATIVE AGRICULTURE : JIA 2016; 15:2105-2113. [PMID: 32288952 PMCID: PMC7128909 DOI: 10.1016/s2095-3119(15)61316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/02/2016] [Indexed: 06/11/2023]
Abstract
H9 subtype avian influenza virus (AIV) and infectious bronchitis virus (IBV) are major pathogens circulating in poultry and have resulted in great economic losses due to respiratory disease and reduced egg production. As similar symptoms are elicited by the two pathogens, it is difficult for their differential diagnosis. So far, no reverse transcription-polymerase chain reaction (RT-PCR) assay has been found to differentiate between H9 AIV and IBV in one reaction. Therefore, developing a sensitive and specific method is of importance to simultaneously detect and differentiate H9 AIV and IBV. In this study, a duplex RT-PCR (dRT-PCR) was established. Two primer sets target the hemagglutinin (HA) gene of H9 AIV and the nucleocapsid (N) gene of IBV, respectively. Specific PCR products were obtained from all tested H9 AIVs and IBVs belonging to the major clades circulating in China, but not from AIVs of other subtypes or other infectious avian viruses. The sensitivity of the dRT-PCR assay corresponding to H9 AIV, IBV and mixture of H9 AIV and IBV were at a concentration of 1×101, 1.5×101 and 1.5×101 50% egg infective doses (EID50) mL-1, respectively. The concordance rates between the dRT-PCR and virus isolation were 99.1 and 98.2%, respectively, for detection of samples from H9N2 AIV or IBV infected chickens, while the concordance rate was 99.1% for detection of samples from H9N2 AIV and IBV co-infected chickens. Thus, the dRT-PCR assay reported herein is specific and sensitive, and suitable for the differential diagnosis of clinical infections and surveillance of H9 AIVs and IBVs.
Collapse
Affiliation(s)
- Yan-di Wei
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture/College of Veterinary Medicine/State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P.R.China
| | - Wei-Hua Gao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture/College of Veterinary Medicine/State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P.R.China
| | - Hong-Lei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture/College of Veterinary Medicine/State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P.R.China
| | - Chen-Fang Yu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture/College of Veterinary Medicine/State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P.R.China
| | - Xing-Yao Pei
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture/College of Veterinary Medicine/State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P.R.China
| | - Yi-Peng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture/College of Veterinary Medicine/State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P.R.China
| | - Jin-Hua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture/College of Veterinary Medicine/State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P.R.China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture/College of Veterinary Medicine/State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P.R.China
| |
Collapse
|
17
|
Yamamoto SP, Kaida A, Naito T, Hosaka T, Miyazato Y, Sumimoto SI, Kohdera U, Ono A, Kubo H, Iritani N. Human parechovirus infections and child myositis cases associated with genotype 3 in Osaka City, Japan, 2014. J Med Microbiol 2015; 64:1415-1424. [PMID: 26358716 DOI: 10.1099/jmm.0.000167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human parechovirus (HPeV) infects humans early in life and typically causes asymptomatic or mild diseases such as gastrointestinal and respiratory illness but sometimes leads to more serious consequences in neonates and young infants. In 2014, we detected HPeV from 38 patients by real-time reverse transcription-PCR in Osaka City, Japan, and 33 HPeV strains were genotyped based on their VP1 sequences. HPeV genotype 3 (HPeV-3) was the most prevalent and accounted for 22 cases (66.7%) followed by nine HPeV-1 (27.3%), one HPeV-2 (3.0%) and one HPeV-4 (3.0%). Phylogenetic analysis revealed that detected HPeV-3 strains were divided into three genetically distinct groups. One was characterized by a novel single amino acid deletion mutation at the N terminus of the 2A protein as well as the VP1 sequence, whereas the others were closely related to HPeV-3 strains detected in Japan in either 2008 or 2011. These HPeV-3 groups were detected from patients with various symptoms including three myositis cases. Recent papers have demonstrated that HPeV-3 was the aetiological agent for epidemic myalgia exclusively among adults from Yamagata Prefecture in Japan. Here, we provide clinical details and episodes of three myositis patients including an adult and two children in Osaka City, Japan. Our results suggest that HPeV-3 is a causative agent of myositis not only in adults but also in children.
Collapse
Affiliation(s)
- Seiji P Yamamoto
- Osaka City Institute of Public Health and Environmental Sciences, Osaka 543-0026, Japan
| | - Atsushi Kaida
- Osaka City Institute of Public Health and Environmental Sciences, Osaka 543-0026, Japan
| | | | | | | | | | | | - Atsushi Ono
- Osaka Saiseikai Izuo Hospital, Osaka 551-0032, Japan
| | - Hideyuki Kubo
- Osaka City Institute of Public Health and Environmental Sciences, Osaka 543-0026, Japan
| | - Nobuhiro Iritani
- Osaka City Institute of Public Health and Environmental Sciences, Osaka 543-0026, Japan
| |
Collapse
|
18
|
Seo JK, Kwon SJ, Cho WK, Choi HS, Kim KH. Type 2C protein phosphatase is a key regulator of antiviral extreme resistance limiting virus spread. Sci Rep 2014; 4:5905. [PMID: 25082428 PMCID: PMC5379993 DOI: 10.1038/srep05905] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/16/2014] [Indexed: 01/11/2023] Open
Abstract
Effector-triggered immunity (ETI) is an active immune response triggered by interactions between host resistance proteins and their cognate effectors. Although ETI is often associated with the hypersensitive response (HR), various R genes mediate an HR-independent process known as extreme resistance (ER). In the soybean-Soybean mosaic virus (SMV) pathosystem, the strain-specific CI protein of SMV functions as an effector of Rsv3-mediated ER. In this study, we used the soybean (Rsv3)-SMV (CI) pathosystem to gain insight into the molecular signaling pathway involved in ER. We used genome-wide transcriptome analysis to identify a subset of the type 2C protein phophatase (PP2C) genes that are specifically up-regulated in Rsv3-mediated ER. Gain-of-function analysis of the most significantly expressed soybean PP2C gene, GmPP2C3a, showed that ABA-induced GmPP2C3a functions as a key regulator of Rsv3-mediated ER. Our results further suggest that the primary mechanism of ER against viruses is the inhibition of viral cell-to-cell movement by callose deposition in an ABA signaling-dependent manner.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Sun-Jung Kwon
- Horticultural and Crop Herbal Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 440-310, Republic of Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Republic of Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
19
|
Epidemiology of Sporadic Cases of Human Enterovirus 92 in Captivated Primates with Acute Diarrhea. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.7812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Prevalence of porcine enterovirus 9 in pigs in middle and eastern China. Virol J 2013; 10:99. [PMID: 23537283 PMCID: PMC3621647 DOI: 10.1186/1743-422x-10-99] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/14/2013] [Indexed: 11/10/2022] Open
Abstract
Little information on the epidemiology and pathogenicity of porcine enterovirus 9 (PEV-9) is available. The present study investigated the prevalence of PEV-9 in pig populations in middle and eastern China using reverse transcriptase (RT)-PCR. All 14 sampled farms were positive for PEV-9 and the overall prevalence of infection in the studied pigs was 8.3% (37/447). There was a higher frequency of infection in pigs aged 10–15 weeks (12/119, 10.1%) than in pigs aged >20 weeks (5/103, 4.9%). A 313 nucleotide sequence from the 5′-UTR region of 37 Chinese PEV-9 positive samples had 96.1-100% sequence homology. On phylogenetic analysis, sequences clustered into two major groups, from which two representative strains were selected to determine the complete RNA-dependent RNA polymerase (RdRp) gene sequence. Phylogenetic analysis based on the RdRp gene suggested that PEV-9 strains from China formed a new subgroup. Piglets were inoculated orally with the PEV-9 strain identified in this study. Although most experimental pigs showed no clinical signs, almost all carried PEV-9 in one or more tissues after 6 days post-inoculation. The results of tissue histologic examination suggested that PEV9 can cause pathological changes in cerebrum and lung.
