1
|
Chawla YM, Bajpai P, Saini K, Reddy ES, Patel AK, Murali-Krishna K, Chandele A. Regional Variation of the CD4 and CD8 T Cell Epitopes Conserved in Circulating Dengue Viruses and Shared with Potential Vaccine Candidates. Viruses 2024; 16:730. [PMID: 38793612 PMCID: PMC11126086 DOI: 10.3390/v16050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
As dengue expands globally and many vaccines are under trials, there is a growing recognition of the need for assessing T cell immunity in addition to assessing the functions of neutralizing antibodies during these endeavors. While several dengue-specific experimentally validated T cell epitopes are known, less is understood about which of these epitopes are conserved among circulating dengue viruses and also shared by potential vaccine candidates. As India emerges as the epicenter of the dengue disease burden and vaccine trials commence in this region, we have here aligned known dengue specific T cell epitopes, reported from other parts of the world with published polyprotein sequences of 107 dengue virus isolates available from India. Of the 1305 CD4 and 584 CD8 epitopes, we found that 24% and 41%, respectively, were conserved universally, whereas 27% and 13% were absent in any viral isolates. With these data, we catalogued epitopes conserved in circulating dengue viruses from India and matched them with each of the six vaccine candidates under consideration (TV003, TDEN, DPIV, CYD-TDV, DENVax and TVDV). Similar analyses with viruses from Thailand, Brazil and Mexico revealed regional overlaps and variations in these patterns. Thus, our study provides detailed and nuanced insights into regional variation that should be considered for itemization of T cell responses during dengue natural infection and vaccine design, testing and evaluation.
Collapse
Affiliation(s)
- Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| |
Collapse
|
2
|
Faheem M, Barbosa Lima JC, Jamal SB, Silva PA, Barbosa JARG. An insight into dengue virus proteins as potential drug/vaccine targets. Future Virol 2019. [DOI: 10.2217/fvl-2019-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dengue virus (DENV) is an arbovirus that belongs to family flaviviridae. Its genome is composed of a single stranded RNA molecule that encodes a single polyprotein. The polyprotein is processed by viral and cellular proteases to generate ten viral proteins. There are four antigenically distinct serotypes of DENV (DENV1, DENV2, DENV3 and DENV4), which are genetically related. Although protein variability is a major problem in dengue treatment, the functional and structural studies of individual proteins are equally important in treatment development. The data accumulated on dengue proteins are significant to provide detailed understanding of viral infection, replication, host-immune evasion and pathogenesis. In this review, we summarized the detailed current knowledge about DENV proteins.
Collapse
Affiliation(s)
- Muhammad Faheem
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - Jônatas Cunha Barbosa Lima
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, The Mall road, Rawalpindi, Punjab 46000, Pakistan
| | - Paula Andreia Silva
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - João Alexandre Ribeiro Gonçalves Barbosa
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| |
Collapse
|
3
|
Tian Y, Grifoni A, Sette A, Weiskopf D. Human T Cell Response to Dengue Virus Infection. Front Immunol 2019; 10:2125. [PMID: 31552052 PMCID: PMC6737489 DOI: 10.3389/fimmu.2019.02125] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022] Open
Abstract
DENV is a major public health problem worldwide, thus underlining the overall significance of the proposed Program. The four dengue virus (DENV) serotypes (1-4) cause the most common mosquito-borne viral disease of humans, with 3 billion people at risk for infection and up to 100 million cases each year, most often affecting children. The protective role of T cells during viral infection is well-established. Generally, CD8 T cells can control viral infection through several mechanisms, including direct cytotoxicity, and production of pro-inflammatory cytokines such as IFN-γ and TNF-α. Similarly, CD4 T cells are thought to control viral infection through multiple mechanisms, including enhancement of B and CD8 T cell responses, production of inflammatory and anti-viral cytokines, cytotoxicity, and promotion of memory responses. To probe the phenotype of virus-specific T cells, epitopes derived from viral sequences need to be known. Here we discuss the identification of CD4 and CD8 T cell epitopes derived from DENV and how these epitopes have been used by researchers to interrogate the phenotype and function of DENV-specific T cell populations.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| |
Collapse
|
4
|
Lim MQ, Kumaran EAP, Tan HC, Lye DC, Leo YS, Ooi EE, MacAry PA, Bertoletti A, Rivino L. Cross-Reactivity and Anti-viral Function of Dengue Capsid and NS3-Specific Memory T Cells Toward Zika Virus. Front Immunol 2018; 9:2225. [PMID: 30327651 PMCID: PMC6174860 DOI: 10.3389/fimmu.2018.02225] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/07/2018] [Indexed: 12/01/2022] Open
Abstract
Zika virus (ZIKV), a flavivirus with homology to dengue virus (DENV), is spreading to areas of DENV hyper-endemicity. Heterologous T cell immunity, whereby virus-specific memory T cells are activated by variant peptides derived from a different virus, can lead to enhanced viral clearance or diminished protective immunity and altered immunopathology. In mice, CD8+ T cells specific for DENV provide in vivo protective efficacy against subsequent ZIKV infection. In humans, contrasting studies report complete absence or varying degrees of DENV/ZIKV T cell cross-reactivity. Moreover, the impact of cross-reactive T cell recognition on the anti-viral capacity of T cells remains unclear. Here, we show that DENV-specific memory T cells display robust cross-reactive recognition of ZIKV NS3 ex vivo and after in vitro expansion in respectively n = 7/10 and n = 9/9 dengue-immune individuals tested. In contrast, cross-reactivity toward ZIKV capsid is low or absent. Cross-reactive recognition of DENV or ZIKV NS3 peptides elicits similar production of the anti-viral effector mediators IFN-γ, TNF-α, and CD107a. We identify 9 DENV/ZIKV cross-reactive epitopes, 7 of which are CD4+ and 2 are CD8+ T cell epitopes. We also show that cross-reactive CD4+ and CD8+ T cells targeting novel NS3 epitopes display anti-viral effector potential toward ZIKV-infected cells, with CD8+ T cells mediating direct lyses of these cells. Our results demonstrate that DENV NS3-specific memory T cells display anti-viral effector capacity toward ZIKV, suggesting a potential beneficial effect in humans of pre-existing T cell immunity to DENV upon ZIKV infection.
Collapse
Affiliation(s)
- Mei Qiu Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Emmanuelle A P Kumaran
- Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Hwee Cheng Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - David C Lye
- Communicable Disease Centre, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yee Sin Leo
- Communicable Disease Centre, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National Centre for Infectious diseases, NCID, Singapore, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Paul A MacAry
- Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Singapore Immunology Network, Singapore Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Laura Rivino
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
5
|
Immune Responses to Dengue and Zika Viruses-Guidance for T Cell Vaccine Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020385. [PMID: 29473899 PMCID: PMC5858454 DOI: 10.3390/ijerph15020385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 02/01/2023]
Abstract
Despite numerous efforts to identify the molecular and cellular effectors of the adaptive immunity that induce a long-lasting immunity against dengue or Zika virus infection, the specific mechanisms underlying such protective immunity remain largely unknown. One of the major challenges lies in the high level of dengue virus (DENV) seroprevalence in areas where Zika virus (ZIKV) is circulating. In the context of such a pre-existing DENV immunity that can exacerbate ZIKV infection and disease, and given the lack of appropriate treatment for ZIKV infection, there is an urgent need to develop an efficient vaccine against DENV and ZIKV. Notably, whereas several ZIKV vaccine candidates are currently in clinical trials, all these vaccine candidates have been designed to induce neutralizing antibodies as the primary mechanism of immune protection. Given the difficulty to elicit simultaneously high levels of neutralizing antibodies against the different DENV serotypes, and the potential impact of pre-existing subneutralizing antibodies induced upon DENV infection or vaccination on ZIKV infection and disease, additional or alternative strategies to enhance vaccine efficacy, through T cell immunity, are now being considered. In this review, we summarize recent discoveries about cross-reactive B and T cell responses against DENV and ZIKV and propose guidelines for the development of safe and efficient T cell vaccines targeting both viruses.
