1
|
Li X, Parker BM, Boughton RK, Beasley JC, Smyser TJ, Austin JD, Pepin KM, Miller RS, Vercauteren KC, Wisely SM. Torque Teno Sus Virus 1: A Potential Surrogate Pathogen to Study Pig-Transmitted Transboundary Animal Diseases. Viruses 2024; 16:1397. [PMID: 39339873 PMCID: PMC11436127 DOI: 10.3390/v16091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the epidemiology and transmission dynamics of transboundary animal diseases (TADs) among wild pigs (Sus scrofa) will aid in preventing the introduction or containment of TADs among wild populations. Given the challenges associated with studying TADs in free-ranging populations, a surrogate pathogen system may predict how pathogens may circulate and be maintained within wild free-ranging swine populations, how they may spill over into domestic populations, and how management actions may impact transmission. We assessed the suitability of Torque teno sus virus 1 (TTSuV1) to serve as a surrogate pathogen for molecular epidemiological studies in wild pigs by investigating the prevalence, persistence, correlation with host health status and genetic variability at two study areas: Archbold's Buck Island Ranch in Florida and Savannah River Site in South Carolina. We then conducted a molecular epidemiological case study within Archbold's Buck Island Ranch site to determine how analysis of this pathogen could inform transmission dynamics of a directly transmitted virus. Prevalence was high in both study areas (40%, n = 190), and phylogenetic analyses revealed high levels of genetic variability within and between study areas. Our case study showed that pairwise host relatedness and geographic distance were highly correlated to pairwise viral genetic similarity. Molecular epidemiological analyses revealed a distinct pattern of direct transmission from pig to pig occurring within and between family groups. Our results suggest that TTSuV1 is highly suitable for molecular epidemiological analyses and will be useful for future studies of transmission dynamics in wild free-ranging pigs.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (X.L.); (B.M.P.)
| | - Brandon M. Parker
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (X.L.); (B.M.P.)
| | - Raoul K. Boughton
- Buck Island Ranch, Archbold Biological Station, Lake Placid, FL 33960, USA;
| | - James C. Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA;
| | - Timothy J. Smyser
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO 80526, USA (K.M.P.)
| | - James D. Austin
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (X.L.); (B.M.P.)
| | - Kim M. Pepin
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO 80526, USA (K.M.P.)
| | - Ryan S. Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Fort Collins, CO 80525, USA
| | - Kurt C. Vercauteren
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO 80526, USA (K.M.P.)
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (X.L.); (B.M.P.)
| |
Collapse
|
2
|
Yu XW, Wang Q, Liu L, Zhou ZJ, Cai T, Yuan HM, Tang MA, Peng J, Ye SB, Yang XH, Deng XB, Ge XY. Detection and Genomic Characterization of Torque Teno Virus in Pneumoconiosis Patients in China. Viruses 2024; 16:1059. [PMID: 39066222 PMCID: PMC11281462 DOI: 10.3390/v16071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Pneumoconiosis is a common occupational disease that can worsen with accompanying infection. Torque teno virus (TTV) is a prevalent human virus with multiple genotypes that can chronically and persistently infect individuals. However, the prevalence of TTV in pneumoconiosis patients is still unclear. This research aims to detect the presence and prevalence of TTV in the alveolar lavage fluid of pneumoconiosis patients in the Hunan Province of China using PCR. As a result, a 65.5% positive rate (19 out of 29) of TTV was detected. The TTV detection rate varies among different stages of silicosis and different pneumoconiosis patient ages. Nine novel TTV genomes ranging in size from 3719 to 3908 nt, named TTV HNPP1, HNPP2, HNPP3, HNPP4, HNPP5, HNPP6-1, HNPP6-2, HNPP7-1 and HNPP7-2, were identified. A genomic comparison and phylogenetic analysis indicated that these nine TTVs represent five different species with high genetic diversity which belong to the genus Alphatorquevirus. HNPP6-1 and HNPP6-2 belong to TTV3, HNPP5 belongs to TTV13, HNPP1 belongs to TTV24, HNPP4 belongs to TTV20, and the others belong to TTV19. The genomes of TTV HNPP1, HNPP6-1, and HNPP6-2 contain three putative open reading frames (ORFs) coding for proteins, ORF1, ORF2, and ORF3, while the other six TTV genomes contain two ORFs coding for proteins, ORF1 and ORF2. These results provide the first description of TTV epidemiology in pneumoconiosis patients in China. The newly identified TTV genome sequences reveal the high genetic diversity of TTV in pneumoconiosis patients and could contribute to a deeper understanding of TTV retention and infection in humans.
Collapse
Affiliation(s)
- Xiao-Wei Yu
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha 410003, China; (X.-W.Y.); (L.L.); (T.C.); (H.-M.Y.); (M.-A.T.); (J.P.); (X.-H.Y.)
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China; (Z.-J.Z.); (S.-B.Y.)
| | - Qiong Wang
- Department of Basic Biology, Changsha Medical University, Changsha 410219, China;
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha 410219, China
| | - Lang Liu
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha 410003, China; (X.-W.Y.); (L.L.); (T.C.); (H.-M.Y.); (M.-A.T.); (J.P.); (X.-H.Y.)
| | - Zhi-Jian Zhou
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China; (Z.-J.Z.); (S.-B.Y.)
| | - Tuo Cai
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha 410003, China; (X.-W.Y.); (L.L.); (T.C.); (H.-M.Y.); (M.-A.T.); (J.P.); (X.-H.Y.)
| | - Hua-Ming Yuan
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha 410003, China; (X.-W.Y.); (L.L.); (T.C.); (H.-M.Y.); (M.-A.T.); (J.P.); (X.-H.Y.)
| | - Mei-An Tang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha 410003, China; (X.-W.Y.); (L.L.); (T.C.); (H.-M.Y.); (M.-A.T.); (J.P.); (X.-H.Y.)
| | - Jian Peng
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha 410003, China; (X.-W.Y.); (L.L.); (T.C.); (H.-M.Y.); (M.-A.T.); (J.P.); (X.-H.Y.)
| | - Sheng-Bao Ye
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China; (Z.-J.Z.); (S.-B.Y.)
| | - Xiu-Hong Yang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha 410003, China; (X.-W.Y.); (L.L.); (T.C.); (H.-M.Y.); (M.-A.T.); (J.P.); (X.-H.Y.)
| | - Xiao-Bin Deng
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha 410003, China; (X.-W.Y.); (L.L.); (T.C.); (H.-M.Y.); (M.-A.T.); (J.P.); (X.-H.Y.)
| | - Xing-Yi Ge
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China; (Z.-J.Z.); (S.-B.Y.)
| |
Collapse
|
3
|
Wang X, Cheng J, Jiang Y, Ou J, Cai S, Xu L, Zhong L, Xiao Y, Hu X, Lu G, Yuan L. Natural recombination of the torque teno canis virus within the ORF1, -2, and -3 genes and the untranslated region. Virus Res 2023; 338:199227. [PMID: 37793437 PMCID: PMC10582477 DOI: 10.1016/j.virusres.2023.199227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
The torque teno canis virus (TTCaV) was first reported in 2001 and it shares similarities with the known Torque teno virus (TTV) in terms of genomic organization and putative transcriptional features. It is a single-stranded DNA virus characterized by high rates of recombination and nucleotide substitution, like RNA viruses. Studies reported recombination events in torque teno virus; however, there is limited reporting of TTCaV reorganization events. This study screened fecal samples from domestic dogs in Henan Province. There was a positivity rate of 16.5% (19/115) for TTCaV. Four nearly complete TTCaV genomes, namely Canine/HeNan/4, 5, 6, and 13/2019, were obtained from the 19 positive fecal samples, whose genome sequence was obtained using gap-filling PCR. Sequence analysis revealed two unique amino acid mutation sites in the TTCaV strains, K278Q (compared with the first isolate Cf-TTV10 in Japan) and V/L268I (compared with the TTCaV strain from southern China). Subsequently, 17 near full-length TTCaV genome sequences were subjected to phylogenetic and recombination detection program analyzes. We obtained evidence supporting recombination events in the Chinese TTCaV strains. These findings suggest that mutation and recombination occurred in the three individual gene segments (ORF1, ORF2, ORF3) and the untranslated region, an area of major recombination in the Chinese TTCaV strain GX265 genome. Interestingly, the TTCaV strain (Canine/HeNan/6/2019) was a major parent involved in the genetic recombination of the GX265 strain. This study provides insights into the genetic variability and evolution of TTCaV.
Collapse
Affiliation(s)
- Xuyang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Jiaojiao Cheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Yujie Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Jiajun Ou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Siqi Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Liang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Lintao Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Yuqing Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Xuerui Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Gang Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, China.
| | - Liguo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, China.
| |
Collapse
|
4
|
Burrai GP, Hawko S, Dei Giudici S, Polinas M, Angioi PP, Mura L, Alberti A, Hosri C, Hassoun G, Oggiano A, Antuofermo E. The Synergic Role of Emerging and Endemic Swine Virus in the Porcine Respiratory Disease Complex: Pathological and Biomolecular Analysis. Vet Sci 2023; 10:595. [PMID: 37888547 PMCID: PMC10611356 DOI: 10.3390/vetsci10100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Porcine respiratory disease complex (PRDC) represents a significant threat to the swine industry, causing economic losses in pigs worldwide. Recently, beyond the endemic viruses PRRSV and PCV2, emerging viruses such as TTSuV, PCV3, and PPV2, have been associated with PRDC, but their role remains unclear. This study investigates the presence of PCV2 and PRRSV and emerging viruses (PCV3, TTSuV, and PPV2) in the lungs of swine belonging to different age groups by histopathology and real-time PCR. The prevalent lung lesion was interstitial pneumonia with increased severity in post-weaning pigs. PRRSV was detected in 33% of piglets' lungs and in 20% of adults and post-weaning pigs with high Ct, while PCV2 was found in 100% of adult pigs, 33% of post-weaning pigs, and 22% of piglets, with low Ct in post-weaning pigs. PCV3 was present in all categories and coexisted with other viruses. TTSuV was detected in all swine in combination with other viruses, possibly influencing the disease dynamics, while PPV2 was detected in 100% of adults' and 90% of piglets' lungs. The detection of TTSuV, PCV3, and PPV2 in affected pigs prioritizes the need for comprehensive approaches in implementing appropriate control measures and minimizing economic losses associated with PRDC.
