1
|
Cerracchio C, Amoroso MG, Piccolo M, Ferraro MG, Nocera FP, De Martino L, Serra F, Irace C, Tenore GC, Novellino E, Santamaria R, Fiorito F. Antiviral activity of Taurisolo® during bovine alphaherpesvirus 1 infection. Virus Res 2023; 336:199217. [PMID: 37666327 PMCID: PMC10504091 DOI: 10.1016/j.virusres.2023.199217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Bovine alphaherpesvirus 1 (BoAHV-1), the pathogen causing Infectious Bovine Rhinotracheitis (IBR) and predisposing to polymicrobial infections in cattle, provokes farm economic losses and trading restrictions in the world. However, nontoxic antiviral agents for BoAHV-1 infection are still unavailable, but plant extracts, such as flavonoid derivatives possess activity against BoAHV-1. Taurisolo®, a nutraceutical produced by Aglianico grape pomace, has recently shown promising antiviral activity. Herein, the potential activity of Taurisolo® during BoAHV-1 infection in Madin Darby bovine kidney (MDBK) cells was tested. Taurisolo® enhanced cell viability and reduced morphological death signs in BoAHV-1-infected cells. Moreover, Taurisolo® influenced the expression of bICP0, the key regulatory protein of BoAHV-1, and it strongly diminished virus yield. These effects were associated with an up-regulation of aryl hydrocarbon receptor (AhR), a transcription factor involved in microbial metabolism and immune response. In conclusion, our findings indicate that Taurisolo® may represent a potential antiviral agent against BoAHV-1 infection. Noteworthy, AhR could be involved in the observed effects and become a new target in antiviral therapy.
Collapse
Affiliation(s)
- Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | | | - Marialuisa Piccolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | | | - Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Francesco Serra
- Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Ettore Novellino
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Rita Santamaria
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy.
| |
Collapse
|
2
|
Progesterone Sporadically Induces Reactivation from Latency in Female Calves but Proficiently Stimulates Bovine Herpesvirus 1 Productive Infection. J Virol 2022; 96:e0213021. [PMID: 35019726 DOI: 10.1128/jvi.02130-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute infection of the ocular, oral, or nasal cavity by bovine herpesvirus 1 (BoHV-1) culminates in lifelong latency in sensory neurons within trigeminal ganglia. The BoHV-1 latency reactivation cycle, including calves latently infected with commercially available modified live vaccines, can lead to reproductive complications, including abortions. Recent studies demonstrated progesterone stimulated BoHV-1 productive infection and sporadically induced reactivation from latency in male rabbits. The progesterone receptor (PR) and progesterone transactivate the immediate early transcription unit 1 (IEtu1) promoter and the infected cell protein 0 (bICP0) early promoter. These viral promoters drive expression of two viral transcriptional regulatory proteins (bICP0 and bICP4) that are crucial for productive infection. Based on these observations, we hypothesize that progesterone induces reactivation in a subset of calves latently infected with BoHV-1. These studies demonstrated progesterone was less efficient than dexamethasone at initiating reactivation from latency in female calves. Notably, heat stress correlated with enhancing the ability of progesterone to induce reactivation from latency. Previous studies demonstrated that heat stress activates the glucocorticoid receptor (GR), which suggested GR activation augments progesterone-mediated reactivation from latency. Additional studies revealed GR and PR cooperatively stimulated productive infection and synergistically transactivated the IEtu1 promoter when cultures were treated with dexamethasone. Mutating one or both GR binding sites in the IEtu1 promoter blocked transactivation. Collectively, these studies indicated that progesterone intermittently triggered reactivation from latency, and heat stress augmented reactivation from reactivation. Finally, these studies suggest progesterone enhances virus spread in tissues and cells where PR is abundantly expressed. IMPORTANCE Steroid hormone fluctuations are predicted to enhance or initiate bovine herpesvirus 1 (BoHV-1) replication and virus spread in cattle. For example, stress increases the incidence of BoHV-1 reactivation from latency in cattle, and the synthetic corticosteroid dexamethasone consistently induces reactivation from latency. The glucocorticoid receptor (GR) and dexamethasone stimulate key viral regulatory promoters and productive infection, in part because the viral genome contains numerous consensus GR-responsive elements (GREs). The progesterone receptor (PR) and GR belong to the type I nuclear hormone receptor family. PR and progesterone specifically bind to and transactivate viral promoters that contain GREs and stimulate BoHV-1 productive infection. Although progesterone did not induce reactivation from latency in female calves as efficiently as dexamethasone, heat stress enhanced progesterone-mediated reactivation from latency. Consequently, we predict that low levels of stressful stimuli can cooperate with progesterone to induce reactivation from latency or promote virus spread.
Collapse
|
3
|
Fiorito F, Cerracchio C, Salvatore MM, Serra F, Pucciarelli A, Amoroso MG, Nicoletti R, Andolfi A. Antiviral Property of the Fungal Metabolite 3-O-Methylfunicone in Bovine Herpesvirus 1 Infection. Microorganisms 2022; 10:microorganisms10010188. [PMID: 35056637 PMCID: PMC8781729 DOI: 10.3390/microorganisms10010188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Bovine herpesvirus type-1 (BoHV-1) is a widespread pathogen that provokes infectious rhinotracheitis and polymicrobial infections in cattle, resulting in serious economic losses to the farm animal industry and trade restrictions. To date, non-toxic active drugs against BoHV-1 are not available. The exploitation of bioactive properties of microbial products is of great pharmaceutical interest. In fact, fungi are a promising source of novel drugs with a broad spectrum of activities and functions, including antiviral properties. Hence, the potential antiviral properties of 3-O-methylfunicone (OMF), a secondary metabolite produced by Talaromyces pinophilus, were evaluated on BoHV-1. In this study, during BoHV-1 infection in bovine cells (MDBK), the non-toxic concentration of 5 µM OMF considerably reduced signs of cell death and increased cell proliferation. Furthermore, OMF significantly decreased the virus titer as well as the cytopathic effect and strongly inhibited the expression of bICP0, the major regulatory protein in the BoHV-1 lytic cycle. These findings were accompanied by a considerable up-regulation in the expression of the aryl hydrocarbon receptor (AhR), a multifunctional transcription factor also linked to the host’s response to a herpesvirus infection. Overall, our results suggest that by involving AhR, OMF shows potential against a BoHV-1 infection.
Collapse
Affiliation(s)
- Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Naples, Italy; (C.C.); (A.P.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Naples, Italy
- Correspondence: (F.F.); (M.G.A.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| | - Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Naples, Italy; (C.C.); (A.P.)
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Naples, Italy;
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Naples, Italy
| | - Francesco Serra
- Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Naples, Italy;
| | - Alessia Pucciarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Naples, Italy; (C.C.); (A.P.)
- Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Naples, Italy;
| | - Maria Grazia Amoroso
- Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Naples, Italy;
- Correspondence: (F.F.); (M.G.A.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| | - Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Caserta, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| | - Anna Andolfi
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Naples, Italy
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Naples, Italy;
- Correspondence: (F.F.); (M.G.A.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| |
Collapse
|
4
|
Regulation of neurotropic herpesvirus productive infection and latency-reactivation cycle by glucocorticoid receptor and stress-induced transcription factors. VITAMINS AND HORMONES 2021; 117:101-132. [PMID: 34420577 DOI: 10.1016/bs.vh.2021.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neurotropic α-herpesvirinae subfamily members, herpes simplex virus type 1 (HSV-1) and bovine herpesvirus 1 (BoHV-1), are important viral pathogens in their respective hosts. Following acute infection on mucosal surfaces, these viruses establish life-long latency in neurons within trigeminal ganglia (TG) and central nervous system. Chronic or acute stress (physiological or psychological) increases the frequency of reactivation from latency, which leads to virus shedding, virus transmission, and recurrent disease. While stress impairs immune responses and inflammatory signaling cascades, we predict stressful stimuli directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. For example, BoHV-1 and HSV-1 productive infection is impaired by glucocorticoid receptor (GR) antagonists but is stimulated by the synthetic corticosteroid dexamethasone. Promoters that drive expression of key viral transcriptional regulatory proteins are cooperatively stimulated by GR and specific Krüppel like transcription factors (KLF) induced during stress induced reactivation from latency. The BoHV-1 immediate early transcription unit 1 promoter and contains two GR response elements (GRE) that are essential for cooperative transactivation by GR and KLF15. Conversely, the HSV-1 infected cell protein 0 (ICP0) and ICP4 promoter as well as the BoHV-1 ICP0 early promoter lack consensus GREs: however, these promoters are cooperatively transactivated by GR and KLF4 or KLF15. Hence, growing evidence suggests GR and stress-induced transcription factors directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. We predict the immune inhibitory effects of stress enhance virus spread at late stages during reactivation from latency.
Collapse
|
5
|
Fiorito F, Irace C, Nocera FP, Piccolo M, Ferraro MG, Ciampaglia R, Tenore GC, Santamaria R, De Martino L. MG-132 interferes with iron cellular homeostasis and alters virulence of bovine herpesvirus 1. Res Vet Sci 2021; 137:1-8. [PMID: 33906007 DOI: 10.1016/j.rvsc.2021.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1) requires an iron-replete cell host to replicate efficiently. BoHV-1 infection provokes an increase in ferritin levels and a decrease of transferrin receptor 1 (TfR-1) expression, ultimately lowering iron pool extent. Thus, cells try to limit iron availability for virus spread. It has been demonstrated that MG-132, a proteasome inhibitor, reduces BoHV-1 release. Since ferritin, the major iron storage protein in mammalian cells, undergoes proteasome-mediated degradation, herein, the influence of MG-132 on iron metabolism during BoHV-1 infection was examined. Following infection in bovine cells (MDBK), MG-132 reduced cell death and viral yield. Western blot analysis showed a significant ferritin accumulation, likely due to the inhibition of its proteasome-mediated degradation pathway. In addition, the concomitant down-regulation of TfR-1 expression, observed during infection, was counteracted by proteasome inhibitor. This trend may be explained by enhanced acidic vesicular organelles, detected by acridine orange staining, determining a reduction of intracellular pH, that promotes new synthesis of TfR-1 degraded in a recycling pathway. In addition, MG-132 influences cellular iron distribution during BoHV-1 infection, as revealed by Perls' Prussian blue staining. However, cellular iron content, evaluated by Atomic Absorption Spectrophotometry, resulted essentially unaltered. These findings reveal that MG-132 may contribute to limit cellular iron availability for virus replication thereby enhancing cell survival.
