1
|
Niewiesk S. Maternal antibodies: clinical significance, mechanism of interference with immune responses, and possible vaccination strategies. Front Immunol 2014; 5:446. [PMID: 25278941 PMCID: PMC4165321 DOI: 10.3389/fimmu.2014.00446] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/01/2014] [Indexed: 01/28/2023] Open
Abstract
Neonates have an immature immune system, which cannot adequately protect against infectious diseases. Early in life, immune protection is accomplished by maternal antibodies transferred from mother to offspring. However, decaying maternal antibodies inhibit vaccination as is exemplified by the inhibition of seroconversion after measles vaccination. This phenomenon has been described in both human and veterinary medicine and is independent of the type of vaccine being used. This review will discuss the use of animal models for vaccine research. I will review clinical solutions for inhibition of vaccination by maternal antibodies, and the testing and development of potentially effective vaccines. These are based on new mechanistic insight about the inhibitory mechanism of maternal antibodies. Maternal antibodies inhibit the generation of antibodies whereas the T cell response is usually unaffected. B cell inhibition is mediated through a cross-link between B cell receptor (BCR) with the Fcγ-receptor IIB by a vaccine-antibody complex. In animal experiments, this inhibition can be partially overcome by injection of a vaccine-specific monoclonal IgM antibody. IgM stimulates the B cell directly through cross-linking the BCR via complement protein C3d and antigen to the complement receptor 2 (CR2) signaling complex. In addition, it was shown that interferon alpha binds to the CD21 chain of CR2 as well as the interferon receptor and that this dual receptor usage drives B cell responses in the presence of maternal antibodies. In lieu of immunizing the infant, the concept of maternal immunization as a strategy to protect neonates has been proposed. This approach would still not solve the question of how to immunize in the presence of maternal antibodies but would defer the time of infection to an age where infection might not have such a detrimental outcome as in neonates. I will review successful examples and potential challenges of implementing this concept.
Collapse
Affiliation(s)
- Stefan Niewiesk
- Department of Veterinary Biosciences, The Ohio State University , Columbus, OH , USA
| |
Collapse
|
2
|
Kim D, Niewiesk S. Synergistic induction of interferon α through TLR-3 and TLR-9 agonists stimulates immune responses against measles virus in neonatal cotton rats. Vaccine 2014; 32:265-70. [PMID: 24262312 PMCID: PMC4283819 DOI: 10.1016/j.vaccine.2013.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/22/2013] [Accepted: 11/06/2013] [Indexed: 12/27/2022]
Abstract
Immunization of neonates is problematic because of the immaturity of their immune system and the presence of maternal antibodies, both of which affect B cell responses. We tested the effects of co-administration of measles vaccine with a combination of TLR-3 (pI:C) and TLR-9 (ODN2216, optimized for human TLR-9) agonists on the ability to induce an effective immune response in neonatal cotton rats. TLR-9 expression in cotton rat lymphocytes was at the same low level as in human lymphocytes, which is in contrast to mice that express higher levels. TLR-3 expression levels were comparable between cotton rats, mice, and humans. A combination of TLR-3 and TLR-9 agonists synergistically induced high levels of type I interferon in neonatal spleen cells and higher levels of IL-10 as compared to adult spleen cells. Previously, it was shown that type I interferon stimulates B cell generation and antibody secretion in vitro and in vivo, and that IL-10 has immunomodulatory effects. The simultaneous induction of both type I interferon and IL-10 indicated that this immunization regimen could be both effective and safe. Neonatal cotton rats did not generate neutralizing antibodies after measles vaccination in the first week of life (although a T cell response was detectable). However, co-administration of the TLR-3 and TLR-9 agonist combination with measles vaccine in neonatal cotton rats induced neutralizing antibody responses comparable to those after adult immunization. This immunization regimen was also effective in neonatal cotton rats in the presence of natural maternal antibodies, although antibody titers were lower than those after immunization in the absence of maternal antibodies.
Collapse
Affiliation(s)
- Dhohyung Kim
- Department of Veterinary Biosciences, Ohio State University, Columbus 43210, Ohio, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, Ohio State University, Columbus 43210, Ohio, USA.