Collapse
Affiliation(s)
- Giovanni Pietro Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Salwa Hawko
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Marta Polinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Chadi Hosri
- Department of Veterinary Medicine, Faculty of Agricultural Sciences and Veterinary Medicine, Lebanese University, Beirut 1487, Lebanon; (C.H.); (G.H.)
| | - Georges Hassoun
- Department of Veterinary Medicine, Faculty of Agricultural Sciences and Veterinary Medicine, Lebanese University, Beirut 1487, Lebanon; (C.H.); (G.H.)
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Elisabetta Antuofermo
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| |
Collapse
|
5
|
Gao J, Liu C, Yi J, Shi Y, Li H, Liu H. Genomic Characteristics of Feline Anelloviruses Isolated from Domestic Cats in Shanghai, China. Vet Sci 2023; 10:444. [PMID: 37505849 PMCID: PMC10385657 DOI: 10.3390/vetsci10070444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Viral metagenomics techniques allow the high-throughput discovery of possible pathogens carried by companion animals from their feces and other excreta. In this study, the viral metagenomics of 22 groups of fecal samples from domestic cats revealed a high prevalence of feline anelloviruses (FcTTV) infection in domestic cats in Shanghai, China. Serum samples from 30 cat individuals were further detected by polymerase chain reaction, and an average positive rate of 36.67% (11/30) of FcTTV infection was found. Next, the full-length sequences of five Shanghai FcTTV variants were obtained and submitted to GenBank with access numbers OP186140 to OP186144. Phylogenetic analysis indicates that the Shanghai FcTTV variants have relatively consistent genomic characteristics, with two variants from Zhejiang 2019 and one variant from the Czech Republic 2010. The recombination event analysis of the variants showed that one variant (OP186141_SH-02) had a primary parental sequence derived from a variant (KM229764) from the Czech Republic in 2010, while the secondary parental sequence was derived from OP186140_SH-01. The results revealed that FcTTV infection is prevalent in domestic cats and that the use of viral metagenomics to rapidly identify some infecting viruses whose hosts lack clinical features would be an effective approach.
Collapse
Affiliation(s)
- Jun Gao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Chengqian Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jianzhong Yi
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Hong Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| |
Collapse
|
6
|
Hawko S, Burrai GP, Polinas M, Angioi PP, Dei Giudici S, Oggiano A, Alberti A, Hosri C, Antuofermo E. A Review on Pathological and Diagnostic Aspects of Emerging Viruses—Senecavirus A, Torque teno sus virus and Linda Virus—In Swine. Vet Sci 2022; 9:vetsci9090495. [PMID: 36136710 PMCID: PMC9502770 DOI: 10.3390/vetsci9090495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Worldwide demand for food is expected to increase due to population growth and swine accounts for more than one-third of meat produced worldwide. Several factors affect the success of livestock production systems, including animal disease control. Despite the importance of infectious diseases to animal health and the productivity of the global swine industry, pathogens of swine, in particular emerging viruses, such as Senecavirus A, Torque teno sus virus, and Linda virus, have gained limited interest. We performed a systematic analysis of the literature, with a focus on the main macroscopical and histological findings related to those viruses to fill the gap and highpoint these potentially hazardous pathogens. Abstract Swine production represents a significant component in agricultural economies as it occupies over 30% of global meat demand. Infectious diseases could constrain the swine health and productivity of the global swine industry. In particular, emerging swine viral diseases are omnipresent in swine populations, but the limited knowledge of the pathogenesis and the scarce information related to associated lesions restrict the development of data-based control strategies aimed to reduce the potentially great impact on the swine industry. In this paper, we reviewed and summarized the main pathological findings related to emerging viruses, such as Senecavirus A, Torque teno sus virus, and Linda virus, suggesting a call for further multidisciplinary studies aimed to fill this lack of knowledge and better clarify the potential role of those viral diseases in swine pathology.
Collapse
Affiliation(s)
- Salwa Hawko
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Giovanni P. Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-079-229440
| | - Marta Polinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Chadi Hosri
- Department of Veterinary Medicine, Faculty of Agronomy and Veterinary Sciences, Lebanese University, Beirut 14/6573, Lebanon
| | | |
Collapse
|
7
|
Spandole-Dinu S, Cimponeriu D, Stoica I, Apircioaie O, Gogianu L, Berca LM, Nica S, Toma M, Nica R. Phylogenetic analysis of torque teno virus in Romania: possible evidence of distinct geographical distribution. Arch Virol 2022; 167:2311-2318. [PMID: 35962263 PMCID: PMC9374574 DOI: 10.1007/s00705-022-05559-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Torque teno virus (TTV) is highly prevalent, but little is known about its circulation in humans. Here, we investigated the geographical distribution and phylogeny of TTV in Romania. A fragment of TTV untranslated region B was sequenced in samples from volunteers across the country. Additional sequences from dialyzed patients were also included in the study. Phylogenetic analysis showed that more than 80% of Romanian sequences clustered with isolates assigned to the species Torque teno virus 1 and Torque teno virus 3 (former genogroup 1), and this analysis discriminated between isolates from the North-East and West regions. Further studies assessing the pathogenic potential of TTV isolates should employ analysis based on genomic regions with phylogenetic resolution below the species level.
Collapse
Affiliation(s)
- Sonia Spandole-Dinu
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania
- Earth, Environmental and Life Sciences Division, The Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Dănuţ Cimponeriu
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania.
| | - Ileana Stoica
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania
| | - Oana Apircioaie
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania
| | - Larisa Gogianu
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania
| | - Lavinia Mariana Berca
- Molecular Biology Laboratory, National R&D Institute for Food Bioresources, Bucharest, Romania
| | - Silvia Nica
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Emergency University Hospital, Bucharest, Romania
| | - Mihai Toma
- Emergency Department, Central Military Emergency Clinical Hospital, Bucharest, Romania
| | - Remus Nica
- Surgery Clinic II, Central Military Emergency Clinical Hospital, Bucharest, Romania
| |
Collapse
|
8
|
First Report of TTSuV1 in Domestic Swiss Pigs. Viruses 2022; 14:v14050870. [PMID: 35632612 PMCID: PMC9146045 DOI: 10.3390/v14050870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022] Open
Abstract
Serum prevalence of Torque teno sus viruses (TTSuV1 and k2; family Anelloviridae) is known to be high in the porcine population worldwide but pathogenesis and associated pathomorphological lesions remain to be elucidated. In this study, quantitative real-time PCR for detection of TTSuV1 was performed in 101 porcine samples of brain tissue, with animals showing inflammatory lesions or no histological changes. Additionally, a pathomorphological and immunohistochemical characterization of possible lesions was carried out. Selected cases were screened by TTSuV1 in situ hybridization. Furthermore, TTSuV1 quantitative real-time PCR in splenic and pulmonary tissue and in situ hybridization (ISH) in spleen, lungs, mesenteric lymph node, heart, kidney, and liver were performed in 22 animals. TTSuV1 was detected by PCR not only in spleen and lung but also in brain tissue (71.3%); however, in general, spleen and lung tissue displayed lower Ct values than the brain. Positive TTSuV1 results were frequently associated with the morphological diagnosis of non-suppurative encephalitis. Single TTSuV1-positive lymphocytes were detected by ISH in the brain but also in lungs, spleen, mesenteric lymph node and in two cases of non-suppurative myocarditis. A pathogenetic role of a TTSuV1 infection as a co-factor for non-suppurative encephalitides cannot be ruled out.
Collapse
|
9
|
Righi F, Arnaboldi S, Filipello V, Ianiro G, Di Bartolo I, Calò S, Bellini S, Trogu T, Lelli D, Bianchi A, Bonardi S, Pavoni E, Bertasi B, Lavazza A. Torque Teno Sus Virus (TTSuV) Prevalence in Wild Fauna of Northern Italy. Microorganisms 2022; 10:microorganisms10020242. [PMID: 35208696 PMCID: PMC8875128 DOI: 10.3390/microorganisms10020242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Torque teno sus virus (TTSuV) is a non-enveloped circular ssDNA virus which frequently infects swine and has been associated with hepatic, respiratory, and autoimmune disorders. TTSuV’s pathogenic role is still uncertain, and clear data in the literature on virus reservoirs are lacking. The aims of this study were to investigate the presence of potentially zoonotic TTSuV in wild animals in Northern Italy and to evaluate their role as reservoirs. Liver samples were collected between 2016 and 2020 during four hunting seasons from wild boars (Sus scrofa), red deer (Cervus elaphus), roe deer (Capreolus capreolus), and chamois (Rupicapra rupicapra). Samples originated from areas in Northern Italy characterized by different traits, i.e., mountains and flatland with, respectively low and high farm density and anthropization. Viral identification was carried out by end-point PCR with specific primers for TTSuV1a and TTSuVk2a species. TTSuV prevalence in wild boars was higher in the mountains than in the flatland (prevalence of 6.2% and 2.3%, respectively). In wild ruminants only TTSuVk2a was detected (with a prevalence of 9.4%). Our findings shed light on the occurrence and distribution of TTSuV in some wild animal species, investigating their possible role as reservoirs.