Collapse
|
21
|
Park KS, Choi YJ, Park JS. Enterovirus infection in Korean children and anti-enteroviral potential candidate agents. KOREAN JOURNAL OF PEDIATRICS 2012; 55:359-66. [PMID: 23133481 PMCID: PMC3488610 DOI: 10.3345/kjp.2012.55.10.359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/25/2012] [Indexed: 12/17/2022]
Abstract
Although most enterovirus infections are not serious enough to be life threatening, several enteroviruses such as enterovirus 71 are responsible for severe, potentially life-threatening disease. The epidemic patterns of enteroviruses occur regularly during the year, but they may change due to environmental shifts induced by climate change due to global warming. Therefore, enterovirus epidemiological studies should be performed continuously as a basis for anti-viral studies. A great number of synthesized antiviral compounds that work against enteroviruses have been developed but only a few have demonstrated effectiveness in vivo. No proven effective antiviral agents are available for enterovirus disease therapy. The development of a new antiviral drug is a difficult task due to poor selective toxicity and cost. To overcome these limitations, one approach is to accelerate the availability of other existing antiviral drugs approved for antiviral effect against enteroviruses, and the other way is to screen traditional medicinal plants.
Collapse
Affiliation(s)
- Kwi Sung Park
- Chungcheongnam-do Institute of Health and Environmental Research, Daejeon, Korea
| | | | | |
Collapse
|
22
|
Lauber C, Gorbalenya AE. Genetics-based classification of filoviruses calls for expanded sampling of genomic sequences. Viruses 2012; 4:1425-37. [PMID: 23170166 PMCID: PMC3499813 DOI: 10.3390/v4091425] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 12/14/2022] Open
Abstract
We have recently developed a computational approach for hierarchical, genome-based classification of viruses of a family (DEmARC). In DEmARC, virus clusters are delimited objectively by devising a universal family-wide threshold on intra-cluster genetic divergence of viruses that is specific for each level of the classification. Here, we apply DEmARC to a set of 56 filoviruses with complete genome sequences and compare the resulting classification to the ICTV taxonomy of the family Filoviridae. We find in total six candidate taxon levels two of which correspond to the species and genus ranks of the family. At these two levels, the six filovirus species and two genera officially recognized by ICTV, as well as a seventh tentative species for Lloviu virus and prototyping a third genus, are reproduced. DEmARC lends the highest possible support for these two as well as the four other levels, implying that the actual number of valid taxon levels remains uncertain and the choice of levels for filovirus species and genera is arbitrary. Based on our experience with other virus families, we conclude that the current sampling of filovirus genomic sequences needs to be considerably expanded in order to resolve these uncertainties in the framework of genetics-based classification.
Collapse
Affiliation(s)
- Chris Lauber
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Alexander E. Gorbalenya
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119899 Moscow, Russia
- Author to whom correspondence should be addressed; ; Tel.: +31-71-526-1436; Fax: +31-71-526-6761
| |
Collapse
|
23
|
Xu F, Zhao C, Li Y, Li J, Deng Y, Shi T. Exploring virus relationships based on virus-host protein-protein interaction network. BMC SYSTEMS BIOLOGY 2011; 5 Suppl 3:S11. [PMID: 22784617 PMCID: PMC3287566 DOI: 10.1186/1752-0509-5-s3-s11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Currently, several systems have been proposed to classify viruses and indicate the relationships between different ones, though each system has its limitations because of the complexity of viral origins and their rapid evolution rate. We hereby propose a new method to explore the relationships between different viruses. Method A new method, which is based on the virus-host protein-protein interaction network, is proposed in this paper to categorize viruses. The distances between 114 human viruses, including 48 HIV-1 and HIV-2 viruses, are estimated according to the protein-protein interaction network between these viruses and humans. Conclusions/significance The results demonstrated that our method can disclose not only relationships consistent with the taxonomic results of currently used systems of classification but also the potential relationships that the current virus classification systems have not revealed. Moreover, the method points to a new direction where the functional relationships between viruses and hosts can be used to explore the virus relationships on a systematic level.
Collapse
Affiliation(s)
- Feng Xu
- The Center for Bioinformatics and Computational Biology and Institute of Biomedical Sciences, School of Life Science, East China Normal University, Shanghai, 200241, China
| | | | | | | | | | | |
Collapse
|
24
|
Park K, Yeo S, Baek K, Cheon D, Choi Y, Park J, Lee S. Molecular characterization and antiviral activity test of common drugs against echovirus 18 isolated in Korea. Virol J 2011; 8:516. [PMID: 22078806 PMCID: PMC3377930 DOI: 10.1186/1743-422x-8-516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/11/2011] [Indexed: 01/03/2023] Open
Abstract
Genetic diversity and antiviral activity for five common antiviral drugs of echovirus (ECV) 5 isolated in Korea have been described. The present study extended these tests to a Korean ECV 18 isolate. An outbreak of aseptic meningitis caused by the ECV 18 isolate was reported in Korea in 2005, marking the first time this virus had been identified in the country since enterovirus surveillance began in 1993. Using a sample isolated from stool specimen of a 5-year-old male patient with aseptic meningitis, the complete genome sequence was obtained and was compared it with the Metcalf prototype strain. Unlike the ECV5 isolate, the 3' untranslated region had the highest identity value (94.2%) at the nucleotide level, while, at the amino acid level, the P2 region displayed the highest identity value (96.9%). These two strains shared all cleavage sites, with the exception of the 2B/2C site, which was RQ/NN in the Metcalf strain but RQ/NS in the Korean ECV 18 isolate. In Vero cells infected with the Korean ECV 18 isolate, no cytotoxicity was observed in the presence of azidothymidine, acyclovir, amantadine, lamivudine, or ribavirin, when the drugs were administered at a CC50 value >100 μg/mL. Of the five drugs, only amantadine (IC50: 4.97 ± 0.77 μg/mL, TI: 20.12) and ribavirin (IC50: 7.63 ± 0.87 μg/mL, TI: 13.11) had any antiviral activity against the Korean ECV 18 isolate in the five antiviral drugs. These antiviral activity effects were similar with results of the Korean ECV5 isolate.