Collapse
Affiliation(s)
- Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Carlo Irace
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | | | | | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rita Santamaria
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Wang ZH, Ke F, Zhang QY, Gui JF. Structural and Functional Diversity among Five RING Finger Proteins from Carassius Auratus Herpesvirus (CaHV). Viruses 2021; 13:v13020254. [PMID: 33562288 PMCID: PMC7914681 DOI: 10.3390/v13020254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Carassius auratus herpesvirus (CaHV) has been identified as a high-virulence pathogenic virus that infects aquatic animals, but the key factor for virus–host interaction is still unclear. Five Really interesting new genes (RING) finger proteins (39L, 52L, 131R, 136L, and 143R) of CaHV were screened to determine structural diversity. RING finger proteins were also predicted in other known fish herpesviruses, with an arrangement and number similar to CaHV. We performed multifaceted analyses of the proteins, including protein sizes, skeleton structures, subcellular localizations, and ubiquitination activities, to determine their precise roles in virus–host interactions. The five proteins were overexpressed and detected different levels of ubiquitination activities, and 143R showed the highest activity. Then, the prokaryotic expressed and purified full-length proteins (131R and 136L), RING domain isolates (131R12–43 and 136L45–87), and RING domain-deleted mutants (131RΔ12–43 and 136LΔ45–87) were prepared to detect their activities through ubiquitination assays. The results indicate that both full-length proteins and their isolates have activities that catalyze ubiquitination, and the full-length proteins possess higher activity than the isolates, but RING domain-deleted mutants lose their activities. Furthermore, the activities of the five proteins were verified as E3 ubiquitin ligase activity, showing that the RING domains determine the ubiquitination activity. These proteins present different subcellular localization. RING domain-deleted mutants showed similar subcellular localization with their full-length proteins, and all the isolates diffused in whole cells. The current results indicate that the sequence outside the RING domain determines subcellular localization and the level of ubiquitination activity, suggesting that the RING finger proteins of fish herpesviruses might have diverse functions in virus–host interaction.
Collapse
Affiliation(s)
- Zi-Hao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.-H.W.); (F.K.)
- College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.-H.W.); (F.K.)
- College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.-H.W.); (F.K.)
- College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (Q.-Y.Z.); (J.-F.G.); Tel.: +86-027-68780792 (Q.-Y.Z.); +86-027-68780707 (J.-F.G.)
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.-H.W.); (F.K.)
- College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (Q.-Y.Z.); (J.-F.G.); Tel.: +86-027-68780792 (Q.-Y.Z.); +86-027-68780707 (J.-F.G.)
| |
Collapse
|
7
|
Sawant L, Thunuguntla P, Jones C. Cooperative activation of bovine herpesvirus 1 productive infection and viral regulatory promoters by androgen receptor and Krüppel-like transcription factors 4 and 15. Virology 2021; 552:63-72. [PMID: 33065464 DOI: 10.1016/j.virol.2020.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Bovine herpesvirus 1 (BoHV-1), a significant viral pathogen, establishes latency in sensory neurons. The viral genome contains more than 100 consensus glucocorticoid receptor (GR) regulatory elements (GREs): consequently, stress stimulates viral replication and reactivation from latency. The immediate early transcription unit 1 (IEtu1) and bICP0 early promoters are transactivated by GR and synthetic corticosteroid dexamethasone. The androgen receptor (AR), like GR, is a Type 1 nuclear hormone receptor that binds and stimulates certain promoters containing GREs. Consequently, we hypothesized AR and 5α-Dihydrotestosterone (DHT) stimulate productive infection and key viral promoters. New studies demonstrated AR, DHT, and Krüppel like transcription factor 4 (KLF4) cooperatively stimulated productive infection and bICP0 E promoter activity in mouse neuroblastoma cells (Neuro-2A). KLF15 also cooperated with AR and DHT to stimulate IEtu1 promoter activity. We suggest AR and testosterone increase the prevalence of virus in semen by stimulating viral gene expression and replication.
Collapse
Affiliation(s)
- Laximan Sawant
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Prasanth Thunuguntla
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA.
| |
Collapse
|
8
|
Zong Z, Zhang Z, Wu L, Zhang L, Zhou F. The Functional Deubiquitinating Enzymes in Control of Innate Antiviral Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002484. [PMID: 33511009 PMCID: PMC7816709 DOI: 10.1002/advs.202002484] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/09/2020] [Indexed: 05/11/2023]
Abstract
Innate antiviral immunity is the first line of host defense against invading viral pathogens. Immunity activation primarily relies on the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Viral proteins or nucleic acids mainly engage three classes of PRRs: Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These receptors initiate a series of signaling cascades that lead to the production of proinflammatory cytokines and type I interferon (IFN-I) in response to viral infection. This system requires precise regulation to avoid aberrant activation. Emerging evidence has unveiled the crucial roles that the ubiquitin system, especially deubiquitinating enzymes (DUBs), play in controlling immune responses. In this review, an overview of the most current findings on the function of DUBs in the innate antiviral immune pathways is provided. Insights into the role of viral DUBs in counteracting host immune responses are also provided. Furthermore, the prospects and challenges of utilizing DUBs as therapeutic targets for infectious diseases are discussed.
Collapse
Affiliation(s)
- Zhi Zong
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Zhengkui Zhang
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
| | - Long Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Fangfang Zhou
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
9
|
Bovine herpesvirus-1 infection in mouse neuroblastoma (Neuro-2A) cells. Vet Microbiol 2020; 247:108762. [PMID: 32768214 DOI: 10.1016/j.vetmic.2020.108762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1) is an important cattle pathogen, that may cause rhinotracheitis, abortions and shipping fever. Virus establishes latency in sensory neurons, but periodically could reactivate. Recent studies identified mouse neuroblastoma (Neuro-2A) cells as a novel cell culture model to study factors that regulate BoHV-1 productive infection in neuronal cells. Herein, following BoHV-1 infection in Neuro-2A, a reduced cell viability occurred. Membrane damage and death morphological alterations, features of apoptosis and necrosis, were distinguished in infected cells. In addition, biochemical signs of apoptosis (caspase 3 activation and PARP cleavage) were observed. These results were accompanied by incomplete autophagy due to enhanced amounts of autophagic markers (LC3-II, ATG5 and Beclin 1), in the presence of increased levels of p62. Interestingly, protein expression of viral infected cell protein 0 (bICP0) was detected in Neuro-2A cells, although BoHV-1 inefficiently replicates in these cells, because just low levels of viral yield were found. Taken together, our results suggest that BoHV-1 may exert its potential neurotoxicity through a combined mechanism of necrosis and apoptosis. Moreover, incomplete autophagy occurred during BoHV-1 replication in Neuro-2A cells, which were favourable for viral persistence.
Collapse
|
10
|
El-Mayet FS, Sawant L, Wijesekera N, Jones C. Progesterone increases the incidence of bovine herpesvirus 1 reactivation from latency and stimulates productive infection. Virus Res 2020; 276:197803. [PMID: 31697987 PMCID: PMC7068234 DOI: 10.1016/j.virusres.2019.197803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
Bovine herpesvirus 1 (BoHV-1), including modified live vaccines, can cause abortions in pregnant cows. Progesterone maintains pregnancy and promotes spermiogenesis and testosterone biosynthesis in males: furthermore, progesterone is a neuro-steroid. Recent published studies demonstrated progesterone stimulated the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter, and two glucocorticoid receptor response elements within the promoter were required for progesterone mediated transactivation. In this study, we tested whether progesterone induces reactivation from latency in rabbits. As expected, the synthetic corticosteroid dexamethasone consistently induced reactivation from latency in males and females. While progesterone induced reactivation from latency in approximately one-half of male rabbits, virus shedding was sporadic compared to dexamethasone and less efficient in female rabbits. Progesterone significantly increased productive infection in rabbit skin cells, which correlated with stimulating reactivation. These studies suggest progesterone promotes BoHV-1 spread in cattle, in part, by increasing the frequency of reactivation from latency.
Collapse
Affiliation(s)
- Fouad S El-Mayet
- Oklahoma State University, College for Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, United States; Benha University, Faculty of Veterinary Medicine, Department of Virology, Moshtohor 13736, Kaliobyia, Egypt
| | - Laximan Sawant
- Oklahoma State University, College for Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, United States
| | - Nishani Wijesekera
- Oklahoma State University, College for Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, United States
| | - Clinton Jones
- Oklahoma State University, College for Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, United States.
| |
Collapse
|
11
|
Cao C, An R, Yu Y, Dai H, Qu Z, Gao M, Wang J. BICP0 Negatively Regulates TRAF6-Mediated NF-κB and Interferon Activation by Promoting K48-Linked Polyubiquitination of TRAF6. Front Microbiol 2020; 10:3040. [PMID: 31969874 PMCID: PMC6960150 DOI: 10.3389/fmicb.2019.03040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The infected cell protein 0 (BICP0) is an immediate early protein encoded by BHV-1, and its RING finger domain, which endows BICP0 with intrinsic E3 ubiquitin ligase activity, is common in all ICP0 proteins. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is one of the TRAF family members and is ubiquitously expressed in mammalian tissues. TRAF6 forms the MyD88-TRAF6-IRF7 complex and activates interferon induction in the TLR (Toll-like receptors) and the RLR (RIG-I-like receptor) pathway. Previous studies showed that BICP0 reduced IFN-β promoter activity by interacting with IRF7. In this study, we found that BICP0 promoted the K48-ubiquitination and degradation of TRAF6 through the ubiquitin proteasome system. The interaction between BICP0 and TRAF6 is a prerequisite for ubiquitination modification, and the 346-PAERQY-351 of BICP0 is indispensable. The motif mutation experiments showed that the tyrosine 351 of BICP0 is the key amino acid involved. Further studies demonstrated that BICP0 suppressed the NF-κB pathway via the interference of TRAF6. Moreover, degradation of TRAF6 protein influenced the K63-linked ubiquitination of IRF7 and activation of interferon promoter. Collectively, these findings indicate that the BICP0 protein suppresses the inflammation signaling and IFN production by K48-linked polyubiquitination of TRAF6 and may further clarify the immune evasion function of BICP0.