| |
Collapse
|
3
|
Kosinska AD, Zhang E, Johrden L, Liu J, Seiz PL, Zhang X, Ma Z, Kemper T, Fiedler M, Glebe D, Wildner O, Dittmer U, Lu M, Roggendorf M. Combination of DNA prime--adenovirus boost immunization with entecavir elicits sustained control of chronic hepatitis B in the woodchuck model. PLoS Pathog 2013; 9:e1003391. [PMID: 23785279 PMCID: PMC3681757 DOI: 10.1371/journal.ppat.1003391] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/15/2013] [Indexed: 12/21/2022] Open
Abstract
A potent therapeutic T-cell vaccine may be an alternative treatment of chronic hepatitis B virus (HBV) infection. Previously, we developed a DNA prime-adenovirus (AdV) boost vaccination protocol that could elicit strong and specific CD8+ T-cell responses to woodchuck hepatitis virus (WHV) core antigen (WHcAg) in mice. In the present study, we first examined whether this new prime-boost immunization could induce WHcAg-specific T-cell responses and effectively control WHV replication in the WHV-transgenic mouse model. Secondly, we evaluated the therapeutic effect of this new vaccination strategy in chronically WHV-infected woodchucks in combination with a potent antiviral treatment. Immunization of WHV-transgenic mice by DNA prime-AdV boost regimen elicited potent and functional WHcAg-specific CD8+ T-cell response that consequently resulted in the reduction of the WHV load below the detection limit in more than 70% of animals. The combination therapy of entecavir (ETV) treatment and DNA prime-AdV boost immunization in chronic WHV carriers resulted in WHsAg- and WHcAg-specific CD4+ and CD8+ T-cell responses, which were not detectable in ETV-only treated controls. Woodchucks receiving the combination therapy showed a prolonged suppression of WHV replication and lower WHsAg levels compared to controls. Moreover, two of four immunized carriers remained WHV negative after the end of ETV treatment and developed anti-WHs antibodies. These results demonstrate that the combined antiviral and vaccination approach efficiently elicited sustained immunological control of chronic hepadnaviral infection in woodchucks and may be a new promising therapeutic strategy in patients. Chronic hepatitis B virus (HBV) infection is one of the major causes of liver cirrhosis and liver cancer worldwide. Recommended treatment regimens of chronic hepatitis B based on interferon alpha and nucleot(s)ide analogues do not lead to the satisfactory results. Over the last 20 years, continuous efforts have been undertaken to develop new immunotherapeutic approaches for the treatment of chronic hepatitis B, however, without satisfactory results. We proposed here that the combination of potent antivirals with a prime-boost vaccination protocol that is inducing appropriate virus-specific T-cell responses may restore immune control over HBV. To test this hypothesis we performed a proof-of-principle experiment using woodchucks, a widely accepted animal model of chronic HBV infection. We pretreated animals with entecavir to suppress viral replication and immunized them by a prime-boost regimen with DNA vaccines expressing woodchuck hepatitis virus (WHV) surface and core antigens and adenoviral vectors expressing WHV core antigen. Consistent with our hypothesis, the combination therapy achieved a stronger antiviral effect than the monotherapy alone, leading to sustained immunological control of chronic WHV infection and viral clearance in some animals. These data are encouraging and implicate the feasibility and usefulness of the immunotherapeutic strategies for the treatment of chronically HBV-infected patients.
Collapse
MESH Headings
- Adenoviridae
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Disease Models, Animal
- Hepatitis B Vaccines/genetics
- Hepatitis B Vaccines/immunology
- Hepatitis B Vaccines/pharmacology
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/prevention & control
- Humans
- Immunity, Cellular/drug effects
- Immunity, Cellular/genetics
- Immunity, Cellular/immunology
- Immunization, Secondary
- Marmota
- Mice
- Mice, Transgenic
- Vaccines, DNA/genetics
- Vaccines, DNA/microbiology
Collapse
Affiliation(s)
- Anna D. Kosinska
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Ejuan Zhang
- Institute of Virology, University Hospital of Essen, Essen, Germany
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Lena Johrden
- Department of Molecular and Medical Virology, Institute of Microbiology and Hygiene, Ruhr-University Bochum, Bochum, Germany
| | - Jia Liu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Pia L. Seiz
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, Justus-Liebig University, Giessen, Germany
| | - Xiaoyong Zhang
- Institute of Virology, University Hospital of Essen, Essen, Germany
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhiyong Ma
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Thekla Kemper
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Melanie Fiedler
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, Justus-Liebig University, Giessen, Germany
| | - Oliver Wildner
- Paul-Ehrlich-Institut, Division of Medical Biotechnology, Langen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Michael Roggendorf
- Institute of Virology, University Hospital of Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
4
|
DNA prime-adenovirus boost immunization induces a vigorous and multifunctional T-cell response against hepadnaviral proteins in the mouse and woodchuck model. J Virol 2012; 86:9297-310. [PMID: 22718818 DOI: 10.1128/jvi.00506-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Induction of hepatitis B virus (HBV)-specific cytotoxic T cells by therapeutic immunization may be a strategy to treat chronic hepatitis B. In the HBV animal model, woodchucks, the application of DNA vaccine expressing woodchuck hepatitis virus (WHV) core antigen (WHcAg) in combination with antivirals led to the prolonged control of viral replication. However, it became clear that the use of more potent vaccines is required to overcome WHV persistence. Therefore, we asked whether stronger and more functional T-cell responses could be achieved using the modified vaccines and an optimized prime-boost vaccination regimen. We developed a new DNA plasmid (pCGWHc) and recombinant adenoviruses (AdVs) showing high expression levels of WHcAg. Mice vaccinated with the improved plasmid pCGWHc elicited a stronger WHcAg-specific CD8(+) T-cell response than with the previously used vaccines. Using multicolor flow cytometry and an in vivo cytotoxicity assay, we showed that immunization in a DNA prime-AdV boost regimen resulted in an even more vigorous and functional T-cell response than immunization with the new plasmid alone. Immunization of naïve woodchucks with pCGWHc plasmid or AdVs induced a significant WHcAg-specific degranulation response prior to the challenge, this response had not been previously detected. Consistently, this response led to a rapid control of infection after the challenge. Our results demonstrate that high antigen expression levels and the DNA prime-AdV boost immunization improved the T-cell response in mice and induced significant T-cell responses in woodchucks. Therefore, this new vaccination strategy may be a candidate for a therapeutic vaccine against chronic HBV infection.
