1
|
González-Catrilelbún S, Cartagena J, Vargas D, Breguel-Serrano P, Sandino AM, Rivas-Aravena A. The RNA-dependent RNA polymerase of the infectious pancreatic necrosis virus is linked to viral mRNA acting as a cap substitute. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The infectious pancreatic necrosis virus (IPNV) is responsible for significant economic losses in the aquaculture industry. It is an unenveloped virus with an icosahedral capsid. Its viral genome comprises two dsRNA segments, A and B. Segment A contains a small ORF, which encodes VP5, and a large ORF, which encodes a polyprotein that generates the structural proteins and the viral protease. Segment B encodes the RNA-dependent RNA polymerase (RdRp), called VP1 in this free form, or Vpg when it covalently attaches to the viral RNA. The viral genome does not have cap or poly(A). Instead, each 5′ end is linked to the Vpg. Recently, we demonstrated that mRNA-A contains an internal ribosome entry site (IRES) to command polyprotein synthesis. However, the presence of Vpg on IPNV mRNAs and its impact on cellular translation has not been investigated. This research demonstrates that IPNV mRNAs are linked to Vpg and that this protein inhibits cap-dependent translation on infected cells. Also, it is demonstrated that Vpg interacts with eIF4E and that rapamycin treatment partially diminishes the viral protein synthesis. In addition, we determined that an IRES does not command translation of IPNV mRNA-B. We show that VPg serves as a cap substitute during the initiation of IPNV translation, contributing to understanding the replicative cycle of Birnaviruses. Our results indicate that the viral protein VP1/Vpg is multifunctional, having a significant role during IPNV RNA synthesis as the RdRp and the primer for IPNV RNA synthesis and translation as the viral protein genome, acting as a cap substitute.
Collapse
Affiliation(s)
| | - Julio Cartagena
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Deborah Vargas
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Pamela Breguel-Serrano
- Laboratorio de Virología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Ana María Sandino
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Andrea Rivas-Aravena
- Laboratorio de Virología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
2
|
Wang S, Yu M, Liu A, Bao Y, Qi X, Gao L, Chen Y, Liu P, Wang Y, Xing L, Meng L, Zhang Y, Fan L, Li X, Pan Q, Zhang Y, Cui H, Li K, Liu C, He X, Gao Y, Wang X. TRIM25 inhibits infectious bursal disease virus replication by targeting VP3 for ubiquitination and degradation. PLoS Pathog 2021; 17:e1009900. [PMID: 34516573 PMCID: PMC8459960 DOI: 10.1371/journal.ppat.1009900] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/23/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022] Open
Abstract
Infectious bursal disease virus (IBDV), a double-stranded RNA virus, causes immunosuppression and high mortality in 3-6-week-old chickens. Innate immune defense is a physical barrier to restrict viral replication. After viral infection, the host shows crucial defense responses, such as stimulation of antiviral effectors to restrict viral replication. Here, we conducted RNA-seq in avian cells infected by IBDV and identified TRIM25 as a host restriction factor. Specifically, TRIM25 deficiency dramatically increased viral yields, whereas overexpression of TRIM25 significantly inhibited IBDV replication. Immunoprecipitation assays indicated that TRIM25 only interacted with VP3 among all viral proteins, mediating its K27-linked polyubiquitination and subsequent proteasomal degradation. Moreover, the Lys854 residue of VP3 was identified as the key target site for the ubiquitination catalyzed by TRIM25. The ubiquitination site destroyed enhanced the replication ability of IBDV in vitro and in vivo. These findings demonstrated that TRIM25 inhibited IBDV replication by specifically ubiquitinating and degrading the structural protein VP3.
Collapse
Affiliation(s)
- Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Mengmeng Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Aijing Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yuanling Bao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Peng Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yulong Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Lixiao Xing
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Lingzhai Meng
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yu Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Linjin Fan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xinyi Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Qing Pan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xijun He
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China.,National Poultry Laboratory Animal Resource Center, Harbin, PR China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PRChina
| |
Collapse
|
3
|
Dey S, Pathak DC, Ramamurthy N, Maity HK, Chellappa MM. Infectious bursal disease virus in chickens: prevalence, impact, and management strategies. VETERINARY MEDICINE-RESEARCH AND REPORTS 2019; 10:85-97. [PMID: 31497527 PMCID: PMC6689097 DOI: 10.2147/vmrr.s185159] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/16/2019] [Indexed: 01/03/2023]
Abstract
Infectious bursal disease (IBD), also known as Gumboro disease, is a highly contagious, immunosuppressive disease of young chickens. Although first observed about 60 years ago, to date, the disease is responsible for major economic losses in the poultry industry worldwide. IBD virus (IBDV), a double-stranded RNA virus, exists as two serotypes with only serotype 1 causing the disease in young chickens. The virus infects the bursa of Fabricius of particularly the actively dividing and differentiating lymphocytes of the B-cells lineage of immature chickens, resulting in morbidity, mortality, and immunosuppression. Immunosuppression enhances the susceptibility of chickens to other infections and interferes with vaccination against other diseases. Immunization is the most important measure to control IBD; however, rampant usage of live vaccines has resulted in the evolution of new strains. Although the immunosuppression caused by IBDV is more directed toward the B lymphocytes, the protective immunity in birds depends on inducement of both humoral and cell-mediated immune responses. The interference with the inactivated vaccine induced maternally derived antibodies in young chicks has become a hurdle in controlling the disease, thus necessitating the development of newer vaccines with improved efficacy. The present review illustrates the overall dynamics of the virus and the disease, and the recent developments in the field of virus diagnosis and vaccine research.
Collapse
Affiliation(s)
- Sohini Dey
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| | - Dinesh C Pathak
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| | - Narayan Ramamurthy
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| | - Hemanta Kumar Maity
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| | - Madhan Mohan Chellappa
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| |
Collapse
|
4
|
Adaptation and Molecular Characterization of Two Malaysian Very Virulent Infectious Bursal Disease Virus Isolates Adapted in BGM-70 Cell Line. Adv Virol 2017; 2017:8359047. [PMID: 29230245 PMCID: PMC5694579 DOI: 10.1155/2017/8359047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/07/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022] Open
Abstract
Two Malaysian very virulent infectious bursal disease virus (vvIBDV) strains UPM0081 and UPM190 (also known as UPMB00/81 and UPM04/190, respectively) isolated from local IBD outbreaks were serially passaged 12 times (EP12) in specific pathogen free (SPF) chicken embryonated eggs (CEE) by chorioallantoic membrane (CAM) route. The EP12 isolate was further adapted and serially propagated in BGM-70 cell line up to 20 passages (P20). Characteristic cytopathic effects (CPEs) were subtly observed at P1 in both isolates 72 hours postinoculation (pi). The CPE became prominent at P5 with cell rounding, cytoplasmic vacuoles, granulation, and detachment from flask starting from day 3 pi, up to 7 days pi with titers of 109.50 TCID50/mL and log109.80 TCID50/mL for UPM0081 and UPM190, respectively. The CPE became subtle at P17 and disappeared by P18 and P19 for UPM0081 and UPM190, respectively. However, the presence of IBDV was confirmed by immunoperoxidase, immunofluorescence, and RT-PCR techniques. Phylogenetic analysis showed that these two isolates were of the vvIBDV. It appears that a single mutation of UPM190 and UPM0081 IBDV isolates at D279N could facilitate vvIBDV strain adaptability in CEE and BGM-70 cultures.
Collapse
|
5
|
He Z, Chen X, Fu M, Tang J, Li X, Cao H, Wang Y, Zheng SJ. Infectious bursal disease virus protein VP4 suppresses type I interferon expression via inhibiting K48-linked ubiquitylation of glucocorticoid-induced leucine zipper (GILZ). Immunobiology 2017; 223:374-382. [PMID: 29146236 DOI: 10.1016/j.imbio.2017.10.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 02/05/2023]
Abstract
Viruses have developed a variety of methods to evade host immune response. Our previous study showed that infectious bursal disease virus (IBDV) inhibited type I interferon production via interaction of VP4 with cellular glucocorticoid-induced leucine zipper (GILZ) protein. However, the exact underlying molecular mechanism is still unclear. In this study, we found that IBDV VP4 suppressed GILZ degradation by inhibiting K48-linked ubiquitylation of GILZ. Furthermore, mutation of VP4 (R41G) abolished the inhibitory effect of VP4 on IFN-β expression and GILZ ubiquitylation, indicating that the amino acid 41R of VP4 was required for the suppression of IFN-β expression and GILZ ubiquitylation. Moreover, IBDV infection or VP4 expression markedly inhibited endogenous GILZ ubiquitylation. Thus, IBDV VP4 suppresses type I interferon expression by inhibiting K48-linked ubiquitylation of GILZ, revealing a new mechanism employed by IBDV to suppress host response.
Collapse
Affiliation(s)
- Zhiyuan He
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiang Chen
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Mengjiao Fu
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Qin J, Zhang J, Wang F, Wang J, Zheng Z, Yin C, Chen H, Shi A, Zhang B, Chen P, Zhang M. iTRAQ protein profile analysis of developmental dynamics in soybean [Glycine max (L.) Merr.] leaves. PLoS One 2017; 12:e0181910. [PMID: 28953898 PMCID: PMC5617144 DOI: 10.1371/journal.pone.0181910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 07/10/2017] [Indexed: 12/16/2022] Open
Abstract
Zao5241 is an elite soybean [Glycine max (L.) Merr.] line and backbone parent. In this study, we employed iTRAQ to analyze the proteomes and protein expression profiles of Zao5241 during leaf development. We identified 1,245 proteins in all experiments, of which only 45 had been previously annotated. Among overlapping proteins between three biological replicates, 598 proteins with 2 unique peptides identified were reliably quantified. The protein datasets were classified into 36 GO functional terms, and the photosynthesis term was most significantly enriched. A total of 113 proteins were defined as being differentially expressed during leaf development; 41 proteins were found to be differently expressed between two and four week old leaves, and 84 proteins were found to be differently expressed between two and six week old leaves, respectively. Cluster analysis of the data revealed dynamic proteomes. Proteins annotated as electron carrier activity were greatly enriched in the peak expression profiles, and photosynthesis proteins were negatively modulated along the whole time course. This dataset will serve as the foundation for a systems biology approach to understanding photosynthetic development.