Collapse
Affiliation(s)
- Francesco Righi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
| | - Sara Arnaboldi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
- Correspondence: ; Tel.: +39-030-229-0781
| | - Virginia Filipello
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
| | - Giovanni Ianiro
- Emerging Zoonoses Unit, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.I.); (I.D.B.)
| | - Ilaria Di Bartolo
- Emerging Zoonoses Unit, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.I.); (I.D.B.)
| | - Stefania Calò
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| | - Silvia Bellini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| | - Tiziana Trogu
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| | - Alessandro Bianchi
- Istituto Zooprofilattico della Lombardia e dell’Emilia Romagna (IZSLER), 23100 Sondrio, Italy;
| | - Silvia Bonardi
- Veterinary Science Department, Università degli Studi di Parma, 43100 Parma, Italy;
| | - Enrico Pavoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
| | - Barbara Bertasi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
- National Reference Centre for Emerging Risks in Food Safety (CRESA), Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 20133 Milan, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy; (F.R.); (V.F.); (S.C.); (S.B.); (T.T.); (D.L.); (E.P.); (B.B.); (A.L.)
| |
Collapse
|
10
|
Viral diversity in oral cavity from Sapajus nigritus by metagenomic analyses. Braz J Microbiol 2020; 51:1941-1951. [PMID: 32780265 DOI: 10.1007/s42770-020-00350-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/25/2020] [Indexed: 01/14/2023] Open
Abstract
Sapajus nigritus are non-human primates which are widespread in South America. They are omnivores and live in troops of up to 40 individuals. The oral cavity is one of the main entry routes for microorganisms, including viruses. Our study proposed the identification of viral sequences from oral swabs collected in a group of capuchin monkeys (n = 5) living in a public park in a fragment of Mata Atlantica in South Brazil. Samples were submitted to nucleic acid extraction and enrichment, which was followed by the construction of libraries. After high-throughput sequencing and contig assembly, we used a pipeline to identify 11 viral families, which are Herpesviridae, Parvoviridae, Papillomaviridae, Polyomaviridae, Caulimoviridae, Iridoviridae, Astroviridae, Poxviridae, and Baculoviridae, in addition to two complete viral genomes of Anelloviridae and Genomoviridae. Some of these viruses were closely related to known viruses, while other fragments are more distantly related, with 50% of identity or less to the currently available virus sequences in databases. In addition to host-related viruses, insect and small vertebrate-related viruses were also found, as well as plant-related viruses, bringing insights about their diet. In conclusion, this viral metagenomic analysis reveals, for the first time, the profile of viruses in the oral cavity of wild, free ranging capuchin monkeys.
Collapse
|
11
|
Furukawa A, Mitarai S, Takagi M, Yoshida Y, Ozawa M, Taneno A, Deguchi E. Nationwide prevalence of Torque teno sus virus 1 and k2a in pig populations in Japan. Microbiol Immunol 2020; 64:387-391. [PMID: 32009246 DOI: 10.1111/1348-0421.12779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/18/2020] [Accepted: 01/28/2020] [Indexed: 11/28/2022]
Abstract
Because broad genetic diversity has recently been detected in Torque teno sus viruses (TTSuV1 and TTSuVk2), the viral genome detection method needs to be improved to understand the prevalence of these viruses. Here, we established single PCR-based detection methods for the TTSuV1 and TTSuVk2a genomes with newly designed primer pairs and applied them to investigate the prevalence of TTSuV1 and TTSuVk2a in Japanese pig populations. The results revealed that 98.2% and 81.7% of the pig farms tested positive for the TTSuV1 and TTSuVk2a genomes, respectively, indicating that both TTSuV1 and TTSuVk2a are widespread in Japan.
Collapse
Affiliation(s)
- Ayaka Furukawa
- Laboratory of Farm Animal Production Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Sumire Mitarai
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Mitsuhiro Takagi
- Laboratory of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Yuuhei Yoshida
- Matsuoka Research Institute for Science, Koganei, Tokyo, Japan
| | - Makoto Ozawa
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Transboundary Animal Diseases Control and Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | | | - Eisaburo Deguchi
- Laboratory of Farm Animal Production Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Transboundary Animal Diseases Control and Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
12
|
Sarairah H, Bdour S, Gharaibeh W. The Molecular Epidemiology and Phylogeny of Torque Teno Virus (TTV) in Jordan. Viruses 2020; 12:v12020165. [PMID: 32023916 PMCID: PMC7077251 DOI: 10.3390/v12020165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Torque teno virus (TTV) is the most common component of the human blood virobiota. Little is known, however, about the prevalence of TTV in humans and the most common farm domesticates in Jordan, or the history and modality of TTV transmission across species lines. We therefore tested sera from 396 Jordanians and 171 farm animals for the presence of TTV DNA using nested 5'-UTR-PCR. We then performed phylogenetic, ordination and evolutionary diversity analyses on detected DNA sequences. We detected a very high prevalence of TTV in Jordanians (~96%); much higher than in farm animal domesticates (~29% pooled over species). TTV prevalence in the human participants is not associated with geography, demography or physical attributes. Phylogenetic, ordination and evolutionary diversity analyses indicated that TTV is transmitted readily between humans across the geography of the country and between various species of animal domesticates. However, the majority of animal TTV isolates seem to derive from a single human-to-animal transmission event in the past, and current human-animal transmission in either direction is relatively rare. In conclusion, animal TTV in Jordan is historically derived from human variants; however, ongoing human-animal TTV exchange is minimal and zoonotic infection seems to be of limited importance.
Collapse
Affiliation(s)
- Haneen Sarairah
- Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Salwa Bdour
- Department of the Clinical Laboratory Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan
- Correspondence: (S.B.); (W.G.); Tel.: +962-6-5355000 (ext. 22233) (S.B.); +962-6-5355000 (ext. 22205) (W.G.)
| | - Waleed Gharaibeh
- Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan
- Correspondence: (S.B.); (W.G.); Tel.: +962-6-5355000 (ext. 22233) (S.B.); +962-6-5355000 (ext. 22205) (W.G.)
| |
Collapse
|
13
|
Subramanyam V, Hemadri D, Kashyap SP, Hiremath J, Barman NN, Ralte EL, Patil SS, Suresh KP, Rahaman H. Detection of torque teno sus virus infection in Indian pigs. Vet World 2019; 12:1467-1471. [PMID: 31749583 PMCID: PMC6813605 DOI: 10.14202/vetworld.2019.1467-1471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background and Aim: Torque teno viruses (TTVs) are circular, single-stranded DNA viruses, which infect a wide range of animals including livestock and companion animals. Swine TTVs (torque teno sus viruses [TTSuVs]) are thought to act as a primary or coinfecting pathogen in pathological conditions such as porcine dermatitis and nephropathy syndrome and post-weaning multisystemic wasting syndrome. So far, the presence of the virus has not been reported in India. Considering that TTSuVs have the potential to cross the species barrier into humans and that pork consumption is common in North-Eastern states of India, the current study aims to investigate the presence of TTSuV in the Indian pig population. Materials and Methods: A total of 416 samples were collected during 2014-2018, from both apparently healthy pigs and also from pigs suspected of having died from classical swine fever and/or porcine reproductive and respiratory syndrome. These samples were screened for TTSuV infection by polymerase chain reaction (PCR) and DNA sequencing techniques. Results: The presence of the virus was confirmed in 110 samples from 12 different states of India. Phylogenetic analysis of the nucleotide sequences obtained from the PCR products indicated the presence of viruses of both Iotatorquevirus and Kappatorquevirus genera in India. Conclusion: The study is the first report on the presence of TTSuVs in India and highlights the circulation of both genera of the virus in the country.
Collapse
Affiliation(s)
- Vinutha Subramanyam
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India.,Department of Microbiology and Biotechnology, Jain University, Bengaluru, Karnataka, India
| | - Divakar Hemadri
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India
| | - Shashidhara Phani Kashyap
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India.,Department of Microbiology and Biotechnology, Jain University, Bengaluru, Karnataka, India
| | - Jagadish Hiremath
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India
| | - Nagendra Nath Barman
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agriculture University, Guwahati, Assam, India
| | - Esther Lalzoliani Ralte
- State Disease Investigation Laboratory, Directorate of Animal Husbandry and Veterinary, Aizawl, Mizoram, India
| | - Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India
| | - Kuralayanapalya P Suresh
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India
| | - Habibur Rahaman
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, India.,Regional Representative for South Asia, International Livestock Research Institute, New Delhi, India
| |
Collapse
|
14
|
Kinetics of Torque Teno Virus-DNA Plasma Load Predict Rejection in Lung Transplant Recipients. Transplantation 2019; 103:815-822. [PMID: 30234787 DOI: 10.1097/tp.0000000000002436] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lung transplantation is the only therapeutic option in end-stage lung diseases; however, survival after transplantation is limited by acute and chronic rejection or infectious events being results of inappropriate immunosuppression. Torque Teno Viruses (TTVs) are ubiquitous DNA viruses in humans but not found to be causative for any disease. However, some reports suggest that TTV-DNA levels reflect the grade of immunosuppression with higher levels being found in more immunosuppressed individuals. METHODS We investigated the TTV-DNA levels in 34 lung transplant recipients within their first year after transplantation by quantitative real-time polymerase chain reaction. Clinical data were extracted from charts. RESULTS In accordance with previous results TTV-DNA levels increase after lung transplantation reaching a steady state after 3 months. The TTV-DNA levels were not correlated with immunosuppressive trough levels and a selective increase was not observed with other DNA viruses. In steady state TTV-DNA levels were significantly higher in patients with infectious complications compared to the group of patients without. Additionally, TTV-DNA levels decreased significantly before biopsy-proven rejection. Sensitivity of a 10-fold decrease in TTV-DNA levels for a subsequent rejection episode was 0.74 with a specificity of 0.99. CONCLUSIONS In summary, TTV-DNA might be used as an additional tool to monitor immunosuppression in lung transplant recipients. Higher TTV-DNA levels reflect more intense immunosuppression, whereas the TTV-DNA kinetic (ie, decrease of TTV-DNA levels) indicate rejection.