Collapse
|
6
|
Reginald K, Chan Y, Plebanski M, Poh CL. Development of Peptide Vaccines in Dengue. Curr Pharm Des 2018; 24:1157-1173. [PMID: 28914200 PMCID: PMC6040172 DOI: 10.2174/1381612823666170913163904] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
Abstract
Dengue is one of the most important arboviral infections worldwide, infecting up to 390 million people and causing 25,000 deaths annually. Although a licensed dengue vaccine is available, it is not efficacious against dengue serotypes that infect people living in South East Asia, where dengue is an endemic disease. Hence, there is an urgent need to develop an efficient dengue vaccine for this region. Data from different clinical trials indicate that a successful dengue vaccine must elicit both neutralizing antibodies and cell mediated immunity. This can be achieved by designing a multi-epitope peptide vaccine comprising B, CD8+ and CD4+ T cell epitopes. As recognition of T cell epitopes are restricted by human leukocyte antigens (HLA), T cell epitopes which are able to recognize several major HLAs will be preferentially included in the vaccine design. While peptide vaccines are safe, biocompatible and cost-effective, it is poorly immunogenic. Strategies to improve its immunogenicity by the use of long peptides, adjuvants and nanoparticle delivery mechanisms are discussed.
Collapse
Affiliation(s)
| | | | | | - Chit Laa Poh
- Address correspondence to this author at the Research Centre for Biomedical Sciences, School of Science and Technology, Sunway University, 5 Jalan University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Tel: +60-3-7491 8622 ext. 7338; E-mail:
| |
Collapse
|
7
|
Wang L, Zhou P, Fu X, Zheng Y, Huang S, Fang B, Zhang G, Jia K, Li S. Yellow fever virus: Increasing imported cases in China. J Infect 2016; 73:377-80. [PMID: 27422700 DOI: 10.1016/j.jinf.2016.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Lifang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Provincial Engineering Research Center of Pet, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Provincial Engineering Research Center of Pet, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Xingliang Fu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, 510642, People's Republic of China
| | - Yun Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Provincial Engineering Research Center of Pet, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - San Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Provincial Engineering Research Center of Pet, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Bo Fang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, 510642, People's Republic of China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, 510642, People's Republic of China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Provincial Engineering Research Center of Pet, Guangzhou, Guangdong Province, 510642, People's Republic of China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Provincial Engineering Research Center of Pet, Guangzhou, Guangdong Province, 510642, People's Republic of China.
| |
Collapse
|
8
|
Shi J, Sun J, Wu M, Hu N, Li J, Li Y, Wang H, Hu Y. Inferring Protective CD8+ T-Cell Epitopes for NS5 Protein of Four Serotypes of Dengue Virus Chinese Isolates Based on HLA-A, -B and -C Allelic Distribution: Implications for Epitope-Based Universal Vaccine Design. PLoS One 2015; 10:e0138729. [PMID: 26381649 PMCID: PMC4575106 DOI: 10.1371/journal.pone.0138729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/02/2015] [Indexed: 02/04/2023] Open
Abstract
Dengue is one of the most globally serious vector-borne infectious diseases in tropical and subtropical areas for which there are currently no effective vaccines. The most highly conserved flavivirus protein, NS5, is an indispensable target of CD8+ T-cells, making it an ideal vaccine design target. Using the Immune Epitope Database (IEDB), CD8+ T-cell epitopes of the dengue virus (DENV) NS5 protein were predicted by genotypic frequency of the HLA-A,-B, and-C alleles in Chinese population. Antigenicity scores of all predicted epitopes were analyzed using VaxiJen v2.0. The IEDB analysis revealed that 116 antigenic epitopes for HLA-A (21),-B (53), and-C (42) had high affinity for HLA molecules. Of them, 14 had 90.97–99.35% conversancy among the four serotypes. Moreover, five candidate epitopes, including 200NS5210 (94.84%, A*11:01), 515NS5525 (98.71%, A*24:02), 225NS5232 (99.35%, A*33:03), 516NS5523 (98.71%, A*33:03), and 284NS5291 (98.06%, A*33:03), were presented by HLA-A. Four candidate epitopes, including 234NS5241 (96.77%, B*13:01), 92NS599 (98.06%, B*15:01, B*15:02, and B*46:01), 262NS5269 (92.90%, B*38:02), and 538NS5547 (90.97%, B*51:01), were presented by HLA-B. Another 9 candidate epitopes, including 514NS5522 (98.71%, C*01:02), 514NS5524 (98.71%, C*01:02 and C*14:02), 92NS599 (98.06%, C*03:02 and C*15:02), 362NS5369 (44.84%, C*03:04 and C*08:01), 225NS5232 (99.35%, C*04:01), 234NS5241(96.77%, C*04:01), 361NS5369 (94.84%, C*04:01), 515NS5522 (98.71%, C*14:02), 515NS5524 (98.71%, C*14:02), were presented by HLA-C. Further data showed that the four-epitope combination of 92NS599 (B*15:01, B*15:02, B*46:01, C*03:02 and C*15:02), 200NS5210 (A*11:01), 362NS5369 (C*03:04, C*08:01), and 514NS5524 (C*01:02, C*14:02) could vaccinate >90% of individuals in China. Further in vivo study of our inferred novel epitopes will be needed for a T-cell epitope-based universal vaccine development that may prevent all four China-endemic DENV serotypes.
Collapse
Affiliation(s)
- Jiandong Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Yunnan Provincial Key Laboratory of Arbo Infectious Disease Control Research (Preparing), Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Jing Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Yunnan Provincial Key Laboratory of Arbo Infectious Disease Control Research (Preparing), Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Meini Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Yunnan Provincial Key Laboratory of Arbo Infectious Disease Control Research (Preparing), Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Ningzhu Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Yunnan Provincial Key Laboratory of Arbo Infectious Disease Control Research (Preparing), Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Jianfan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Yunnan Provincial Key Laboratory of Arbo Infectious Disease Control Research (Preparing), Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Yanhan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Yunnan Provincial Key Laboratory of Arbo Infectious Disease Control Research (Preparing), Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Haixuan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Yunnan Provincial Key Laboratory of Arbo Infectious Disease Control Research (Preparing), Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Yunzhang Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Yunnan Provincial Key Laboratory of Arbo Infectious Disease Control Research (Preparing), Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
- * E-mail:
| |
Collapse
|
9
|
Mathew A, Townsley E, Ennis FA. Elucidating the role of T cells in protection against and pathogenesis of dengue virus infections. Future Microbiol 2015; 9:411-25. [PMID: 24762312 DOI: 10.2217/fmb.13.171] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dengue viruses (DENV) cause significantly more human disease than any other arbovirus, with hundreds of thousands of cases leading to severe disease in thousands annually. Antibodies and T cells induced by primary infection with DENV have the potential for both positive (protective) and negative (pathological) effects during subsequent DENV infections. In this review, we summarize studies that have examined T-cell responses in humans following natural infection and vaccination. We discuss studies that support a role for T cells in protection against and those that support a role for the involvement of T cells in the pathogenesis of severe disease. The mechanisms that lead to severe disease are complex, and T-cell responses are an important component that needs to be further evaluated for the development of safe and efficacious DENV vaccines.