Collapse
Affiliation(s)
- Jun Qin
- National Soybean Improvement Center Shijiazhuang Sub-Center. North China Key Laboratory of Biology and Genetic Improvement of Soybean Ministry of Agriculture, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, P.R. China
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States of America
| | - Jianan Zhang
- National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, P. R. China
| | - Fengmin Wang
- National Soybean Improvement Center Shijiazhuang Sub-Center. North China Key Laboratory of Biology and Genetic Improvement of Soybean Ministry of Agriculture, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, P.R. China
| | - Jinghua Wang
- National Soybean Improvement Center Shijiazhuang Sub-Center. North China Key Laboratory of Biology and Genetic Improvement of Soybean Ministry of Agriculture, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, P.R. China
| | - Zhi Zheng
- National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, P. R. China
| | - Changcheng Yin
- Beijing Protein Innovation, B-8, Beijing Airport Industrial Zone, Beijing, People’s Republic of China
| | - Hao Chen
- Beijing Protein Innovation, B-8, Beijing Airport Industrial Zone, Beijing, People’s Republic of China
| | - Ainong Shi
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States of America
| | - Bo Zhang
- Department of Crop, Soil and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Pengyin Chen
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States of America
| | - Mengchen Zhang
- National Soybean Improvement Center Shijiazhuang Sub-Center. North China Key Laboratory of Biology and Genetic Improvement of Soybean Ministry of Agriculture, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, P.R. China
| |
Collapse
|
7
|
Gao L, Li K, Zhong L, Zhang L, Qi X, Wang Y, Gao Y, Wang X. Eukaryotic translational initiation factor 4AII reduces the replication of infectious bursal disease virus by inhibiting VP1 polymerase activity. Antiviral Res 2016; 139:102-111. [PMID: 27908831 DOI: 10.1016/j.antiviral.2016.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Although an interaction between eukaryotic translational initiation factor 4AII (eIF4AII) of the host and viral protein 1 (VP1), the RNA-dependent RNA polymerase (RdRp) of IBDV, has been established, the underlying effects of this interaction on IBDV and the molecular mechanism remain unclear. We here report that interaction of the host eIF4AII with VP1 inhibits the RNA polymerase activity of IBDV to reduce its replication in host cells. We found that ectopically expressed eIF4AII markedly inhibited IBDV growth in DF1 cells, and knockdown of eIF4AII by small interfering RNA significantly enhanced viral replication in CEF cells. Furthermore, IBDV infection led to an increase in host eIF4AII expression, suggesting a feedback mechanism between the host and virus infection both in vitro and in vivo, which further confirmed the involvement of the host eIF4AII in the IBDV life cycle. Thus, via the interaction with VP1, eIF4AII plays a critical role in the IBDV life cycle, by inhibiting viral RNA polymerase activity, leading to a reduction of IBDV replication in cells.
Collapse
Affiliation(s)
- Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Li Zhong
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Lizhou Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.
| |
Collapse
|
8
|
Lago M, Bandín I, Olveira JG, Dopazo CP. In vitro reassortment between Infectious Pancreatic Necrosis Virus (IPNV) strains: The mechanisms involved and its effect on virulence. Virology 2016; 501:1-11. [PMID: 27838422 DOI: 10.1016/j.virol.2016.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 10/23/2016] [Accepted: 11/03/2016] [Indexed: 12/31/2022]
Abstract
Reassortment is one of the main mechanisms of evolution in dsRNA viruses with segmented genomes. It contributes to generate genetic diversity and plays an important role in the emergence and spread of new strains with altered virulence. Natural reassorment has been demonstrated among infectious pancreatic necrosis-like viruses (genus Aquabirnavirus, Birnaviridae). In the present study, coinfections between different viral strains, and genome sequencing by the Sanger and Illumina methods were applied to analyze the frequency of reassortment of this virus in vitro, the possible mechanisms involved, and its effect on virulence. Results have demonstrated that reassortment is a cell-dependent and non-random process, probably through differential expression of the different mRNA classes in the ribosomes of a specific cell, and by specific associations between the components to construct the ribonucleoprotein (RNP) complexes and/or RNP cross-inhibition. However, the precise mechanisms involved, known in other viruses, still remain to be demonstrated in birnaviruses.
Collapse
Affiliation(s)
- María Lago
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura-Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain.
| | - Isabel Bandín
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura-Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain.
| | - José G Olveira
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura-Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain.
| | - Carlos P Dopazo
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura-Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain.
| |
Collapse
|
9
|
van Cleef KWR, van Mierlo JT, Miesen P, Overheul GJ, Fros JJ, Schuster S, Marklewitz M, Pijlman GP, Junglen S, van Rij RP. Mosquito and Drosophila entomobirnaviruses suppress dsRNA- and siRNA-induced RNAi. Nucleic Acids Res 2014; 42:8732-44. [PMID: 24939903 PMCID: PMC4117760 DOI: 10.1093/nar/gku528] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA interference (RNAi) is a crucial antiviral defense mechanism in insects, including the major mosquito species that transmit important human viruses. To counteract the potent antiviral RNAi pathway, insect viruses encode RNAi suppressors. However, whether mosquito-specific viruses suppress RNAi remains unclear. We therefore set out to study RNAi suppression by Culex Y virus (CYV), a mosquito-specific virus of the Birnaviridae family that was recently isolated from Culex pipiens mosquitoes. We found that the Culex RNAi machinery processes CYV double-stranded RNA (dsRNA) into viral small interfering RNAs (vsiRNAs). Furthermore, we show that RNAi is suppressed in CYV-infected cells and that the viral VP3 protein is responsible for RNAi antagonism. We demonstrate that VP3 can functionally replace B2, the well-characterized RNAi suppressor of Flock House virus. VP3 was found to bind long dsRNA as well as siRNAs and interfered with Dicer-2-mediated cleavage of long dsRNA into siRNAs. Slicing of target RNAs by pre-assembled RNA-induced silencing complexes was not affected by VP3. Finally, we show that the RNAi-suppressive activity of VP3 is conserved in Drosophila X virus, a birnavirus that persistently infects Drosophila cell cultures. Together, our data indicate that mosquito-specific viruses may encode RNAi antagonists to suppress antiviral RNAi.
Collapse
Affiliation(s)
- Koen W R van Cleef
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Joël T van Mierlo
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Susan Schuster
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Marco Marklewitz
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sandra Junglen
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
10
|
Birnavirus VP4 Processing Endopeptidase. HANDBOOK OF PROTEOLYTIC ENZYMES 2013. [PMCID: PMC7150322 DOI: 10.1016/b978-0-12-382219-2.00779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Jackwood DJ, Crossley BM, Stoute ST, Sommer-Wagner S, Woolcock PR, Charlton BR. Diversity of Genome Segment B from Infectious Bursal Disease Viruses in the United States. Avian Dis 2012; 56:165-72. [DOI: 10.1637/9900-081811-reg.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Le Nouën C, Toquin D, Müller H, Raue R, Kean KM, Langlois P, Cherbonnel M, Eterradossi N. Different domains of the RNA polymerase of infectious bursal disease virus contribute to virulence. PLoS One 2012; 7:e28064. [PMID: 22253687 PMCID: PMC3258228 DOI: 10.1371/journal.pone.0028064] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/31/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Infectious bursal disease virus (IBDV) is a pathogen of worldwide significance to the poultry industry. IBDV has a bi-segmented double-stranded RNA genome. Segments A and B encode the capsid, ribonucleoprotein and non-structural proteins, or the virus polymerase (RdRp), respectively. Since the late eighties, very virulent (vv) IBDV strains have emerged in Europe inducing up to 60% mortality. Although some progress has been made in understanding the molecular biology of IBDV, the molecular basis for the pathogenicity of vvIBDV is still not fully understood. METHODOLOGY, PRINCIPAL FINDINGS Strain 88180 belongs to a lineage of pathogenic IBDV phylogenetically related to vvIBDV. By reverse genetics, we rescued a molecular clone (mc88180), as pathogenic as its parent strain. To study the molecular basis for 88180 pathogenicity, we constructed and characterized in vivo reassortant or mosaic recombinant viruses derived from the 88180 and the attenuated Cu-1 IBDV strains. The reassortant virus rescued from segments A of 88180 (A88) and B of Cu-1 (BCU1) was milder than mc88180 showing that segment B is involved in 88180 pathogenicity. Next, the exchange of different regions of BCU1 with their counterparts in B88 in association with A88 did not fully restore a virulence equivalent to mc88180. This demonstrated that several regions if not the whole B88 are essential for the in vivo pathogenicity of 88180. CONCLUSION, SIGNIFICANCE The present results show that different domains of the RdRp, are essential for the in vivo pathogenicity of IBDV, independently of the replication efficiency of the mosaic viruses.