Collapse
Affiliation(s)
- Chong Cao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ran An
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - YueYang Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - HaiYue Dai
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - ZheHui Qu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - MingChun Gao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - JunWei Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Nguyen ML, Gennis E, Pena KC, Blaho JA. Comparison of HEp-2 and Vero Cell Responses Reveal Unique Proapoptotic Activities of the Herpes Simplex Virus Type 1 α0 Gene Transcript and Product. Front Microbiol 2019; 10:998. [PMID: 31139162 PMCID: PMC6518028 DOI: 10.3389/fmicb.2019.00998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Previous studies have provided evidence suggesting a role for apoptosis in the control of Herpes Simplex Virus 1 (HSV-1) latency. HSV-1 induces and then later blocks apoptosis in infected cells. The immediate early viral gene α0, which synthesizes the ICP0 protein, is necessary and sufficient for HSV-1-induced apoptosis in human epithelial (HEp-2) cells. While previous research showed that ICP0 protein synthesis is not necessary for HSV-1-induced apoptosis in infected HEp-2 cells, circumstantial evidence suggested that it might be needed in infected African green monkey kidney (Vero) cells. In this study, we determined the specific aspects of α0 needed to trigger apoptosis in these two cell types. HEp-2 cells transfected with α0 expressing plasmids that generated either full-length, truncated, or no detectable (multiple stop codons) ICP0 protein died through apoptosis. This indicates that ICP0 protein is not necessary for α0-induced apoptosis and that α0 mRNA alone has apoptotic induction properties in HEp-2 cells. We next investigated the primary structure of α0's mRNA to better define its proapoptotic ability. Since α0 is one of the few HSV-1 genes that are spliced, we transfected cells with a plasmid expressing ICP0 from cDNA copy, pcDNAICP0. The cells transfected with pcDNAICP0 underwent apoptosis at a level equivalent to those transfected with the genomic copy of α0, which indicates that neither splicing events nor introns are required for the apoptotic function of α0 in HEp-2 cells. Next, we studied the ability of α0 to cause apoptosis in Vero cells. Since HSV-1-induced apoptosis in Vero cells requires protein synthesis early in infection, proteins synthesized with immediate early kinetics may facilitate apoptosis. Vero cells were transfected with plasmids producing either full-length ICP0 or ICP0 truncated at codon 212. Full-length ICP0, but not truncated ICP0, induced apoptosis in Vero cells. Together, these results suggest that α0 gene expression triggers apoptosis, but ICP0 protein is needed to facilitate apoptosis in Vero cells. In addition, ICP0's facilitation activity may lie in its carboxyl-terminated domain. Thus, our results demonstrate that α0's mRNA and protein possess proapoptotic properties. The requirement for ICP0 protein during HSV-dependent apoptosis appears to be cell type specific.
Collapse
Affiliation(s)
- Marie L Nguyen
- Department of Microbiology and Immunology, Des Moines University, Des Moines, IA, United States
| | - Elisabeth Gennis
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY, United States
| | - Kristen C Pena
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY, United States
| | - John A Blaho
- NYC Regional Innovation Node, The City University of New York, New York, NY, United States
| |
Collapse
|
13
|
Jones C. Bovine Herpesvirus 1 Counteracts Immune Responses and Immune-Surveillance to Enhance Pathogenesis and Virus Transmission. Front Immunol 2019; 10:1008. [PMID: 31134079 PMCID: PMC6514135 DOI: 10.3389/fimmu.2019.01008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Infection of cattle by bovine herpesvirus 1 (BoHV-1) can culminate in upper respiratory tract disorders, conjunctivitis, or genital disorders. Infection also consistently leads to transient immune-suppression. BoHV-1 is the number one infectious agent in cattle that is associated with abortions in cattle. BoHV-1, as other α-herpesvirinae subfamily members, establishes latency in sensory neurons. Stressful stimuli, mimicked by the synthetic corticosteroid dexamethasone, consistently induce reactivation from latency in latently infected calves and rabbits. Increased corticosteroid levels due to stress have a two-pronged effect on reactivation from latency by: (1) directly stimulating viral gene expression and replication, and (2) impairing antiviral immune responses, thus enhancing virus spread and transmission. BoHV-1 encodes several proteins, bICP0, bICP27, gG, UL49.5, and VP8, which interfere with key antiviral innate immune responses in the absence of other viral genes. Furthermore, the ability of BoHV-1 to infect lymphocytes and induce apoptosis, in particular CD4+ T cells, has negative impacts on immune responses during acute infection. BoHV-1 induced immune-suppression can initiate the poly-microbial disorder known as bovine respiratory disease complex, which costs the US cattle industry more than one billion dollars annually. Furthermore, interfering with antiviral responses may promote viral spread to ovaries and the developing fetus, thus enhancing reproductive issues associated with BoHV-1 infection of cows or pregnant cows. The focus of this review is to describe the known mechanisms, direct and indirect, by which BoHV-1 interferes with antiviral immune responses during the course of infection.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
14
|
El-Mayet FS, El-Habbaa AS, D'Offay J, Jones C. Synergistic Activation of Bovine Herpesvirus 1 Productive Infection and Viral Regulatory Promoters by the Progesterone Receptor and Krüppel-Like Transcription Factor 15. J Virol 2019; 93:e01519-18. [PMID: 30305353 PMCID: PMC6288325 DOI: 10.1128/jvi.01519-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), including modified live vaccines, readily infects the fetus and ovaries, which can lead to reproductive failure. The BoHV-1 latency reactivation cycle in sensory neurons may further complicate reproductive failure in pregnant cows. The immediate early transcription unit 1 (IEtu1) promoter drives expression of important viral transcriptional regulators (bICP0 and bICP4). This promoter contains two functional glucocorticoid receptor (GR) response elements (GREs) that have the potential to stimulate productive infection following stressful stimuli. Since progesterone and the progesterone receptor (PR) can activate many GREs, we hypothesized that the PR and/or progesterone regulates productive infection and viral transcription. New studies demonstrated that progesterone stimulated productive infection. Additional studies revealed the PR and Krüppel-like transcription factor 15 (KLF15) cooperated to stimulate productive infection and IEtu1 promoter activity. IEtu1 promoter activation required both GREs, which correlated with the ability of the PR to interact with wild-type (wt) GREs but not mutant GREs. KLF15 also cooperated with the PR to transactivate the bICP0 early promoter, a promoter that maintains bICP0 protein expression during productive infection. Intergenic viral DNA fragments (less than 400 bp) containing two GREs and putative KLF binding sites present within genes encoding unique long 52 (UL-52; component of DNA primase/helicase complex), Circ, bICP4, and IEtu2 were stimulated by KLF15 and the PR more than 10-fold, suggesting that additional viral promoters are activated by these transcription factors. Collectively, these studies suggest progesterone and the PR promote BoHV-1 spread to reproductive tissues, thus increasing the incidence of reproductive failure.IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is the most frequently diagnosed cause of abortions in pregnant cows and can cause "abortion storms" in susceptible herds. Virulent field strains and even commercially available modified live vaccines can induce abortion, in part because BoHV-1 replicates efficiently in the ovary and corpus luteum. We now demonstrate that progesterone and the progesterone receptor (PR) stimulate productive infection. The BoHV-1 genome contains approximately 100 glucocorticoid receptor (GR) response elements (GREs). Interestingly, the PR can bind and activate many promoters that contain GREs. The PR and Krüppel-like transcription factor 15 (KLF15), which regulate key steps during embryo implantation, cooperate to stimulate productive infection and two viral promoters that drive expression of key viral transcriptional regulators. These studies suggest that the ability of progesterone and the PR to stimulate productive infection has the potential to promote virus spread in reproductive tissue and induce reproductive failure.
Collapse
Affiliation(s)
- Fouad S El-Mayet
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
- Benha University, Faculty of Veterinary Medicine, Department of Virology, Benha, Egypt
| | - Ayman S El-Habbaa
- Benha University, Faculty of Veterinary Medicine, Department of Virology, Benha, Egypt
| | - Jean D'Offay
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
15
|
MG-132 reduces virus release in Bovine herpesvirus-1 infection. Sci Rep 2017; 7:13306. [PMID: 29042667 PMCID: PMC5645422 DOI: 10.1038/s41598-017-13717-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/26/2017] [Indexed: 12/25/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) can provoke conjunctivitis, abortions and shipping fever. BoHV-1 infection can also cause immunosuppression and increased susceptibility to secondary bacterial infections, leading to pneumonia and occasionally to death. Herein, we investigated the influence of MG-132, a proteasome inhibitor, on BoHV-1 infection in bovine kidney (MDBK) cells. Infection of MDBK cells with BoHV-1 induces apoptotic cell death that enhances virus release. Whereas, MG-132 inhibited virus-induced apoptosis and stimulated autophagy. Protein expression of viral infected cell protein 0 (bICP0), which is constitutively expressed during infection and is able to stimulate Nuclear factor kappa B (NF-κB), was completely inhibited by MG-132. These results were accompanied by a significant delay in the NF-κB activation. Interestingly, the efficient virus release provoked by BoHV-1-induced apoptosis was significantly reduced by MG-132. Overall, this study suggests that MG-132, through the activation of autophagy, may limit BoHV-1 replication during productive infection, by providing an antiviral defense mechanism.