Collapse
Affiliation(s)
- Kwisung Park
- Department of Microbiology, Chungcheongnam-Do Institute of Health and Environmental Research, Daejeon, Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Baek K, Yeo S, Lee B, Park K, Song J, Yu J, Rheem I, Kim J, Hwang S, Choi Y, Cheon D, Park J. Epidemics of enterovirus infection in Chungnam Korea, 2008 and 2009. Virol J 2011; 8:297. [PMID: 21668960 PMCID: PMC3130694 DOI: 10.1186/1743-422x-8-297] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/13/2011] [Indexed: 11/24/2022] Open
Abstract
Previously, we explored the epidemic pattern and molecular characterization of enteroviruses isolated in Chungnam, Korea from 2005 to 2006. The present study extended these observations to 2008 and 2009. In this study, enteroviruses showed similar seasonal prevalent pattern from summer to fall and age distribution to previous investigation. The most prevalent month was July: 42.9% in 2008 and 31.9% in 2009. The highest rate of enterovirus-positive samples occurred in children < 1-year-old-age. Enterovirus-positive samples were subjected to sequence determination of the VP1 region, which resolved the isolated enteroviruses into 10 types in 2008 (coxsackievirus A4, A16, B1, B3, echovirus 6, 7, 9, 11, 16, and 30) and 8 types in 2009 (coxsackievirus A2, A4, A5, A16, B1, B5, echovirus 11, and enterovirus 71). The most prevalent enterovirus serotype in 2008 and 2009 was echovirus 30 and coxsackievirus B1, respectively, whereas echovirus 18 and echovirus 5 were the most prevalent types in 2005 and 2006, respectively. Comparison of coxsackievirus B1 and B5 of prevalent enterovirus type in Korea in 2009 with reference strains of each same serotype were conducted to genetic analysis by a phylogenetic tree. The sequences of coxsackievirus B1 strains segregated into four distinct clusters (A, B, C, and D) with some temporal and regional sub-clustering. Most of Korean coxsackievirus B1 strains in 2008 and 2009 were in cluster D, while only "Kor08-CVB1-001CN" was cluster C. The coxsackievirus B5 strains segregated in five distinct genetic groups (clusters A-E) were supported by high bootstrap values. The Korean strains isolated in 2001 belonged to cluster D, whereas Korean strains isolated in 2005 and 2009 belonged to cluster E. Comparison of the VP1 amino acid sequences of the Korean coxsackievirus B5 isolates with reference strains revealed amino acid sequence substitutions at nine amino acid sequences (532, 562, 570, 571, 576-578, 582, 583, and 585).
Collapse
Affiliation(s)
- KyoungAh Baek
- Department of Microbiology, Chungcheongnam-Do Institute of Health and Environmental Research, Daejeon, Korea
| | - SangGu Yeo
- Divison of Enteric and Hepatitis viruses, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, Korea
| | | | - KwiSung Park
- Department of Microbiology, Chungcheongnam-Do Institute of Health and Environmental Research, Daejeon, Korea
| | - JaeHyoung Song
- Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Korea
| | - JeeSuk Yu
- Departments of Pediatrics, College of Medicine, Dankook University, Cheonan, Korea
| | - InSoo Rheem
- Departments of Laboratory Medicine, College of Medicine, Dankook University, Cheonan, Korea
| | - JaeKyung Kim
- Departments of Laboratory Medicine, College of Medicine, Dankook University, Cheonan, Korea
| | - SeoYeon Hwang
- Divison of Enteric and Hepatitis viruses, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, Korea
- Department of Biology, College of Sciences, Kyunghee University, Seoul, Korea
| | - YoungJin Choi
- Department of Biology, College of Sciences, Kyunghee University, Seoul, Korea
| | - DooSung Cheon
- Divison of Enteric and Hepatitis viruses, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, Korea
| | - JoonSoo Park
- Departments of Laboratory Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Departments of Pediatrics, College of Medicine, Soonchunhyang University, Cheonan, Korea
| |
Collapse
|
26
|
Zaim M, Kumar Y, Hallan V, Zaidi AA. Velvet bean severe mosaic virus: a distinct begomovirus species causing severe mosaic in Mucuna pruriens (L.) DC. Virus Genes 2011; 43:138-46. [DOI: 10.1007/s11262-011-0610-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
|
27
|
Park K, Song J, Baek K, Lee C, Kim D, Cho S, Park J, Choi Y, Kang B, Choi H, Cheon DS. Genetic diversity of a Korean echovirus 5 isolate and response of the strain to five antiviral drugs. Virol J 2011; 8:79. [PMID: 21345236 PMCID: PMC3058091 DOI: 10.1186/1743-422x-8-79] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 02/24/2011] [Indexed: 12/24/2022] Open
Abstract
An outbreak of echovirus 5 (ECV 5) occurred in Korea in 2006, marking the first time this virus had been identified in the country since enterovirus surveillance began in 1993. Using a sample isolated from a young male patient with aseptic meningitis, we performed sequencing of the Korean ECV 5 strain and compared it with a prototype strain (Noyce). At the nucleotide level, the P1 region (85.3%) had the highest identity value; at the amino acid level, the P3 region (98.0%) had the highest identity value. The two strains shared all cleavage sites, with the exception of the VP1/2A site, which was TY/GA in the Noyce strain but TR/GA in the Korean ECV 5 isolate. In Vero cells infected with the Korean ECV 5 isolate, no cytotoxicity was observed in the presence of azidothymidine, acyclovir, amantadine, lamivudine, or ribavirin, when the drugs were administered at a CC50 value >100 μg/mL. Of the five drugs, only amantadine (IC50: 1 ± 0.42 μg/mL, TI: 100) and ribavirin (IC50: 22 ± 1.36 μg/mL, TI: 4.55) had any antiviral activity against the Korean ECV 5 isolate.