Collapse
Affiliation(s)
- Cyril Le Nouën
- Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health Safety (Anses), Ploufragan, France
| | - Didier Toquin
- Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health Safety (Anses), Ploufragan, France
| | - Hermann Müller
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Rüdiger Raue
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | - Patrick Langlois
- Virus Genetics and Biosecurity Unit, French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Martine Cherbonnel
- Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health Safety (Anses), Ploufragan, France
| | - Nicolas Eterradossi
- Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, French Agency for Food, Environmental and Occupational Health Safety (Anses), Ploufragan, France
- * E-mail:
| |
Collapse
|
13
|
Wang Y, Qi X, Kang Z, Yu F, Qin L, Gao H, Gao Y, Wang X. A single amino acid in the C-terminus of VP3 protein influences the replication of attenuated infectious bursal disease virus in vitro and in vivo. Antiviral Res 2010; 87:223-9. [DOI: 10.1016/j.antiviral.2010.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 04/11/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
|
14
|
|
15
|
Aljofan M, Saubern S, Meyer AG, Marsh G, Meers J, Mungall BA. Characteristics of Nipah virus and Hendra virus replication in different cell lines and their suitability for antiviral screening. Virus Res 2009; 142:92-9. [PMID: 19428741 DOI: 10.1016/j.virusres.2009.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/12/2009] [Accepted: 01/20/2009] [Indexed: 11/28/2022]
Abstract
We have recently described the development and validation of a high throughput screening assay suitable for henipavirus antiviral identification. While we are confident this assay is robust and effective, we wished to investigate assay performance in a range of alternative cell lines to determine if assay sensitivity and specificity could be improved. We evaluated ten different cell lines for their susceptibility to Hendra and Nipah virus infection and their sensitivity of detection of the effects of the broad spectrum antiviral, ribavirin and nine novel antivirals identified using our initial screening approach. Cell lines were grouped into three categories with respect to viral replication. Virus replicated best in Vero and BSR cells, followed by Hep-2, HeLa, BHK-21 and M17 cells. The lowest levels of RNA replication and viral protein expression were observed in BAEC, MMEC, A549 and ECV304 cells. Eight cell lines appeared to be similarly effective at discriminating the antiviral effects of ribavirin (<2.7-fold difference). The two cells lines most sensitive to the effect of ribavirin (ECV304 and BAEC) also displayed the lowest levels of viral replication while Vero cells were the least sensitive suggesting excess viral replication may limit drug efficacy and cell lines which limit viral replication may result in enhanced antiviral efficacy. However, there was no consistent trend observed with the other nine antivirals tested. While improvements in antiviral sensitivity in other cell lines may indicate an important role in future HTS assays, the slightly lower sensitivity to antiviral detection in Vero cells has inherent advantages in reducing the number of partially effective lead molecules identified during initial screens. Comparison of a panel of 54 novel antiviral compounds identified during routine screening of an in-house compound library in Vero, BHK-21 and BSR cells suggests no clear advantage of screening in either cell type.
Collapse
Affiliation(s)
- Mohamad Aljofan
- Australian Animal Health Laboratory, CSIRO Livestock Industries, Geelong, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Gao Y, Liu W, Gao H, Qi X, Lin H, Wang X, Shen R. Effective inhibition of infectious bursal disease virus replication in vitro by DNA vector-based RNA interference. Antiviral Res 2007; 79:87-94. [PMID: 18378010 DOI: 10.1016/j.antiviral.2007.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 01/06/2023]
Abstract
Infectious bursal disease (IBD) leads to considerable economic losses for the poultry industry by inducing severe immunosuppression and high mortality in chickens. The objective of this study was to determine if RNA interference (RNAi) could be utilized to inhibit IBDV replication in vitro. We selected 3 short interfering RNA (siRNA) sequences (siVP1(618), siVP1(1,115), and siVP1(2,571)) based on conserved regions in the vp1 gene of the infectious bursal disease virus (IBDV). When the Vero cells were transfected with siRNA, synthesized via in vitro transcription, and then infected with IBDV, siVP1(2,571) was discovered to be the most effective site for inhibiting IBDV replication. For long-term expression of siRNA and due to its suitability for large-scale preparation, the mouse U6 promoter was amplified using primers designed according to the siVP1(2,571) sequence. The resulting products were then subcloned into pEGFP-C1 to construct the shRNA expression vector pEC2571-shRNA. The shRNA-transfected Vero cells were then infected with IBDV. As compared to the control, the inhibitory rate in the pEC2,571-shRNA-transfected group was 87.4%. Indirect immunofluorescence and real-time polymerase chain reaction (PCR) confirmed that VP1 expression decreased at both the protein and RNA levels as compared to that in the controls. The results presented here indicate that DNA vector-based RNAi could effectively inhibit IBDV replication in vitro.
Collapse
Affiliation(s)
- Yulong Gao
- Division of Avian Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Letzel T, Mundt E, Gorbalenya AE. Evidence for functional significance of the permuted C motif in Co2+-stimulated RNA-dependent RNA polymerase of infectious bursal disease virus. J Gen Virol 2007; 88:2824-2833. [PMID: 17872536 DOI: 10.1099/vir.0.82890-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Segment B of bisegmented infectious bursal disease virus (IBDV) encodes virus protein 1 (VP1), possessing RNA-dependent RNA polymerase (RdRp) activity. This multidomain protein includes an RdRp domain with a non-canonical order of three sequence motifs forming the active site: C-A-B. The A-B-C order of the motifs, as found in RdRps of the majority of viruses, was converted by relocation (permutation) of motif C to a C-A-B order. Due to the unusual location and unproven significance, the motif was named 'C?'. This motif includes an Ala-Asp-Asn tripeptide that replaces the C motif Gly-Asp-Asp sequence, widely considered a hallmark of RdRps. In this study, functional significance of the C? motif was investigated by using purified His-tagged VP1 mutants with either a double replacement (ADN to GDD) or two single-site mutants (ADD or GDN). All mutants showed a significant reduction of RdRp activity in vitro, in comparison to that of VP1. Only the least-affected GDN mutant gave rise to viable, albeit partially impaired, progeny using a reverse-genetics system. Experiments performed to investigate whether the C motif was implicated in the control of metal dependence revealed that, compared with Mn2+ and Mg2+, Co2+ stimulated RdRp unconventionally. No activity was observed in the presence of several divalent cations. Of two Co2+ salts with Cl- and SO4(2-) anions, the former was a stronger stimulant for RdRp. When cell-culture medium was supplemented with 50 microM Co2+, an increase in IBDV progeny yield was observed. The obtained results provide evidence that the unusual Co2+ dependence of the IBDV RdRp might be linked to the permuted organization of the motif.
Collapse
Affiliation(s)
- Tobias Letzel
- Institutes of Molecular Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Egbert Mundt
- Institutes of Molecular Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Alexander E Gorbalenya
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300RC Leiden, The Netherlands
| |
Collapse
|
18
|
Wu J, Yu L, Li L, Hu J, Zhou J, Zhou X. Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:570-8. [PMID: 17561926 DOI: 10.1111/j.1467-7652.2007.00270.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The expression of infectious bursal disease virus (IBDV) host-protective immunogen VP2 protein in rice seeds, its immunogenicity and protective capability in chickens were investigated. The VP2 cDNA of IBDV strain ZJ2000 was cloned downstream of the Gt1 promoter of the rice glutelin GluA-2 gene in the binary expression vector, pCambia1301-Gt1. Agrobacterium tumefaciens containing the recombinant vector was used to transform rice embryogenic calli, and 121 transgenic lines were obtained and grown to maturity in a greenhouse. The expression level of VP2 protein in transgenic rice seeds varied from 0.678% to 4.521% microg/mg of the total soluble seed protein. Specific pathogen-free chickens orally vaccinated with transgenic rice seeds expressing VP2 protein produced neutralizing antibodies against IBDV and were protected when challenged with a highly virulent IBDV strain, BC6/85. These results demonstrate that transgenic rice seeds expressing IBDV VP2 can be used as an effective, safe and inexpensive vaccine against IBDV.
Collapse
Affiliation(s)
- Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 31009, China
| | | | | | | | | | | |
Collapse
|
19
|
Liu HCS, Hicks JA. Using Proteomics to Understand Avian Systems Biology and Infectious Disease. Poult Sci 2007; 86:1523-9. [PMID: 17575203 DOI: 10.1093/ps/86.7.1523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The proteome is defined as the protein complement to the genome. Proteomics is the study of the proteome. Several techniques are frequently used in proteomics; these include 2-hybrid systems, 2-dimensional gel electrophoresis, and mass spectrometry. Systems biology is a scientific approach that takes into account the complex relationships among and between genes and proteins and determines how all of these interactions come together to form a functional organism. Proteomic tools can simultaneously probe the properties of numerous proteins and thus are a great aid to the emerging field of systems biology, in which the functional interactions of numerous proteins are studied instead of studying individual proteins as isolated entities. In the field of avian biology, proteomics has been used to study everything from the development and function of organs and systems to the interactions of infectious agents and the altered states that they induce in their hosts.
Collapse
Affiliation(s)
- H-C S Liu
- Department of Animal Science, North Carolina State University, Raleigh 27695-7621, USA.
| | | |
Collapse
|
20
|
Petkov D, Linnemann E, Kapczynski DR, Sellers HS. Full-length sequence analysis of four IBDV strains with different pathogenicities. Virus Genes 2007; 34:315-26. [PMID: 16927125 DOI: 10.1007/s11262-006-0021-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 02/07/2006] [Indexed: 11/26/2022]
Abstract
Characterization of field isolate 9109, Lukert, Edgar cell culture-adapted (CCA), and Edgar chicken embryo-adapted (CEA) serotype 1 IBDV strains using full-length genomic sequences is reported. IBDV genomic segments A and B were sequenced and the nucleotide and deduced amino acid (aa) sequences were compared with previously reported full-length sequenced IBDV strains. We found that the viral protein VPX and amino acid sequences between aa 202-451 and 210-473 of VP2 but not the entire VP2 protein are the best representatives of the entire IBDV genome. The greatest variability was found in the VP2 and 5' non-coding region of segment B among IBDV strains. The deduced amino acid sequences of the VP1 protein varies in length among the strains analyzed. The RNA-dependent, RNA-polymerase motifs within VP1 and the VP5 protein were highly conserved among isolates. Although within the VP2 processing site, amino acid sequence of Lukert was similar to the classical while the Edgar CCA, and CEA were more similar to the very virulent strains, it was determined that these strains have sequence characteristics of the classical strains. In addition, close relatedness between Lukert, Edgar CCA and CEA was observed. Although phylogenetic analysis of the VP1, VP3, and VP4 proteins indicated that 9109 is a classical type virus, this isolate shares unique amino acid changes with very virulent strains within the same proteins. Phylogenetic analysis of the 3' and 5' non-coding regions of segment A revealed that 9109 is more similar to the very virulent strains compared to the classical strains. In the VP2 protein, several amino acids were conserved between variant E and 9109 strains. Thus, it appears that 9109 isolate has characteristics of classical, very virulent, and variant strains. Our analysis indicates that although VPX amino acid comparison may be initially useful for molecular typing, full-length genomic sequence analysis is essential for thorough molecular characterization as partial sequences may not designate a particular strain as very virulent, classical, or variant.