Collapse
|
16
|
Combinatorial Effects of the Glucocorticoid Receptor and Krüppel-Like Transcription Factor 15 on Bovine Herpesvirus 1 Transcription and Productive Infection. J Virol 2017; 91:JVI.00904-17. [PMID: 28794031 DOI: 10.1128/jvi.00904-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Latently infected calves consistently reactivate from latency following a single intravenous injection of the synthetic corticosteroid dexamethasone. The immediate early transcription unit 1 (IEtu1) promoter, which drives bovine ICP0 (bICP0) and bICP4 expression, is stimulated by dexamethasone because it contains two glucocorticoid receptor (GR) response elements (GREs). Several Krüppel-like transcription factors (KLF), including KLF15, are induced during reactivation from latency, and they stimulate certain viral promoters and productive infection. In this study, we demonstrate that the GR and KLF15 were frequently expressed in the same trigeminal ganglion (TG) neuron during reactivation and cooperatively stimulated productive infection and IEtu1 GREs in mouse neuroblastoma cells (Neuro-2A). We further hypothesized that additional regions in the BoHV-1 genome are transactivated by the GR or stress-induced transcription factors. To test this hypothesis, BoHV-1 DNA fragments (less than 400 bp) containing potential GR and KLF binding sites were identified and examined for transcriptional activation by stress-induced transcription factors. Intergenic regions within the unique long 52 gene (UL52; a component of the DNA primase/helicase complex), bICP4, IEtu2, and the unique short region were stimulated by KLF15 and the GR. Chromatin immunoprecipitation studies revealed that the GR and KLF15 interacted with sequences within IEtu1 GREs and the UL52 fragment. Coimmunoprecipitation studies demonstrated that KLF15 and the GR were associated with each other in transfected cells. Since the GR stimulates KLF15 expression, we suggest that these two transcription factors form a feed-forward loop that stimulates viral gene expression and productive infection following stressful stimuli.IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is an important viral pathogen that causes respiratory disease and suppresses immune responses in cattle; consequently, life-threatening bacterial pneumonia can occur. Following acute infection, BoHV-1 establishes lifelong latency in sensory neurons. Reactivation from latency is initiated by the synthetic corticosteroid dexamethasone. Dexamethasone stimulates lytic cycle viral gene expression in sensory neurons of calves latently infected with BoHV-1, culminating in virus shedding and transmission. Two stress-induced cellular transcription factors, Krüppel-like transcription factor 15 (KLF15) and the glucocorticoid receptor (GR), cooperate to stimulate productive infection and viral transcription. Additional studies demonstrated that KLF15 and the GR form a stable complex and that these stress-induced transcription factors bind to viral DNA sequences, which correlates with transcriptional activation. The ability of the GR and KLF15 to synergistically stimulate viral gene expression and productive infection may be critical for the ability of BoHV-1 to reactivate from latency following stressful stimuli.
Collapse
|
17
|
Haque M, Stanfield B, Kousoulas KG. Bovine herpesvirus type-1 glycoprotein K (gK) interacts with UL20 and is required for infectious virus production. Virology 2016; 499:156-164. [PMID: 27661734 DOI: 10.1016/j.virol.2016.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 02/05/2023]
Abstract
We have previously shown that the HSV-1 gK and UL20 proteins interact and function in virion envelopment, membrane fusion, and neuronal entry. Alignment of the predicted secondary structures of gKs encoded by BoHV-1, HSV-1, HSV-2, EHV-1 and VZV indicated a high degree of domain conservation. Two BoHV-1 gK-null mutant viruses were created by either gK gene deletion or stop codon insertion. In addition, a V5 epitope-tag was inserted at the carboxyl terminus of gK gene to detect gK. The engineered gK-null mutant viruses failed to replicate and produce viral plaques. Co-immunoprecipitation of gK and UL20 expressed via different methods revealed that gK and UL20 physically interacted in the presence or absence of other viral proteins. Confocal microscopy showed that gK and UL20 colocalized in infected cells. These results indicate that BoHV-1 gK and UL20 may function in a similar manner to other alphaherpesvirus orthologues specified by HSV-1, PRV and EHV-1.
Collapse
Affiliation(s)
- Muzammel Haque
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Brent Stanfield
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
18
|
Kook I, Henley C, Meyer F, Hoffmann FG, Jones C. Bovine herpesvirus 1 productive infection and immediate early transcription unit 1 promoter are stimulated by the synthetic corticosteroid dexamethasone. Virology 2015; 484:377-385. [PMID: 26226582 DOI: 10.1016/j.virol.2015.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/21/2015] [Accepted: 06/05/2015] [Indexed: 01/21/2023]
Abstract
The primary site for life-long latency of bovine herpesvirus 1 (BHV-1) is sensory neurons. The synthetic corticosteroid dexamethasone consistently induces reactivation from latency; however the mechanism by which corticosteroids mediate reactivation is unclear. In this study, we demonstrate for the first time that dexamethasone stimulates productive infection, in part, because the BHV-1 genome contains more than 100 potential glucocorticoid receptor (GR) response elements (GREs). Immediate early transcription unit 1 (IEtu1) promoter activity, but not IEtu2 or VP16 promoter activity, was stimulated by dexamethasone. Two near perfect consensus GREs located within the IEtu1 promoter were necessary for dexamethasone-mediated stimulation. Electrophoretic mobility shift assays and chromatin immunoprecipitation studies demonstrated that the GR interacts with IEtu1 promoter sequences containing the GREs. Although we hypothesize that DEX-mediated stimulation of IEtu1 promoter activity is important during productive infection and perhaps reactivation from latency, stress likely has pleiotropic effects on virus-infected cells.
Collapse
Affiliation(s)
- Insun Kook
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Morisson Life Science Center, RM234, Lincoln, NE 68583-09065, USA
| | - Caitlin Henley
- Mississippi State University, Department of Biochemistry and Molecular Biology, Entomology and Plant Pathology, 408 Dorman Hall-Mailstop 9655, 32 Creelman St., Starkville, MS 39762, USA
| | - Florencia Meyer
- Mississippi State University, Department of Biochemistry and Molecular Biology, Entomology and Plant Pathology, 408 Dorman Hall-Mailstop 9655, 32 Creelman St., Starkville, MS 39762, USA
| | - Federico G Hoffmann
- Mississippi State University, Department of Biochemistry and Molecular Biology, Entomology and Plant Pathology, 408 Dorman Hall-Mailstop 9655, 32 Creelman St., Starkville, MS 39762, USA
| | - Clinton Jones
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Morisson Life Science Center, RM234, Lincoln, NE 68583-09065, USA.
| |
Collapse
|
19
|
Weiss M, Brum MCS, Anziliero D, Weiblen R, Flores EF. A glycoprotein E gene-deleted bovine herpesvirus 1 as a candidate vaccine strain. ACTA ACUST UNITED AC 2015. [PMID: 26200229 PMCID: PMC4568813 DOI: 10.1590/1414-431x20154243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A bovine herpesvirus 1 (BoHV-1) defective in glycoprotein E (gE) was constructed from
a Brazilian genital BoHV-1 isolate, by replacing the full gE coding region with the
green fluorescent protein (GFP) gene for selection. Upon
co-transfection of MDBK cells with genomic viral DNA plus the
GFP-bearing gE-deletion plasmid, three fluorescent recombinant
clones were obtained out of approximately 5000 viral plaques. Deletion of the
gE gene and the presence of the GFP marker in
the genome of recombinant viruses were confirmed by PCR. Despite forming smaller
plaques, the BoHV-1△gE recombinants replicated in MDBK cells with similar kinetics
and to similar titers to that of the parental virus (SV56/90), demonstrating that the
gE deletion had no deleterious effects on replication efficacy in
vitro. Thirteen calves inoculated intramuscularly with BoHV-1△gE
developed virus neutralizing antibodies at day 42 post-infection (titers from 2 to
16), demonstrating the ability of the recombinant to replicate and to induce a
serological response in vivo. Furthermore, the serological response
induced by recombinant BoHV-1△gE could be differentiated from that induced by
wild-type BoHV-1 by the use of an anti-gE antibody ELISA kit. Taken together, these
results indicated the potential application of recombinant BoHV-1 △gE in vaccine
formulations to prevent the losses caused by BoHV-1 infections while allowing for
differentiation of vaccinated from naturally infected animals.
Collapse
Affiliation(s)
- M Weiss
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, BR
| | - M C S Brum
- Laboratório de Virologia, Curso de Medicina Veterinária, Universidade Federal do Pampa, Uruguaiana, RS, BR
| | - D Anziliero
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, BR
| | - R Weiblen
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, BR
| | - E F Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, BR
| |
Collapse
|
20
|
Islam A, Schulz S, Afroz S, Babiuk LA, van Drunen Littel-van den Hurk S. Interaction of VP8 with mRNAs of bovine herpesvirus-1. Virus Res 2015; 197:116-26. [DOI: 10.1016/j.virusres.2014.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|
21
|
Tomioka Y, Morimatsu M, Taharaguchi S, Yamamoto S, Suyama H, Ozaki K, Iwamori N, Ono E. Abnormal spermatogenesis and reduced fertility in transgenic mice expressing the immediate-early protein IE180 of pseudorabies virus. Biochem Biophys Res Commun 2013; 440:683-8. [DOI: 10.1016/j.bbrc.2013.09.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
|
22
|
Disruption of Bombyx mori nucleopolyhedrovirus ORF71 (Bm71) results in inefficient budded virus production and decreased virulence in host larvae. Virus Genes 2012; 45:161-8. [DOI: 10.1007/s11262-012-0757-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/12/2012] [Indexed: 11/26/2022]
|
23
|
da Silva LF, Gaudreault N, Jones C. Cytoplasmic localized infected cell protein 0 (bICP0) encoded by bovine herpesvirus 1 inhibits β interferon promoter activity and reduces IRF3 (interferon response factor 3) protein levels. Virus Res 2011; 160:143-9. [PMID: 21689696 DOI: 10.1016/j.virusres.2011.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 11/29/2022]
Abstract
Bovine herpesvirus 1 (BHV-1), an alpha-herpesvirinae subfamily member, establishes a life-long latent infection in sensory neurons. Periodically, BHV-1 reactivates from latency, infectious virus is spread, and consequently virus transmission occurs. BHV-1 acute infection causes upper respiratory track infections and conjunctivitis in infected cattle. As a result of transient immune-suppression, BHV-1 infections can also lead to life-threatening secondary bacterial pneumonia that is referred to as bovine respiratory disease. The infected cell protein 0 (bICP0) encoded by BHV-1 reduces human β-interferon (IFN-β) promoter activity, in part, by inducing degradation of interferon response factor 3 (IRF3) and interacting with IRF7. In contrast to humans, cattle contain three IFN-β genes. All three bovine IFN-β proteins have anti-viral activity: but each IFN-β gene has a distinct transcriptional promoter. We have recently cloned and characterized the three bovine IFN-β promoters. Relative to the human IFN-β promoter, each of the three IFN-β promoters contain differences in the four positive regulatory domains that are required for virus-induced activity. In this study, we demonstrate that bICP0 effectively inhibits bovine IFN-β promoter activity following transfection of low passage bovine cells with interferon response factor 3 (IRF3) or IRF7. A bICP0 mutant that localizes to the cytoplasm inhibits bovine IFN-β promoter activity as efficiently as wt bICP0. The cytoplasmic localized bICP0 protein also induced IRF3 degradation with similar efficiency as wt bICP0. In summary, these studies suggested that cytoplasmic localized bICP0 plays a role in inhibiting the IFN-β response during productive infection.