Collapse
Affiliation(s)
- Anuja Mathew
- Division of Infectious Diseases & Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
10
|
Is there a risk of yellow fever virus transmission in South Asian countries with hyperendemic dengue? BIOMED RESEARCH INTERNATIONAL 2013; 2013:905043. [PMID: 24367789 PMCID: PMC3866876 DOI: 10.1155/2013/905043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/18/2022]
Abstract
The fact that yellow fever (YF) has never occurred in Asia remains an “unsolved mystery” in
global health. Most countries in Asia with high Aedes aegypti mosquito density are considered
“receptive” for YF transmission. Recently, health officials in Sri Lanka issued a public health
alert on the potential spread of YF from a migrant group from West Africa. We performed an
extensive review of literature pertaining to the risk of YF in Sri Lanka/South Asian region to
understand the probability of actual risk and assist health authorities to form evidence informed
public health policies/practices. Published data from epidemiological, historical, biological,
molecular, and mathematical models were harnessed to assess the risk of YF in Asia. Using this
data we examine a number of theories proposed to explain lack of YF in Asia. Considering the
evidence available, we conclude that the probable risk of local transmission of YF is extremely
low in Sri Lanka and for other South Asian countries despite a high Aedes aegypti density and
associated dengue burden. This does not however exclude the future possibility of transmission in
Asia, especially considering the rapid influx travelers from endemic areas, as we report, arriving
in Sri Lanka.
Collapse
|
11
|
Nascimento EJM, Mailliard RB, Khan AM, Sidney J, Sette A, Guzman N, Paulaitis M, de Melo AB, Cordeiro MT, Gil LVG, Lemonnier F, Rinaldo C, August JT, Marques ETA. Identification of conserved and HLA promiscuous DENV3 T-cell epitopes. PLoS Negl Trop Dis 2013; 7:e2497. [PMID: 24130917 PMCID: PMC3794980 DOI: 10.1371/journal.pntd.0002497] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022] Open
Abstract
Anti-dengue T-cell responses have been implicated in both protection and immunopathology. However, most of the T-cell studies for dengue include few epitopes, with limited knowledge of their inter-serotype variation and the breadth of their human leukocyte antigen (HLA) affinity. In order to expand our knowledge of HLA-restricted dengue epitopes, we screened T-cell responses against 477 overlapping peptides derived from structural and non-structural proteins of the dengue virus serotype 3 (DENV3) by use of HLA class I and II transgenic mice (TgM): A2, A24, B7, DR2, DR3 and DR4. TgM were inoculated with peptides pools and the T-cell immunogenic peptides were identified by ELISPOT. Nine HLA class I and 97 HLA class II novel DENV3 epitopes were identified based on immunogenicity in TgM and their HLA affinity was further confirmed by binding assays analysis. A subset of these epitopes activated memory T-cells from DENV3 immune volunteers and was also capable of priming naïve T-cells, ex vivo, from dengue IgG negative individuals. Analysis of inter- and intra-serotype variation of such an epitope (A02-restricted) allowed us to identify altered peptide ligands not only in DENV3 but also in other DENV serotypes. These studies also characterized the HLA promiscuity of 23 HLA class II epitopes bearing highly conserved sequences, six of which could bind to more than 10 different HLA molecules representing a large percentage of the global population. These epitope data are invaluable to investigate the role of T-cells in dengue immunity/pathogenesis and vaccine design. Although there is an increased recognition of the role of T-cells in both dengue pathogenesis and protection, comprehensive analysis of T-cell activation during dengue infection is hampered by the small repertoire of known human dengue T-cell epitopes. Although dengue serotype 3 (DENV3) is responsible for numerous outbreaks worldwide, most of the known epitopes are from studies of dengue 2 serotype (DENV2). In this study, we identified novel DENV3 T-cell epitopes in HLA transgenic mice that were confirmed by HLA binding assays. A subset of these epitopes activated memory T-cells from subjects who were dengue IgG positive and primed naïve T-cells from dengue IgG negative individuals. Notably, some of HLA class II epitopes bearing highly conserved regions common to all four dengue serotypes could bind to multiple HLAs. We postulate that these highly conserved and HLA promiscuous T-helper epitopes can be important components of a dengue tetravalent vaccine.
Collapse
Affiliation(s)
- Eduardo J. M. Nascimento
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (EJMN); , (ETAM)
| | - Robbie B. Mailliard
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Asif M. Khan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Perdana University Graduate School of Medicine, Serdang, Selangor Darul Ehsan, Malaysia
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Nicole Guzman
- Department of Chemical & Biomolecular Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Michael Paulaitis
- Department of Chemical & Biomolecular Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Andréa Barbosa de Melo
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
| | - Marli T. Cordeiro
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
| | - Laura V. G. Gil
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
| | | | - Charles Rinaldo
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - J. Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ernesto T. A. Marques
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
- * E-mail: (EJMN); , (ETAM)
| |
Collapse
|
12
|
Falta MT, Pinilla C, Mack DG, Tinega AN, Crawford F, Giulianotti M, Santos R, Clayton GM, Wang Y, Zhang X, Maier LA, Marrack P, Kappler JW, Fontenot AP. Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease. ACTA ACUST UNITED AC 2013; 210:1403-18. [PMID: 23797096 PMCID: PMC3698527 DOI: 10.1084/jem.20122426] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Identification of peptides that form complexes with beryllium and class II HLA molecules and are recognized by CD4+ T cells from patients with chronic beryllium disease. Chronic beryllium disease (CBD) is a granulomatous disorder characterized by an influx of beryllium (Be)-specific CD4+ T cells into the lung. The vast majority of these T cells recognize Be in an HLA-DP–restricted manner, and peptide is required for T cell recognition. However, the peptides that stimulate Be-specific T cells are unknown. Using positional scanning libraries and fibroblasts expressing HLA-DP2, the most prevalent HLA-DP molecule linked to disease, we identified mimotopes and endogenous self-peptides that bind to MHCII and Be, forming a complex recognized by pathogenic CD4+ T cells in CBD. These peptides possess aspartic and glutamic acid residues at p4 and p7, respectively, that surround the putative Be-binding site and cooperate with HLA-DP2 in Be coordination. Endogenous plexin A peptides and proteins, which share the core motif and are expressed in lung, also stimulate these TCRs. Be-loaded HLA-DP2–mimotope and HLA-DP2–plexin A4 tetramers detected high frequencies of CD4+ T cells specific for these ligands in all HLA-DP2+ CBD patients tested. Thus, our findings identify the first ligand for a CD4+ T cell involved in metal-induced hypersensitivity and suggest a unique role of these peptides in metal ion coordination and the generation of a common antigen specificity in CBD.