Collapse
|
5
|
Envelope-chimeric entry-targeted measles virus escapes neutralization and achieves oncolysis. Mol Ther 2011; 19:1813-20. [PMID: 21610701 DOI: 10.1038/mt.2011.92] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Measles virus (MV) is a promising vector for cancer therapy and multivalent vaccination, but high prevalence of pre-existing neutralizing antibodies may reduce therapeutic efficacy, particularly following systemic administration. MV has only one serotype, but here we show that its envelope glycoproteins can be exchanged with those of the closely related canine distemper virus (CDV), generating a chimeric virus capable of escaping neutralization. To target its entry, we displayed on the CDV attachment protein a single-chain antibody specific for a designated receptor. To enhance oncolytic efficacy we armed the virus with a prodrug convertase gene capable of locally activating chemotherapeutic prodrugs. The new virus achieved high titers, was genetically stable, and was resistant to neutralization by sera from both MV-immunized mice and MV-immune humans. The new virus targeted syngeneic murine tumor cells expressing the designated receptor implanted in immunocompetent mice, and synergized with a chemotherapeutic prodrug in a model of oncolysis. Importantly, the chimeric MV remained oncolytic when administered systemically even in the presence of anti-MV antibodies capable of abrogating the therapeutic efficacy of the parental, nonshielded MV. This work shows that targeting, arming, and shielding can be combined to generate a tumor-specific, neutralization-resistant virus that can synergize with chemotherapeutics.
Collapse
|
6
|
Pasetti MF, Ramirez K, Barry EM, Kotloff K, Levine MM. Measles DNA vaccine priming for young infants. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.provac.2010.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Abstract
The cotton rat (Sigmodon hispidus) model has proven to be a suitable small animal model for measles virus pathogenesis to fill the niche between tissue culture and studies in macaques. Similar to mice, inbred cotton rats are available in a microbiologically defined quality with an ever-increasing arsenal of reagents and methods available for the study of infectious diseases. Cotton rats replicate measles virus in the respiratory tract and (depending on virus strain) in lymphoid organs. They can be infected with vaccine, wild-type, and recombinant measles viruses and have been used to study viruses with genetic modifications. Other areas of study include efficacy testing of antivirals and vaccines. The cotton rat also has been an informative animal model to investigate measles virus-induced immune suppression and suppression of vaccination by maternal antibodies. In addition, the cotton rat promises to be a useful model for the study of polymicrobial disease (interaction between measles virus and secondary pathogens).