Collapse
|
15
|
Complete Genome Sequence of a Rodent Torque Teno Virus in Hainan Island, China. Microbiol Resour Announc 2018; 7:MRA01074-18. [PMID: 30533797 PMCID: PMC6256484 DOI: 10.1128/mra.01074-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/17/2018] [Indexed: 11/20/2022] Open
Abstract
Torque teno virus (TTV) has been reported in a wide range of mammals. In this study, we sequenced and analyzed the complete genome of a genetic variant of a rodent TTV, RoTTV3-HMU1 (Hainan Medical University 1). The virus was found in a rat (Rattus norvegicus) in a residential area of Hainan Island, China.
Collapse
|
16
|
Nishizawa T, Sugimoto Y, Takeda T, Kodera Y, Hatano Y, Takahashi M, Okamoto H. Identification and whole genome characterization of novel anelloviruses in masked palm civets (Paguma larvata): Segregation into four distinct clades. Virus Res 2018; 256:183-191. [PMID: 30149046 DOI: 10.1016/j.virusres.2018.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
The members of the family Anelloviridae are small and single-stranded DNA viruses with marked diversity in sequence and length, which ubiquitously infect many vertebrates, including mammals, birds and reptiles. The anelloviruses isolated from mammals are currently classified into 11 assigned and four proposed genera; some anelloviruses remain unassigned. The present study was conducted to identify anelloviruses in wild-caught masked palm civets (Paguma larvata) in Japan using a rolling-circle amplification method. Thirteen novel anellovirus strains were identified from 8 of 10 masked palm civets and their entire genomic sequences (2039-2535 nucleotides) were determined; they were classifiable into four distinct clades. Comparative analyses of all reported anelloviruses for which the entire or near-entire genomic sequences have been determined, including the 13 strains obtained in the present study, revealed that anelloviruses can provisionally be classified into 20 clades, which may correspond to 20 genera (including 11 assigned and four proposed genera) by a >70% amino acid sequence difference in open reading frame 1 (ORF1). This study suggested that novel anelloviruses of marked diversity are circulating in animals worldwide, and that the rolling-circle amplification method would be useful for identifying novel anelloviruses and other viruses with a circular DNA genome.
Collapse
Affiliation(s)
- Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuji Sugimoto
- Nikko Branch, Tochigi Hunter Association, Nikko, Tochigi, 321-2522, Japan
| | - Tsutomu Takeda
- Center for Weeds and Wildlife Management, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Yuuji Kodera
- Center for Weeds and Wildlife Management, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Yumi Hatano
- Sakakibara Heart Institute Clinic, Shinjuku-ku, Tokyo, 163-0804, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
17
|
Xiong YQ, Mo Y, Chen MJ, Cai W, He WQ, Chen Q. Detection and phylogenetic analysis of torque teno virus (TTV) carried by murine rodents and house shrews in China. Virology 2018; 516:189-195. [PMID: 29407376 DOI: 10.1016/j.virol.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 12/25/2022]
Abstract
Between May 2015 and May 2017, 496 animals (473 murine rodents and 23 house shrews) were captured in six regions of China. A total of 22.8% (113/496) of throat swabs, 29.1% (142/488) of fecal samples and 23.8% (54/227) of serum samples tested positive for rodent torque teno virus 3 (RoTTV3). The positive rate in Rattus norvegicus was higher than the rate in Rattus tanezumi and Rattus losea. Of 23 house shrews, one throat swab and one serum sample were positive for RoTTV3. Ten murine rodents were simultaneously positive for RoTTV3 in throat swab, fecal and serum samples. Phylogenetic analysis showed that the 12 near-full length genomes of RoTTVs sequences obtained in this study represented a novel RoTTV genotype (RoTTV3). In conclusion, high prevalence rates of RoTTV3 were found in three common murine rodents in China, and the RoTTV3 obtained in this study were classified as a novel genotype of RoTTV.
Collapse
Affiliation(s)
- Yi-Quan Xiong
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| | - Yun Mo
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| | - Ming-Ji Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| | - Wei Cai
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| | - Wen-Qiao He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China.
| |
Collapse
|
18
|
Potential for the cross-species transmission of swine torque teno viruses. Vet Microbiol 2018; 215:66-70. [DOI: 10.1016/j.vetmic.2017.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023]
|
19
|
Ng TFF, Dill JA, Camus AC, Delwart E, Van Meir EG. Two new species of betatorqueviruses identified in a human melanoma that metastasized to the brain. Oncotarget 2017; 8:105800-105808. [PMID: 29285293 PMCID: PMC5739680 DOI: 10.18632/oncotarget.22400] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
The role of viral infections in the etiology of brain cancer remains uncertain. Prior studies mostly focused on transcriptome or viral DNA integrated in tumor cells. To investigate for the presence of viral particles, we performed metagenomics sequencing on viral capsid-protected nucleic acids from 12 primary and 8 metastatic human brain tumors. One brain tumor metastasized from a skin melanoma harbored two new human anellovirus species, Torque teno mini virus Emory1 (TTMV Emory1) and Emory2 (TTMV Emory2), while the remaining 19 samples did not reveal any exogenous viral sequences. Their genomes share 63-67% identity with other TTMVs, and phylogenetic clustering supports their classification within the Betatorquevirus genus. This is the first identification of betatorqueviruses in brain tumors. The viral DNA was in its expected non-integrated circular form, and it is unclear if the viruses contributed to tumor formation. Whether the viruses originated from blood, or the primary skin tumor could not be ascertained. Overall, our results demonstrate the usefulness of viral metagenomics to detect previously unknown exogenous virus in human brain tumors. They further suggest that active viral infections are rare events in brain tumors, but support a follow-up larger scale study to quantify their frequency in different brain tumor subtypes.
Collapse
Affiliation(s)
- Terry Fei Fan Ng
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA.,Department of Pathology, University of Georgia, Athens, Georgia, USA.,Current/Present address: DVD, NCIRD, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jennifer A Dill
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | - Alvin C Camus
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA
| | - Erwin G Van Meir
- Departments of Neurosurgery and Hematology & Medical Oncology, Winship Cancer Institute and School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Sun W, Xie C, Liang C, Zheng M, Zhao G, Zhang P, Han J, Jing J, Wen S, Xiao P, Cui Z, Zhang J, Ren J, Liu H, Lu H, Jin N. Molecular detection and genomic characterization of Torque teno canis virus in domestic dogs in Guangxi Province, China. J Biotechnol 2017; 252:50-54. [PMID: 28483442 DOI: 10.1016/j.jbiotec.2017.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
The Torque teno canis virus (TTCaV) is a small virus with circular single-stranded DNA that has been reported to cause infections in dogs. The present study aimed to identify the presence of TTCaV in blood samples obtained from domestic dogs, and examine its diversity and evolution of the genomes. Five strains of TTCaV were detected, and the overall prevalence was found to be 7% (28/400). Phylogenetic analysis showed that the five genomes were closely clustered with the previously known Cf-TTV10 and LDL strains and formed a Thetatorque virus. Homology analysis of the whole genome showed a sequence identity of 94.6%-96.8% among the five genomes. The percent sequence similarity among the five complete genomes ranged from 95.3% to 97.4% and from 95.1% to 97% compared to the Cf-TTV10 and LDL strains respectively. The ORF1-encoded amino acid sequences showed 94.4%-97.2% identity among the five isolates. Our findings suggest that the TTCaV has a large genetic diversity and showed that TTCaV and canine parvovirus (CPV) co-infection exists in China. Further studies on the pathogenicity of TTCaV are required.
Collapse
Affiliation(s)
- Wenchao Sun
- College of Animal Science and Technology, Guangxi University, No.100 East Daxue Road, Nanning, Guangxi 530004, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Changzhan Xie
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Cao Liang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Min Zheng
- Guangxi Center for Animal Disease Control and Prevention, No. 51 North You'ai Road, Nanning, Guangxi 530001, China
| | - Guanyu Zhao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Ping Zhang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Jicheng Han
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Jie Jing
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Shubo Wen
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Pengpeng Xiao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Zhuodong Cui
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Jinyong Zhang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Jingqiang Ren
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Hao Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Huijun Lu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Ningyi Jin
- College of Animal Science and Technology, Guangxi University, No.100 East Daxue Road, Nanning, Guangxi 530004, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
21
|
Hrazdilová K, Slaninková E, Brožová K, Modrý D, Vodička R, Celer V. New species of Torque Teno miniviruses infecting gorillas and chimpanzees. Virology 2015; 487:207-14. [PMID: 26547037 DOI: 10.1016/j.virol.2015.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
Anelloviridae family is comprised of small, non-enveloped viruses of various genome lengths, high sequence diversity, sharing the same genome organization. Infections and co-infections by different genotypes in humans are ubiquitous. Related viruses were described in number of mammalian hosts, but very limited data are available from the closest human relatives - great apes and non-human primates. Here we report the 100% prevalence determined by semi-nested PCR from fecal samples of 16 captive primate species. Only the Mandrillus sphinx, showed the prevalence only 8%. We describe three new species of gorillas׳ and four new species of chimpanzees׳ Betatorqueviruses and their co-infections in one individual. This study is also first report and analysis of nearly full length TTMV genomes infecting gorillas. Our attempts to sequence the complete genomes of anelloviruses from host feces invariably failed. Broader usage of blood /tissue material is necessary to understand the diversity and interspecies transmission of anelloviruses.