Collapse
Affiliation(s)
- Michael T Falta
- Department of Medicine, University of Colorado, Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Spiroski M, Milenkovic Z, Petlichkovski A, Ivanovski L, Topuzovska IK, Djulejic E. Killer cell immunoglobulin-like receptor genes in four human West Nile virus infections reported 2011 in the Republic of Macedonia. Hum Immunol 2012; 74:389-94. [PMID: 23220498 DOI: 10.1016/j.humimm.2012.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 11/09/2012] [Accepted: 11/27/2012] [Indexed: 11/25/2022]
Abstract
West Nile virus (WNV) is a neurotropic, arthropod-borne flavivirus that is maintained in an enzootic cycle between mosquitoes and birds, but can also infect and cause disease in horses and humans. The aim of this study was to examine KIR gene polymorphisms by determining the frequencies of 16 KIR genes and pseudogenes and KIR genotypes in Macedonian patients with West Nile virus infection, and to compare with healthy Macedonians. The studied sample consists Republic of Macedonia, hospitalized at the University Clinic of Infective Diseases between September 2011 and October 2011, and reported through WHO. For KIR genotyping, commercially available PEL-FREEZ KIR genotyping SSP kit (Dynal Biotech, Brown Deer, WI) was used. The population genetics analysis package, Arlequin, was used for analysis of the data. We found that all 16 KIR genes were observed in the studied individuals and framework genes (KIR3DL3, KIR3DP1, KIR2DL4, and KIR3DL2) were present in all individuals. Comparison of KIR frequencies between Macedonian patients with West Nile virus infection and healthy Macedonian population reveals several significant differences in the inhibitory group (KIR2DL2), and in the non inhibitory group (KIR2DS1, KIR2DS2, KIR2DS5, and KIR3DS1). The single most frequent genotypes in the Bx group were genotypes ID71 and ID89 with statistically significant difference compared to healthy Macedonians. Our results suggest that specific KIR genotypes could be connected with West Nile virus infection.
Collapse
Affiliation(s)
- Mirko Spiroski
- Institute of Immunobiology and Human Genetics, Faculty of Medicine, University Ss. Cyril and Methodius, Skopje, Macedonia.
| | | | | | | | | | | |
Collapse
|
14
|
Bowerman NA, Falta MT, Mack DG, Kappler JW, Fontenot AP. Mutagenesis of beryllium-specific TCRs suggests an unusual binding topology for antigen recognition. THE JOURNAL OF IMMUNOLOGY 2011; 187:3694-703. [PMID: 21873524 DOI: 10.4049/jimmunol.1101872] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Unconventional Ags, such as metals, stimulate T cells in a very specific manner. To delineate the binding landscape for metal-specific T cell recognition, alanine screens were performed on a set of Be-specific TCRs derived from the lung of a chronic beryllium disease patient. These TCRs are HLA-DP2-restricted and express nearly identical TCR Vβ5.1 chains coupled with different TCR α-chains. Site-specific mutagenesis of all amino acids comprising the CDRs of the TCRA and TCRB genes showed a dominant role for Vβ5.1 residues in Be recognition, with little contribution from the TCR α-chain. Solvent-exposed residues along the α-helices of the HLA-DP2 α- and β-chains were also mutated to alanine. Two β-chain residues, located near the proposed Be binding site of HLA-DP2, played a dominant role in T cell recognition with no contribution from the HLA-DP2 α-chain. These findings suggest that Be-specific T cells recognize Ag using an unconventional binding topology, with the majority of interactions contributed by TCR Vβ5.1 residues and the HLA-DP2 β1-chain. Thus, unusual docking topologies are not exclusively used by autoreactive T cells, but also for the recognition of unconventional metal Ags, such as Be.
Collapse
Affiliation(s)
- Natalie A Bowerman
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
15
|
Izurieta RO, Macaluso M, Watts DM, Tesh RB, Guerra B, Cruz LM, Galwankar S, Vermund SH. Anamnestic immune response to dengue and decreased severity of yellow Fever. J Glob Infect Dis 2011; 1:111-6. [PMID: 20300401 PMCID: PMC2840959 DOI: 10.4103/0974-777x.56257] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A protective immunity against yellow fever, from cross-reactive dengue antibodies, has been hypothesized as an explanation for the absence of yellow fever in Southern Asia where dengue immunity is almost universal. This study evaluates the association between protective immunity from cross-reactive dengue antibodies with yellow fever infection and severity of the disease. The study population consisted of military personnel of a jungle garrison and its detachments located in the Ecuadorian Amazonian rainforest. The cross-sectional study employed interviews as well as seroepidemiological methods. Humoral immune response to yellow fever, Mayaro, Venezuelan equine encephalitis, Oropouche, and dengue 2 infections was assessed by evaluating IgM and IgG specific antibodies. Log-linear regression analysis was used to evaluate age and presence of antibodies, against dengue type 2 virus, as predictors of yellow fever infection or severe disease. During the seroepidemiological survey, presence of dengue antibodies among yellow fever cases were observed in 77.3% cases from the coastal region, where dengue is endemic, 14.3% cases from the Amazon and 16.7 % cases from the Andean region. Dengue cross-reactive antibodies were not significantly associated with yellow fever infection but significantly associated with severity of the disease. The findings of this study suggest that previous exposure to dengue infection may have induced an anamnestic immune response that did not prevent yellow fever infection but greatly reduced the severity of the disease.
Collapse
Affiliation(s)
- Ricardo O Izurieta
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
A multivalent vaccination strategy for the prevention of Old World arenavirus infection in humans. J Virol 2010; 84:9947-56. [PMID: 20668086 DOI: 10.1128/jvi.00672-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Arenaviruses cause severe human disease ranging from aseptic meningitis following lymphocytic choriomeningitis virus (LCMV) infection to hemorrhagic fever syndromes following infection with Guanarito virus (GTOV), Junin virus (JUNV), Lassa virus (LASV), Machupo virus (MACV), Sabia virus (SABV), or Whitewater Arroyo virus (WWAV). Cellular immunity, chiefly the CD8(+) T-cell response, plays a critical role in providing protective immunity following infection with the Old World arenaviruses LASV and LCMV. In the current study, we evaluated whether HLA class I-restricted epitopes that are cross-reactive among pathogenic arenaviruses could be identified for the purpose of developing an epitope-based vaccination approach that would cross-protect against multiple arenaviruses. We were able to identify a panel of HLA-A*0201-restricted peptides derived from the same region of the glycoprotein precursor (GPC) of LASV (GPC spanning residues 441 to 449 [GPC(441-449)]), LCMV (GPC(447-455)), JUNV (GPC(429-437)), MACV (GPC(444-452)), GTOV (GPC(427-435)), and WWAV (GPC(428-436)) that displayed high-affinity binding to HLA-A*0201 and were recognized by CD8(+) T cells in a cross-reactive manner following LCMV infection or peptide immunization of HLA-A*0201 transgenic mice. Immunization of HLA-A*0201 mice with the Old World peptide LASV GPC(441-449) or LCMV GPC(447-455) induced high-avidity CD8(+) T-cell responses that were able to kill syngeneic target cells pulsed with either LASV GPC(441-449) or LCMV GPC(447-455) in vivo and provided significant protection against viral challenge with LCMV. Through this study, we have demonstrated that HLA class I-restricted, cross-reactive epitopes exist among diverse arenaviruses and that individual epitopes can be utilized as effective vaccine determinants for multiple pathogenic arenaviruses.