Collapse
Affiliation(s)
- Kwisung Park
- Department of Microbiology, Chungcheongnam-Do Institute of Health and Environmental Research, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Choi CS, Choi YJ, Choi UY, Han JW, Jeong DC, Kim HH, Kim JH, Kang JH. Clinical manifestations of CNS infections caused by enterovirus type 71. KOREAN JOURNAL OF PEDIATRICS 2011; 54:11-6. [PMID: 21359055 PMCID: PMC3040360 DOI: 10.3345/kjp.2011.54.1.11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/19/2010] [Accepted: 11/08/2010] [Indexed: 11/27/2022]
Abstract
PURPOSE Enterovirus 71, one of the enteroviruses that are responsible for both hand-foot-and-mouth disease and herpangina, can cause neural injury. During periods of endemic spread of hand-foot-andmouth disease caused by enterovirus 71, CNS infections are also frequently diagnosed and may lead to increased complications from neural injury, as well as death. We present the results of our epidemiologic research on the clinical manifestations of children with CNS infections caused by enterovirus 71. METHODS The study group consisted of 42 patients admitted for CNS infection by enterovirus 71 between April 2009 and October 2009 at the Department of Pediatrics of 5 major hospitals affiliated with the Catholic University of Korea. We retrospectively reviewed initial symptoms and laboratory findings on admission, the specimen from which enterovirus 71 was isolated, fever duration, admission period, treatment and progress, and complications. We compared aseptic meningitis patients with encephalitis patients. RESULTS Of the 42 patients (23 men, 19 women), hand-foot-and-mouth disease was most prevalent (n=39), followed by herpangina (n=3), upon initial clinical diagnosis. Among the 42 patients, 15 (35.7%) were classified as severe, while 27 (64.3%) were classified as mild. Factors such as age, fever duration, presence of seizure, and use of intravenous immunoglobulin (IVIG) were statistically different between the 2 groups. CONCLUSION Our results indicate that patients with severe infection caused by enterovirus 71 tended to be less than 3 years old, presented with at least 3 days of fever as well as seizure activity, and received IVIG treatment.
Collapse
Affiliation(s)
- Cheol Soon Choi
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Seo JK, Sohn SH, Kim KH. A single amino acid change in HC-Pro of soybean mosaic virus alters symptom expression in a soybean cultivar carrying Rsv1 and Rsv3. Arch Virol 2011; 156:135-41. [PMID: 20938695 DOI: 10.1007/s00705-010-0829-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/29/2010] [Indexed: 01/22/2023]
Abstract
It is generally believed that infidelity of RNA virus replication combined with R-gene-driven selection is one of the major evolutionary forces in overcoming host resistance. In this study, we utilized an avirulent soybean mosaic virus (SMV) mutant to examine the possibility of emergence of mutant viruses capable of overcoming R-gene-mediated resistance during serial passages. Interestingly, we found that the emerged progeny virus induced severe rugosity and local necrotic lesions in Jinpumkong-2 (Rsv1 + Rsv3) plants, while SMV-G7H provoked a lethal systemic hypersensitive response. Genome sequence analysis of the emerged progeny virus revealed that the mutation in CI that had caused SMV-G7H to lose its virulence was restored to the original sequence, and a single amino acid was newly introduced into HC-Pro, which means that the symptom alteration was due to this single amino acid mutation in HC-Pro. Our results suggest that SMV HC-Pro functions as a symptom determinant in the SMV-soybean pathosystem.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Korea
| | | | | |
Collapse
|
30
|
Yano H, Uchida M, Nakai R, Ishida K, Kato Y, Kawanishi N, Shiva D. Exhaustive exercise reduces TNF-α and IFN-α production in response to R-848 via toll-like receptor 7 in mice. Eur J Appl Physiol 2010; 110:797-803. [PMID: 20602110 PMCID: PMC7088253 DOI: 10.1007/s00421-010-1560-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2010] [Indexed: 12/04/2022]
Abstract
Stressful exercise results in temporary immune depression. However, the impact of exercise on the immune responses via toll-like receptor (TLR) 7, which recognizes the common viral genomic feature, single-stranded RNA, remains unclear. To clarify the effect of stressful exercise on immune function in response to viral infection, we measured the changes in the plasma concentration of tumor necrosis factor (TNF)-α and interferon (IFN)-α, which are induced downstream from the TLR–ligand interaction, in exhaustive-exercised mice immediately after treatment with the imidazoquinoline R-848, which can bind to and activate TLR7. Both exhaustive-exercised (EX) and non-exercised (N-EX) male C3H/HeN mice were injected with R-848 (5 mg kg−1), and blood samples were collected. In addition, RAW264 cells, which are mouse macrophage cells, were cultured 30 min after epinephrine (10 μM) or norepinephrine (10 μM) treatments, and were then stimulated with R-848 (10 μg ml−1). In addition, the effect of propranolol (10 mg kg−1) as blockade of β-adrenergic receptors on R-848-induced TNF-α and IFN-α production in the exercised mice was examined. Both the TNF-α and IFN-α concentrations in the plasma of EX were significantly lower than those in the plasma of N-EX after R-848 injection (P < 0.05 and P < 0.01, respectively), although the R-848 treatment increased the plasma TNF-α and IFN-α concentrations in both groups (P < 0.01, respectively). The R-848-induced TNF-α production in RAW264 cells was significantly inhibited by epinephrine and norepinephrine pre-treatment, although IFN-α was not detected. The propranolol treatment completely inhibited exercise-induced TNF-α and IFN-α suppression in response to R-848 in the mice. These data suggest that EX induces a reduction in TNF-α and IFN-α production in response to R-848, and that these phenomena might be regulated by an exercise-induced elevation of the systemic catecholamines.
Collapse
Affiliation(s)
- Hiromi Yano
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Nanthakumar T, Tiwari A, Kataria R, Butchaiah G, Kataria J, Goswami P. Sequence analysis of the cleavage site-encoding region of the fusion protein gene of Newcastle disease viruses from India and Nepal. Avian Pathol 2010; 29:603-7. [DOI: 10.1080/713651205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Numan M, Qureshi ZA, Shauket M, Hashmi HA, Iqbal M, Gill ZJ, Habib M, Siddique M. Rabies out-break in mules at Mansehra, Pakistan. Res Vet Sci 2010; 90:160-2. [PMID: 20483443 DOI: 10.1016/j.rvsc.2010.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 04/06/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
An unusual sickness in mules at Batrasi camp, District Mansehra, Pakistan, was reported. Twelve animals died with in 2-3 days after showing the clinical symptoms confusing with colic and nervous disorders. Animals did not respond to any treatment. A team of veterinary doctors/researchers from institute visited the place and collected the samples and information in all aspects related to any disease occurrence on epidemiological basis. Animals were also showing symptoms confusing with rabies. Brain samples were collected for rabies testing. Reverse transcriptase polymerase chain reaction (RT-PCR) by amplifying "N" region gene and mouse inoculation test (MIT) were performed and results showed that disease was nothing except rabies and RT-PCR is the rapid and sensitive method for diagnosis of rabies virus as compared to other conventional methods of diagnosis.