Collapse
Affiliation(s)
- S Niewiesk
- College of Veterinary Medicine, Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Dittmer U, Werner T, Kraft ARM. Co-immunization of mice with a retroviral DNA vaccine and GITRL-encoding plasmid augments vaccine-induced protection against retrovirus infection. Viral Immunol 2009; 21:459-67. [PMID: 19115935 DOI: 10.1089/vim.2008.0046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
After more than 30 years of research a HIV vaccine is still not at hand. DNA vectors expressing viral antigens are very safe vaccines, but so far they have not been efficient enough to induced broad protective immunity against retroviruses. One strategy to enhance the efficiency of DNA vaccines is to augment effector T-cell priming against viral components by manipulating regulatory T-cell functions (Treg). Glucocorticoid-induced tumor necrosis factor receptor (GITR) is a molecule that is constitutively expressed on CD4(+) Treg cells, and antibodies or natural ligands binding this molecule can impair Treg cell suppression. Here we demonstrate using the retroviral Friend virus (FV) mouse model, that co-immunization of FV antigens along with GITR-ligand (GITRL) encoding plasmids protected mice efficiently against a FV challenge. On the other hand, treatment of DNA-vaccinated mice with alpha-GITR antibody did not improve vaccine-induced protection at all. Thus, for an effective priming of immunity against FV, GITRL and viral antigens might have to be expressed within the same local environment. The data suggest that limitations in DNA vaccination can be overcome by co-expressing co-stimulatory molecules that potentially manipulate the function of Treg cells during priming of anti-retroviral immunity.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institut für Virologie des Universitätsklinikums Essen, Universität Duisburg-Essen, Essen, Germany
| | | | | |
Collapse
|
9
|
de Vries RD, Stittelaar KJ, Osterhaus ADME, de Swart RL. Measles vaccination: new strategies and formulations. Expert Rev Vaccines 2008; 7:1215-23. [PMID: 18844595 DOI: 10.1586/14760584.7.8.1215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Measles is a highly contagious viral disease. With 1 million deaths reported in 1996, measles was the leading cause of vaccine-preventable deaths. However, in recent years, significant progress has been made in measles control, reducing deaths attributed to measles to 454,000 in 2004 and 242,000 in 2006. The main strategy behind this reduction has been the improvement of vaccination coverage and implementation of a second opportunity for immunization with the live-attenuated measles vaccine. The Measles Initiative, a partnership between the American Red Cross, CDC, UNICEF, WHO and UN Foundation, has had a significant role in this achievement. Here, we provide an overview of old and new vaccination strategies, and discuss changes in the route of administration of the existing live-attenuated vaccine, the development of new-generation nonreplicating measles virus vaccine candidates and attempts to use recombinant measles virus as a vector for vaccination against other pathogens.
Collapse
Affiliation(s)
- Rory D de Vries
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
10
|
Pueschel K, Tietz A, Carsillo M, Steward M, Niewiesk S. Measles virus-specific CD4 T-cell activity does not correlate with protection against lung infection or viral clearance. J Virol 2007; 81:8571-8. [PMID: 17553890 PMCID: PMC1951373 DOI: 10.1128/jvi.00160-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 05/25/2007] [Indexed: 12/11/2022] Open
Abstract
Acute measles in children can be prevented by immunization with the live attenuated measles vaccine virus. Although immunization is able to induce CD4 and CD8 T cells as well as neutralizing antibodies, only the latter have been correlated with protective immunity. CD8 T cells, however, have been documented to be important in viral clearance in the respiratory tract, whereas CD4 T cells have been shown to be protective in a mouse encephalitis model. In order to investigate the CD4 T-cell response in infection of the respiratory tract, we have defined a T-cell epitope in the hemagglutinin (H) protein for immunization and developed a monoclonal antibody for depletion of CD4 T cells in the cotton rat model. Although the kinetics of CD4 T-cell development correlated with clearance of virus, the depletion of CD4 T cells during the primary infection did not influence viral titers in lung tissue. Immunization with the H epitope induced a CD4 T-cell response but did not protect against infection. Immunization in the presence of maternal antibodies resulted in the development of a CD4 T-cell response which (in the absence of neutralizing antibodies) did not protect against infection. In summary, CD4 T cells do not seem to protect against infection after immunization and do not participate in clearance of virus infection from lung tissue during measles virus infection. We speculate that the major role of CD4 T cells is to control and clear virus infection from other affected organs like the brain.
Collapse
Affiliation(s)
- Karen Pueschel
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
11
|
Capozzo AVE, Ramírez K, Polo JM, Ulmer J, Barry EM, Levine MM, Pasetti MF. Neonatal Immunization with a Sindbis Virus-DNA Measles Vaccine Induces Adult-Like Neutralizing Antibodies and Cell-Mediated Immunity in the Presence of Maternal Antibodies. THE JOURNAL OF IMMUNOLOGY 2006; 176:5671-81. [PMID: 16622037 DOI: 10.4049/jimmunol.176.9.5671] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infants younger than age 9 mo do not respond reliably to the live attenuated measles vaccine due the immaturity of their immune system and the presence of maternal Abs that interfere with successful immunization. We evaluated the immune responses elicited by Sindbis virus replicon-based DNA vaccines encoding measles virus (MV) hemagglutinin (H, pMSIN-H) or both hemagglutinin and fusion (F, pMSINH-FdU) glycoproteins in neonatal mice born to naive and measles-immune mothers. Despite the presence of high levels of maternal Abs, neonatal immunization with pMSIN-H induced long-lasting, high-avidity MV plaque reduction neutralization (PRN) Abs, mainly IgG2a, that also inhibited syncytium formation in CD150(+) B95-8 cells. IgG secreting plasma cells were detected in spleen and bone marrow. Newborns vaccinated with pMSINH-FdU elicited PRN titers that surpassed the protective level (200 mIU/ml) but were short-lived, had low syncytium inhibition capacity, and lacked avidity maturation. This vaccine failed to induce significant PRN titers in the presence of placentally transferred Abs. Both pMSIN-H and pMSINH-FdU elicited strong Th1 type cell-mediated immunity, measured by T cell proliferation and IFN-gamma production, that was unaffected by maternal Abs. Newborns responded to measles DNA vaccines with similar or even higher PRN titers and cell-mediated immunity than adult mice. This study is the first demonstration that a Sindbis virus-based measles DNA vaccine can elicit robust MV immunity in neonates bypassing maternal Abs. Such a vaccine could be followed by the current live attenuated MV vaccine in a heterologous prime-boost to protect against measles early in life.