Collapse
|
17
|
Sidney J, Steen A, Moore C, Ngo S, Chung J, Peters B, Sette A. Five HLA-DP molecules frequently expressed in the worldwide human population share a common HLA supertypic binding specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:2492-503. [PMID: 20139279 PMCID: PMC2935290 DOI: 10.4049/jimmunol.0903655] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Compared with DR and DQ, knowledge of the binding repertoires and specificities of HLA-DP alleles is somewhat limited. However, a growing body of literature has indicated the importance of DP-restricted responses in the context of cancer, allergy, and infectious disease. In the current study, we developed high-throughput binding assays for the five most common HLA-DPB1 alleles in the general worldwide population. Using these assays on a comprehensive panel of single-substitution analogs and large peptide libraries, we derived novel detailed binding motifs for DPB1*0101 and DPB1*0501. We also derived more detailed quantitative motifs for DPB1*0201, DPB1*0401, and DPB1*0402, which were previously characterized on the basis of sets of eluted ligands and/or limited sets of substituted peptides. Unexpectedly, all five DP molecules, originally selected only on the basis of their frequency in human populations, were found to share largely overlapping peptide motifs. Testing panels of known DP epitopes and a panel of peptides spanning a set of Phleum pratense Ags revealed that these molecules also share largely overlapping peptide-binding repertoires. This demonstrates that a previously hypothesized DP supertype extends far beyond what was originally envisioned and includes at least three additional very common DP specificities. Taken together, these DP supertype molecules are found in >90% of the human population. Thus, these findings have important implications for epitope-identification studies and monitoring of human class II-restricted immune responses.
Collapse
Affiliation(s)
- John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Khan AM, Miotto O, Nascimento EJM, Srinivasan KN, Heiny AT, Zhang GL, Marques ET, Tan TW, Brusic V, Salmon J, August JT. Conservation and variability of dengue virus proteins: implications for vaccine design. PLoS Negl Trop Dis 2008; 2:e272. [PMID: 18698358 PMCID: PMC2491585 DOI: 10.1371/journal.pntd.0000272] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 07/10/2008] [Indexed: 12/27/2022] Open
Abstract
Background Genetic variation and rapid evolution are hallmarks of RNA viruses, the result of high mutation rates in RNA replication and selection of mutants that enhance viral adaptation, including the escape from host immune responses. Variability is uneven across the genome because mutations resulting in a deleterious effect on viral fitness are restricted. RNA viruses are thus marked by protein sites permissive to multiple mutations and sites critical to viral structure-function that are evolutionarily robust and highly conserved. Identification and characterization of the historical dynamics of the conserved sites have relevance to multiple applications, including potential targets for diagnosis, and prophylactic and therapeutic purposes. Methodology/Principal Findings We describe a large-scale identification and analysis of evolutionarily highly conserved amino acid sequences of the entire dengue virus (DENV) proteome, with a focus on sequences of 9 amino acids or more, and thus immune-relevant as potential T-cell determinants. DENV protein sequence data were collected from the NCBI Entrez protein database in 2005 (9,512 sequences) and again in 2007 (12,404 sequences). Forty-four (44) sequences (pan-DENV sequences), mainly those of nonstructural proteins and representing ∼15% of the DENV polyprotein length, were identical in 80% or more of all recorded DENV sequences. Of these 44 sequences, 34 (∼77%) were present in ≥95% of sequences of each DENV type, and 27 (∼61%) were conserved in other Flaviviruses. The frequencies of variants of the pan-DENV sequences were low (0 to ∼5%), as compared to variant frequencies of ∼60 to ∼85% in the non pan-DENV sequence regions. We further showed that the majority of the conserved sequences were immunologically relevant: 34 contained numerous predicted human leukocyte antigen (HLA) supertype-restricted peptide sequences, and 26 contained T-cell determinants identified by studies with HLA-transgenic mice and/or reported to be immunogenic in humans. Conclusions/Significance Forty-four (44) pan-DENV sequences of at least 9 amino acids were highly conserved and identical in 80% or more of all recorded DENV sequences, and the majority were found to be immune-relevant by their correspondence to known or putative HLA-restricted T-cell determinants. The conservation of these sequences through the entire recorded DENV genetic history supports their possible value for diagnosis, prophylactic and/or therapeutic applications. The combination of bioinformatics and experimental approaches applied herein provides a framework for large-scale and systematic analysis of conserved and variable sequences of other pathogens, in particular, for rapidly mutating viruses, such as influenza A virus and HIV. Dengue viruses (DENVs) circulate in nature as a population of 4 distinct types, each with multiple genotypes and variants, and represent an increasing global public health issue with no prophylactic and therapeutic formulations currently available. Viral genomes contain sites that are evolutionarily stable and therefore highly conserved, presumably because changes in these sites have deleterious effects on viral fitness and survival. The identification and characterization of the historical dynamics of these sites in DENV have relevance to several applications such as diagnosis and drug and vaccine development. In this study, we have identified sequence fragments that were conserved across the majority of available DENV sequences, analyzed their historical dynamics, and evaluated their relevance as candidate vaccine targets, using various bioinformatics-based methods and immune assay in human leukocyte antigen (HLA) transgenic mice. This approach provides a framework for large-scale and systematic analysis of other human pathogens.
Collapse
Affiliation(s)
- Asif M. Khan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Olivo Miotto
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Systems Science, National University of Singapore, Singapore
| | - Eduardo J. M. Nascimento
- Department of Medicine, Division of Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - K. N. Srinivasan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Product Evaluation and Registration Division, Centre for Drug Administration, Health Sciences Authority, Singapore
| | - A. T. Heiny
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Guang Lan Zhang
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - E. T. Marques
- Department of Medicine, Division of Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tin Wee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vladimir Brusic
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jerome Salmon
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - J. Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
19
|
HLA-associated susceptibility to childhood B-cell precursor ALL: definition and role of HLA-DPB1 supertypes. Br J Cancer 2008; 98:1125-31. [PMID: 18334973 PMCID: PMC2275491 DOI: 10.1038/sj.bjc.6604257] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Childhood B-cell precursor (BCP) ALL is thought to be caused by a delayed immune response to an unidentified postnatal infection. An association between BCP ALL and HLA class II (DR, DQ, DP) alleles could provide further clues to the identity of the infection, since HLA molecules exhibit allotype-restricted binding of infection-derived antigenic peptides. We clustered >30 HLA-DPB1 alleles into six predicted peptide-binding supertypes (DP1, 2, 3, 4, 6, and 8), based on amino acid di-morphisms at positions 11 (G/L), 69 (E/K), and 84 (G/D) of the DPβ1 domain. We found that the DPβ11-69-84 supertype GEG (DP2), was 70% more frequent in BCP ALL (n=687; P<10−4), and 98% more frequent in cases diagnosed between 3 and 6 years (P<10−4), but not <3 or >6 years, than in controls. Only one of 21 possible DPB1 supergenotypes, GEG/GKG (DP2/DP4) was significantly more frequent in BCP ALL (P=0.00004) than controls. These results suggest that susceptibility to BCP ALL is associated with the DP2 supertype, which is predicted to bind peptides with positively charged, nonpolar aromatic residues at the P4 position, and hydrophobic residues at the P1 and P6 positions. Studies of peptide binding by DP2 alleles could help to identify infection(s) carrying these peptides.
Collapse
|
20
|
Abstract
The four dengue viruses are transmitted in tropical countries that circle the globe. All can cause syndromes that are self-limited or severe. The common severe syndrome--dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS)--is characterised by sudden vascular permeability generated by cytokines released when T cells attack dengue-infected cells. Dengue 1 virus became prevalent in Hawaii where it was transmitted by Aedes albopictus, producing a classic virgin soil epidemic, with clinical disease seen largely in adults. In Cuba and Singapore, sequential dengue infections at long intervals produced unusually severe disease in adults. Evidence suggests that enhancing and cross-reactive neutralising antibodies regulate dengue epidemics and disease severity. Classic DHF/DSS arises during initial dengue infections in infants with low circulating amounts of maternal dengue antibodies, an observation that precludes an exclusive causal role for secondary T-cell responses. Here, I review and discuss data on clinical diagnosis and pathophysiology of vascular permeability and coagulopathy, parenteral treatment of DHF/DSS, and new laboratory tests.