Collapse
Affiliation(s)
- Muhammad Numan
- Veterinary Research Institute, Lahore Cantt. Punjab, Pakistan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kumar J, Kumar A, Roy JK, Tuli R, Khan JA. Identification and molecular characterization of begomovirus and associated satellite DNA molecules infecting Cyamopsis tetragonoloba. Virus Genes 2010. [PMID: 20405195 DOI: 10.1007/s11262‐010‐0482‐7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monopartite begomoviruses comprise DNA-A as the main genome and associated satellite DNAs. Viral DNA extracted from guar (Cyamopsis tetragonoloba) showing leaf curl symptoms exhibited positive amplification of coat protein (CP) gene of DNA-A component, suggesting the presence of begomovirus. Full length DNA-A was amplified by primer pair re-designed from CP gene nucleotide sequence. The associated alphasatellite and betasatellite DNA molecules were amplified and sequenced, confirming the presence of monopartite begomovirus. Sequence comparisons showed 89% identity with other begomoviruses. The Neighbor-Joining tree based on full length DNA-A nucleotide sequence showed that the guar infecting begomovirus clustered separately from other known begomoviruses. The betasatellite shared a high (96%) nucleotide identity to Cotton leaf curl Multan betasatellites. The alphasatellite showed 91% nucleotide identity to alphasatellite associated with begomovirus infecting Okra. Recombination analyses showed three recombinant fragments in DNA-A, two in betasatellite, and four in alphasatellite. The results suggest that the begomovirus identified in this study was a new recombinant virus. Its name was proposed as Cyamopsis tetragonoloba leaf curl virus (CyTLCuV).
Collapse
Affiliation(s)
- J Kumar
- Molecular Virology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | | | | | | | | |
Collapse
|
34
|
Kumar J, Kumar A, Roy JK, Tuli R, Khan JA. Identification and molecular characterization of begomovirus and associated satellite DNA molecules infecting Cyamopsis tetragonoloba. Virus Genes 2010; 41:118-25. [PMID: 20405195 DOI: 10.1007/s11262-010-0482-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/05/2010] [Indexed: 11/24/2022]
Abstract
Monopartite begomoviruses comprise DNA-A as the main genome and associated satellite DNAs. Viral DNA extracted from guar (Cyamopsis tetragonoloba) showing leaf curl symptoms exhibited positive amplification of coat protein (CP) gene of DNA-A component, suggesting the presence of begomovirus. Full length DNA-A was amplified by primer pair re-designed from CP gene nucleotide sequence. The associated alphasatellite and betasatellite DNA molecules were amplified and sequenced, confirming the presence of monopartite begomovirus. Sequence comparisons showed 89% identity with other begomoviruses. The Neighbor-Joining tree based on full length DNA-A nucleotide sequence showed that the guar infecting begomovirus clustered separately from other known begomoviruses. The betasatellite shared a high (96%) nucleotide identity to Cotton leaf curl Multan betasatellites. The alphasatellite showed 91% nucleotide identity to alphasatellite associated with begomovirus infecting Okra. Recombination analyses showed three recombinant fragments in DNA-A, two in betasatellite, and four in alphasatellite. The results suggest that the begomovirus identified in this study was a new recombinant virus. Its name was proposed as Cyamopsis tetragonoloba leaf curl virus (CyTLCuV).
Collapse
Affiliation(s)
- J Kumar
- Molecular Virology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | | | | | | | | |
Collapse
|
35
|
She RC, Hymas WC, Taggart EW, Petti CA, Hillyard DR. Performance of enterovirus genotyping targeting the VP1 and VP2 regions on non-typeable isolates and patient specimens. J Virol Methods 2010; 165:46-50. [DOI: 10.1016/j.jviromet.2009.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
|
36
|
Seo JK, Kang SH, Seo BY, Jung JK, Kim KH. Mutational analysis of interaction between coat protein and helper component-proteinase of Soybean mosaic virus involved in aphid transmission. MOLECULAR PLANT PATHOLOGY 2010; 11:265-76. [PMID: 20447275 PMCID: PMC6640531 DOI: 10.1111/j.1364-3703.2009.00603.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Soybean mosaic virus (SMV), a member of the genus Potyvirus, is transmitted by aphids in a non-persistent manner. It has been well documented that the helper component-proteinase (HC-Pro) plays a role as a 'bridge' between virion particles and aphid stylets in the aphid transmission of potyviruses. Several motifs, including the KITC and PTK motifs on HC-Pro and the DAG motif on the coat protein (CP), have been found to be involved in aphid transmission. Previously, we have shown strong interaction between SMV CP and HC-Pro in a yeast two-hybrid system (YTHS). In this report, we further analysed this CP-HC-Pro interaction based on YTHS and an in vivo binding assay to identify crucial amino acid residues for this interaction. Through this genetic approach, we identified two additional amino acid residues (H256 on CP and R455 on HC-Pro), as well as G12 on the DAG motif, crucial for the CP-HC-Pro interaction. We introduced mutations into the identified residues using an SMV infectious clone and showed that these mutations affected the efficiency of aphid transmission of SMV. We also investigated the involvement of the PTK and DAG motifs in the CP-HC-Pro interaction and aphid transmission of SMV. Our results support the concept that physical interaction between CP and HC-Pro is important for potyviral aphid transmission. Based on the combination of our current results with previous findings, the possibility that aphid transmission may be regulated by more complex molecular interactions than the simple involvement of HC-Pro as a bridge is discussed.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | | | | | | | | |
Collapse
|
37
|
Kumar S, Nayak B, Samuel AS, Xiao S, Collins PL, Samal SK. Complete genome sequence of avian paramyxovirus-3 strain Wisconsin: evidence for the existence of subgroups within the serotype. Virus Res 2010; 149:78-85. [PMID: 20079781 DOI: 10.1016/j.virusres.2009.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/29/2009] [Accepted: 12/31/2009] [Indexed: 12/27/2022]
Abstract
The complete consensus genome sequence was determined for avian paramyxovirus (APMV) serotype 3 strain Wisconsin. The genome is 16,182 nucleotides (nt) in length, consisting of six non-overlapping genes in the order of 3'-N-P/V/W-M-F-HN-L-5', with a 55-nt leader at its 3' end and a 681-nt trailer at its 5' end. Comparison of the APMV-3 strain Wisconsin nt and the aggregate predicted amino acid (aa) sequences with those of APMV-3 strain Netherlands revealed 67% and 78%, identity, respectively. The nt and aa sequence identities between the two APMV-3 strains were lower than between the two antigenic subgroups of human respiratory syncytial virus (81% and 88% identity, respectively) and the two subgroups of human metapeumovirus (80% and 90% identity, respectively). Reciprocal cross-hemagglutination inhibition and cross-neutralization assays using post-infection sera from chickens indicated that strains Wisconsin and Netherlands are highly related antigenically, with only a 2- to 4-fold difference in antibody reactivity between the homologous and heterologous strains. Taken together, our results indicate that the two APMV-3 strains represent a single serotype with two subgroups that differ substantially based on nt and aa sequences, but with only a modest antigenic difference.