Collapse
Affiliation(s)
- Alejandra V E Capozzo
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Mikalsen AB, Sindre H, Torgersen J, Rimstad E. Protective effects of a DNA vaccine expressing the infectious salmon anemia virus hemagglutinin-esterase in Atlantic salmon. Vaccine 2005; 23:4895-905. [PMID: 16005119 DOI: 10.1016/j.vaccine.2005.05.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 05/05/2005] [Accepted: 05/24/2005] [Indexed: 11/30/2022]
Abstract
Infectious salmon anemia (ISA) is a disease, caused by an orthomyxovirus, which has considerable economic impact on farming of Atlantic salmon. Here we describe the results of immunization against ISA using plasmids expressing the ISA virus hemagglutinin-esterase (HE). Immunized Atlantic salmon demonstrated moderate protection after challenge with ISA virus, with relative percent survival of 39.5 and 60.5 in two parallel groups. No protection was seen after immunization using a plasmid expressing the ISA virus nucleoprotein. Fish in the HE-immunized group had earlier onset of clearance of the virus than control fish. There was no detectable ISA virus specific humoral response after immunization. After challenge a specific humoral response could be demonstrated in the fish in all groups, but no correlation between this response and protection was found.
Collapse
Affiliation(s)
- Aase B Mikalsen
- Department of Food Safety and Infection Biology, The Norwegian School of Veterinary Science, N-0033 Oslo, Norway.
| | | | | | | |
Collapse
|
13
|
Premenko-Lanier M, Rota P, Rhodes G, Bellini W, McChesney M. Prior DNA vaccination does not interfere with the live-attenuated measles vaccine. Vaccine 2004; 22:762-5. [PMID: 14741170 DOI: 10.1016/j.vaccine.2003.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The currently used live-attenuated measles vaccine is very effective although maternal antibody prevents its administration prior to 6 months of age. We are investigating the ability of a DNA vaccine encoding the measles viral hemagglutinin, fusion and nucleoprotein to protect newborn infants from measles. Here, we show that a measles DNA vaccine protects juvenile macaques from pathogenic measles virus challenge and that macaques primed and boosted with this DNA vaccine have anemnestic antibody and cell-mediated responses after vaccination with a live-attenuated canine distemper-measles vaccine. Therefore, this DNA vaccine administered to newborn infants may not hinder the subsequent use of live-attenuated measles vaccine.
Collapse
Affiliation(s)
- Mary Premenko-Lanier
- Department of Pathology, California National Primate Research Center, School of Medicine, University of California-Davis, County Road 98 and Hutchison Drive, Davis, CA 95616-8542, USA
| | | | | | | | | |
Collapse
|
14
|
Schlereth B, Buonocore L, Tietz A, Meulen VT, Rose JK, Niewiesk S. Successful mucosal immunization of cotton rats in the presence of measles virus-specific antibodies depends on degree of attenuation of vaccine vector and virus dose. J Gen Virol 2003; 84:2145-2151. [PMID: 12867646 DOI: 10.1099/vir.0.19050-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After passive transfer of measles virus (MV)-specific antibodies, vaccine-induced seroconversion and subsequent protection is inhibited in cotton rats (Sigmodon hispidus). In this system, an attenuated, recombinant vesicular stomatitis virus expressing the MV haemagglutinin (VSV-H) was found previously to induce neutralizing antibodies and protection against MV challenge after intranasal (i.n.) immunization. Here it is demonstrated that, after i.n. immunization, VSV-H is found in both lung and brain tissue in the absence of clinical signs. Intratracheal inoculation, which does not lead to infection of the brain, proved that immunization via the lung mucosa is sufficient to protect. To reduce or eliminate infection of the brain after i.n. inoculation, stepwise-attenuated VSV-H mutants with truncated cytoplasmic tails of the G protein were tested in cotton rats. A mutant with 9 aa in the G cytoplasmic tail was found at much lower levels in the brain and was protective in the absence or presence of MV-specific antibodies. A more attenuated mutant containing only 1 aa in its tail was not found in brain tissue after inoculation, but it still induced protective antibody to measles in the absence of MV-specific antibody. However, its ability to induce MV-neutralizing antibodies in the presence of passively transferred MV-specific antibodies and its protective capacity was abolished unless higher-dose immunizations were used. This study demonstrates that a lower degree of attenuation is required to be able to immunize in the presence of MV-specific antibodies.