Collapse
Affiliation(s)
- Daniel Petkov
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
21
|
Zheng X, Hong L, Li Y, Guo J, Zhang G, Zhou J. In VitroExpression and Monoclonal Antibody of RNA-Dependent RNA Polymerase for Infectious Bursal Disease Virus. DNA Cell Biol 2006; 25:646-53. [PMID: 17132096 DOI: 10.1089/dna.2006.25.646] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
VP1, the RNA-dependent RNA polymerase of infectious bursal disease virus (IBDV), has been suggested to play an essential role in the replication and translation of viral RNAs. In this study, we first expressed the complete VP1 protein gene in Escherichia coli (E. coli), and then the produced polyclonal antibody and four monoclonal antibodies (mAbs) to recombinant VP1 protein (rVP1) were shown to bind the IBDV particles in chicken embryo fibroblast and Vero cells. The epitopic analysis showed that mAbs 1D4 and 3C7 recognized respectively two distinct antigenic epitopes on the rVP1 protein, but two pair of mAbs 1A2/2A12 and 1E1/1H3 potentially recognized another two topologically related epitopes. Immunocytochemical stainings showed that VP1 protein formed irregularly shaped particles in the cytoplasm of the IBDV-infected cells. These results demonstrated that the mAbs to rVP1 protein could bind the epitopes of IBDV particles, indicating that the rVP1 protein expressed in E. coli was suitable for producing the mAb to VP1 protein of IBDV, and that the cytoplasm could be the crucial site for viral genome replication of IBDV.
Collapse
Affiliation(s)
- Xiaojuan Zheng
- Laboratory of Virology and Immunology, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Lee CC, Ko TP, Chou CC, Yoshimura M, Doong SR, Wang MY, Wang AHJ. Crystal structure of infectious bursal disease virus VP2 subviral particle at 2.6A resolution: implications in virion assembly and immunogenicity. J Struct Biol 2006; 155:74-86. [PMID: 16677827 DOI: 10.1016/j.jsb.2006.02.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/27/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
The structural protein VP2 of infectious bursal disease virus (IBDV) spontaneously forms a dodecahedral T=1 subviral particle (SVP), and is a primary immunogen of the virus. In this study, the structure of IBDV SVP was determined in a cubic crystal and refined to 2.6A resolution. It contains 20 independent VP2 subunits in a crystallographic asymmetric unit. Each subunit is folded mainly into a shell domain and a protrusion domain, both with the Swiss-roll topology, plus a small helical base domain. Three VP2 subunits constitute a tight trimer, which is the building block of IBDV (sub)viral particles. The structure revealed a calcium ion bound to three pairs of symmetry-related Asp31 and Asp174 to stabilize the VP2 trimer. Our results of treatment of SVP with EGTA, a Ca(2+)-chelating reagent, indicated that the metal-ion may be important not only in maintaining highly stable quaternary structure but also in regulating the swelling and dissociation of the icosahedral particles. A Ca(2+)-dependent assembly pathway was thus proposed, which involves further interactions between the trimers. The 20 independent subunits showed conformational variations, with the surface loops of the protrusion domain being the most diverse. These loops are targets of the neutralizing antibodies. Several common interactions between the surface loops were clearly observed, suggesting a possible major conformation of the immunogenic epitopes.
Collapse
Affiliation(s)
- Cheng-Chung Lee
- Structural Biology Program, Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
23
|
Nouën CL, Rivallan G, Toquin D, Darlu P, Morin Y, Beven V, de Boisseson C, Cazaban C, Comte S, Gardin Y, Eterradossi N. Very virulent infectious bursal disease virus: reduced pathogenicity in a rare natural segment-B-reassorted isolate. J Gen Virol 2006; 87:209-216. [PMID: 16361433 DOI: 10.1099/vir.0.81184-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to compare the molecular epidemiology of infectious bursal disease virus (IBDV) segments A and B of 50 natural or vaccine IBDV strains that were isolated or produced between 1972 and 2002 in 17 countries from four continents, with phenotypes ranging from attenuated to very virulent (vv). These strains were subjected to sequence and phylogenetic analysis based on partial sequences of genome segments A and B. Although there is co-evolution of the two genome segments (70 % of strains kept the same genetic relatives in the segment A- and B-defined consensus trees), several strains (26 %) were identified with the incongruence length difference test as exhibiting a significantly different phylogenetic relationship depending on which segment was analysed. This suggested that natural reassortment could have occurred. One of the possible naturally occurring reassortant strains, which exhibited a segment A related to the vvIBDV cluster whereas its segment B was not, was thoroughly sequenced (coding sequence of both segments) and submitted to a standardized experimental characterization of its acute pathogenicity. This strain induced significantly less mortality than typical vvIBDVs; however, the mechanisms for this reduced pathogenicity remain unknown, as no significant difference in the bursal lesions, post-infectious antibody response or virus production in the bursa was observed in challenged chickens.
Collapse
Affiliation(s)
- Cyril Le Nouën
- French Agency for Food Safety (AFSSA), Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, BP 53, 22440 Ploufragan, France
| | - Gaëlle Rivallan
- French Agency for Food Safety (AFSSA), Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, BP 53, 22440 Ploufragan, France
| | - Didier Toquin
- French Agency for Food Safety (AFSSA), Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, BP 53, 22440 Ploufragan, France
| | - Pierre Darlu
- INSERM U535 Genetic Epidemiology and Structure of Human Populations, 94817 Villejuif Cedex, France
| | - Yannick Morin
- Experimental Services for Avian Pathology (SEEPA), BP 53, 22440 Ploufragan, France
| | - Véronique Beven
- Virus Genetics and Biosecurity Unit, BP 53, 22440 Ploufragan, France
| | | | | | - Sylvain Comte
- CEVA-santé animale, BP 126, 33501 Libourne Cedex, France
| | - Yannick Gardin
- CEVA-santé animale, BP 126, 33501 Libourne Cedex, France
| | - Nicolas Eterradossi
- French Agency for Food Safety (AFSSA), Avian and Rabbit Virology, Immunology and Parasitology Unit, OIE Reference Laboratory for Infectious Bursal Disease, BP 53, 22440 Ploufragan, France
| |
Collapse
|
24
|
Kaiser WJ, Chaudhry Y, Sosnovtsev SV, Goodfellow IG. Analysis of protein–protein interactions in the feline calicivirus replication complex. J Gen Virol 2006; 87:363-368. [PMID: 16432023 DOI: 10.1099/vir.0.81456-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Caliciviruses are a major cause of gastroenteritis in humans and cause a wide variety of other diseases in animals. Here, the characterization of protein–protein interactions between the individual proteins of Feline calicivirus (FCV), a model system for other members of the family Caliciviridae, is reported. Using the yeast two-hybrid system combined with a number of other approaches, it is demonstrated that the p32 protein (the picornavirus 2B analogue) of FCV interacts with p39 (2C), p30 (3A) and p76 (3CD). The FCV protease/RNA polymerase (ProPol) p76 was found to form homo-oligomers, as well as to interact with VPg and ORF2, the region encoding the major capsid protein VP1. A weak interaction was also observed between p76 and the minor capsid protein encoded by ORF3 (VP2). ORF2 protein was found to interact with VPg, p76 and VP2. The potential roles of the interactions in calicivirus replication are discussed.
Collapse
Affiliation(s)
- William J Kaiser
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | - Yasmin Chaudhry
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | - Stanislav V Sosnovtsev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian G Goodfellow
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| |
Collapse
|
25
|
Oshima SI, Imajoh M, Hirayama T. [Interaction mechanism of marine birnavirus (MABV) in fish cell lines]. Uirusu 2005; 55:133-44. [PMID: 16308540 DOI: 10.2222/jsv.55.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Marine birnavirus (MABV) is a member of the genus Aquabirnavirus of the family Birnaviridae. MABV is an unenveloped icosahedral virus about 60 nm in diameter with two genomes of double-stranded RNA. MABV adsorbed not only onto the cell surfaces of susceptible (CHSE-214 and RSBK-2) cells but also onto resistant (FHM and EPC) cells. Furthermore, the virus entered into the cytoplasm through the endocytotic pathway in CHSE-214, RSBK-2 and FHM cells but did not penetrate EPC cells. The virus was found to bind to an around 250 kDa protein on CHSE-214, RSBK-2, FHM and EPC cells. The syntheses of viral proteins pVP2, NS and VP3 and further proteolytic processing after viral infection were examined by using Western blot analysis. pVP2, NS and VP3 were detected in the cytosolic fractions of CHSE-214, RSBK-2 and FHM cells at 4 h after infection. At this time, VP3 underwent further proteolytic processing in the cytosolic fractions of CHSE-214 and RSBK-2 cells. The expression of pVP2, NS and VP3 increased and pVP2 and NS also underwent further proteolytic processing similar to VP3 in the cytosolic fractions of CHSE-214, RSBK-2 and FHM cells at 8 h after infection. The further proteolytic processing of VP3 was detected in the nuclear fractions of CHSE-214, RSBK-2, but VP3 was detected as a single band in the nuclear fraction of FHM cells. pVP2 and NS were detected as thin bands only in the nuclear fractions of CHSE-214 cells. The results of Western blot analysis demonstrated that pVP2, NS and VP3 are localized in the nuclear fraction when they were independently expressed in CHSE-214, RSBK-2, FHM and EPC cells. The expression pattern in the cytosolic fraction was identical among the four cell lines when pVP2 and NS were independently expressed. However, pVP2 and NS were not detected in the nuclear fraction of CHSE-214 cells. Further proteolytic processing of VP3 was detected in both cytosolic and nuclear fractions of RSBK-2 ,FHM and EPC cells (Low level in EPC cell), but not in CHSE-214 cells when VP3 was independently expressed. Then, the processes of preVP2 to form morphological assemblages in the presence of VP3 or the cleavage of VP3 into two proteins in CHSE-214 cells were studied. When preVP2- and VP3 were co-expressed, virion like particles (64 nm, diameter) were observed close to the nuclear membrane by electron microscopy. The co-expression of preVP2 and the cleaved VP3 proteins led to an efficient assembly of tubules (22 nm, diameter). Further important finds will be obtained by this infection system using 4 fish cell lines in the next couple of years.