Collapse
Affiliation(s)
- Sachin Kumar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
38
|
Park K, Lee K, Baek K, Jung E, Park S, Cho Y, Song J, Ahn G, Cheon DS. [Application of a diagnostic method using reverse transcription-PCR ELISA for the diagnosis of enteroviral infections]. Korean J Lab Med 2010; 29:594-600. [PMID: 20046094 DOI: 10.3343/kjlm.2009.29.6.594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Enteroviruses are known as major pathogen for aseptic meningitis. Although rapid diagnosis for enteroviruses is very essential to exclude bacterial infections in patients with meningitis, classical diagnostic method based on virus isolation is not practicable for timely treatment of patients due to its laborious and time-consuming procedure. Recently molecular methodologies as alternatives are routinely used for rapid and sensitive diagnosis for enteroviruses infections. METHODS Reverse transcription (RT)-PCR ELISA kit for targeting 5' non-coding region (NCR) with highly conserved genetic identity among all genotypes of enteroviruses was introduced in this investigation. RT-PCR ELISA was evaluated about sensitivity and specificity through virus isolation using clinical specimens from patients suspected of enteroviral infections and enteroviral isolates comparing with conventional RT-PCR identifying them. RESULTS The detection limit of the RT-PCR ELISA was up to 10-100 folds higher than virus isolation using cell culture and conventional RT-PCR. On comparison between above two methods, the detection rate of RT-PCR ELISA for clinical specimens from patients with aseptic meningitis was 7% higher than that of conventional RT-PCR targeting 5'NCR (P=0.016). CONCLUSIONS Our results suggest that RT-PCR ELISA developed in this study could be an alternative diagnostic method for the detection of enteroviral genome with high sensitivity and specificity.
Collapse
Affiliation(s)
- Kwisung Park
- Chungcheongnam-do Health & Environment Research Institute, Daejeon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Seo JK, Ohshima K, Lee HG, Son M, Choi HS, Lee SH, Sohn SH, Kim KH. Molecular variability and genetic structure of the population of soybean mosaic virus based on the analysis of complete genome sequences. Virology 2009; 393:91-103. [PMID: 19716150 DOI: 10.1016/j.virol.2009.07.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/01/2009] [Accepted: 07/06/2009] [Indexed: 11/18/2022]
Abstract
The complete genomes of 30 Soybean mosaic virus (SMV) isolates and strains were sequenced in this study. Together with fourteen previously reported sequences, we analyzed the genetic structure of the SMV population. Analyses of genetic diversity showed that different genomic regions of SMV are under different evolutionary constraints and that there was no significant genetic differentiation between East Asian and North American populations of SMV. Phylogenetic analyses revealed a significant correlation between phylogeny of the cylindrical inclusion (CI) gene of SMV and SMV resistance gene 3 (Rsv3)-relating pathogenicity of SMV, suggesting CI might be a pathogenic determinant in Rsv3-mediated disease response. Interestingly, recombination analyses identified 19 'clear' recombination events in the SMV population. Furthermore, as several resistance-breaking strains were identified as recombinants, it appears that recombination might contribute to overcome host resistance in SMV-soybean pathosystem. Our finding suggests that recombination as well as mutation is an important evolutionary process in the genetic diversification of SMV population.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Seo JK, Lee SH, Kim KH. Strain-specific cylindrical inclusion protein of soybean mosaic virus elicits extreme resistance and a lethal systemic hypersensitive response in two resistant soybean cultivars. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1151-9. [PMID: 19656049 DOI: 10.1094/mpmi-22-9-1151] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the Soybean mosaic virus (SMV)-soybean pathosystem, three independent genes (Rsv1, Rsv3, and Rsv4) conferring resistance to SMV have been identified. Recently, we constructed infectious cDNA clones of SMV G7H and G5H strains and found that these two strains differ in their ability to infect soybean genotypes possessing different SMV resistance genes despite a difference of only 33 amino acids. In particular, pSMV-G7H induced mosaic symptoms systemically in L29 (Rsv3) and provoked a lethal systemic hypersensitive response (LSHR) in Jinpumkong-2, whereas pSMV-G5H could not infect these soybean genotypes. To identify the responsible pathogenic determinants of SMV, we exploited the differential responses of pSMV-G7H- and pSMV-G5H-derived chimeric viruses and amino acid substitution mutant viruses in several soybean genotypes and demonstrated that cylindrical inclusion (CI) protein is the elicitor of Rsv3-mediated extreme resistance and a pathogenic determinant provoking LSHR in Jinpumkong-2. A single amino acid substitution in CI was found to be responsible for gain or loss of elicitor function of CI. Our finding provides a role for CI as a pathogenic determinant in the SMV-soybean pathosystem, and increases the understanding of the basis of the different disease responses of SMV strains.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences
| | | | | |
Collapse
|
41
|
Paldurai A, Subbiah M, Kumar S, Collins PL, Samal SK. Complete genome sequences of avian paramyxovirus type 8 strains goose/Delaware/1053/76 and pintail/Wakuya/20/78. Virus Res 2009; 142:144-53. [PMID: 19341613 PMCID: PMC2782673 DOI: 10.1016/j.virusres.2009.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 11/24/2022]
Abstract
Complete consensus genome sequences were determined for avian paramyxovirus type 8 (APMV-8) strains goose/Delaware/1053/76 (prototype strain) and pintail/Wakuya/20/78. The genome of each strain is 15,342 nucleotides (nt) long, which follows the "rule of six". The genome consists of six genes in the order of 3'-N-P/V/W-M-F-HN-L-5'. The genes are flanked on either side by conserved transcription start and stop signals, and have intergenic regions ranging from 1 to 30nt. The genome contains a 55nt leader region at the 3'-end and a 171nt trailer region at the 5'-end. Comparison of sequences of strains Delaware and Wakuya showed nucleotide identity of 96.8% at the genome level and amino acid identities of 99.3%, 96.5%, 98.6%, 99.4%, 98.6% and 99.1% for the predicted N, P, M, F, HN and L proteins, respectively. Both strains grew in embryonated chicken eggs and in primary chicken embryo kidney cells, and 293T cells. Both strains contained only a single basic residue at the cleavage activation site of the F protein and their efficiency of replication in vitro depended on and was augmented by, the presence of exogenous protease in most cell lines. Sequence alignment and phylogenic analysis of the predicted amino acid sequence of APMV-8 strain Delaware proteins with the cognate proteins of other available APMV serotypes showed that APMV-8 is more closely related to APMV-2 and -6 than to APMV-1, -3 and -4.