Collapse
Affiliation(s)
- Scott B Halstead
- Supportive Research and Development, Pediatric Dengue Vaccine Initiative, Internal Vaccine Institute, Seoul, South Korea.
| |
Collapse
|
21
|
Sierra B, Alegre R, Pérez AB, García G, Sturn-Ramirez K, Obasanjo O, Aguirre E, Alvarez M, Rodriguez-Roche R, Valdés L, Kanki P, Guzmán MG. HLA-A, -B, -C, and -DRB1 allele frequencies in Cuban individuals with antecedents of dengue 2 disease: Advantages of the Cuban population for HLA studies of dengue virus infection. Hum Immunol 2007; 68:531-40. [PMID: 17509453 DOI: 10.1016/j.humimm.2007.03.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 02/02/2007] [Accepted: 03/01/2007] [Indexed: 11/29/2022]
Abstract
Dengue virus infection has emerged as one of the most important arthropod-borne diseases. In some dengue-infected individual, the disease progresses to its severe, life-threatening form, dengue hemorrhagic fever (DHF). Host genetic factors may be relevant and predispose some individuals to the severe dengue disease. The unique history of dengue outbreaks in Cuba is extremely advantageous for genetic studies of dengue disease resistance or susceptibility. Consequently, samples collected from 120 healthy individuals that developed dengue fever (DF) and DHF during the 1997 dengue 2 outbreak in the Santiago de Cuba municipality were HLA genotyped using polymerase chain reaction-sequence-specific primers. Polymorphism at the human leukocyte antigen (HLA) class I loci was significantly associated with DHF disease susceptibility, but polymorphism in the HLA-DRB1 was associated with protection. Amino acid peptides present in the poly-protein of the dengue 2 Jamaica strain, which are able to bind to the HLA class I and class II allotypes associated with susceptibility to or protection against the dengue clinical disease, respectively, were predicted using the BIMAS and SYFPEITHI predictive algorithms of peptide/MHC interaction.
Collapse
Affiliation(s)
- Beatriz Sierra
- Institute of Tropical Medicine Pedro Kourí, WHO Collaborator Centre for Viral Diseases, Havana, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Khan AM, Miotto O, Heiny A, Salmon J, Srinivasan K, Nascimento E, Marques ET, Brusic V, Tan TW, August JT. A systematic bioinformatics approach for selection of epitope-based vaccine targets. Cell Immunol 2006; 244:141-7. [PMID: 17434154 PMCID: PMC2041846 DOI: 10.1016/j.cellimm.2007.02.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 02/06/2007] [Indexed: 11/24/2022]
Abstract
Epitope-based vaccines provide a new strategy for prophylactic and therapeutic application of pathogen-specific immunity. A critical requirement of this strategy is the identification and selection of T-cell epitopes that act as vaccine targets. This study describes current methodologies for the selection process, with dengue virus as a model system. A combination of publicly available bioinformatics algorithms and computational tools are used to screen and select antigen sequences as potential T-cell epitopes of supertype human leukocyte antigen (HLA) alleles. The selected sequences are tested for biological function by their activation of T-cells of HLA transgenic mice and of pathogen infected subjects. This approach provides an experimental basis for the design of pathogen specific, T-cell epitope-based vaccines that are targeted to majority of the genetic variants of the pathogen, and are effective for a broad range of differences in human leukocyte antigens among the global human population.
Collapse
Affiliation(s)
- Asif M. Khan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Olivo Miotto
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Institute of Systems Science, National University of Singapore, 25 Heng Mui Keng Terrace, Singapore 119615, Singapore
| | - A.T. Heiny
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Jerome Salmon
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States of America
| | - K.N. Srinivasan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States of America
- Product Evaluation & Registration Division, Centre for Drug Administration, Health Sciences Authority, 11 Biopolis Way, Singapore 138667, Singapore
| | - Eduardo Nascimento
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States of America
| | - Ernesto T. Marques
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States of America
| | - Vladimir Brusic
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
- School of Land and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tin Wee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - J. Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States of America
| |
Collapse
|
23
|
Chaturvedi U, Nagar R, Shrivastava R. Dengue and dengue haemorrhagic fever: implications of host genetics. ACTA ACUST UNITED AC 2006; 47:155-66. [PMID: 16831202 DOI: 10.1111/j.1574-695x.2006.00058.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Little is known of the role of human leucocyte antigen (HLA) alleles or non-HLA alleles in determining resistance, susceptibility or the severity of acute viral infections. Dengue fever (DF) and dengue haemorrhagic fever (DHF) are suitable models for immunogenetic studies, yet only superficial efforts have been made to study dengue disease to date. DF and DHF can be caused by both primary and secondary infection by any of the four serotypes of the dengue virus. Differences in host susceptibility to infectious disease and disease severity cannot be attributed solely to the virus virulence. Variations in immune response, often associated with polymorphism in the human genome, can now be detected. Data on the influence of human genes in DF and DHF are discussed here in relation to (1) associations between HLA polymorphism and dengue disease susceptibility or resistance, (2) protective alleles influencing progression to severe disease, (3) alleles restricting CD4(+) and CD8(+) T lymphocytes, and (4) non-HLA genetic factors that may contribute to DHF evolution. Recent discoveries regarding genetic associations in other viral infections may provide clues to understanding the development of end-stage complications in dengue disease. The scanty positive data presented here indicate a need for detailed genetic studies in different ethnic groups in different countries during the acute phase of DF and DHF on a larger number of patients.
Collapse
Affiliation(s)
- Umeshc Chaturvedi
- Department of Microbiology, K.G. Medical University, Lucknow, India.
| | | | | |
Collapse
|
24
|
Borisevich V, Seregin A, Nistler R, Mutabazi D, Yamshchikov V. Biological properties of chimeric West Nile viruses. Virology 2006; 349:371-81. [PMID: 16545851 DOI: 10.1016/j.virol.2006.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/18/2006] [Accepted: 02/10/2006] [Indexed: 12/14/2022]
Abstract
Recently, we have described a lineage 2 attenuated WN virus suitable for the development of a live WN vaccine. To design vaccine candidates with an improved immunogenicity, we assembled an infectious clone of the NY99 strain and created several chimeric constructs with reciprocal exchanges of structural protein genes between attenuated W956 and virulent NY99 and investigated their biological properties. Our data indicated that, while the growth rates of NY99 and chimeric viruses in tissue culture are determined primarily by properties of the structural proteins, determinants responsible for a highly cytopathic phenotype of NY99 or lack thereof for W956 are located within the nonstructural protein region of the WN genome. The high virulence of NY99 and the attenuated phenotype of W956 were found to be associated with determinants in the nonstructural region. Chimeric viruses carrying the NY99 structural proteins were attenuated in neuroinvasiveness and demonstrated an immunogenicity superior to W956.