Collapse
Affiliation(s)
- Syun-ichirou Oshima
- Laboratory of Cell Structure and Function, Division of Marine Bioresource Science, Graduate School of Kuroshio Science, Kochi University, Japan.
| | | | | |
Collapse
|
26
|
Chevalier C, Galloux M, Pous J, Henry C, Denis J, Da Costa B, Navaza J, Lepault J, Delmas B. Structural peptides of a nonenveloped virus are involved in assembly and membrane translocation. J Virol 2005; 79:12253-63. [PMID: 16160151 PMCID: PMC1211518 DOI: 10.1128/jvi.79.19.12253-12263.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capsid of infectious bursal disease virus (IBDV), a nonenveloped virus of the family Birnaviridae, has a T=13l icosahedral shell constituted by a single protein, VP2, and several disordered peptides, all derived from the precursor pVP2. In this study, we show that two of the peptides, pep11 and pep46, control virus assembly and cell entry. Deletion of pep11 or even simple substitution of most of its residues blocks the capsid morphogenesis. Removal of pep46 also prevents capsid assembly but leads to the formation of subviral particles formed by unprocessed VP2 species. Fitting with the VP2 atomic model into three-dimensional reconstructions of these particles demonstrates that the presence of uncleaved pep46 causes a steric hindrance at the vertices, blocking fivefold axis formation. Mutagenesis of the pVP2 maturation sites confirms that C terminus processing is necessary for VP2 to acquire the correct icosahedral architecture. All peptides present on virions are accessible to proteases or biochemical labeling. One of them, pep46, is shown to induce large structural rearrangements in liposomes and to destabilize target membranes, demonstrating its implication in cell entry.
Collapse
Affiliation(s)
- Christophe Chevalier
- Unité de Recherche de Virologie et Immunologie Moléculaires, INRA, F-78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pous J, Chevalier C, Ouldali M, Navaza J, Delmas B, Lepault J. Structure of birnavirus-like particles determined by combined electron cryomicroscopy and X-ray crystallography. J Gen Virol 2005; 86:2339-2346. [PMID: 16033982 DOI: 10.1099/vir.0.80942-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Birnaviruses possess a capsid with a single protein layer in contrast to most double-stranded RNA viruses infecting multicellular eukaryotes. Using freeze-drying and heavy metal shadowing, the capsids of two birnaviruses, infectious bursal disease virus (IBDV) and infectious pancreatic necrosis virus, as well as of an IBDV virus-like particle (VLP) are shown to follow the same T=13 laevo icosahedral geometry. The structure of the VLP was determined at a resolution of approximately 15 Å (1·5 nm) by a combination of electron cryomicroscopy and a recently developed three-dimensional reconstruction method, where the scattering density is expressed in terms of symmetry-adapted functions. This reconstruction methodology is well adapted to the icosahedral symmetry of viruses and only requires a small number of images to analyse. The atomic model of the external capsid protein, VP2, recently determined by X-ray crystallography, fits well into the VLP reconstruction and occupies all the electron densities present in the map. Thus, similarly to the IBDV virion, only VP2 forms the icosahedral layer of the VLP. The other components of both VLP and IBDV particles that play a crucial role in the capsid assembly, VP1, VP3 and the peptides arising from the processing of pVP2, do not follow the icosahedral symmetry, allowing them to be involved in other processes such as RNA packaging.
Collapse
Affiliation(s)
- Joan Pous
- Laboratoire de Virologie Moléculaire et Structurale, UMR 2472 CNRS-INRA, 1 avenue de la terrasse, F-91198 Gif-sur-Yvette, France
| | - Christophe Chevalier
- Unité de Virologie et Immunologie Moléculaires, Domaine de Vilvert, INRA, F-78350 Jouy-en-Josas, France
| | - Malika Ouldali
- Laboratoire de Virologie Moléculaire et Structurale, UMR 2472 CNRS-INRA, 1 avenue de la terrasse, F-91198 Gif-sur-Yvette, France
| | - Jorge Navaza
- Laboratoire de Virologie Moléculaire et Structurale, UMR 2472 CNRS-INRA, 1 avenue de la terrasse, F-91198 Gif-sur-Yvette, France
| | - Bernard Delmas
- Unité de Virologie et Immunologie Moléculaires, Domaine de Vilvert, INRA, F-78350 Jouy-en-Josas, France
| | - Jean Lepault
- Laboratoire de Virologie Moléculaire et Structurale, UMR 2472 CNRS-INRA, 1 avenue de la terrasse, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
28
|
Lee MS, Wang MY, Tai YJ, Lai SY. Characterization of particles formed by the precursor protein VPX of infectious bursal disease virus in insect Hi-5 cells: implication on its proteolytic processing. J Virol Methods 2005; 121:191-9. [PMID: 15381356 DOI: 10.1016/j.jviromet.2004.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 06/16/2004] [Accepted: 06/16/2004] [Indexed: 11/22/2022]
Abstract
The precursor (VPX) of host immunogen VP2 protein for infectious bursal disease virus (IBDV) was expressed in insect Sf9 and Hi-5 cells, and the types of particles generated as well as the immunogenicity induced by these particles were examined. Recombinant VPXH (rVPXH) protein, expressed in Hi-5 cells at an expression level 4x higher than in Sf9 cells, was efficiently processed by proteases to yield VP2-like proteins with corresponding molecular weight, a phenomenon not observed previously. At least three structures of particles were observed for VPXH and VP2-like proteins purified by immobilized metal-ion affinity chromatography (MAC). In addition to the two previously identified twisted tubular and isometric particle structures, there was a new one: icosahedral particles of approximately 25 nm in diameter. The purified particles were further separated by gel-filtration chromatography (GFC) linking with HPLC, which was able to resolve the isometric from icosahedral particles better than ultracentrifugation. Chromatographic results indicate that rVPXH protein mainly involved in the formation of the isometric particle structure and occasionally twisted tubular structure, and the icosahedral particles were formed by the degraded products of rVPXH (VP2-like proteins). Thus, by combining IMAC and GFC, it was shown that VPX was processed efficiently to yield VP2-like protein that could form small virus-like particles in Hi-5 cells. Finally, we demonstrated that virus-neutralizing antibodies were induced when susceptible chickens were vaccinated with the IMAC-purified rVPXH protein (40 microg per bird). This indicates that these particles are highly immunogenic and might serve as an alternative vaccine candidate for the development of IBDV subunit vaccine.
Collapse
Affiliation(s)
- Meng-Shiou Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227, ROC
| | | | | | | |
Collapse
|
29
|
Zierenberg K, Raue R, Nieper H, Islam MR, Eterradossi N, Toquin D, Müller H. Generation of serotype 1/serotype 2 reassortant viruses of the infectious bursal disease virus and their investigation in vitro and in vivo. Virus Res 2005; 105:23-34. [PMID: 15325078 DOI: 10.1016/j.virusres.2004.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 04/13/2004] [Accepted: 04/19/2004] [Indexed: 11/28/2022]
Abstract
Infectious bursal disease virus (IBDV) is the causative agent of acute or immunosuppressive disease in chickens. Serotype 1 strains are pathogenic whereas serotype 2 strains neither cause disease nor protect against infection with the serotype 1 strains. The target organ of serotype 1 strains is the bursa Fabricii (BF). The molecular determinants of this tropism, and therefore pathogenicity, are poorly understood. IBDV is a non-enveloped icosahedral virus particle of 60 nm in diameter, which contains two genome segments of double-stranded RNA. Here, the generation of interserotypic reassortants using the reverse genetics approach is reported. The results of in vitro and in vivo investigations show that genome segment A determines the bursa tropism of IBDV, whereas segment B is involved in the efficiency of viral replication; they further indicate the significance of the interaction of the polymerase (segment B) with the structural protein VP3 (segment A) or the viral genome for efficient virus formation and replication.
Collapse
Affiliation(s)
- Kati Zierenberg
- Faculty of Veterinary Medicine, Institute for Virology, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Villanueva RA, Galaz JL, Valdés JA, Jashés MM, Sandino AM. Genome assembly and particle maturation of the birnavirus infectious pancreatic necrosis virus. J Virol 2004; 78:13829-38. [PMID: 15564491 PMCID: PMC533905 DOI: 10.1128/jvi.78.24.13829-13838.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 08/11/2004] [Indexed: 11/20/2022] Open
Abstract
In this study, we have analyzed the morphogenesis of the birnavirus infectious pancreatic necrosis virus throughout the infective cycle in CHSE-214 cells by using a native agarose electrophoresis system. Two types of viral particles (designated A and B) were identified, isolated, and characterized both molecularly and biologically. Together, our results are consistent with a model of morphogenesis in which the genomic double-stranded RNA is immediately assembled, after synthesis, into a large (66-nm diameter) and uninfectious particle A, where the capsid is composed of both mature and immature viral polypeptides. Upon maturation, particles A yield particles B through the proteolytic cleavage of most of the remaining viral precursors within the capsid, the compaction of the particle (60-nm diameter), and the acquisition of infectivity. These studies will provide the foundation for further analyses of birnavirus particle assembly and RNA replication.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- Laboratorio de Virología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| | | | | | | | | |
Collapse
|
31
|
Galloux M, Chevalier C, Henry C, Huet JC, Costa BD, Delmas B. Peptides resulting from the pVP2 C-terminal processing are present in infectious pancreatic necrosis virus particles. J Gen Virol 2004; 85:2231-2236. [PMID: 15269363 DOI: 10.1099/vir.0.80012-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The capsid of birnaviruses contains two proteins, VP2 and VP3, which derive from the processing of a large polyprotein, NH(2)-pVP2-VP4-VP3-COOH. The proteolytic cascade involved in processing the polyprotein, and in the final maturation of pVP2 (the precursor of VP2), has recently been shown to generate VP2 and four structural peptides in infectious bursal disease virus and blotched snakehead virus. The presence of peptides in infectious pancreatic necrosis virus particles was investigated using mass spectrometry and N-terminal sequencing of virus particles. Three peptides deriving from the C terminus of pVP2 (residues 443-486, 487-495 and 496-508 of the polyprotein) and 14 additional peptides produced by further processing of peptides [443-486] and [496-508] were identified. These results indicate that the presence of several virus-encoded peptides in the virions is a hallmark of birnaviruses.