Collapse
Affiliation(s)
- Anandan Paldurai
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Madhuri Subbiah
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Sachin Kumar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, USA
| | - Siba K. Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
42
|
Seo JK, Lee HG, Kim KH. Systemic gene delivery into soybean by simple rub-inoculation with plasmid DNA of a Soybean mosaic virus-based vector. Arch Virol 2008; 154:87-99. [PMID: 19096905 DOI: 10.1007/s00705-008-0286-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
Plant virus-based vectors provide attractive and valuable tools for conventional transgenic technology and gene function studies in plants. In the present study, we established the infectivity of intact plasmid DNA of Soybean mosaic virus (SMV) cDNA upon simple rub-inoculation of soybean leaves by utilizing viral transcription and processing signals to produce infectious in vivo transcripts. Furthermore, we engineered this SMV cDNA clone as a gene delivery vector for systemic expression of foreign proteins in soybean. Using this SMV-based vector, several genes with different biological activities were successfully expressed and stably maintained following serial plant passage in soybean. Thus, DNA-mediated gene delivery using this SMV-based vector provides a rapid and cost-effective approach for the overproduction of valuable proteins and for the evaluation of new traits in soybean after simple rub-inoculation onto leaves.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | | |
Collapse
|
43
|
Kumar S, Nayak B, Collins PL, Samal SK. Complete genome sequence of avian paramyxovirus type 3 reveals an unusually long trailer region. Virus Res 2008; 137:189-97. [PMID: 18691616 PMCID: PMC2666097 DOI: 10.1016/j.virusres.2008.07.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/05/2008] [Accepted: 07/07/2008] [Indexed: 12/27/2022]
Abstract
The complete genome sequence was determined for prototype parakeet/Netherlands/449/75 strain of avian paramyxovirus (APMV) serotype 3. The genome is 16,272 nucleotides (nt) in length, consisting of six non-overlapping genes in the order of 3'-N-P/V/W-M-F-HN-L-5', with intergenic regions of 31-63nt. APMV-3 genome follows the "rule of six" and is the largest among the avian paramyxoviruses reported to date, with a trailer region of 707nt, the longest in the family Paramyxoviridae. The cleavage site of F protein, A-R-P-R-G-R downward arrowL, does not conform to the preferred cleavage site of the ubiquitous cellular protease furin. Therefore, exogenous protease was needed for replication in vitro. Alignment and phylogenetic analysis of the predicted amino acid sequences of strain Netherlands proteins with the cognate proteins of viruses of all of the five genera of family Paramyxoviridae showed that APMV-3 strain Netherlands is more closely related to APMV-1 than APMV-6.
Collapse
Affiliation(s)
- Sachin Kumar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Baibaswata Nayak
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, USA
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
44
|
Jeon WJ, Lee EK, Kwon JH, Choi KS. Full-length genome sequence of avain paramyxovirus type 4 isolated from a mallard duck. Virus Genes 2008; 37:342-50. [PMID: 18770019 DOI: 10.1007/s11262-008-0267-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/25/2008] [Indexed: 12/01/2022]
Abstract
Avian paramyxovirus (APMV) consists of nine serotypes, APMV-1 through -9, of which only APMV-1 and APMV-6 have been fully sequenced. Here, we present the complete 15,054 nt RNA genome of APMV-4 isolated from a mallard duck, which conformed to the "rule of six." The APMV-4 genome had six transcriptional units in the order 3'-NP-P/V-M-F-HN-L-5', which coded for the nucleocapsid (N), phospho- (P), matrix (M), fusion (F), hemagglutinin-neuraminidase (HN), and large (L) proteins. Similar to APMV-1 but unlike APMV-6, APMV-4 lacked a small hydrophobic protein. The leader and trailer sequences were 55 and 17 nt in length, respectively, and the 12 nt-terminal regions of both ends of the APMV-4 genome were complementary. Using phylogenetic analysis, APMV-4 was classified as a member of the genus Avulavirus, and was more closely related to APMV-1 than to APMV-2 or APMV-6. These results may help establish the taxonomic position of Paramyxoviridae, Avulavirus members.
Collapse
Affiliation(s)
- Woo-Jin Jeon
- Avian Diseases Division, Veterinary Research Institute, National Veterinary Research and Quarantine Service, 480 Anyang-6, Anyang, Gyeonggi, 430-824, South Korea
| | | | | | | |
Collapse
|
45
|
Lucarotti CJ, Morin B, Graham RI, Lapointe R. Production, application, and field performance of Abietiv™, the balsam fir sawfly nucleopolyhedrovirus. Virol Sin 2008. [DOI: 10.1007/s12250-007-0018-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
Infectivity of the cloned components of a begomovirus: DNA beta complex causing chilli leaf curl disease in India. Arch Virol 2008; 153:533-9. [DOI: 10.1007/s00705-007-0017-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 11/22/2007] [Indexed: 11/27/2022]
|
47
|
Chatterjee A, Ghosh SK. Association of a satellite DNA beta molecule with mesta yellow vein mosaic disease. Virus Genes 2007; 35:835-44. [PMID: 17763932 DOI: 10.1007/s11262-007-0160-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 08/09/2007] [Indexed: 10/22/2022]
Abstract
The yellow vein mosaic disease infected mesta samples exhibited positive amplification with different primers specific for coat protein (CP) gene of DNA-A molecule of begomoviruses and full-length DNA beta molecule. The amplified product of a full-length DNA beta and the CP gene of two different isolates were cloned and sequenced. The DNA beta molecule was 1,354 nt in length having highest sequence identity (86.1%) with two reported DNA beta molecules of Indian isolates of begomovirus infecting cotton (accession number DQ191161 and AJ316038). Highest sequence identity (85.5%) of betaC1 gene product was found with that encoded by DNA beta associated with begomovirus infecting tomato (AJ316035), originating from Pakistan. The predicted betaC1 protein consisted of 118 amino acids. The nucleotide sequences of the CP genes from both was 771 nt in length and showed sequence identity with CP genes of begomoviruses infecting tomato (82.2-92.4%), tobacco (AY007616, 94.2%) and Croton (AJ507777, 93.9%). The highest percentage sequence identity (97.6%) of the CP gene product was found with that encoded by DNA-A of two isolates of begomovirus infecting tomato (AJ810364 and AJ810357). The predicted CP consisted of 256 amino acids. The results indicate for the first time that the begomovirus associated with mesta yellow vein mosaic disease contains DNA beta molecule along with DNA-A in its genome. The phylogenetic tree also indicated that the DNA beta molecule reported here is distinct from other known geminiviruses or nanovirus components.