Collapse
Affiliation(s)
- Victoria Borisevich
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | | | | | | | | |
Collapse
|
25
|
Kumar P, Sulochana P, Nirmala G, Haridattatreya M, Satchidanandam V. Conserved amino acids 193–324 of non-structural protein 3 are a dominant source of peptide determinants for CD4+ and CD8+ T cells in a healthy Japanese encephalitis virus-endemic cohort. J Gen Virol 2004; 85:1131-1143. [PMID: 15105530 DOI: 10.1099/vir.0.19698-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our earlier identification of the non-structural protein 3 (NS3) of Japanese encephalitis virus (JEV) as a dominant CD4+ as well as CD8+ T cell-eliciting antigen in a healthy JEV-endemic cohort with a wide HLA distribution implied the presence of several epitopes dispersed over the length of the protein. Use of various truncated versions of NS3 in lymphocyte stimulation and interferon (IFN)-γ secretion assays revealed that amino acids (aa) 193–324 of NS3 were comparable with, if not superior to, the full-length protein in evoking Th1 responses. The potential of this 14·4 kDa stretch to stimulate IFN-γ production from both subtypes of T cells in a manner qualitatively and quantitatively similar to the 68 kDa parent protein suggested the presence within it of both class I and II epitopes and demonstrated that the entire immunogenicity of NS3 was focused on aa 193–324. Interestingly, this segment contained five of the eight helicase motifs of NS3. Analysis of variability of the NS3 protein sequence across 16 JEV isolates revealed complete identity of aa 219–318, which is contained within the above segment, suggesting that NS3-specific epitopes tend to cluster in relatively conserved regions that harbour functionally critical domains of the protein.
Collapse
Affiliation(s)
- Priti Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | - Gejjehalli Nirmala
- Department of Pediatrics, Vijayanagar Institute of Medical Sciences, Bellary, Karnataka 583104, India
| | - Maganti Haridattatreya
- Department of Pediatrics, Vijayanagar Institute of Medical Sciences, Bellary, Karnataka 583104, India
| | - Vijaya Satchidanandam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
26
|
Abstract
The pathophysiological basis of severe dengue disease (i.e., dengue hemorrhagic fever [DHF]), appears to be multifactorial, involving complex interactions among viral factors, host genetics, and the immunologic background of the host, principally prior exposure to dengue virus. Analysis of these processes has been limited to observational studies of naturally infected humans because there have not been useful animal models of dengue disease. Substantial evidence points to dengue virus-reactive T cells as a critical effector in the development of DHF. We are beginning to define the critical elements of T-cell epitope specificity and functional responses that contribute to DHF. Additional studies in well-characterized patient cohorts from different geographic regions will be needed to advance this research and guide new approaches to prevention and treatment of DHF.
Collapse
Affiliation(s)
- Alan L Rothman
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
27
|
van der Most RG, Harrington LE, Giuggio V, Mahar PL, Ahmed R. Yellow fever virus 17D envelope and NS3 proteins are major targets of the antiviral T cell response in mice. Virology 2002; 296:117-24. [PMID: 12036323 DOI: 10.1006/viro.2002.1432] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The yellow fever virus 17D vaccine strain is one of the most effective and safe vaccines available. The immune response after immunization is characterized by long-lasting high titers of neutralizing antibodies. Here, we have initiated a characterization of YFV-17D-specific cellular immune responses. This study makes three points. First, we have identified two CD8 T cell epitopes and one CD4 T cell epitope. An H-2Kb-restricted dominant epitope was mapped in the NS3 protein, whereas the viral envelope protein harbored an H-2Db-restricted subdominant epitope and the I-Ab-restricted CD4 T cell epitope. Second, illustrating the concept of immunodomination, we found that after abrogation of the dominant response in H-2Kb knockout mice, the frequencies of T cells recognizing the subdominant Db-restricted epitope increased dramatically. Finally, the H-2Db-restricted epitope lacks the canonical Asn anchor residue at position 5, indicating that epitopes may be missed by strict application of the H-2Db-binding motif. Identification of these T cell epitopes will facilitate studies on the cellular immunity against YFV-based expression or immunization vectors.
Collapse
|
28
|
Marfin AA, Gubler DJ. West Nile encephalitis: an emerging disease in the United States. Clin Infect Dis 2001; 33:1713-9. [PMID: 11595987 DOI: 10.1086/322700] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2001] [Revised: 05/10/2001] [Indexed: 11/04/2022] Open
Abstract
In 1999, an epidemic of West Nile virus (WNV) encephalitis occurred in New York City (NYC) and 2 surrounding New York counties. Simultaneously, an epizootic among American crows and other bird species occurred in 4 states. Indigenous transmission of WNV had never been documented in the western hemisphere until this epidemic. In 2000, the epizootic expanded to 12 states and the District of Columbia, and the epidemic continued in NYC, 5 New Jersey counties, and 1 Connecticut county. In addition to these outbreaks, several large epidemics of WNV have occurred in other regions of the world where this disease was absent or rare >5 years ago. Many of the WNV strains isolated during recent outbreaks demonstrate an extremely high degree of homology that strongly suggests widespread circulation of potentially epidemic strains of WNV. The high rates of severe neurologic illness and death among humans, horses, and birds in these outbreaks are unprecedented and unexplained. We review the current status of WNV in the United States.
Collapse
Affiliation(s)
- A A Marfin
- Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80522-2087, USA.
| | | |
Collapse
|
29
|
Pletnev AG, Bray M, Hanley KA, Speicher J, Elkins R. Tick-borne Langat/mosquito-borne dengue flavivirus chimera, a candidate live attenuated vaccine for protection against disease caused by members of the tick-borne encephalitis virus complex: evaluation in rhesus monkeys and in mosquitoes. J Virol 2001; 75:8259-67. [PMID: 11483771 PMCID: PMC115070 DOI: 10.1128/jvi.75.17.8259-8267.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Langat virus (LGT), strain TP21, a naturally avirulent tick-borne flavivirus, was used to construct a chimeric candidate virus vaccine which contained LGT genes for premembrane (preM) and envelope (E) glycoprotein and all other sequences derived from dengue type 4 virus (DEN4). The live virus vaccine was developed to provide resistance to the highly virulent, closely related tick-borne flaviviruses that share protective E epitopes among themselves and with LGT. Toward that end the chimera, initially recovered in mosquito cells, was adapted to grow to high titer in qualified simian Vero cells. When inoculated intraperitoneally (i.p.), the Vero cell-adapted LGT TP21/DEN4 chimera remained completely attenuated for SCID mice. Significantly, the chimera protected immunocompetent mice against the most virulent tick-borne encephalitis virus (TBEV). Subsequently, rhesus monkeys were immunized in groups of 4 with 10(5) or 10(7) PFU of LGT strain TP21, with 10(5) PFU of DEN4, or with 10(3), 10(5), or 10(7) PFU of the chimera. Each of the monkeys inoculated with DEN4 or LGT TP21 became viremic, and the duration of viremia ranged from 1 to 5 days. In contrast, viremia was detected in only 1 of 12 monkeys inoculated with the LGT TP21/DEN4 chimera; in this instance the level of viremia was at the limit of detection. All monkeys immunized with the chimera or LGT TP21 virus developed a moderate to high level of neutralizing antibodies against LGT TP21 as well as TBEV and were completely protected against subsequent LGT TP21 challenge, whereas monkeys previously immunized with DEN4 virus became viremic when challenged with LGT TP21. These observations suggest that the chimera is attenuated, immunogenic, and able to induce a protective immune response. Furthermore, passive transfer of serum from monkeys immunized with chimera conferred significant protection to mice subsequently challenged with 100 i.p. 50% lethal doses of the highly virulent TBEV. The issue of transmissibility of the chimera by mosquitoes was addressed by inoculating a nonhematophagous mosquito, Toxorhynchites splendens, intrathoracically with the chimera or its DEN4 or LGT parent. Neither the LGT TP21/DEN4 vaccine candidate nor the wild-type LGT TP21 virus was able to infect this mosquito species, which is highly permissive for dengue viruses. Certain properties of the chimera, notably its attenuation for monkeys, its immunogenicity, and its failure to infect a highly permissive mosquito host, make it a promising vaccine candidate for use in immunization against severe disease caused by many tick-borne flaviviruses.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Cells, Cultured