Collapse
Affiliation(s)
- Marie Galloux
- Unité de Virologie et Immunologie Moléculaires, INRA, F-78350 Jouy-en-Josas, France
| | - Christophe Chevalier
- Unité de Virologie et Immunologie Moléculaires, INRA, F-78350 Jouy-en-Josas, France
| | - Celine Henry
- Unité de Biochimie et Structure des Protéines, INRA, F-78350 Jouy-en-Josas, France
| | - Jean-Claude Huet
- Unité de Biochimie et Structure des Protéines, INRA, F-78350 Jouy-en-Josas, France
| | - Bruno Da Costa
- Unité de Virologie et Immunologie Moléculaires, INRA, F-78350 Jouy-en-Josas, France
| | - Bernard Delmas
- Unité de Virologie et Immunologie Moléculaires, INRA, F-78350 Jouy-en-Josas, France
| |
Collapse
|
32
|
von Einem UI, Gorbalenya AE, Schirrmeier H, Behrens SE, Letzel T, Mundt E. VP1 of infectious bursal disease virus is an RNA-dependent RNA polymerase. J Gen Virol 2004; 85:2221-2229. [PMID: 15269362 DOI: 10.1099/vir.0.19772-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Segment B of the bisegmented, double-stranded RNA genome of infectious bursal disease virus (IBDV) encodes the viral protein VP1. This has been presumed to represent the RNA-dependent RNA polymerase (RdRp) as it contains motifs that are typical for the RdRp of plus-strand RNA viruses. Here it is demonstrated that baculovirus-expressed wild-type but not motif A mutated VP1 acts as an RdRp on IBDV-specific RNA templates. Thus, on a plus-strand IBDV segment A cRNA template, minus-strand synthesis occurred in such a way that a covalently linked double-stranded RNA product was generated (by a 'copy-back' mechanism). Importantly, enzyme activity was observed only with templates that comprised the 3' non-coding region of plus-strand RNAs transcribed from IBDV segments A and B, indicating template specificity. RdRp activity was shown to have a temperature optimum of 37 degrees C and required magnesium ions for enzyme activity. Thus, it has been demonstrated unequivocally that VP1 represents the RdRp of IBDV.
Collapse
Affiliation(s)
- Ursula I von Einem
- Institute of Molecular Biology, Federal Research Centre for Viral Diseases of Animals, Boddenblick 5a, 17493 Greifswald-Insel Riems, Germany
| | - Alexander E Gorbalenya
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Horst Schirrmeier
- Institute for Diagnostic Virology, Federal Research Centre for Viral Diseases of Animals, Boddenblick 5a, 17493 Greifswald-Insel Riems, Germany
| | - Sven-Erik Behrens
- Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | - Tobias Letzel
- Institute of Molecular Biology, Federal Research Centre for Viral Diseases of Animals, Boddenblick 5a, 17493 Greifswald-Insel Riems, Germany
| | - Egbert Mundt
- Institute of Molecular Biology, Federal Research Centre for Viral Diseases of Animals, Boddenblick 5a, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
33
|
Chen MH, Icenogle JP. Rubella virus capsid protein modulates viral genome replication and virus infectivity. J Virol 2004; 78:4314-22. [PMID: 15047844 PMCID: PMC374250 DOI: 10.1128/jvi.78.8.4314-4322.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The structural proteins (SP) of the Togaviridae can be deleted in defective interfering RNAs. The dispensability of viral SP has allowed construction of noninfectious viral expression vectors and replicons from viruses of the Alphavirus and Rubivirus genera. Nevertheless, in this study, we found that the SP of rubella virus (RUB) could enhance expression of reporter genes from RUB replicons in trans. SP enhancement required capsid protein (CP) expression and was not due to RNA-RNA recombination. Accumulation of minus- and plus-strand RNAs from replicons was observed in the presence of SP, suggesting that SP specifically affects RNA synthesis. By using replicons containing an antibiotic resistance gene, we found 2- to 50-fold increases in the number of cells surviving selection in the presence of SP. The increases depended significantly on the amount of transfected RNA. Small amounts of RNA or templates that replicated inefficiently showed more enhancement. The infectivity of infectious RNA was increased by at least 10-fold in cells expressing CP. Moreover, virus infectivity was greatly enhanced in such cells. In other cells that expressed higher levels of CP, RNA replication of replicons was inhibited. Thus, depending on conditions, CP can markedly enhance or inhibit RUB RNA replication.
Collapse
Affiliation(s)
- Min-Hsin Chen
- Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | |
Collapse
|
34
|
Dieye Y, Hoekman AJW, Clier F, Juillard V, Boot HJ, Piard JC. Ability of Lactococcus lactis to export viral capsid antigens: a crucial step for development of live vaccines. Appl Environ Microbiol 2004; 69:7281-8. [PMID: 14660377 PMCID: PMC309906 DOI: 10.1128/aem.69.12.7281-7288.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The food grade bacterium Lactococcus lactis is a potential vehicle for protein delivery in the gastrointestinal tract. As a model, we constructed lactococcal strains producing antigens of infectious bursal disease virus (IBDV). IBDV infects chickens and causes depletion of B-lymphoid cells in the bursa of Fabricius and subsequent immunosuppression, morbidity, or acute mortality. The two major IBDV antigens, i.e., VP2 and VP3, that form the viral capsid were expressed and targeted to the cytoplasm, the cell wall, or the extracellular compartment of L. lactis. Whereas VP3 was successfully targeted to the three compartments by the use of relevant expression and export vectors, VP2 was recalcitrant to export, thus confirming the difficulty of translocating naturally nonsecreted proteins across the bacterial membrane. This defect could be partly overcome by fusing VP2 to a naturally secreted protein (the staphylococcal nuclease Nuc) that carried VP2 through the membrane. Lactococcal strains producing Nuc-VP2 and VP3 in various bacterial compartments were administered orally to chickens. The chickens did not develop any detectable immune response against VP2 and VP3 but did exhibit an immune response against Nuc when Nuc-VP2 was anchored to the cell wall of lactococci.
Collapse
Affiliation(s)
- Yakhya Dieye
- Useful Bacterial Surface Proteins, INRA-URLGA, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | | | |
Collapse
|
35
|
Chevalier C, Lepault J, Da Costa B, Delmas B. The last C-terminal residue of VP3, glutamic acid 257, controls capsid assembly of infectious bursal disease virus. J Virol 2004; 78:3296-303. [PMID: 15016850 PMCID: PMC371077 DOI: 10.1128/jvi.78.7.3296-3303.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is a nonenveloped virus with an icosahedral capsid composed of two proteins, VP2 and VP3, that derive from the processing of the polyprotein NH(2)-pVP2-VP4-VP3-COOH. The virion contains VP1, the viral polymerase, which is both free and covalently linked to the two double-stranded RNA (dsRNA) genomic segments. In this study, the virus assembly process was studied further with the baculovirus expression system. While expression of the wild-type polyprotein was not found to be self-sufficient to give rise to virus-like particles (VLPs), deletion or replacement of the five C-terminal residues of VP3 was observed to promote capsid assembly. Indeed, the single deletion of the C-terminal glutamic acid was sufficient to induce VLP formation. Moreover, fusion of various peptides or small proteins (a green fluorescent protein or a truncated form of ovalbumin) at the C terminus of VP3 also promoted capsid assembly, suggesting that assembly required screening of the negative charges at the C terminus of VP3. The fused polypeptides mimicked the effect of VP1, which interacts with VP3 to promote VLP assembly. The C-terminal segment of VP3 was found to contain two functional domains. While the very last five residues of VP3 mainly controlled both assembly and capsid architecture, the five preceding residues constituted the VP1 (and possibly the pVP2/VP2) binding domain. Finally, we showed that capsid formation is associated with VP2 maturation, demonstrating that the protease VP4 is involved in the virus assembly process.
Collapse
Affiliation(s)
- Christophe Chevalier
- Unité de Recherche de Virologie et Immunologie Moléculaires, INRA, F-78350 Jouy-en-Josas, France
| | | | | | | |
Collapse
|
36
|
Oña A, Luque D, Abaitua F, Maraver A, Castón JR, Rodríguez JF. The C-terminal domain of the pVP2 precursor is essential for the interaction between VP2 and VP3, the capsid polypeptides of infectious bursal disease virus. Virology 2004; 322:135-42. [PMID: 15063123 DOI: 10.1016/j.virol.2004.01.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 01/22/2004] [Accepted: 01/22/2004] [Indexed: 11/26/2022]
Abstract
The interaction between the infectious bursal disease virus (IBDV) capsid proteins VP2 and VP3 has been analyzed in vivo using baculovirus expression vectors. Data presented here demonstrate that the 71-amino acid C-terminal-specific domain of pVP2, the VP2 precursor, is essential for the establishment of the VP2-VP3 interaction. Additionally, we show that coexpression of the pVP2 and VP3 polypeptides from independent genes results in the assembly of virus-like particles (VLPs). This observation demonstrates that these two polypeptides contain the minimal information required for capsid assembly, and that this process does not require the presence of the precursor polyprotein.
Collapse
Affiliation(s)
- Ana Oña
- Department of Biología Molecular y Celular, Centro Nacional de Biotecnología, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Müller H, Islam MR, Raue R. Research on infectious bursal disease--the past, the present and the future. Vet Microbiol 2004; 97:153-65. [PMID: 14637046 DOI: 10.1016/j.vetmic.2003.08.005] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Infectious bursal disease (IBD) virus (IBDV) is the etiological agent of "Gumboro disease". Although first observed about 40 years ago, this disease continues to pose an important threat to the commercial poultry industry. The emergence of antigenic variant as well as very virulent strains in vaccinated flocks considerably stimulated research efforts on both, IBD and IBDV. In this review, some of the recent advances in the understanding of the structure, morphogenesis and molecular biology of the virus as well as in development of new diagnostic approaches and new strategies for vaccination against IBD are briefly summarized.