Collapse
Affiliation(s)
- Bernd Schlereth
- Institute of Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, 97078 Wuerzburg, Germany
| | - Linda Buonocore
- Departments of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA
| | - Annette Tietz
- Institute of Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, 97078 Wuerzburg, Germany
| | - Volker Ter Meulen
- Institute of Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, 97078 Wuerzburg, Germany
| | - John K Rose
- Departments of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA
| | - Stefan Niewiesk
- Institute of Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, 97078 Wuerzburg, Germany
| |
Collapse
|
15
|
Pütz MM, Bouche FB, de Swart RL, Muller CP. Experimental vaccines against measles in a world of changing epidemiology. Int J Parasitol 2003; 33:525-45. [PMID: 12782053 DOI: 10.1016/s0020-7519(03)00062-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vaccination with the current live attenuated measles vaccine is one of the most successful and cost-effective medical interventions. However, as a result of persisting maternal antibodies and immaturity of the infant immune system, this vaccine is poorly immunogenic in children <9 months old. Immunity against the live vaccine is less robust than natural immunity and protection less durable. There may also be some concern about (vaccine) virus spread during the final stage of an eventual measles eradication program. Opinions may differ with respect to the potential threat that some of these concerns may be to the World Health Organisation goal of measles elimination, but there is a consensus that the development of new measles vaccines cannot wait. Candidate vaccines are based on viral or bacterial vectors expressing recombinant viral proteins, naked DNA, immune stimulating complexes or synthetic peptides mimicking neutralising epitopes. While some of these candidate vaccines have proven their efficacy in monkey studies, aerosol formulated live attenuated measles vaccine are evaluated in clinical trials.
Collapse
Affiliation(s)
- Mike M Pütz
- Department of Immunology, Laboratoire National de Santé, 20A Rue Auguste Lumière, 1950 Luxembourg, Luxembourg
| | | | | | | |
Collapse
|
16
|
Pasetti MF, Barry EM, Losonsky G, Singh M, Medina-Moreno SM, Polo JM, Ulmer J, Robinson H, Sztein MB, Levine MM. Attenuated Salmonella enterica serovar Typhi and Shigella flexneri 2a strains mucosally deliver DNA vaccines encoding measles virus hemagglutinin, inducing specific immune responses and protection in cotton rats. J Virol 2003; 77:5209-17. [PMID: 12692223 PMCID: PMC153971 DOI: 10.1128/jvi.77.9.5209-5217.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measles remains a leading cause of child mortality in developing countries. Residual maternal measles antibodies and immunologic immaturity dampen immunogenicity of the current vaccine in young infants. Because cotton rat respiratory tract is susceptible to measles virus (MV) replication after intranasal (i.n.) challenge, this model can be used to assess the efficacy of MV vaccines. Pursuing a new measles vaccine strategy that might be effective in young infants, we used attenuated Salmonella enterica serovar Typhi CVD 908-htrA and Shigella flexneri 2a CVD 1208 vaccines to deliver mucosally to cotton rats eukaryotic expression plasmid pGA3-mH and Sindbis virus-based DNA replicon pMSIN-H encoding MV hemagglutinin (H). The initial i.n. dose-response with bacterial vectors alone identified a well-tolerated dosage (1 x 10(9) to 7 x 10(9) CFU) and a volume (20 micro l) that elicited strong antivector immune responses. Animals immunized i.n. on days 0, 28, and 76 with bacterial vectors carrying DNA plasmids encoding MV H or immunized parenterally with these naked DNA vaccine plasmids developed MV plaque reduction neutralizing antibodies and proliferative responses against MV antigens. In a subsequent experiment of identical design, cotton rats were challenged with wild-type MV 1 month after the third dose of vaccine or placebo. MV titers were significantly reduced in lung tissue of animals immunized with MV DNA vaccines delivered either via bacterial live vectors or parenterally. Since attenuated serovar Typhi and S. flexneri can deliver measles DNA vaccines mucosally in cotton rats, inducing measles immune responses (including neutralizing antibodies) and protection, boosting strategies can now be evaluated in animals primed with MV DNA vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Disease Models, Animal
- Genetic Vectors
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/immunology
- Immunity, Mucosal
- Measles/immunology
- Measles/prevention & control
- Measles Vaccine/administration & dosage
- Measles Vaccine/genetics
- Measles Vaccine/immunology
- Neutralization Tests
- Salmonella typhi/genetics
- Salmonella typhi/immunology
- Shigella flexneri/genetics
- Shigella flexneri/immunology
- Sigmodontinae
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Plaque Assay
Collapse
Affiliation(s)
- Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Premenko-Lanier M, Rota PA, Rhodes G, Verhoeven D, Barouch DH, Lerche NW, Letvin NL, Bellini WJ, McChesney MB. DNA vaccination of infants in the presence of maternal antibody: a measles model in the primate. Virology 2003; 307:67-75. [PMID: 12667815 DOI: 10.1016/s0042-6822(02)00036-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To eradicate measles in developing nations a vaccine capable of being administered at birth may be necessary. We immunized newborn rhesus macaques with naked DNA encoding the measles virus hemagglutinin, fusion and nucleoprotein genes. Prior to vaccination we passively transferred measles immunoglobulin to mimic maternal antibody. In the presence or absence of measles immunoglobulin, 23 of 25 infant macaques had detectable cell mediated immunity and 16 had protective levels of neutralizing antibody. The co-administration of an IL-2/IgG plasmid augmented the vaccine, increasing cell mediated immunity in all infants and increasing the antibody response in infants vaccinated without immunoglobulin. We show for the first time that DNA vaccination can protect a newborn primate from the high-level viremia that correlates with severe measles, even in the presence of maternal antibody. Further, the addition of a molecular IL-2 adjuvant augments this DNA vaccine.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Viral/immunology
- Base Sequence
- California/epidemiology
- DNA Primers
- DNA, Viral/administration & dosage
- DNA, Viral/genetics
- DNA, Viral/immunology
- Disease Models, Animal
- Disease Outbreaks/veterinary
- Genes, Viral
- Immunity, Cellular
- Immunity, Maternally-Acquired
- Immunization, Passive
- Macaca mulatta
- Male
- Measles/immunology
- Measles/prevention & control
- Measles/veterinary
- Measles virus/immunology
- Plasmids/immunology
- Primate Diseases/epidemiology
- Primate Diseases/immunology
- Primate Diseases/prevention & control
- Vaccines, DNA
- Viral Structural Proteins/genetics
Collapse
Affiliation(s)
- Mary Premenko-Lanier
- California National Primate Research Center and Department of Pathology, School of Medicine, University of California-Davis, County Road 98, Davis, CA 95616-8542, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nascimento E, Leão IC, Pereira VRA, Gomes YM, Chikhlikar P, August T, Marques E, Lucena-Silva N. Protective immunity of single and multi-antigen DNA vaccines against schistosomiasis. Mem Inst Oswaldo Cruz 2003; 97 Suppl 1:105-9. [PMID: 12426603 DOI: 10.1590/s0074-02762002000900021] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We evaluated the usefulness of the combination of three plasmids encoding tegumental (pECL and pSM14) and muscular (pIRV5) antigens of the Schistosoma mansoni on improving the protective immunity over the use of a single antigen as DNA vaccines. Female BALB/c mice were inoculated twice with 25 micro g DNA plasmid within two weeks interval. The challenge was performed with 80 cercarias of a regional isolate of S. mansoni (SLM) one week after the last immunization. Six weeks after challenge, all mice were perfused for worm load determination. The following groups were analyzed: saline; empty vector; monovalent formulations of pECL; pSM14 and pIRV5 and also double combinations of pECL/pIRV5 and pIRV5/pSM14 and a triple combination of pECL/pIRV5/pSM14. The protection was expressed as a percentage of worm loads in each group compared with the saline group. The results obtained were 41% (p < 0.05); 52% (p < 0.05); 51% (p < 0.05); 48% (p < 0.05); 55% (p < 0.05); 45% (p < 0.05); 65% (p < 0.05) for each group respectively.
Collapse
Affiliation(s)
- E Nascimento
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fiocruz, Recife, PE, 50670-420, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Despite a safe and effective measles vaccine, measles still claims an estimated 800,000 lives per year mostly among children in developing countries. This paper deals with strategies to improve vaccine efficacy and prevent unnecessary deaths, including considerations of one dose at 9 months strategy for developing countries, strain of vaccine, potency and number of doses of measles vaccine. After more than 20 years of measles immunisation in the developing world, the epidemiology of measles is radically changed, and the absence of measles epidemics might lead to waning immunity due to less clinical and subclinical infections boosting the antibody level. An increasing proportion of mothers are vaccinated, thus transferring a lower maternal antibody level to their infants who will be susceptible to measles at a younger age. The strategies to limit nosocomial measles infection and spread of measles epidemics are reviewed. Though the measles elimination programmes have been very effective in the Americas, it seems unlikely that they will be equally effective in the rest of the world. Even if eradication should be possible, it might be unwise to stop measles vaccination because the vaccine apparently has beneficial effects and because it would make measles a likely weapon for bio-terrorism. If we are unlikely to get rid of measles and measles vaccine, it might be wise to study further some of the many unanswered questions regarding the long-term effects of measles and measles vaccination.