Collapse
Affiliation(s)
- Leticia Frizzo da Silva
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68503, United States
| | | | | |
Collapse
|
24
|
Workman A, Sinani D, Pittayakhajonwut D, Jones C. A protein (ORF2) encoded by the latency-related gene of bovine herpesvirus 1 interacts with Notch1 and Notch3. J Virol 2011; 85:2536-46. [PMID: 21191019 PMCID: PMC3067920 DOI: 10.1128/jvi.01937-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 12/17/2010] [Indexed: 12/12/2022] Open
Abstract
Like other Alphaherpesvirinae subfamily members, bovine herpesvirus 1 (BHV-1) establishes latency in sensory neurons. The latency-related RNA (LR-RNA) is abundantly expressed in latently infected sensory neurons. An LR mutant virus with stop codons at the amino terminus of the first open reading frame (ORF) in the LR gene (ORF2) does not reactivate from latency, in part because it induces higher levels of apoptosis in infected neurons. ORF2 is not the only viral product expressed during latency, but it is important for the latency reactivation cycle because it inhibits apoptosis. In this study, a yeast 2-hybrid screen revealed that ORF2 interacted with two cellular transcription factors, Notch1 and Notch3. These interactions were confirmed in mouse neuroblastoma cells by confocal microscopy and in an in vitro "pulldown" assay. During reactivation from latency, Notch3 RNA levels in trigeminal ganglia were higher than those during latency, suggesting that Notch family members promote reactivation from latency or that reactivation promotes Notch expression. A plasmid expressing the Notch1 intercellular domain (ICD) stimulated productive infection and promoters that encode the viral transcription factor bICP0. The Notch3 ICD did not stimulate productive infection as efficiently as the Notch1 ICD and had no effect on bICP0 promoter activity. Plasmids expressing the Notch1 ICD or the Notch3 ICD trans-activated a late promoter encoding glycoprotein C. ORF2 reduced the trans-activation potential of Notch1 and Notch3, suggesting that ORF2 interfered with the trans-activation potential of Notch. These studies provide evidence that ORF2, in addition to inhibiting apoptosis, has the potential to promote establishment and maintenance of latency by sequestering cellular transcription factors.
Collapse
Affiliation(s)
- Aspen Workman
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| | - Devis Sinani
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| | - Daraporn Pittayakhajonwut
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| | - Clinton Jones
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| |
Collapse
|
25
|
Gaudreault N, Jones C. Regulation of promyelocytic leukemia (PML) protein levels and cell morphology by bovine herpesvirus 1 infected cell protein 0 (bICP0) and mutant bICP0 proteins that do not localize to the nucleus. Virus Res 2011; 156:17-24. [PMID: 21215282 DOI: 10.1016/j.virusres.2010.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 11/17/2022]
Abstract
BHV-1 is an important pathogen of cattle. The infected cell protein 0 (bICP0) encoded by BHV-1 is an important regulatory protein because it is constitutively expressed and can activate all viral promoters. The mechanism by which bICP0 activates viral promoters is not well understood because bICP0 does not appear to be a sequence specific binding protein. A C(3)HC(4) zinc RING (really interesting novel gene) motif at the N-terminus of bICP0 has E3 ubiquitin ligase activity, which is important for activating viral gene expression and inhibiting interferon dependent transcription. Like other alpha-herpesvirinae ICP0 homologues, bICP0 is associated with promyelocytic leukemia (PML) protein-containing nuclear domains. During productive infection of cultured cells, BHV-1 induces degradation of the PML protein, which correlates with efficient productive infection. In this study, we demonstrated that a plasmid expressing bICP0 reduces steady state levels of the PML protein, and the C(3)HC(4) zinc RING finger is important for PML degradation. Surprisingly, bICP0 mutants with an intact C(3)HC(4) zinc RING finger that lack a nuclear localization signal also reduces steady PML protein levels. In addition, mutant bICP0 proteins that primarily localize to the cytoplasm induced morphological changes in transfected cells. During productive infection, bICP0 was detected in the cytoplasm of low-passage bovine kidney, but not established bovine kidney cells. These studies demonstrated that bICP0, even when not able to efficiently localize to the nucleus, was able to induce degradation of the PML protein and alter the morphology of transfected cells.
Collapse
Affiliation(s)
- Natasha Gaudreault
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, United States
| | | |
Collapse
|
26
|
Jones C, Chowdhury S. Bovine herpesvirus type 1 (BHV-1) is an important cofactor in the bovine respiratory disease complex. Vet Clin North Am Food Anim Pract 2010; 26:303-21. [PMID: 20619186 DOI: 10.1016/j.cvfa.2010.04.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BHV-1 is an important pathogen of cattle. Because of its ability to induce immune suppression, BHV-1 is an important agent in the multifactorial disorder, bovine respiratory disease complex (BRDC). BHV-1 encodes several proteins that inhibit various arms of the immune system suggesting that these proteins are important in the development of BRDC.
Collapse
Affiliation(s)
- Clinton Jones
- School of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Lincoln, NE 68583-0905, USA.
| | | |
Collapse
|
27
|
López-Ramos JC, Tomioka Y, Morimatsu M, Yamamoto S, Ozaki K, Ono E, Delgado-García JM. Motor-coordination-dependent learning, more than others, is impaired in transgenic mice expressing pseudorabies virus immediate-early protein IE180. PLoS One 2010; 5:e12123. [PMID: 20711341 PMCID: PMC2920824 DOI: 10.1371/journal.pone.0012123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/16/2010] [Indexed: 12/14/2022] Open
Abstract
The cerebellum in transgenic mice expressing pseudorabies virus immediate-early protein IE180 (TgIE96) was substantially diminished in size, and its histoarchitecture was severely disorganized, resulting in severe ataxia. TgIE96 mice can therefore be used as an experimental model to study the involvement of cerebellar circuits in different learning tasks. The performance of three-month-old TgIE96 mice was studied in various behavioral tests, including associative learning (classical eyeblink conditioning), object recognition, spatial orientation (water maze), startle response and prepulse inhibition, and passive avoidance, and compared with that of wild-type mice. Wild-type and TgIE96 mice presented similar reflexively evoked eyeblinks, and acquired classical conditioned eyelid responses with similar learning curves for both trace and delay conditioning paradigms. The two groups of mice also had similar performances during the object recognition test. However, they showed significant differences for the other three tests included in this study. Although both groups of animals were capable of swimming, TgIE96 mice failed to learn the water maze task during the allowed time. The startle response to a severe tone was similar in both control and TgIE96 mice, but the latter were unable to produce a significant prepulse inhibition. TgIE96 mice also presented evident deficits for the proper accomplishment of a passive avoidance test. These results suggest that the cerebellum is not indispensable for the performance of classical eyeblink conditioning and for object recognition tasks, but seems to be necessary for the proper performance of water maze, prepulse inhibition, and passive avoidance tests.
Collapse
Affiliation(s)
| | - Yukiko Tomioka
- Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masami Morimatsu
- Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Sayo Yamamoto
- Laboratory of Biomedicine, Center of Biomedical Research, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinuyo Ozaki
- Laboratory of Biomedicine, Center of Biomedical Research, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Etsuro Ono
- Laboratory of Biomedicine, Center of Biomedical Research, School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail: (JMDG); (EO)
| | - José M. Delgado-García
- Neuroscience Division, Pablo de Olavide University, Seville, Spain
- * E-mail: (JMDG); (EO)
| |
Collapse
|
28
|
Workman A, Jones C. Productive infection and bICP0 early promoter activity of bovine herpesvirus 1 are stimulated by E2F1. J Virol 2010; 84:6308-17. [PMID: 20410283 PMCID: PMC2903271 DOI: 10.1128/jvi.00321-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/10/2010] [Indexed: 11/20/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an important viral pathogen of cattle. Like other members of the subfamily Alphaherpesvirinae, BoHV-1 establishes latency in sensory neurons and has the potential to reactivate from latency. Dexamethasone (DEX) treatment of latently infected calves or rabbits consistently leads to reactivation from latency. The BoHV-1 transcript encoding the infected cell protein 0 (bICP0) is consistently detected during reactivation from latency, in part because the bICP0 early promoter is activated by DEX. During DEX-induced reactivation from latency, cyclin expression is stimulated in infected sensory neurons. Cyclin-dependent kinase activity phosphorylates Rb (retinoblastoma tumor suppressor gene product) family proteins and consequently releases the E2F family of transcription factors, suggesting that E2F family members stimulate productive infection and/or reactivation from latency. In this study, we provide evidence that repression of E2F1 by a specific small interfering RNA (siRNA) reduced productive infection approximately 5-fold. E2F1 or E2F2 stimulated bICP0 early promoter activity at least 100-fold in transient transfection assays. Two E2F-responsive regions (ERR) were identified within the early promoter, with one adjacent to the TATA box (ERR1) and one approximately 600 bp upstream from the TATA box (ERR2). Mobility shift assays suggested that E2F interacts with ERR1 and ERR2. E2F1 protein levels were increased at late times after infection, which correlated with enhanced binding to a consensus E2F binding site, ERR1, or ERR2. Collectively, these studies suggest that E2F1 stimulates productive infection and bICP0 early promoter activity, in part because E2F family members interact with ERR1 and ERR2.