Collapse
Affiliation(s)
- Hermann Müller
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany.
| | | | | |
Collapse
|
38
|
Li J, Huang Y, Liang X, Lu M, Li L, Yu L, Deng R. Plasmid DNA encoding antigens of infectious bursal disease viruses induce protective immune responses in chickens: factors influencing efficacy. Virus Res 2003; 98:63-74. [PMID: 14609631 DOI: 10.1016/j.virusres.2003.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete polyprotein (VP2/4/3) and VP2 genes of two infectious bursal disease viruses (IBDVs) (one attenuated strain JD1 and one virulent strain ZJ2000) were amplified by long and accurate polymerase chain reaction (LA-PCR), cloned, sequenced and inserted into plasmids pCI and pcDNA3 under the control of human cytomegalovirus (hCMV) immediate early enhancer and promoter. A series of DNA vaccine preparations were made using liposome as the adjuvant to examine their immunogenicity. Although VP2 is the main protective immunogen of IBDV, DNA encoding VP2 initiated a very low level of neutralizing antibody and only protected chickens from clinical outbreak and morality, but not bursal damage. In contrast, DNA encoding VP2/4/3 induced neutralizing antibody and satisfactory protection against virulent IBDV. Recombinant plasmids encoding the polyprotein gene of strain ZJ2000 were more efficient at inducing an immune response than that of strain JD1. Polyprotein expressed by the pCI vector induced better immune response than that expressed by the pcDNA3. Delivery of DNA through intramuscular and/or intradermal routes elicited much higher protective responses than that of oral and eyedrop routes. Most of the chickens vaccinated with high doses of DNA were protected from challenge. Additionally, the immune response to the DNA vaccine was significantly enhanced by a liposome adjuvant. These results indicate that the source of the target genes (from different IBDV strains), the eukaryotic expression vector, the adjuvant, the delivery route and the dosage might play a role of varying degree in influencing the efficacy of the DNA vaccine against IBDV.
Collapse
Affiliation(s)
- Jianrong Li
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, PR China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Kim TK, Yeo SG. Expression of VP2 gene protein of infectious bursal disease virus detected in Korea. Virus Genes 2003; 27:75-81. [PMID: 12913360 DOI: 10.1023/a:1025128619976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The VP2 gene DNA (1.4 kb in approximate) of a very virulent infectious bursal disease virus (vvIBDV) Chinju strain detected in Chinju, Korea was cloned into the bacmid, a baculovirus shuttle vector, through transposition of the gene from initially cloned pFastBacHTa plasmid, a baculovirus expression vector, and was subsequently expressed in Spodoptera frugiperda (Sf) cells. Biological properties of the expressed VP2 subunit protein were characterized to aid in the development of genetically engineered diagnostic reagents and vaccines against the vvIVDV. When the VP2 DNA-recombinant bacmid was transfected and propagated in the Sf cells, the cells showed no occlusion formation, which is a positive evidence for the insertion of the VP2 DNA into the polyhedrin gene of the bacmid, whereas the occlusions were observed in the cells infected by the Autographa californica nuclear polyhedrosis virus, a wild baculovirus. The expression of VP2 DNA was identified by strong positive reaction in fluorescent antibody test using chicken anti-IBDV serum. The VP2 protein was determined as a polypeptide band with Mr of 48 kDa by the sodium dodecyl-polyacrylamide gel electrophoresis for the lysate of the Sf cells infected with the recombinant bacmid. The VP2 protein was successfully purified from the cell lysate by Ni-NTA affinity chromatography. The expressed VP2 subunit protein reacted specifically with chicken anti-IBDV serum in Western blotting.
Collapse
Affiliation(s)
- Toh-Kyung Kim
- Gyeongnam Livestock Promotion Institute, Chinju 660-985, South Korea
| | | |
Collapse
|
40
|
Tacken MGJ, Van Den Beuken PAJ, Peeters BPH, Thomas AAM, Rottier PJM, Boot HJ. Homotypic interactions of the infectious bursal disease virus proteins VP3, pVP2, VP4, and VP5: mapping of the interacting domains. Virology 2003; 312:306-19. [PMID: 12919736 DOI: 10.1016/s0042-6822(03)00206-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Infectious bursal disease virus (IBDV), a nonenveloped double-stranded RNA virus of chicken, encodes five proteins. Of these, the RNA-dependent RNA polymerase (VP1) is specified by the smaller genome segment, while the large segment directs synthesis of a nonstructural protein (VP5) and a structural protein precursor from which the capsid proteins pVP2 and VP3 as well as the viral protease VP4 are derived. Using the recently redefined processing sites of the precursor, we have reevaluated the homotypic interactions of the viral proteins using the yeast two-hybrid system. Except for VP1, which interacted weakly, all proteins appeared to self-associate strongly. Using a deletion mutagenesis approach, we subsequently mapped the interacting domains in these polypeptides, where possible confirming the observations made in the two-hybrid system by performing coimmunoprecipitation analyses of tagged protein constructs coexpressed in avian culture cells. The results revealed that pVP2 possesses multiple interaction domains, consistent with available structural information about this external capsid protein. VP3-VP3 interactions were mapped to the amino-terminal part of the polypeptide. Interestingly, this domain is distinct from two other interaction domains occurring in this internal capsid protein: while binding to VP1 has been mapped to the carboxy-terminal end of the protein, interaction with the genomic dsRNA segments has been suggested to occur just upstream thereof. No interaction sites could be assigned to the VP4 protein; any deletion applied abolished its self-association. Finally, one interaction domain was detected in the central, most hydrophobic region of VP5, supporting the idea that this virulence determinant may function as a membrane pore-forming protein in infected cells.
Collapse
Affiliation(s)
- Mirriam G J Tacken
- Institute for Animal Science and Health (ID-Lelystad B.V.), Division of Infectious Diseases and Food Chain Quality, P.O. Box 65, NL-8200 AB Lelystad, The Netherlands.
| | | | | | | | | | | |
Collapse
|
41
|
Maraver A, Oña A, Abaitua F, González D, Clemente R, Ruiz-Díaz JA, Castón JR, Pazos F, Rodriguez JF. The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role in capsid assembly. J Virol 2003; 77:6438-49. [PMID: 12743301 PMCID: PMC155005 DOI: 10.1128/jvi.77.11.6438-6449.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bursal disease virus (IBDV) capsids are formed by a single protein layer containing three polypeptides, pVP2, VP2, and VP3. Here, we show that the VP3 protein synthesized in insect cells, either after expression of the complete polyprotein or from a VP3 gene construct, is proteolytically degraded, leading to the accumulation of product lacking the 13 C-terminal residues. This finding led to identification of the VP3 oligomerization domain within a 24-amino-acid stretch near the C-terminal end of the polypeptide, partially overlapping the VP1 binding domain. Inactivation of the VP3 oligomerization domain, by either proteolysis or deletion of the polyprotein gene, abolishes viruslike particle formation. Formation of VP3-VP1 complexes in cells infected with a dual recombinant baculovirus simultaneously expressing the polyprotein and VP1 prevented VP3 proteolysis and led to efficient virus-like particle formation in insect cells.
Collapse
Affiliation(s)
- Antonio Maraver
- Department of Biología Molecular y Celular, Centro Nacional de Biotecnología, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Maraver A, Clemente R, Rodríguez JF, Lombardo E. Identification and molecular characterization of the RNA polymerase-binding motif of infectious bursal disease virus inner capsid protein VP3. J Virol 2003; 77:2459-68. [PMID: 12551984 PMCID: PMC141113 DOI: 10.1128/jvi.77.4.2459-2468.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is the causative agent of one of the most important infectious poultry diseases. Major aspects of the molecular biology of IBDV, such as assembly and replication, are as yet poorly understood. We have previously shown that encapsidation of the putative virus-encoded RNA-dependent RNA polymerase VP1 is mediated by its interaction with the inner capsid protein VP3. Here, we report the characterization of the VP1-VP3 interaction. RNase A treatment of VP1- and VP3-containing extracts does not affect the formation of VP1-VP3 complexes, indicating that formation of the complex requires the establishment of protein-protein interactions. The use of a set of VP3 deletion mutants allowed the mapping of the VP1 binding motif of VP3 within a highly charged 16-amino-acid stretch on the C terminus of VP3. This region of VP3 is sufficient to confer VP1 binding activity when fused to an unrelated protein. Furthermore, a peptide corresponding to the VP1 binding region of VP3 specifically inhibits the formation of VP1-VP3 complexes. The presence of Trojan peptides containing the VP1 binding motif in IBDV-infected cells specifically reduces infective virus production, thus showing that formation of VP1-VP3 complexes plays a critical role in IBDV replication.
Collapse
Affiliation(s)
- Antonio Maraver
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Tacken MGJ, Peeters BPH, Thomas AAM, Rottier PJM, Boot HJ. Infectious bursal disease virus capsid protein VP3 interacts both with VP1, the RNA-dependent RNA polymerase, and with viral double-stranded RNA. J Virol 2002; 76:11301-11. [PMID: 12388690 PMCID: PMC136741 DOI: 10.1128/jvi.76.22.11301-11311.2002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is a double-stranded RNA (dsRNA) virus of the Birnaviridae family. Its two genome segments are encapsidated together with multiple copies of the viral RNA-dependent RNA polymerase, VP1, in a single-shell capsid that is composed of VP2 and VP3. In this study we identified the domains responsible for the interaction between VP3 and VP1. Using the yeast two-hybrid system we found that VP1 binds to VP3 through an internal domain, while VP3 interacts with VP1 solely by its carboxy-terminal 10 amino acids. These results were confirmed by using a reverse-genetics system that allowed us to analyze the interaction of carboxy-terminally truncated VP3 molecules with VP1 in infected cells. Coimmunoprecipitations with VP1- and VP3-specific antibodies revealed that the interaction is extremely sensitive to truncation of VP3. The mere deletion of the C-terminal residue reduced coprecipitation almost completely and also fully abolished production of infectious virions. Surprisingly, these experiments additionally revealed that VP3 also binds to RNA. RNase treatments and reverse transcription-PCR analyses of the immunoprecipitates demonstrated that VP3 interacts with dsRNA of both viral genome segments. This interaction is not mediated by the carboxy-terminal domain of VP3 since C-terminal truncations of 1, 5, or 10 residues did not prevent formation of the VP3-dsRNA complexes. VP3 seems to be the key organizer of birnavirus structure, as it maintains critical interactions with all components of the viral particle: itself, VP2, VP1, and the two genomic dsRNAs.