Collapse
Affiliation(s)
- Kristýna Hrazdilová
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic; CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic.
| | - Eva Slaninková
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic; Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic
| | - Kristýna Brožová
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic; Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic
| | - David Modrý
- CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic; Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Roman Vodička
- The Prague Zoological Garden, Prague 171 00, Czech Republic
| | - Vladimír Celer
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic; CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno,612 42 Brno, Czech Republic
| |
Collapse
|
22
|
Kazemi MJ, Yaghobi R, Iravani Saadi M, Geramizadeh B, Moayedi J. Association Between TT Virus Infection and Cirrhosis in Liver Transplant Patients. HEPATITIS MONTHLY 2015; 15:e28370. [PMID: 26504468 PMCID: PMC4612723 DOI: 10.5812/hepatmon.28370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/23/2015] [Accepted: 08/19/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cirrhosis is one of the most severe liver complications, with multiple etiologies. The torque teno virus (TTV), also known as transfusion transmitted virus, which has a high incidence in the world population, is one of the possible increasing risk factors in patients with idiopathic fulminant hepatitis and cryptogenic cirrhosis. OBJECTIVES The aim of this study was to evaluate solitary and co-infection with TTV, in patients with cryptogenic and determined cause of cirrhosis. PATIENTS AND METHODS In this cross-sectional study, 200 liver transplant patients were consecutively recruited between years 2007 and 2011. Patients were classified, based on recognition of the etiology of cirrhosis to determined (n = 81) and cryptogenic (n = 119) patient groups. The existence of TTV infection was analyzed, using a semi-nested polymerase chain reaction method. The presence of hepatitis B virus (HBV) infective markers, including HBV DNA, hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), hepatitis B core antibody (HBcAb), and hepatitis B e antibody (HBeAb), was evaluated using qualitative polymerase chain reaction and enzyme linked immunosorbent assay protocols, respectively. RESULTS The TTV infection was found in 37 of 200 (18.5%) and 53 of 200 (26.5%) plasma and tissue samples of studied liver transplanted patients, respectively. The TTV genomic DNA was found in 32 (26.9%) and 28 (23.5%) of 119 liver tissue and plasma samples of transplanted patients with cryptogenic cirrhosis, respectively. The genomic DNA of TTV was also diagnosed in 21 (25.9%) and nine (11.1%) of the 81 liver tissue and plasma samples of patients with determined cirrhosis, respectively. Significant associations were found between TTV infection with HBV molecular and immunologic infective markers, in liver transplanted patients, with determined and cryptogenic cirrhosis. CONCLUSIONS The diagnosis of the high frequency of solitary TTV and co-infection with HBV, in both liver transplanted patients with cryptogenic and determined cirrhosis, emphasized on the importance of TTV infection in the development of cirrhosis, especially in the cases of cryptogenic ones, prompting for further studies the confirm this agent in the etiology of determined cirrhosis.
Collapse
Affiliation(s)
- Mohammad Javad Kazemi
- Department of Biology, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, IR Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mahdiyar Iravani Saadi
- Shiraz Transplant Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Bita Geramizadeh
- Shiraz Transplant Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Javad Moayedi
- Shiraz Transplant Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| |
Collapse
|
23
|
Charest AJ, Plummer JD, Long SC, Carducci A, Verani M, Sidhu JPS. Global occurrence of Torque teno virus in water systems. JOURNAL OF WATER AND HEALTH 2015; 13:777-789. [PMID: 26322763 DOI: 10.2166/wh.2015.254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bacterial indicator organisms are used globally to assess the microbiological safety of waters. However, waterborne viral outbreaks have occurred in drinking water systems despite negative bacterial results. Using viral markers may therefore provide more accurate health risk assessment data. In this study, fecal, wastewater, stormwater, surface water (fresh and salt), groundwater, and drinking water samples were analyzed for the presence or concentration of traditional indicators, innovative indicators and viral markers. Samples were obtained in the United States, Italy, and Australia and results compared to those reported for studies conducted in Asia and South America as well. Indicators included total coliforms, Escherichia coli, enterococci, male-specific coliphages, somatic coliphages and microviradae. Viral markers included adenovirus, polyomavirus, and a potential new surrogate, Torque teno virus (TTV). TTV was more frequently found in wastewaters (38-100%) and waters influenced by waste discharges (25%) than in surface waters used as drinking water sources (5%). TTV was also specific to human rather than animal feces. While TTV numbers were strongly correlated to other viral markers in wastewaters, suggesting its utility as a fecal contamination marker, data limitations and TTV presence in treated drinking waters demonstrates that additional research is needed on this potential viral indicator.
Collapse
Affiliation(s)
- A J Charest
- Department of Civil Engineering, Wentworth Institute of Technology, 550 Huntington Avenue, Boston, MA 02115, USA
| | - J D Plummer
- Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA E-mail:
| | - S C Long
- Department of Soil Science and Wisconsin State Laboratory of Hygiene, 2601 Agricultural Drive, Madison, WI 53718, USA
| | - A Carducci
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - M Verani
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - J P S Sidhu
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland 4102, Australia
| |
Collapse
|
24
|
Wei Y, Chen M, Yang X, Zhang L, Rao L, Yuan F, Wang Y, Gong J, Li L. Molecular characterization of human Torque Teno virus. Biomed Rep 2015; 3:821-826. [PMID: 26623023 DOI: 10.3892/br.2015.508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/29/2015] [Indexed: 01/03/2023] Open
Abstract
The present study analyzed the presence of human Torque Teno virus (TTV) in hospitalized patients from different departments. In total, 378 serum specimens were collected from the patients (171 with cardiovascular disease, 192 with tumor and 15 with gastroenteritis) and analyzed by ELISA and nest-polymerase chain reaction (PCR) to detect the presence of TTV. The results showed that 64 specimens (17%) were TTV positive from detection with the human ELISA kit, and the patients aged <30 years have a higher prevalence. TTV in males was more common than in female patients. In addition, nest-PCR was used to detect TTV within different phylogenetic groups among the 64 specimens, and the results showed that groups 1 (TA278 strain), 4 (KC009) and 5 (CT39) were much more prevalent than groups 2 (PMV isolate) and 3 (11 genotypes) in the different departmental patients.
Collapse
Affiliation(s)
- Youping Wei
- Nanchang Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Minyang Chen
- Nanchang Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Xia Yang
- Nanchang Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Liming Zhang
- Nanchang Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Lihua Rao
- Nanchang Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Feifang Yuan
- Nanchang Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Yangqin Wang
- Nanchang Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Jing Gong
- Nanchang Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Lianping Li
- Nanchang Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, Jiangxi 330003, P.R. China
| |
Collapse
|
25
|
Li Z, Qiao J, He Y, Chen Y, Wang G. Analysis of TTSuV1b antibody in porcine serum and its correlation with four antibodies against common viral infectious diseases. Virol J 2015; 12:125. [PMID: 26260234 PMCID: PMC4531394 DOI: 10.1186/s12985-015-0349-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/24/2015] [Indexed: 12/01/2022] Open
Abstract
Background The purpose of the present study was to evaluate the correlation between Torque teno sus virus 1b (TTSuV1b) infection and other viral infections or vaccine immunization in conventional pigs. Methods With overexpressed and purified viral protein TTSuV1b as antigen, an indirect enzyme-linked immunosorbent assay (ELISA) method for detecting TTSuV1b antibody was established, which demonstrated great specificity and reproducibility. Porcine serum samples (n = 212) were tested using ELISA. Meanwhile, the antibodies against Classical Swine Fever Virus (CSFV), Pseudorabies Virus (PRV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), and Porcine Circovirus 2 (PCV2) were also examined using the commercial kits. Results Statistical analysis indicated that the level of anti-TTSuV1b antibody was positively correlated with the level of anti-PCV2 antibody in a lesser extent; the level of antibodies against TTSuV1b or PCV2 were significantly lower in porcine serum with low level of TTSuV1b virus, implicating the potential consistency and synchronization in the mechanism of TTSuV1b and PCV2 infection. Whereas, antibodies against PRRSV or CSFV showed no statistical significance on comparison with anti-TTSuV1b antibody, implicating that in conventional pigs, the antibody level for PRRSV and CSFV were not significantly influenced by TTSuV1b infection. Conclusion In conclusion, examination of anti-TTSuV1b antibody in porcine serum with the presently established ELISA method would serve as a supplementary approach for etiological investigation, and the combined statistical analysis of the antibodies against four other viruses might help to further understand the TTSuV1b infection as well as its pathogenicity.