Collapse
Affiliation(s)
- Arpita Chatterjee
- Plant Virus Laboratory and Biotechnology Unit, Division of Crop Protection, Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 120, India
| | | |
Collapse
|
48
|
Hernández-Zepeda C, Idris AM, Carnevali G, Brown JK, Moreno-Valenzuela OA. Preliminary identification and coat protein gene phylogenetic relationships of begomoviruses associated with native flora and cultivated plants from the Yucatan Peninsula of Mexico. Virus Genes 2007; 35:825-33. [PMID: 17682933 DOI: 10.1007/s11262-007-0149-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
A number of native and cultivated eudicots in the Yucatan Peninsula of Mexico (YPM) exhibit symptoms associated with virus infection. Symptomatic leaves were collected and assessed for begomoviral detection using polymerase chain reaction (PCR), and universal primers that amplify a fragment of the coat protein gene (core Cp). Begomovirus were detected in nine native and seven cultivated species, representing seven eudicot families. DNA extracts from the 16 hosts were used for PCR amplification and sequencing of a fragment containing the coat protein (Cp) gene. The complete Cp sequence was used to establish provisional species identification. Results indicated that 13 distinct begomovirus species were represented. Among these, five potentially new begomovirus species were identified, for which we propose the names Anoda golden mosaic virus (AnGMV), Boerhavia yellow spot virus (BoYSV), Papaya golden mosaic virus (PaGMV), Desmodium leaf distortion virus (DeLDV), and Hibiscus variegation virus (HiVV). Five previously described begomoviral species were provisionally identified for the first time in the YPM; these include Euphorbia mosaic virus (EuMV), Melon chlorotic leaf curl virus (MCLCuV), Okra yellow mosaic Mexico virus (OkYMMV), Sida golden mosaic virus (SiGMV), and Tobacco apical stunt virus (TbASV). Additionally, viruses previously reported from this region, Bean golden yellow mosaic virus (BGYMV), Pepper golden mosaic virus (PepGMV), and Tomato mottle virus (ToMoV) were provisionally identified in cultivated hosts. Phylogenetic analysis provisionally placed all isolates from the YPM in a Western Hemisphere begomovirus clade.
Collapse
Affiliation(s)
- Cecilia Hernández-Zepeda
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A. C., Merida, Yucatán, Mexico
| | | | | | | | | |
Collapse
|
49
|
Abdel-Moneim AS, El-Kady MF, Ladman BS, Gelb J. S1 gene sequence analysis of a nephropathogenic strain of avian infectious bronchitis virus in Egypt. Virol J 2006; 3:78. [PMID: 16987422 PMCID: PMC1592083 DOI: 10.1186/1743-422x-3-78] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 09/20/2006] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infectious bronchitis is highly contagious and constitutes one of the most common and difficult poultry diseases to control. IBV is endemic in probably all countries that raise chickens. It exists as dozens of serotypes/genotypes. Only a few amino acid differences in the S1 protein of vaccine and challenge strains of IBV may result in poor protection. Tropism of IBV includes the respiratory tract tissues, proventriculus and caecal tonsils of the alimentary tract, the oviduct and the kidney. RESULTS Infectious bronchitis virus (IBV) strain closely related to Massachusetts (Mass) serotype was isolated from broiler chickens suffering from severe renal and respiratory distresses. The isolate was serologically identified by Dot-ELISA and further characterized by RT-PCR then genotyped using S1 gene sequence analysis. Alignment of the S1 sequence of the isolate with 16 IBV strains revealed high homology to isolates related to Mass serotype. Inoculation with the strain reproduced the disease in experimental 1-day-old chickens and resulted in 20% mortality, severe renal and moderate respiratory distresses. Marked histopathological changes in both kidney and trachea were observed in experimentally infected chickens. A protection study using the H120 live attenuated vaccine showed low protection rate in spite of high S1 sequence homology (97%). Protection based criteria were: virus re-isolation attempts from trachea, tracheal and renal histopathology as well as IBV antigens detection by immunofluorescent antibody technique in kidney sections. CONCLUSION Periodical evaluation of cross-protective capabilities of IBV vaccine(s) versus recently recovered field isolates should be performed to ensure optimum control of IBV.
Collapse
Affiliation(s)
- Ahmed S Abdel-Moneim
- Department of Virology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Magdy F El-Kady
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Brian S Ladman
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA
| | - Jack Gelb
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA
| |
Collapse
|
50
|
Dai S, Zhang Z, Bick J, Beachy RN. Essential role of the Box II cis element and cognate host factors in regulating the promoter of Rice tungro bacilliform virus. J Gen Virol 2006; 87:715-722. [PMID: 16476995 DOI: 10.1099/vir.0.81488-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rice tungro bacilliform virus (RTBV) is a double-stranded DNA virus with a single, tissue-specific promoter that is expressed primarily in phloem tissues. Rice transcription factors RF2a and RF2b bind to Box II, a cis element adjacent to the TATA box, and control gene expression from the promoter. Mutations were made in the promoter to delete or mutate Box II and the mutated promoters were fused to a reporter gene; the chimeric genes were expressed in transient BY-2 protoplast assays and in transgenic Arabidopsis plants. The results of these studies showed that Box II is essential to the activity of the RTBV promoter. A chimeric beta-glucuronidase (GUS) reporter gene containing the Box II sequence and a minimal promoter derived from the Cauliflower mosaic virus 35S promoter were co-transfected into protoplasts with gene constructs that encoded RF2a or RF2b. The reporter gene produced threefold higher GUS activity when co-transfected with RF2a, and 11-fold higher activity when co-transfected with RF2b, than in the absence of added transcription factors. Moreover, chimeric reporter genes were activated by approximately threefold following induction of expression of the RF2a gene in transgenic Arabidopsis plants. The work presented here and earlier findings show that Box II and its interactions with cognate rice transcription factors, including RF2a and RF2b, are essential to the activity of the RTBV promoter and are probably involved in expression of the RTBV genome during virus replication.
Collapse
Affiliation(s)
- Shunhong Dai
- The Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA
| | - Zhihong Zhang
- The Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA
| | - Jennifer Bick
- The Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA
| | - Roger N Beachy
- The Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA
| |
Collapse
|