Collapse
Affiliation(s)
- Mirriam G J Tacken
- Division of Infectious Diseases and Food Chain Quality, Institute for Animal Science and Health (ID-Lelystad B.V.), NL-8200 AB Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Boot HJ, ter Huurne AAHM, Hoekman AJW, Pol JM, Gielkens ALJ, Peeters BPH. Exchange of the C-terminal part of VP3 from very virulent infectious bursal disease virus results in an attenuated virus with a unique antigenic structure. J Virol 2002; 76:10346-55. [PMID: 12239311 PMCID: PMC136561 DOI: 10.1128/jvi.76.20.10346-10355.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is the major viral pathogen in the poultry industry. Live attenuated serotype 1 vaccine strains are commonly used to protect susceptible chickens during their first 6 weeks of life. Wild-type serotype 1 IBDV strains are highly pathogenic only in chickens, whereas serotype 2 strains are apathogenic in chickens and other birds. Here we describe the replacement of the genomic double-stranded RNA (dsRNA) encoding the N- or C-terminal part of VP3 of serotype 1 very virulent IBDV (vvIBDV) (isolate D6948) with the corresponding part of serotype 2 (isolate TY89) genomic dsRNA. The modified virus containing the C-terminal part of serotype 2 VP3 significantly reduced the virulence in specific-pathogen-free chickens, without affecting the distinct bursa tropism of serotype 1 IBDV strains. Furthermore, by using serotype-specific antibodies we were able to distinguish bursas infected with wild-type vvIBDV from bursas infected with the modified vvIBDV. We are currently evaluating the potential of this recombinant strain as an attenuated live vaccine that induces a unique serological response (i.e., an IBDV marker vaccine).
Collapse
Affiliation(s)
- Hein J Boot
- Institute for Animal Science and Health, ID-Lelystad, PO Box 65, NL-8200 AB Lelystad, The Netherlands.
| | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- E Sadowy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
46
|
Da Costa B, Chevalier C, Henry C, Huet JC, Petit S, Lepault J, Boot H, Delmas B. The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2. J Virol 2002; 76:2393-402. [PMID: 11836417 PMCID: PMC135936 DOI: 10.1128/jvi.76.5.2393-2402.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2001] [Accepted: 11/28/2001] [Indexed: 01/01/2023] Open
Abstract
The capsid proteins VP2 and VP3 of infectious bursal disease virus, a birnavirus, are derived from the processing of a large polyprotein: NH2-pVP2-VP4-VP3-COOH. Although the primary cleavage sites at the pVP2-VP4 and VP4-VP3 junctions have been identified, the proteolytic cascade involved in the processing of this polyprotein is not yet fully understood, particularly the maturation of pVP2. By using different approaches, we showed that the processing of pVP2 (residues 1 to 512) generated VP2 and four small peptides (residues 442 to 487, 488 to 494, 495 to 501, and 502 to 512). We also showed that in addition to VP2, at least three of these peptides (residues 442 to 487, 488 to 494, and 502 to 512) were associated with the viral particles. The importance of the small peptides in the virus cycle was assessed by reverse genetics. Our results showed that the mutants lacking the two smaller peptides were viable, although the virus growth was affected. In contrast, deletions of the domain 442 to 487 or 502 to 512 did not allow virus recovery. Several amino acids of the peptide 502 to 512 appeared essential for virus viability. Substitutions of the P1 and/or P1" position were engineered at each of the cleavage sites (P1-P1": 441-442, 487-488, 494-495, 501-502, and 512-513). Most substitutions at the pVP2-VP4 junction (512-513) and at the final VP2 maturation cleavage site (441-442) were lethal. Mutations of intermediate cleavage sites (487-488, 494-495, and 501-502) led to viable viruses showing different but efficient pVP2 processing. Our data suggested that while peptides 488 to 494 and 495 to 501 play an accessory role, peptides 442 to 487 and 502 to 512 have an unknown but important function within the virus cycle.
Collapse
Affiliation(s)
- Bruno Da Costa
- Unité de Virologie et Immunologie Moléculaires. Unité de Biochimie et Structure des Protéines, Institut National de la Recherche Agronomique, F-78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Castón JR, Martínez-Torrecuadrada JL, Maraver A, Lombardo E, Rodríguez JF, Casal JI, Carrascosa JL. C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly. J Virol 2001; 75:10815-28. [PMID: 11602723 PMCID: PMC114663 DOI: 10.1128/jvi.75.22.10815-10828.2001] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus. The IBDV capsid is formed by two major structural proteins, VP2 and VP3, which assemble to form a T=13 markedly nonspherical capsid. During viral infection, VP2 is initially synthesized as a precursor, called VPX, whose C end is proteolytically processed to the mature form during capsid assembly. We have computed three-dimensional maps of IBDV capsid and virus-like particles built up by VP2 alone by using electron cryomicroscopy and image-processing techniques. The IBDV single-shelled capsid is characterized by the presence of 260 protruding trimers on the outer surface. Five classes of trimers can be distinguished according to their different local environments. When VP2 is expressed alone in insect cells, dodecahedral particles form spontaneously; these may be assembled into larger, fragile icosahedral capsids built up by 12 dodecahedral capsids. Each dodecahedral capsid is an empty T=1 shell composed of 20 trimeric clusters of VP2. Structural comparison between IBDV capsids and capsids consisting of VP2 alone allowed the determination of the major capsid protein locations and the interactions between them. Whereas VP2 forms the outer protruding trimers, VP3 is found as trimers on the inner surface and may be responsible for stabilizing functions. Since elimination of the C-terminal region of VPX is correlated with the assembly of T=1 capsids, this domain might be involved (either alone or in cooperation with VP3) in the induction of different conformations of VP2 during capsid morphogenesis.
Collapse
Affiliation(s)
- J R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Lombardo E, Maraver A, Espinosa I, Fernández-Arias A, Rodriguez JF. VP5, the nonstructural polypeptide of infectious bursal disease virus, accumulates within the host plasma membrane and induces cell lysis. Virology 2000; 277:345-57. [PMID: 11080482 DOI: 10.1006/viro.2000.0595] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infectious bursal disease virus (IBDV) encodes a 17-kDa nonstructural polypeptide known as VP5. This polypeptide is not essential for virus replication in vitro but it plays an important role in in vivo dissemination and pathogenesis. We have characterized the expression of VP5 in three eukaryotic systems: (i) IBDV-infected chicken embryo fibroblasts; (ii) BSC-1 cells infected with a recombinant vaccinia virus vector; and (iii) Cos-1 cells transiently transfected with a plasmid vector. Immunofluorescence analyses showed that upon expression VP5 accumulates within the plasma membrane. This finding was consistent with sequence-based topology predictions, indicating that VP5 is a class II membrane protein with a cytoplasmic N-terminus and an extracellular C-terminal domain. Brefeldin A treatment of VP5-expressing cells prevented the accumulation of this polypeptide in the plasma membrane, thus showing the requirement of an active exocytic pathway to reach that compartment. Expression of VP5 was shown to be highly cytotoxic. Induction of VP5 expression resulted in the alteration of cell morphology, the disruption of the plasma membrane, and a drastic reduction of cell viability. VP5-induced cytotoxicity was prevented by blocking its transport to the membrane with Brefeldin A. Our findings suggest that VP5 plays an important role in the release of the IBDV progeny.
Collapse
Affiliation(s)
- E Lombardo
- Department of Biología Molecular y Celular, Centro Nacional de Biotecnología, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
Boot HJ, ter Huurne AA, Hoekman AJ, Peeters BP, Gielkens AL. Rescue of very virulent and mosaic infectious bursal disease virus from cloned cDNA: VP2 is not the sole determinant of the very virulent phenotype. J Virol 2000; 74:6701-11. [PMID: 10888607 PMCID: PMC112185 DOI: 10.1128/jvi.74.15.6701-6711.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many recent outbreaks of infectious bursal disease in commercial chicken flocks worldwide are due to the spread of very virulent strains of infectious bursal disease virus (vvIBDV). The molecular determinants for the enhanced virulence of vvIBDV compared to classical IBDV are unknown. The lack of a reverse genetics system to rescue vvIBDV from its cloned cDNA hampers the identification and study of these determinants. In this report we describe, for the first time, the rescue of vvIBDV from its cloned cDNA. Two plasmids containing a T7 promoter and either the full-length A- or B-segment cDNA of vvIBDV (D6948) were cotransfected into QM5 cells expressing T7 polymerase. The presence of vvIBDV could be detected after passage of the transfection supernatant in either primary bursa cells (in vitro) or embryonated eggs (in vivo), but not QM5 cells. Rescued vvIBDV (rD6948) appeared to have the same virulence as the parental isolate, D6948. Segment-reassorted IBDV, in which one of the two genomic segments originated from cDNA of classical attenuated IBDV CEF94 and the other from D6948, could also be rescued by using this system. Segment-reassorted virus containing the A segment of the classical attenuated isolate (CEF94) and the B segment of the very virulent isolate (D6948) is not released until 15 h after an in vitro infection. This indicates a slightly retarded replication, as the first release of CEF94 is already found at 10 h after infection. Next to segment reassortants, we generated and analyzed mosaic IBDVs (mIBDVs). In these mIBDVs we replaced the region of CEF94 encoding one of the viral proteins (pVP2, VP3, or VP4) by the corresponding region of D6948. Analysis of these mIBDV isolates showed that tropism for non-B-lymphoid cells was exclusively determined by the viral capsid protein VP2. However, the very virulent phenotype was not solely determined by this protein, since mosaic virus containing VP2 of vvIBDV induced neither morbidity nor mortality in young chickens.
Collapse
Affiliation(s)
- H J Boot
- Department of Avian Virology, Institute for Animal Science and Health, Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|