Collapse
Affiliation(s)
- May-Lill Garly
- Projecto de Saúde Bandim, Apartado 861, Bissau, Guinea-Bissau.
| | | |
Collapse
|
20
|
Stittelaar KJ, de Swart RL, Vos HW, van Amerongen G, Sixt N, Wild TF, Osterhaus ADME. Priming of measles virus-specific humoral- and cellular-immune responses in macaques by DNA vaccination. Vaccine 2002; 20:2022-6. [PMID: 11972970 DOI: 10.1016/s0264-410x(02)00048-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although the currently used live attenuated measles vaccines are safe and effective, they are dependent on cold chain maintenance and are often ineffective in young infants due to interference by maternal antibody. Therefore, besides vector-based vaccines, different new generation non-replicating candidate measles vaccines are being considered, including nucleic acid vaccines. We have vaccinated cynomolgus macaques transdermally with DNA plasmids encoding measles virus (MV) proteins. Following two vaccinations, low serum antibody responses were detected. Wild-type measles virus challenge 1 year after vaccination showed reduced viraemia in some animals. However, accelerated humoral- and cellular-immune responses were observed in all vaccinated macaques, demonstrating successful priming by the DNA vaccines.
Collapse
Affiliation(s)
- Koert J Stittelaar
- Institute of Virology, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Kovarik J, Gaillard M, Martinez X, Bozzotti P, Lambert PH, Wild TF, Siegrist CA. Induction of adult-like antibody, Th1, and CTL responses to measles hemagglutinin by early life murine immunization with an attenuated vaccinia-derived NYVAC(K1L) viral vector. Virology 2001; 285:12-20. [PMID: 11414801 DOI: 10.1006/viro.2001.0945] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although initially developed in adult animals, novel viral vectors expressing recombinant measles antigens must eventually prove their success in the early life setting, where the efficacy of the currently used live-attenuated measles virus vaccine is limited. The immunological requirements for vaccine candidates include the generation of protective antibody responses as well as the induction of Th1 and cytotoxic T lymphocytes (CTL) responses, which is challenging in the neonatal setting. Here, we report that young BALB/c mice immunized with a single dose of a vaccinia-based NYVAC(K1L) vector generate adult-like antihemagglutinin (HA) antibody responses as well as adult-like Th1 and CTL responses. Despite this strong immunogenicity in early life, antibody responses (but not T-cell responses) to a single dose of NYVAC(K1L)-HA remained susceptible to inhibition by preexisting measles antibodies, calling for use of prime-boost strategies. NYVAC(K1L)-HA is the first attenuated live viral vector demonstrated as capable of inducing adult-like antibody, Th1, and CTL responses against measles in an early life murine immunization model, a capacity previously only reported for measles DNA vaccines.
Collapse
Affiliation(s)
- J Kovarik
- World Health Organization Collaborating Centre for Neonatal Vaccinology, University of Geneva Medical School, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Niewiesk S. Studying experimental measles virus vaccines in the presence of maternal antibodies in the cotton rat model (Sigmodon hispidus). Vaccine 2001; 19:2250-3. [PMID: 11257342 DOI: 10.1016/s0264-410x(00)00454-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The inhibition of vaccine-induced seroconversion after vaccination is one of the problems associated with measles virus (MV) immunization. In cotton rats, after transfer of human MV specific antibodies, vaccine-induced seroconversion is inhibited. With this model, it was shown that plasmid immunization (although successful in seronegative animals) was inhibited by maternal antibodies. In contrast, immunization via a mucosal surface with a vesicular stomatitis virus expressing the MV hemagglutinin induced seroconversion in the presence of maternal antibodies and subsequent protection.
Collapse
Affiliation(s)
- S Niewiesk
- Institute of Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, 97078, Wuerzburg, Germany.
| |
Collapse
|
23
|
Spreng S, Gentschev I, Goebel W, Weidinger G, ter Meulen V, Niewiesk S. Salmonella vaccines secreting measles virus epitopes induce protective immune responses against measles virus encephalitis. Microbes Infect 2000; 2:1687-92. [PMID: 11137042 DOI: 10.1016/s1286-4579(00)01325-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the present study we describe a live vaccine against measles virus (MV) infection on the basis of attenuated Salmonella typhimurium aroA secreting MV antigens via the Escherichia coli alpha-hemolysin secretion system. Two well-characterized MV epitopes, a B-cell epitope of the MV fusion protein (amino acids 404-414) and a T-cell epitope of the MV nucleocapsid protein (amino acids 79-99) were fused as single or repeating units to the C-terminal secretion signal of the E. coli hemolysin and expressed in secreted form by the attenuated S. typhimurium aroA SL7207. Immunization of MV-susceptible C3H mice revealed that S. typhimurium SL7207 secreting these antigens provoked a humoral and a cellular MV-specific immune response, respectively. Mice vaccinated orally with a combination of both recombinant S. typhimurium strains showed partial protection against a lethal MV encephalitis after intracerebral challenge with a rodent-adapted, neurotropic MV strain.
Collapse
Affiliation(s)
- S Spreng
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften, Am Hubland, D-97074, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|