Collapse
Affiliation(s)
- Aspen Workman
- Department of Veterinary and Biomedical Sciences, School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln Fair Street at East Campus Loop, Lincoln, Nebraska 68583-0905
| | - Clinton Jones
- Department of Veterinary and Biomedical Sciences, School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln Fair Street at East Campus Loop, Lincoln, Nebraska 68583-0905
| |
Collapse
|
29
|
Jaber T, Workman A, Jones C. Small noncoding RNAs encoded within the bovine herpesvirus 1 latency-related gene can reduce steady-state levels of infected cell protein 0 (bICP0). J Virol 2010; 84:6297-307. [PMID: 20410286 PMCID: PMC2903259 DOI: 10.1128/jvi.02639-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/30/2010] [Indexed: 01/02/2023] Open
Abstract
Following acute infection in mucosal epithelium, bovine herpes virus 1 (BHV-1) establishes lifelong latency in sensory neurons within trigeminal ganglia. The latency-related RNA (LR-RNA) is abundantly expressed in sensory neurons of latently infected calves. Expression of LR proteins is necessary for the latency reactivation cycle because a mutant virus that does not express LR proteins is unable to reactivate from latency after dexamethasone treatment. LR-RNA sequences also inhibit bICP0 expression, productive infection, and cell growth. However, it is unclear how LR-RNA mediates these functions. In this study, we identified a 463-bp region within the LR gene (the XbaI-PstI [XP] fragment) that inhibited bICP0 protein and RNA expression in transiently transfected mouse neuroblastoma cells. Small noncoding RNAs (sncRNAs) encoded within the XP fragment (20 to 90 nucleotides in length) were detected in transiently transfected mouse neuroblastoma cells. Two families of sncRNAs were cloned from this region, and each family was predicted to contain a mature microRNA (miRNA). Both miRNAs were predicted to base pair with bICP0 mRNA sequences, suggesting that they reduce bICP0 levels. To test this prediction, sequences encompassing the respective sncRNAs and mature miRNAs were synthesized and cloned into a small interfering RNA expression vector. Both sncRNA families and their respective miRNAs inhibited bICP0 protein expression in mouse neuroblastoma cells and productive infection in bovine cells. In trigeminal ganglia of latently infected calves, an sncRNA that migrated between nucleotides 20 and 25 hybridized to the XP fragment. During dexamethasone-induced reactivation from latency, XP-specific sncRNA levels were reduced, suggesting that these sncRNAs support the establishment and maintenance of lifelong latency in cattle.
Collapse
Affiliation(s)
- Tareq Jaber
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503, School of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503
| | - Aspen Workman
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503, School of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503
| | - Clinton Jones
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503, School of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503
| |
Collapse
|
30
|
Fiorito F, Marfè G, Granato GE, Ciarcia R, De Blasio E, Tafani M, Florio S, De Martino L, Muzi G, Pagnini U, Giordano A. 2,3,7,8-Tetrachlorodibenzo-p-dioxin modifies expression and nuclear/cytosolic localization of bovine herpesvirus 1 immediate-early protein (bICP0) during infection. J Cell Biochem 2010; 111:333-42. [DOI: 10.1002/jcb.22700] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Everett RD, Boutell C, McNair C, Grant L, Orr A. Comparison of the biological and biochemical activities of several members of the alphaherpesvirus ICP0 family of proteins. J Virol 2010; 84:3476-87. [PMID: 20106921 PMCID: PMC2838103 DOI: 10.1128/jvi.02544-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 01/15/2010] [Indexed: 11/20/2022] Open
Abstract
Immediate-early protein ICP0 of herpes simplex virus type 1 (HSV-1) is an E3 ubiquitin ligase of the RING finger class that is required for efficient lytic infection and reactivation from latency. Other alphaherpesviruses also express ICP0-related RING finger proteins, but these have limited homology outside the core RING domain. Existing evidence indicates that ICP0 family members have similar properties, but there has been no systematic comparison of the biochemical activities and biological functions of these proteins. Here, we describe an inducible cell line system that allows expression of the ICP0-related proteins of bovine herpes virus type 1 (BHV-1), equine herpesvirus type 1 (EHV-1), pseudorabies virus (PRV), and varicella-zoster virus (VZV) and their subsequent functional analysis. We report that the RING domains of all the proteins have E3 ubiquitin ligase activity in vitro. The BHV-1, EHV-1, and PRV proteins complement ICP0-null mutant HSV-1 plaque formation and induce derepression of quiescent HSV-1 genomes to levels similar to those achieved by ICP0 itself. VICP0, the ICP0 expressed by VZV, was found to be extremely unstable, which limited its analysis in this system. We compared the abilities of the ICP0-related proteins to disrupt ND10, to induce degradation of PML and Sp100, to affect key components of the interferon signaling pathway, and to interfere with induction of interferon-stimulated genes. We found that the property that correlated most closely with their biological activities was the ability to preclude the recruitment of cellular ND10 proteins to sites closely associated with incoming HSV-1 genomes and early replication compartments.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
32
|
Jones C. Regulation of Innate Immune Responses by Bovine Herpesvirus 1 and Infected Cell Protein 0 (bICP0). Viruses 2009; 1:255-75. [PMID: 21994549 PMCID: PMC3185490 DOI: 10.3390/v1020255] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/24/2009] [Accepted: 09/02/2009] [Indexed: 01/12/2023] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) infected cell protein 0 (bICP0) is an important transcriptional regulatory protein that stimulates productive infection. In transient transfection assays, bICP0 also inhibits interferon dependent transcription. bICP0 can induce degradation of interferon stimulatory factor 3 (IRF3), a cellular transcription factor that is crucial for activating beta interferon (IFN-β) promoter activity. Recent studies also concluded that interactions between bICP0 and IRF7 inhibit trans-activation of IFN-β promoter activity. The C3HC4 zinc RING (really important new gene) finger located near the amino terminus of bICP0 is important for all known functions of bICP0. A recombinant virus that contains a single amino acid change in a well conserved cysteine residue of the C3HC4 zinc RING finger of bICP0 grows poorly in cultured cells, and does not reactivate from latency in cattle confirming that the C3HC4 zinc RING finger is crucial for viral growth and pathogenesis. A bICP0 deletion mutant does not induce plaques in permissive cells, but induces autophagy in a cell type dependent manner. In summary, the ability of bICP0 to stimulate productive infection, and repress IFN dependent transcription plays a crucial role in the BoHV-1 infection cycle.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE, 68583-0905, USA; E-mail: ; Tel.: +1 (402) 472-1890
| |
Collapse
|
33
|
The infected cell protein 0 encoded by bovine herpesvirus 1 (bICP0) associates with interferon regulatory factor 7 and consequently inhibits beta interferon promoter activity. J Virol 2009; 83:3977-81. [PMID: 19176627 DOI: 10.1128/jvi.02400-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The bICP0 protein encoded by bovine herpesvirus 1 stimulates productive infection and viral gene expression but inhibits interferon (IFN)-dependent transcription. bICP0 inhibits beta IFN (IFN-beta) promoter activity and induces degradation of IFN regulatory factor 3 (IRF3). Although bICP0 inhibits the trans-activation activity of IRF7, IRF7 protein levels are not reduced. In this study, we demonstrate that bICP0 is associated with IRF7. Furthermore, bICP0 inhibits the ability of IRF7 to trans-activate the IFN-beta promoter in the absence of IRF3 expression. The interaction between bICP0 and IRF7 correlates with reduced trans-activation of the IFN-beta promoter by IRF7.
Collapse
|
34
|
The zinc RING finger of bovine herpesvirus 1-encoded bICP0 protein is crucial for viral replication and virulence. J Virol 2008; 82:12060-8. [PMID: 18842710 DOI: 10.1128/jvi.01348-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1) infected cell protein 0 (bICP0) stimulates productive infection, in part by activating viral gene expression. The C(3)HC(4) zinc RING finger of bICP0 is crucial for activating viral transcription and productive infection. In this study, we used a bacterial artificial chromosome containing a wild-type (wt) virulent BHV-1 strain to generate a single amino acid mutation in the C(3)HC(4) zinc RING finger of bICP0. This virus (the 51g mutant) contains a cysteine-to-glycine mutation (51st amino acid) in the C(3)HC(4) zinc RING finger of bICP0. A plasmid expressing the 51g mutant protein did not transactivate viral promoter activity as efficiently as wt bICP0. The 51g mutant virus expressed higher levels of the bICP0 protein than did the 51g rescued virus (51gR) but yielded reduced virus titers following infection of permissive bovine cells. The 51g mutant virus, but not the 51gR virus, grew poorly in bovine cells pretreated with imiquimod to stimulate interferon production. During acute infection of calves, levels of infectious virus were 2 to 3 logs lower in ocular or nasal swabs with 51g than with 51gR. Calves latently infected with the 51g mutant did not reactivate from latency because virus shedding did not occur in ocular or nasal cavities. As expected, calves latently infected with 51gR reactivated from latency following dexamethasone treatment. These studies demonstrate that mutation of a single well-conserved cysteine residue in the C(3)HC(4) zinc RING finger of bICP0 has dramatic effects on the growth properties of BHV-1.
Collapse
|
35
|
Tomioka Y, Miyazaki T, Taharaguchi S, Yoshino S, Morimatsu M, Uede T, Ono E, Watanabe M. Cerebellar pathology in transgenic mice expressing the pseudorabies virus immediate-early protein IE180. Eur J Neurosci 2008; 27:2115-32. [PMID: 18412631 DOI: 10.1111/j.1460-9568.2008.06174.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudorabies virus is an alphaherpesvirus causing fatal neurological diseases in animals. Pseudorabies virus carries a gene encoding immediate-early (IE) protein IE180, which controls the transcription of other viral and host cell genes. Previously, we reported that transgenic expression of IE180 in mice causes severe ataxia and cerebellar deformity. Here we identified profound abnormalities in adult IE180 transgenic mice, including malpositioning of Purkinje cells (PCs), granule cells (GCs) and Bergmann glia (BG), impaired dendritogenesis and synaptogenesis in PCs, disoriented BG fibers, absence of molecular layer interneurons, and increased apoptosis of neurons and glia. In accordance with the cellular defects, we found the expression of IE180 in PCs, GCs and astrocytes during cerebellar development. We next examined transgenic mice expressing truncated IE180 mutants: dlN132 lacking the acidic transcriptional active domain, dlC629 lacking the nuclear localization signal and dlC1081 having all known domains but lacking the carboxyl-terminal sequence. Despite similar expression levels of the transgenes, ataxia and cerebellar defects were only manifested in the dlC1081 transgenic mice but their phenotypes were milder compared with the IE180 transgenic mice. In the dlC1081 transgenic mice, cerebellar neurons and glia were normally positioned but cerebellar size was severely reduced due to GC deficits. Interestingly, dlC1081 was mainly expressed in the GCs with low expression in a few BG. Taken together, the present findings clarified a causal relationship between cerebellar pathology and cellular expression of IE180, and further afforded an experimental insight into different symptomatic severity as a consequence of different cellular defects caused by such cytotoxic viral agents.