Collapse
Affiliation(s)
- Zhongsheng Li
- Department of veterinary research, Guangdong Haid Institute of Animal Husbandry and Veterinary, Panyu District, Fuping Road, Guangzhou, 511440, China.
| | - Jingxin Qiao
- Department of veterinary research, Guangdong Haid Institute of Animal Husbandry and Veterinary, Panyu District, Fuping Road, Guangzhou, 511440, China.
| | - Yonglong He
- Department of veterinary research, Guangdong Haid Institute of Animal Husbandry and Veterinary, Panyu District, Fuping Road, Guangzhou, 511440, China.
| | - Yiwen Chen
- Department of veterinary research, Guangdong Haid Institute of Animal Husbandry and Veterinary, Panyu District, Fuping Road, Guangzhou, 511440, China.
| | - Guiping Wang
- Department of veterinary research, Guangdong Haid Institute of Animal Husbandry and Veterinary, Panyu District, Fuping Road, Guangzhou, 511440, China.
| |
Collapse
|
26
|
Teixeira TF, Cibulski SP, dos Santos HF, Wendlant A, de Sales Lima FE, Schmidt C, Franco AC, Roehe PM. Torque teno sus virus 1 (TTSuV1) and 2 (TTSuV2) viral loads in serum of postweaning multisystemic wasting syndrome (PMWS)-affected and healthy pigs in Brazil. Res Vet Sci 2015; 101:38-41. [DOI: 10.1016/j.rvsc.2015.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/21/2015] [Accepted: 05/30/2015] [Indexed: 10/23/2022]
|
27
|
Takemoto AY, Okubo P, Saito PK, Yamakawa RH, Watanabe MAE, Veríssimo da Silva Junior W, Borelli SD, Bedendo J. Torque teno virus among dialysis and renal-transplant patients. Braz J Microbiol 2015. [PMID: 26221122 PMCID: PMC4512073 DOI: 10.1590/s1517-838246120131195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Patients who undergo dialysis treatment or a renal transplant have a high risk of blood-borne viral infections, including the Torque teno virus (TTV). This study identified the presence of TTV and its genome groups in blood samples from 118 patients in dialysis and 50 renal-transplant recipients. The research was conducted in a hospital in the city of Maringá, state of Paraná. The viral DNA, obtained from whole blood, was identified by using two nested Polymerase Chain Reactions (PCR). The frequencies of TTV were 17% and 36% in dialysis patients using the methodology proposed by Nishizawa et al . (1997) and Devalle and Niel (2004) , respectively, and 10% and 54% among renal-transplant patients. There was no statistically significant association between the frequency of the pathogen and the variables: gender, time in dialysis, time since transplant, blood transfusions, and the concomitant presence of hepatitis B, for either the dialysis patients or the renal-transplant recipients. Among dialysis patients and renal-transplant recipients, genogroup 5 was predominant (48% and 66% respectively), followed by genogroup 4 (37% and 48%) and genogroup 1 (23% and 25%). Genogroup 2 was present in both groups of patients. Some patients had several genogroups, but 46% of the dialysis patients and 51% of the renal-transplant recipients had only a single genogroup. This study showed a high prevalence of TTV in dialysis patients and renal-transplant recipients.
Collapse
Affiliation(s)
| | - Patrícia Okubo
- Departamento de Enfermagem, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Patricia Keiko Saito
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Roger Haruki Yamakawa
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | | | | | - João Bedendo
- Departamento de Enfermagem, Universidade Estadual de Maringá, Maringá, PR, Brazil
| |
Collapse
|
28
|
Jarošová V, Hrazdilová K, Filipejová Z, Schánilec P, Celer V. Whole genome sequencing and phylogenetic analysis of feline anelloviruses. INFECTION GENETICS AND EVOLUTION 2015; 32:130-4. [PMID: 25724090 DOI: 10.1016/j.meegid.2015.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Torque teno felis virus (FcTTV) was detected in the cat population in the Czech Republic. A total of 110 serum samples were tested by a nested PCR technique using specific primers, situated in the highly conserved untranslated region of the virus genome. The frequency of feline TT virus in the Czech Republic was found to be 33.63%. Sequencing of PCR product from several virus strains showed that all of them are closely related and belong to the same virus species. Whole genome sequencing of three strains was performed to compare overall genetic heterogeneity of feline TT viruses. One of these three strains showed more that 10% difference at the nucleotide level. Furthermore we didn't find any correlation between FcTTV infection and sex or health status of examined animals.
Collapse
Affiliation(s)
- Veronika Jarošová
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic; CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Kristýna Hrazdilová
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic; CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Zita Filipejová
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Pavel Schánilec
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Vladimír Celer
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic; CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic.
| |
Collapse
|
29
|
Human anelloviruses: an update of molecular, epidemiological and clinical aspects. Arch Virol 2015; 160:893-908. [PMID: 25680568 DOI: 10.1007/s00705-015-2363-9] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 02/03/2015] [Indexed: 12/14/2022]
Abstract
Human torque teno viruses (TTVs) are new, emerging infectious agents, recently assigned to the family Anelloviridae. The first representative of the genus, torque teno virus (TTV), was discovered in 1997, followed by torque teno mini virus (TTMV) in 2000, and torque teno midi virus (TTMDV) in 2007. These viruses are characterized by an extremely high prevalence, with relatively uniform distribution worldwide and a high level of genomic heterogeneity, as well as an apparent pan-tropism at the host level. Although these viruses have a very high prevalence in the general population across the globe, neither their interaction with their hosts nor their direct involvement in the etiology of specific diseases are fully understood. Since their discovery, human anelloviruses, and especially TTV, have been suggested to be associated with various diseases, such as hepatitis, respiratory diseases, cancer, hematological and autoimmune disorders, with few arguments for their direct involvement. Recent studies have started to reveal interactions between TTVs and the host's immune system, leading to new hypotheses for potential pathological mechanisms of these viruses. In this review article, we discuss the most important aspects and current status of human TTVs in order to guide future studies.
Collapse
|
30
|
Zhang Z, Wang Y, Dai W, Dai D. Detection and distribution of torque teno sus virus 1 in porcine reproductive and respiratory syndrome virus positive/negative pigs. Vet Microbiol 2014; 172:367-70. [DOI: 10.1016/j.vetmic.2014.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 11/17/2022]
|
31
|
Fluoroplast-polyaniline-coated adsorbent for one-step isolation of DNA for PCR detection of viral hepatitides (HBV and TTV). Bioanalysis 2014; 6:957-66. [PMID: 24806904 DOI: 10.4155/bio.13.332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIMS To demonstrate the effectiveness of application of the adsorbent successively modified with nano-layers of fluoroplast and polyaniline for one-step isolation of DNA of hepatitis B virus and transfusion-transmitted virus from human serum. MATERIALS & METHODS The technique is based on the application of the spin-cartridges containing porous adsorbent for one-step viral DNA isolation from serum followed by polymerase chain reaction. RESULTS The developed adsorbent was shown to be effective for one-step isolation of viral DNA from serum samples for polymerase chain reaction diagnostics. CONCLUSION The effectiveness of the developed adsorbent application for isolation of viral DNA from serum for polymerase chain reaction diagnostics was confirmed in comparison with standard methods. Thus, the facile sample preparation method of viral DNA isolation was elaborated.
Collapse
|
32
|
Leblanc D, Houde A, Gagné MJ, Plante D, Bellon-Gagnon P, Jones TH, Muehlhauser V, Wilhelm B, Avery B, Janecko N, Brassard J. Presence, viral load and characterization of Torque teno sus viruses in liver and pork chop samples at retail. Int J Food Microbiol 2014; 178:60-4. [DOI: 10.1016/j.ijfoodmicro.2014.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 02/24/2014] [Accepted: 03/03/2014] [Indexed: 11/15/2022]
|
33
|
Detection of porcine anelloviruses in pork meat and human faeces. Virus Res 2013; 178:522-4. [PMID: 24091365 DOI: 10.1016/j.virusres.2013.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/22/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022]
Abstract
Torque teno viruses (TTV) are icosahedral, single-stranded circular DNA viruses infecting several vertebrate species. Currently, these viruses are considered non-pathogenic although they are suggested to be co-factors in several diseases. Recently single-stranded circular DNA viruses have been found in human faeces. Considering the consumption of pork meat products and the ubiquitous nature of swine TTV (Torque tenosus virus, TTSuV), the human population is frequently exposed to these viruses. To determine if TTSuVs could be delivered through food, human faecal samples were analysed for their presence. Indeed, the results of this study show that up to 25% of faecal samples were positive for known TTSuVs by PCR and sequencing. Additionally, all commercially available pork products purchased in Spanish supermarkets contained DNA of TTSuV.
Collapse
|
34
|
Phylogeny, spatio-temporal phylodynamics and evolutionary scenario of Torque teno sus virus 1 (TTSuV1) and 2 (TTSuV2) in wild boars: Fast dispersal and high genetic diversity. Vet Microbiol 2013; 166:200-13. [DOI: 10.1016/j.vetmic.2013.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/29/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023]
|
35
|
Huang J, Li Y, Liu M, Xia Y, Li Z. A Novel Subgenotype of Torque teno Virus 1 (TTSuV1) in Slaughter Pigs in China. FOOD AND ENVIRONMENTAL VIROLOGY 2013; 5:226-230. [PMID: 23990369 DOI: 10.1007/s12560-013-9126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/21/2013] [Indexed: 06/02/2023]
Abstract
TTsuV1 can cause persistent infection and unidentified clinical signs in pigs. In this study, a survey of TTsuV1 prevalence was conducted in slaughter pigs from Henan, Liaoning, and Shandong provinces in China. A total of 180 swine lymphoid tissues were assayed by PCR with primers targeting the conserved 5'-untranslated region (5'-UTR). The results showed that a 17.8 % positive rate, and different genotypes were detected. TTSuV1 presented higher viral load and prevalence in inguinal lymph node than in submandibular lymph node samples. All TTsuV1 isolates have 84-100 % nucleotide sequence homology in the 5'-UTR region and can be grouped into three subgenotypes (TTsuV1a-1, TTsuV1a-2, and TTsuV1b). Notably, the novel genetic subtype TTsuV1b was first reported in slaughter pigs.