- Chlorocebus aethiops
- Culicidae/virology
- Dengue/immunology
- Dengue/prevention & control
- Dengue/virology
- Dengue Virus/genetics
- Dengue Virus/immunology
- Dengue Virus/physiology
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/physiology
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/prevention & control
- Encephalitis, Tick-Borne/virology
- Immunization, Passive
- Macaca mulatta
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Recombinant Fusion Proteins
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Vero Cells
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- Virus Replication
Collapse
Affiliation(s)
- A G Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
30
|
De Groot AS, Saint-Aubin C, Bosma A, Sbai H, Rayner J, Martin W. Rapid Determination of HLA B*07 Ligands from the West Nile Virus NY99 Genome. Emerg Infect Dis 2001. [DOI: 10.3201/eid0704.017419] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Anne S. De Groot
- Brown University, Providence, Rhode Island, USA;EpiVax, Inc., Providence, Rhode Island, USA
| | | | | | - Hakima Sbai
- Brown University, Providence, Rhode Island, USA
| | | | | |
Collapse
|
31
|
De Groot AS, Saint-Aubin C, Bosma A, Sbai H, Rayner J, Martin W. Rapid determination of HLA B*07 ligands from the West Nile virus NY99 genome. Emerg Infect Dis 2001; 7:706-13. [PMID: 11585536 PMCID: PMC2631750 DOI: 10.3201/eid0704.010419] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Defined T cell epitopes for West Nile (WN) virus may be useful for developing subunit vaccines against WN virus infection and diagnostic reagents to detect WN virus-specific immune response. We applied a bioinformatics (EpiMatrix) approach to search the WN virus NY99 genome for HLA B*07 restricted cytotoxic T cell (CTL) epitopes. Ninety-five of 3,433 WN virus peptides scored above a predetermined cutoff, suggesting that these would be likely to bind to HLA B*07 and would also be likely candidate CTL epitopes. Compared with other methods for genome mapping, derivation of these ligands was rapid and inexpensive. Major histocompatibility complex ligands identified by this method may be used to screen T cells from WN virus-exposed persons for cell-mediated response to WN virus or to develop diagnostic reagents for immunopathogenesis studies and epidemiologic surveillance.
Collapse
Affiliation(s)
- A S De Groot
- TB/HIV Research Laboratory, Brown University, Providence, RI 02906, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Morozova OV, Maksimova TG, Bakhvalova VN. Tick-borne encephalitis virus NS3 gene expression does not protect mice from homologous viral challenge. Viral Immunol 2000; 12:277-80. [PMID: 10630787 DOI: 10.1089/vim.1999.12.277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) NS3 gene has been subcloned into the expression vector pcDNAI and expressed in eukaryotic cells. Immunization of mice with the recombinant plasmid pcDNAI-NS3 induced antibodies against NS3 protein but did not protect from viral challenge.
Collapse
Affiliation(s)
- O V Morozova
- Novosibirsk Institute of Bioorganic Chemistry, Novosibirsk, Russia.
| | | | | |
Collapse
|
33
|
Zivny J, DeFronzo M, Jarry W, Jameson J, Cruz J, Ennis FA, Rothman AL. Partial Agonist Effect Influences the CTL Response to a Heterologous Dengue Virus Serotype. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Activation of dengue serotype-cross-reactive memory CTL during secondary dengue virus (DV) infection is thought to be important in the pathogenesis of dengue hemorrhagic fever. To model this effect, we studied the CTL responses to DV types 2 (D2V) and 3 (D3V) in PBMC from an individual previously infected with D3V. DV-specific CD8+ CTL from this donor recognized two HLA-B62-restricted epitopes on the NS3 protein, aa 71–79 (SVKKDLISY) and 235–243 (AMKGLPIRY). Both D3V-specific and D2V/D3V-cross-reactive CTL clones were detected for each epitope; all D2V-reactive CTL clones could lyse D2V-infected autologous cells. CTL responses to both epitopes were detected in bulk cultures stimulated with D3V, but PBMC stimulated with D2V recognized only the 235–243 epitope. IFN-γ enzyme-linked immunospot assay showed that the D2V (71–79) peptide (DVKKDLISY) did not efficiently activate T cells. Analysis of a CTL clone suggests that the D2V (71–79) peptide acts as a partial agonist, able to sensitize target cells for lysis and inducing only minimal proliferation at high concentrations. These results suggest that variant peptide sequences present in the heterologous DV serotype can influence the CTL response in vivo during secondary DV infection.
Collapse
Affiliation(s)
- Jaroslav Zivny
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - Matthew DeFronzo
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - William Jarry
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - Julie Jameson
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - John Cruz
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - Francis A. Ennis
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - Alan L. Rothman
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
34
|
Spaulding AC, Kurane I, Ennis FA, Rothman AL. Analysis of murine CD8(+) T-cell clones specific for the Dengue virus NS3 protein: flavivirus cross-reactivity and influence of infecting serotype. J Virol 1999; 73:398-403. [PMID: 9847344 PMCID: PMC103845 DOI: 10.1128/jvi.73.1.398-403.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/1998] [Accepted: 10/05/1998] [Indexed: 12/24/2022] Open
Abstract
Serotype-cross-reactive dengue virus-specific cytotoxic T lymphocytes (CTL) induced during a primary dengue virus infection are thought to play a role in the immunopathogenesis of dengue hemorrhagic fever (DHF) during a secondary dengue virus infection. Although there is no animal model of DHF, we previously reported that murine dengue virus-specific CTL responses are qualitatively similar to human dengue virus-specific CTL responses. We used BALB/c mice to study the specificity of the CTL response to an immunodominant epitope on the dengue virus NS3 protein. We mapped the minimal H-2Kd-restricted CTL epitope to residues 298 to 306 of the dengue type 2 virus NS3 protein. In short-term T-cell lines and clones, the predominant CD8(+) CTL to this epitope in mice immunized with dengue type 2 virus or vaccinia virus expressing the dengue type 4 virus NS3 protein were cross-reactive with dengue type 2 or type 4 virus, while broadly serotype-cross-reactive CTL were a minority population. In dengue type 3 virus-immunized mice, the predominant CTL response to this epitope was broadly serotype cross-reactive. All of the dengue virus-specific CTL clones studied also recognized the homologous NS3 sequences of one or more closely related flaviviruses, such as Kunjin virus. The critical contact residues for the CTL clones with different specificities were mapped with peptides having single amino acid substitutions. These data demonstrate that primary dengue virus infection induces a complex population of flavivirus-cross-reactive NS3-specific CTL clones in mice and suggest that CTL responses are influenced by the viral serotype. These findings suggest an additional mechanism by which the order of sequential flavivirus infections may influence disease manifestations.
Collapse
Affiliation(s)
- A C Spaulding
- Center for Infectious Diseases and Vaccine Research, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|