Collapse
Affiliation(s)
- Yukiko Tomioka
- Laboratory of Animal Experiment for Disease Model, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
A review of the biology of bovine herpesvirus type 1 (BHV-1), its role as a cofactor in the bovine respiratory disease complex and development of improved vaccines. Anim Health Res Rev 2008; 8:187-205. [PMID: 18218160 DOI: 10.1017/s146625230700134x] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infection of cattle by bovine herpesvirus type 1 (BHV-1) can lead to upper respiratory tract disorders, conjunctivitis, genital disorders and immune suppression. BHV-1-induced immune suppression initiates bovine respiratory disease complex (BRDC), which costs the US cattle industry approximately 3 billion dollars annually. BHV-1 encodes at least three proteins that can inhibit specific arms of the immune system: (i) bICP0 inhibits interferon-dependent transcription, (ii) the UL41.5 protein inhibits CD8+ T-cell recognition of infected cells by preventing trafficking of viral peptides to the surface of the cells and (iii) glycoprotein G is a chemokine-binding protein that prevents homing of lymphocytes to sights of infection. Following acute infection of calves, BHV-1 can also infect and induce high levels of apoptosis of CD4+ T-cells. Consequently, the ability of BHV-1 to impair the immune response can lead to BRDC. Following acute infection, BHV-1 establishes latency in sensory neurons of trigeminal ganglia (TG) and germinal centers of pharyngeal tonsil. Periodically BHV-1 reactivates from latency, virus is shed, and consequently virus transmission occurs. Two viral genes, the latency related gene and ORF-E are abundantly expressed during latency, suggesting that they regulate the latency-reactivation cycle. The ability of BHV-1 to enter permissive cells, infect sensory neurons and promote virus spread from sensory neurons to mucosal surfaces following reactivation from latency is also regulated by several viral glycoproteins. The focus of this review is to summarize the biology of BHV-1 and how this relates to BRDC.
Collapse
|
37
|
Geiser V, Rose S, Jones C. Bovine herpesvirus type 1 induces cell death by a cell-type-dependent fashion. Microb Pathog 2007; 44:459-66. [PMID: 18222625 DOI: 10.1016/j.micpath.2007.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 10/19/2007] [Indexed: 11/27/2022]
Abstract
Bovine herpesvirus 1 (BHV-1), a member of the alpha-herpesvirinae sub-family, causes significant losses to the cattle industry. BHV-1 establishes latency in trigeminal ganglionic sensory neurons, but periodically reactivates from latency. Previous studies suggested that infection with BHV-1-induced novel morphological changes in rabbit skin (RS) cells versus bovine kidney cells (MDBK). Consequently, we hypothesized that viral infection led to a novel form of cell death in RS cells compared to MDBK cells. To test this hypothesis, we examined the levels of apoptosis in these cell types following infection with BHV-1. Infection of RS, but not MDBK, cells leads to high levels of apoptosis compared to mock-infected cells. Previous studies indicated that a BHV-1 recombinant virus that does not express the bICP0 protein grows poorly in permissive cells and induces a persistent-like infection. This suggested that bICP0 played an important role in regulating cell death following infection. To test this hypothesis, we compared the levels of apoptosis in cells infected with the bICP0 null mutant versus viral strains that expressed bICP0. The bICP0 null mutant induces low levels of apoptosis in RS or MDBK cells. When MDBK cells are treated with UV light prior to infection, bICP0 expressing viral strains, but not the bICP0 null mutant, inhibited UV-induced apoptosis. Infection of MDBK cells with the bICP0 null mutant, leads to an accumulation of autophagosomes that are not detected following infection with bICP0 expressing viruses. These studies suggest that the bICP0 null mutant induces autophagy in MDBK cells, and bICP0 protein expression mediates cell-type specific cytotoxicity.
Collapse
Affiliation(s)
- Vicki Geiser
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | | | | |
Collapse
|
38
|
Saira K, Zhou Y, Jones C. The infected cell protein 0 encoded by bovine herpesvirus 1 (bICP0) induces degradation of interferon response factor 3 and, consequently, inhibits beta interferon promoter activity. J Virol 2007; 81:3077-86. [PMID: 17215277 PMCID: PMC1866033 DOI: 10.1128/jvi.02064-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 12/28/2006] [Indexed: 12/25/2022] Open
Abstract
The ICP0 protein (bICP0) encoded by bovine herpesvirus 1 is the major viral regulatory protein because it stimulates all viral promoters and, consequently, productive infection. Like other ICP0 analogues encoded by Alphaherpesvirinae subfamily members, bICP0 contains a zinc RING finger near its amino terminus that is necessary for activating transcription, regulating subcellular localization, and inhibiting interferon-dependent transcription. In this study, we discovered that sequences near the C terminus, and the zinc RING finger, are necessary for inhibiting the human beta interferon (IFN-beta) promoter. In contrast to herpes simplex virus type 1-encoded ICP0, bICP0 reduces interferon response factor 3 (IRF3), but not IRF7, protein levels in transiently transfected cells. The zinc RING finger and sequences near the C terminus are necessary for bICP0-induced degradation of IRF3. A proteasome inhibitor, lactacystin, interfered with bICP0-induced degradation of IRF3, suggesting that bICP0, directly or indirectly, targets IRF3 for proteasome-dependent degradation. IRF3, but not IRF7, is not readily detectable in the nuclei of productively infected bovine cells during the late stages of infection. In the context of productive infection, IRF3 and IRF7 are detected in the nucleus at early times after infection. At late times after infection, IRF7, but not IRF3, is still detectable in the nuclei of infected cells. Collectively, these studies suggest that the ability of bICP0 to reduce IRF3 protein levels is important with respect to disarming the IFN response during productive infection.
Collapse
Affiliation(s)
- Kazima Saira
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | | | | |
Collapse
|
39
|
Meyer F, Perez S, Geiser V, Sintek M, Inman M, Jones C. A protein encoded by the bovine herpesvirus 1 latency-related gene interacts with specific cellular regulatory proteins, including CCAAT enhancer binding protein alpha. J Virol 2007; 81:59-67. [PMID: 16987965 PMCID: PMC1797275 DOI: 10.1128/jvi.01171-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 09/12/2006] [Indexed: 01/28/2023] Open
Abstract
Following acute infection, bovine herpesvirus 1 establishes latency in sensory neurons of trigeminal ganglia (TG). Reactivation from latency occurs periodically, resulting in the shedding of infectious virus. The latency-related (LR) RNA is abundantly expressed in TG of latently infected calves, and the expression of LR proteins is necessary for dexamethasone-induced reactivation from latency. Previously published studies also identified an alternatively spliced LR transcript which is abundantly expressed in TG at 7 days after infection and has the potential to encode a novel LR fusion protein. Seven days after infection is when extensive viral gene expression is extinguished in TG and latency is established, suggesting that LR gene products influence the establishment of latency. In this study, we used a bacterial two-hybrid assay to identify cellular proteins that interact with the novel LR fusion protein. The LR fusion protein interacts with two proteins that can induce apoptosis (Bid and Cdc42) and with CCAAT enhancer binding protein alpha (C/EBP-alpha). Additional studies confirmed that the LR fusion protein interacts with human or insect C/EBP-alpha. C/EBP-alpha protein expression is induced in TG neurons of infected calves and after dexamethasone-induced reactivation from latency. Wild-type C/EBP-alpha, but not a DNA binding mutant of C/EBP-alpha, enhances plaque formation in bovine cells. We hypothesize that interactions between the LR fusion protein and C/EBP-alpha promote the establishment of latency.
Collapse
Affiliation(s)
- Florencia Meyer
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | | | | | | | | | | |
Collapse
|
40
|
Zhang Y, Jiang Y, Geiser V, Zhou J, Jones C. Bovine herpesvirus 1 immediate-early protein (bICP0) interacts with the histone acetyltransferase p300, which stimulates productive infection and gC promoter activity. J Gen Virol 2006; 87:1843-1851. [PMID: 16760386 DOI: 10.1099/vir.0.81766-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The immediate-early protein, bICP0, ofBovine herpesvirus 1(BHV-1) transactivates viral promoters and stimulates productive infection. bICP0 is expressed constitutively during productive infection, as its gene contains an immediate-early and an early promoter. Like other ICP0 homologues encoded by members of the subfamilyAlphaherpesvirinae, bICP0 contains a zinc RING finger located near its N terminus. Mutations that disrupt the bICP0 zinc RING finger impair its ability to activate transcription, stimulate productive infection, inhibit interferon-dependent transcription in certain cell types and regulate subnuclear localization. bICP0 also interacts with a cellular chromatin-remodelling enzyme, histone deacetylase 1 (HDAC1), and can relieve HDAC1-mediated transcriptional repression, suggesting that bICP0 inhibits silencing of the viral genome. In this study, it was shown that bICP0 interacted with the histone acetyltransferase p300 during productive infection and in transiently transfected cells. In addition, p300 enhanced BHV-1 productive infection and transactivated a late viral promoter (gC). In contrast, a CH3-domain deletion mutant of p300, which is a dominant-negative mutant, did not activate the gC promoter. bICP0 and p300 cooperated to activate the gC promoter, suggesting that there is a synergistic effect on promoter activation. As p300 can activate certain antiviral signalling pathways (for example, interferon), it was hypothesized that interactions between p300 and bICP0 may dampen the antiviral response following infection.
Collapse
Affiliation(s)
- Yange Zhang
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Yunquan Jiang
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Vicki Geiser
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Joe Zhou
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Clinton Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| |
Collapse
|
41
|
Jones C, Geiser V, Henderson G, Jiang Y, Meyer F, Perez S, Zhang Y. Functional analysis of bovine herpesvirus 1 (BHV-1) genes expressed during latency. Vet Microbiol 2005; 113:199-210. [PMID: 16352404 DOI: 10.1016/j.vetmic.2005.11.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bovine herpes virus 1 (BHV-1) establishes latency in sensory neurons of trigeminal ganglia (TG), and germinal centers of pharyngeal tonsil. Periodically BHV-1 reactivates from latency, virus is shed, and consequently virus transmission occurs. Two transcripts, the latency related (LR) RNA and ORF-E, are abundantly expressed in TG of latently infected cattle. A LR mutant strain of BHV-1 was constructed that contains stop codons near the beginning of the LR-RNA. The LR mutant virus does not express two proteins encoded by the LR gene, or reactivate from latency suggesting that LR protein expression regulates the latency-reactivation cycle. Higher levels of apoptosis occur in TG of calves infected with the LR mutant versus wild type BHV-1 indicating that the anti-apoptotic properties of the LR gene regulate the latency-reactivation cycle. The LR gene also inhibits bICP0 expression and mammalian cell growth, but these functions do not require LR protein expression. In contrast, the ability of the LR gene to inhibit apoptosis appears to require LR protein expression. A small open reading frame (ORF-E) that is located within the LR promoter is expressed in the nucleus of neuroblastoma cells. We predict that the LR gene and ORF-E regulate the BHV-1 latency-reactivation cycle.