Collapse
Affiliation(s)
- Jinhai Huang
- School of Chemical Engineering &Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China,
| | | | | | | | | |
Collapse
|
36
|
Pujol FH, Mejías E, Loureiro CL, Ludert JE, Liprandi F, Pernalete JM. Infection with transfusion-transmitted virus (TTV) in humans and other primates in Venezuela. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2013; 99:173-80. [PMID: 15814036 DOI: 10.1179/136485905x24193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Tranfusion-transmitted virus (TTV), a single-stranded circular DNA virus that chronically infects humans and other animals, displays a high degree of genetic diversity and was originally thought to be associated with hepatitis. The prevalences of TTV infection among different populations of humans and non-human primates from Venezuela have now been evaluated, using serum samples and three different detection tests. All three tests were PCR-based, one involving a hemi-nested PCR and primers based on the N22 open-reading-frame-1 region (N22-PCR), another employing 55 cycles with primers from the more conserved untranslated region (UTR-PCR), and the other using a hemi-nested PCR with primers from the same region (HUTR-PCR). The overall prevalences of human infection appeared much higher with the HUTR-PCR (52%) than with the N22-PCR (13%) or the UTR-PCR (5%). When the products amplified by N22-PCR from 28 human isolates of TTV were sequenced, only two genotypes of the virus were detected. The non-human sera tested came from primates kept in a zoo in north-western Venezuela. TTV DNA was detected, by HUTR-PCR, in both of the chimpanzee sera tested but not in any of the sera from the 11 New-World primates or the other 12 Old-World primates that were investigated. The results, particularly those of the HUTR-PCR, indicate that TTV infection is common in Venezuela, especially in populations, such as many Amerindian groups, who live under poor sanitary conditions. Although TTV infection may be relatively rare among non-human primates from the New World, this will have to be investigated further, using many more samples collected throughout the Americas.
Collapse
Affiliation(s)
- F H Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela.
| | | | | | | | | | | |
Collapse
|
37
|
Leme RDA, Alfieri AF, Alfieri AA. Torque teno sus virus (TTSuV) infection at different stages of pig production cycle. PESQUISA VETERINARIA BRASILEIRA 2013. [DOI: 10.1590/s0100-736x2013000700002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Torque teno sus virus (TTSuV) infection is present in pig herds worldwide. It has been demonstrated that TTSuV might increase the severity of other important viral diseases with economic and public health impacts. At present, there is no information on the age distribution of pigs infected with TTSuV in Brazilian herds. This study evaluated the frequency of TTSuV infection in pigs at different stages of production. Fecal samples (n=190) from pigs at 1 to 24 weeks of age and from breeders at 6 farrow-to-weaning (up to 8 weeks of age) and 9 grower-to-finish (9 weeks of age onwards) farms in the western region of Paraná state, Brazil, were evaluated by PCR. Fragments of the 5' UTRs of TTSuV1 and/or TTSuVk2 DNAs were identified in 126 (66.3%) of the fecal samples. Significant differences were found with the percentages of positive samples for TTSuV1, TTSuVk2, and mixed infections by both genera between and within the different pig production stages. Fecal samples from the grower-to-finish farms had TTSuV detection rates (90.1%; 64/71) that were significantly (p<0.05) higher than those from the farrow-to-weaning farms (52.1%; 62/119). TTSuV detection was significantly (p<0.05) more frequent in finisher pigs than in the animals from the other stages. The UTR nucleotide sequences in this study presented higher similarities to strains from Norway (96%, TTSuV1), and Argentina and China (97.1%, TTSuVk2). These results suggest that TTSuV infection has spread to pigs of all production stages and that the viral infection rate increases with the age of the animals. In the western region of Paraná state, Brazil, TTSuV1 and TTSuVk2-induced infections were more frequently observed in suckling piglets and finisher pigs, respectively. Phylogenetic analysis pointed out the possibility of different strains of TTSuV1 and TTSuVk2 circulating in pig herds of Brazil.
Collapse
|
38
|
Torque teno sus virus (TTSuV) in tissues of pigs and its relation with the occurrence of postweaning multisystemic wasting syndrome. Virus Genes 2013; 47:276-81. [DOI: 10.1007/s11262-013-0940-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/11/2013] [Indexed: 11/25/2022]
|
39
|
Liu J, Guo L, Zhang L, Wei Y, Huang L, Wu H, Liu C. Three new emerging subgroups of Torque teno sus viruses (TTSuVs) and co-infection of TTSuVs with porcine circovirus type 2 in China. Virol J 2013; 10:189. [PMID: 23758726 PMCID: PMC3691836 DOI: 10.1186/1743-422x-10-189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 06/04/2013] [Indexed: 12/23/2022] Open
Abstract
Background Torque teno sus viruses (TTSuVs) are non-enveloped viruses and have single-stranded, negative sense circular DNA genomes and are widely distributed in pigs. But till now, the prevalence of TTSuVs with porcine circovirus type 2 (PCV2) in pig herds of China is not very clear; and the genetic variation among different TTSuVs isolate is very large and need to divide the subgroups. In this study, the co-infection with TTSuVs and porcine circovrius (PCV) in the pig population of China was investigated and the subgroups of all TTSuVs genomes in Genbank were divided. Results Results showed that the rate of co-infection with TTSuV1 and TTSuV2 reached 75% in PCV2-positive samples. Also Two TTSuV1 and four TTSuV2 isolates genome sequences were obtained, and the similarity of all TTSuV1 and TTSuV2 genomic sequences in GenBank were compared. Phylogenetic trees indicated that both the TTSuV1 and TTSuV2 sequences could be divided into four genotypes. Interestingly, the sub-genotypes TTSuV1d, TTSuV2c and TTSuV2d exist only in the pig population of China. Conclusions This study demonstrates that co-infection with TTSuVs and PCVs is very common in the pig population of China, in which the viruses maybe contribute to clinical diseases cooperatively. In addition, three new subgroups of TTSuVs emerged in China for the first time and a high level of variation among different isolates of TTSuV1 and TTSuV2 was indicated by their genetic diversity.
Collapse
Affiliation(s)
- Jianbo Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Jarosova V, Celer V. Preliminary epitope mapping of Torque teno sus virus 1 and 2 putative capsid protein and serological detection of infection in pigs. J Gen Virol 2013; 94:1351-1356. [DOI: 10.1099/vir.0.050500-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this work is to identify antigenic regions within the ORF1 protein of Torque teno sus virus 1 (TTSuV1) and Torque teno virus sus 2 (TTSuV2) that could be used as antigens to detect virus-specific antibodies following infection in pigs. Protein sequences of TTSuV ORF1 genes were analysed to predict linear antigenic epitopes. Synthesized peptides were analysed for serological reactivity with swine sera. Such an antigenic region was identified at the C terminus of the ORF1 protein of both viruses and showed serological reactivity with 78 % (TTSuV1) and 88 % (TTSuV2) of swine sera. An ELISA with an immunodominant peptide as antigen was used to examine the sera of piglets, aged 4–20 weeks, and adults. Results indicated that TTSuV1- and TTSuV2-specific antibodies were detectable at 4 weeks. Antibody titres increased from week 10 and peaked at week 20. A relatively high antibody titre persisted to adulthood.
Collapse
Affiliation(s)
- Veronika Jarosova
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Vladimír Celer
- CEITEC – Central European Institute of Technology, Veterinary and Pharmaceutical University, Brno, Czech Republic
- Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| |
Collapse
|
41
|
Mei M, Zhu L, Xu Z, Zhao L, Zhou Y, Wu Y, Li S, Wei H, Guo W. Molecular investigation of Torque teno sus virus in geographically distinct porcine breeding herds of Sichuan, China. Virol J 2013; 10:161. [PMID: 23705989 PMCID: PMC3679838 DOI: 10.1186/1743-422x-10-161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/18/2013] [Indexed: 01/10/2023] Open
Abstract
Background Torque teno sus virus (TTSuV), infecting domestic swine and wild boar, is a non-enveloped virus with a circular, single-stranded DNA genome. which has been classified into the genera Iotatorquevirus (TTSuV1) and Kappatorquevirus (TTSuV2) of the family Anelloviridae. A molecular study was conducted to detect evidence of a phylogenic relationship between these two porcine TTSuV genogroups from the sera of 244 infected pigs located in 21 subordinate prefectures and/or cities of Sichuan. Results Both genogroups of TTSuV were detected in pig sera collected from all 21 regions examined. Of the 244 samples, virus from either genogroup was detected in 203 (83.2%), while 44 animals (18.0%) were co-infected with viruses of both genogroups. Moreover, TTSuV2 (186/244, 76.2%) was more prevalent than TTSuV1 (61/244, 25%). There was statistically significant difference between the prevalence of genogroups 1 infection alone (9.4%, 23/244) and 2 alone (64.8%, 158/244), and between the prevalence of genogroups 2 (76.2%, 186/244) and both genogroups co-infection (18.0%, 44/244). The untranslated region of the swine TTSuV genome was found to be an adequate molecular marker of the virus for detection and surveillance. Phylogenetic analysis indicated that both genogroups 1 and 2 could be further divided into two subtypes, subtype a and b. TTSuV1 subtype b and the two TTSuV2 subtypes are more prevalent in Sichuan Province. Conclusions Our study presents detailed geographical evidence of TTSuV infection in China.
Collapse
Affiliation(s)
- Miao Mei
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Molecular detection and genomic characterization of Torque teno sus virus 1 and 2 from domestic pigs in central China. Virus Genes 2013; 46:479-86. [PMID: 23468229 DOI: 10.1007/s11262-013-0897-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
In the present study, Torque teno sus viruses (TTSuVs) were detected in tissue and blood samples obtained from domestic pigs in central China, and complete genomes of TTSuVs were characterized. A total of three tissue samples (3/20, 15 %) from post-weaning multisystemic wasting syndrome-affected pigs and 30 blood samples (30/40, 75 %) from healthy pigs were positive for Torque teno sus virus 1 (TTSuV1) and/or 2 (TTSuV2). Two TTSuV strains (TTV1Hn54 and TTV2Hn93) comprising 2,794 and 2,875 nucleotides, respectively, each had four open reading frames (ORFs) and the untranslated region with TATA box and GC-rich region. Genomic sequence of TTV2Hn93 strain was unique in length compared with other TTSuV2 genomic sequences. Interestingly, three rolling-circle replication (RCR) motif-IIIs (YXXK) which were located at amino acid (aa) position 166-169, 328-331, and 379-382, respectively, were found in the ORF1 of TTV1Hn54. Two RCR motif-IIIs (YXXK) at the aa position 105-108 and 480-483 respectively, were also identified in the ORF1 of TTV2Hn93. Phylogenetic tree based on complete genomes showed that TTV1Hn54 strain was designated into type TTSuV1b and had a slight high sequence identity of 91 % with the Canada strain (JQ120664). TTV2Hn93 strain was classified into subtype TTSuV2d and shared the highest identity (97 %) with the Spain strain (GU570207).
Collapse
|
43
|
Zhai SL, Long JX, Wei WK, Chen QL, Luo ML, Lv DH, Wu DC, Gao F, Yuan SS, Tong GZ, Wei ZZ. High prevalence of torque teno sus virus in China and genetic diversity of the 5’ non-coding region. Arch Virol 2013; 158:1567-73. [DOI: 10.1007/s00705-013-1644-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
|
44
|
Complete genome sequences of highly divergent Torque teno virus type II from swine herds. J Virol 2013; 86:12465. [PMID: 23087122 DOI: 10.1128/jvi.02308-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Through routine and nested PCR amplifications, four complete genome sequences of porcine Torque teno virus (TTV) type II were obtained from swine herds. By comparison with the TTV genome sequences deposited in GenBank, we found the most divergent types so far described. The level of genetic diversity between these genomes is higher than would be expected within a single virus species. A nucleotide and amino acid phylogenetic tree was constructed.
Collapse
|
45
|
Complete genome sequences of highly divergent torque teno virus type I from swine herds. J Virol 2013; 86:11953. [PMID: 23043181 DOI: 10.1128/jvi.02128-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report three complete genome sequences of porcine torque teno virus type I (TTV1) which were obtained from swine tissues and sera from southern China through routine and nested PCR amplification and characterized together with other genome sequences already deposited in GenBank. The results showed that the TTV1 sequences were highly divergent and could be divided into 1a and 1b subtypes.
Collapse
|
46
|
Tshering C, Takagi M, Deguchi E. Detection of Torque teno sus virus 1 and 2 in tissues from stillborn piglets delivered by sows via natural farrowing. J Vet Sci 2012; 13:425-7. [PMID: 23271185 PMCID: PMC3539129 DOI: 10.4142/jvs.2012.13.4.425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We detected Torque teno sus virus1 and 2 (TTSuV1 and TTSuV2) in tissue samples from 18 stillborn piglets using nested polymerase chain reaction. The detection rates of TTSuV1 and TTSuV2 were 78% and 50%, respectively, with 83% of the stillborn piglets positive for TTSuV1 or TTSuV2. TTSuV1 was detected highest in the liver (72%) followed by heart (56%), spleen (38%) and tonsils (38%) while TTSuV2 was detected highest in the tonsils (38%) followed by liver (33%), spleen (25%), and heart (17%). These results indicate that TTSuVs are commonly present but not equally distributed among the tissues of stillborn piglets.
Collapse
Affiliation(s)
- Chenga Tshering
- United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | |
Collapse
|
47
|
Abstract
Circoviruses are small, non-enveloped, icosahedral viruses that are unique among animal viruses in having circular, single-stranded DNA genomes. Their genomes are also the smallest possessed by animal viruses. The circovirus family currently comprises three members, chicken anaemia virus, porcine circovirus, and psittacine beak and feather disease virus, with pigeon circovirus being classified as a tentative member. Infections with each of the four circoviruses are associated with potentially fatal diseases in which virus-induced damage to lymphoid tissue and immunosuppression are common features. Experience with other animal virus families suggests that additional animal species will be infected by, as yet undiscovered, circoviruses and that these may display similar tissue tropism and disease-causing potential. Recent reports describing the association of circovirus-like viruses with immunodeficiency-related diseases of geese and southern black-backed gulls suggest that circovirus infections of avian species may be more common than previously recognized, and prompt the question of whether novel circoviruses infect poultry to cause clinical and/or subclinical diseases that may be economically important. This review has three purposes. First, it is designed to summarize the currently available information about the classified circoviruses and viruses that are regarded as circovirus-like. Second, it aims to alert the readership to the possibility that other avian species, including commercial poultry, may be infected with novel circoviruses. Finally, possible methods for discovering novel circoviruses and for controlling infections by such viruses are suggested.
Collapse
Affiliation(s)
- D Todd
- Veterinary Sciences Division, Department of Agriculture and Rural Development for Northern Ireland, Stoney Road, Stormont, Belfast BT4 3SD, UK
| |
Collapse
|
48
|
Zhang Z, Dai W, Wang Y, Lu C, Fan H. Analysis of synonymous codon usage patterns in torque teno sus virus 1 (TTSuV1). Arch Virol 2012; 158:145-54. [PMID: 23011310 PMCID: PMC7086873 DOI: 10.1007/s00705-012-1480-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/07/2012] [Indexed: 11/14/2022]
Abstract
Torque teno sus virus 1 (TTSuV1) is a novel virus that has been found widely distributed in the swine population in recent years. Analysis of codon usage can reveal much about the molecular evolution of TTSuV1. In this study, synonymous codon usage patterns and the key determinants in the coding region of 29 available complete TTSuV1 genome sequences were examined. By calculating the nucleotide content and relative synonymous codon usage (RSCU) of TTSuV1 coding sequences, we found that the preferentially used codons were mostly those ending with A or C nucleotides; less-used codons were mostly codons ending with U or G nucleotides, and these were mainly affected by composition constraints. Although there was a variation in codon usage bias among different TTSuV1 genomes, the codon usage bias and GC content in the TTSuV1 coding region was lower, which was mainly determined by the base composition in the third codon position and the effective number of codons (ENC) value. Moreover, the results of correspondence analysis (COA) indicated that the codon usage patterns of TTSuV1 isolated from different countries varied greatly and had significant differences. In addition, Spearman’s rank correlation analysis and an ENC plot revealed that apart from mutation pressure, which was critical in determining the codon usage pattern, other factors were involved in shaping the evolution of codon usage bias in TTSuV1, such as natural selection. Those results suggested that synonymous codon usage patterns of TTSuV1 genomes were the result of interaction between mutation pressure and natural selection. The information from this study not only provides important insights into the synonymous codon usage pattern of TTSuV1, but also helps to identify the main factors affecting codon usage by this virus.
Collapse
|
49
|
Xiao CT, Giménez-Lirola L, Huang YW, Meng XJ, Halbur PG, Opriessnig T. The prevalence of Torque teno sus virus (TTSuV) is common and increases with the age of growing pigs in the United States. J Virol Methods 2012; 183:40-4. [DOI: 10.1016/j.jviromet.2012.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/17/2012] [Accepted: 03/21/2012] [Indexed: 11/25/2022]
|
50
|
Torque teno sus virus infection in suckling piglets from Brazilian pig herds. Trop Anim Health Prod 2012; 44:1885-90. [PMID: 22532076 DOI: 10.1007/s11250-012-0152-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
Torque teno sus virus (TTSuV) is responsible for the infection of pig herds around the world. The aim of this study was to analyse the presence of natural infection by both species of TTSuV in suckling piglets from major pig-producing regions of Brazil. Faecal samples (n = 135) from 1 to 3-week-old suckling piglets from the Southern, Southeast and Midwest regions of Brazil were analysed by PCR assay to detect TTSuV1 and 2. TTSuV1 and 2 DNA was identified in 65 (48.1 %) and 23 (17 %) of piglet faecal samples, respectively. Co-infection by both species of TTSuV was detected in 17 (12.6 %) samples. Detection of TTSuV1 was significantly higher than that of TTSuV2 in the three Brazilian regions together (p < 0.05). Based on age of animals, TTSuV1 infection was statistically higher than TTSuV2 in each age group (p < 0.05). For all of the age groups together, no statistical difference was detected in the number of TTSuV1 and 2 positive results (p > 0.05). These findings revealed that TTSuV infection has disseminated in pig herds from different geographic Brazilian regions, and the presence of TTSuV in suckling piglet faecal samples suggested the early infection by the virus and the potential of these animals in spreading the virus.
Collapse
|