Collapse
Affiliation(s)
- C Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, and School of Biological Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Henderson G, Zhang Y, Jones C. The bovine herpesvirus 1 gene encoding infected cell protein 0 (bICP0) can inhibit interferon-dependent transcription in the absence of other viral genes. J Gen Virol 2005; 86:2697-2702. [PMID: 16186222 DOI: 10.1099/vir.0.81109-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The infected cell protein 0 (bICP0) encoded byBovine herpesvirus 1(BHV-1) stimulates viral gene expression and productive infection. As bICP0 is expressed constitutively during productive infection, it is considered to be the major viral regulatory protein. Like other alphaherpesvirus ICP0 homologues, bICP0 contains a zinc RING finger near its N terminus that activates transcription and regulates subcellular localization. In this study, evidence is provided that bICP0 represses the human beta interferon (IFN-β) promoter and a simple promoter with consensus IFN-stimulated response elements following stimulation with double-stranded RNA (polyinosinic–polycytidylic acid), IFN regulatory factor 3 (IRF3) or IRF7. bICP0 also inhibits the ability of two protein kinases (TBK1 and IKKε) to activate IFN-βpromoter activity. The zinc RING finger is necessary for inhibiting IFN-dependent transcription in certain cell types. Collectively, these studies suggest that bICP0 activates productive infection by stimulating viral gene expression and inhibiting IFN-dependent transcription.
Collapse
Affiliation(s)
- Gail Henderson
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Yange Zhang
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Clinton Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| |
Collapse
|
43
|
Femiano F, Gombos F, Scully C. Recurrent herpes labialis: a pilot study of the efficacy of zinc therapy. J Oral Pathol Med 2005; 34:423-5. [PMID: 16011612 DOI: 10.1111/j.1600-0714.2005.00327.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The objective of this study was to investigate the effect of zinc on recurrent herpes labialis. MATERIALS/METHODS Twenty patients (12 females; median age 26.6 years) with a history of recurrent herpes labialis >6 episodes each year were treated with systemic zinc sulphate 22.5 mg twice daily for the months of February, March, September and October. All patients were followed for 12 months. RESULTS Herpetic lesions reduced to <4 episodes (average 3) for the 12 months and the duration was <7 days for each episode (average 5.7). CONCLUSIONS Systemic zinc sulphate appeared to reduce both the number of episodes and the time to recovery of herpes labialis.
Collapse
Affiliation(s)
- F Femiano
- Stomatology Clinic, II University of Medicines and Surgery, Naples, Italy.
| | | | | |
Collapse
|
44
|
Chaturvedi UC, Shrivastava R. Interaction of viral proteins with metal ions: role in maintaining the structure and functions of viruses. ACTA ACUST UNITED AC 2005; 43:105-14. [PMID: 15681139 PMCID: PMC7110337 DOI: 10.1016/j.femsim.2004.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 11/17/2004] [Indexed: 01/29/2023]
Abstract
Metal ions are integral part of some viral proteins and play an important role in their survival and pathogenesis. Zinc, magnesium and copper are the commonest metal ion that binds with viral proteins. Metal ions participate in maturation of genomic RNA, activation and catalytic mechanisms, reverse transcription, initial integration process and protection of newly synthesized DNA, inhibition of proton translocation (M2 protein), minus‐ and plus‐strand transfer, enhance nucleic acid annealing, activation of transcription, integration of viral DNA into specific sites and act as a chaperone of nucleic acid. Metal ions are also required for nucleocapsid protein‐transactivation response (TAR)–RNA interactions. In certain situations more than one metal ion is required e.g. RNA cleavage by RNase H. This review underscores the importance of metal ions in the survival and pathogenesis of a large group of viruses and studies on structural basis for metal binding should prove useful in the early design and development of viral inhibitors.
Collapse
Affiliation(s)
- Umesh C Chaturvedi
- Biomembrane Division, Industrial Toxicology Research Centre, Mahatma Gandhi Marg, Lucknow 226001, India.
| | | |
Collapse
|
45
|
Geiser V, Zhang Y, Jones C. Analysis of a bovine herpesvirus 1 recombinant virus that does not express the bICP0 protein. J Gen Virol 2005; 86:1987-1996. [PMID: 15958678 DOI: 10.1099/vir.0.80921-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bovine herpesvirus 1 (BHV-1) infected-cell protein 0 (bICP0) stimulates productive infection by activating viral gene expression. In this study, an attempt was made to construct a recombinant virus with point mutations in the C3HC4zinc RING finger of bICP0, as this domain is necessary for activating viral transcription and productive infection. A virus was identified in bovine cells that induced small clusters of infected cells resembling a small plaque. Instead of the expected mutations within the zinc RING finger, this virus contained a point mutation within the initiating ATG of bICP0, a point mutation two bases downstream from the ATG mutation and deletion of flanking plasmid sequences used for homologous recombination. The bICP0 mutant was rescued with wild-type (wt) bICP0 sequences and the bICP0-rescued virus produced wt plaques. The bICP0-rescued virus and wt BHV-1, but not the mutant, expressed the bICP0 protein during productive infection of bovine cells, suggesting that the mutant virus was a null mutant. Consequently, the mutant was designated the bICP0 null mutant. Infection of bovine cells with the bICP0 null mutant resulted in at least 100-fold lower virus titres, indicating that bICP0 protein expression is important, but not required, for virus production. When bovine cells infected with the bICP0 null mutant virus were subcultured, the cells continued to divide, but viral DNA could be detected after more than 35 passages, suggesting that the bICP0 null mutant induced a persistent-like infection in bovine cells and that it may be useful for generating additional bICP0 mutants.
Collapse
Affiliation(s)
- V Geiser
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Y Zhang
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - C Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
46
|
Peng W, Henderson G, Inman M, BenMohamed L, Perng GC, Wechsler SL, Jones C. The locus encompassing the latency-associated transcript of herpes simplex virus type 1 interferes with and delays interferon expression in productively infected neuroblastoma cells and trigeminal Ganglia of acutely infected mice. J Virol 2005; 79:6162-71. [PMID: 15858001 PMCID: PMC1091686 DOI: 10.1128/jvi.79.10.6162-6171.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 12/29/2004] [Indexed: 01/12/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is the only abundant viral transcript expressed in latently infected neurons. LAT inhibits apoptosis, suggesting that it regulates latency by promoting the survival of infected neurons. The LAT locus also contains a newly described gene (AL), which is antisense to LAT and partially overlaps LAT encoding sequences. When human (SK-N-SH) or mouse (neuro-2A) neuroblastoma cells were infected with a virus that does not express LAT or AL gene products (dLAT2903), beta interferon (IFN-beta) and IFN-alpha RNA expression was detected earlier relative to the same cells infected with HSV-1 strains that express LAT and AL. Infection of neuro-2A cells with dLAT2903 also led to higher levels of IFN-beta promoter activity than in cells infected with wild-type (wt) HSV-1. In contrast, IFN RNA expression was the same when human lung fibroblasts were infected with dLAT2903 or wt HSV-1. When BALB/c mice were infected with dLAT2903, IFN-alpha and IFN-beta RNA expression was readily detected in trigeminal ganglia (TG) 4 days after infection. These transcripts were not detected in TG of mice infected with wt HSV-1 or dLAT2903R (marker-rescued dLAT2903) until 6 days postinfection. When TG single-cell suspensions from infected BALB/c mice were prepared and incubated in vitro with wt HSV-1 as a source of antigen, TG cultures prepared from mice infected with dLAT2903 produced and secreted higher levels of IFN protein than wt HSV-1 or dLAT2903R. Collectively, these studies suggest that the LAT locus interferes with and delays IFN expression.
Collapse
Affiliation(s)
- Weiping Peng
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhang Y, Zhou J, Jones C. Identification of functional domains within the bICP0 protein encoded by bovine herpesvirus 1. J Gen Virol 2005; 86:879-886. [PMID: 15784882 DOI: 10.1099/vir.0.80698-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
It is believed that the bICP0 protein encoded by bovine herpesvirus 1 (BoHV-1) stimulates productive infection by activating viral gene expression. Like the other ICP0-like proteins encoded byalphaherpesvirinaesubfamily members, bICP0 contains a zinc RING finger near its amino terminus. The zinc RING finger of bICP0 activates viral transcription, stimulates productive infection, and is toxic to certain cell types. Apart from the zinc RING finger, bICP0 possesses little similarity to the herpes simplex virus type 1 ICP0 protein making it difficult to predict what regions of bICP0 are important. To begin to identify bICP0 functional domains that are not part of the zinc RING finger, a panel of transposon insertion mutants that span bICP0 was developed. A large domain spanning aa 78–256, and a separate domain that is at or near aa 457 was necessary for efficient transactivation of a simple promoter. Transposon insertion at aa 91 impaired bICP0 protein stability in transfected cells. Insertion of transposons into the acidic domain of bICP0 had little or no effect on transactivation of a simple promoter or protein expression suggesting this region does not play a major role in activating gene expression. Sequences near the C terminus (aa 607–676) contain a functional nuclear localization signal. Collectively, these studies indicated that bICP0 contains several important functional domains: (i) the zinc RING finger, (ii) two separate domains that activate transcription, and (iii) a C-terminal nuclear localization signal that is also necessary for efficient transactivation.
Collapse
Affiliation(s)
- Yange Zhang
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA
| | - Joe Zhou
- Center for Biotechnology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA
| | - Clinton Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA
| |
Collapse
|
48
|
Henderson G, Zhang Y, Inman M, Jones D, Jones C. Infected cell protein 0 encoded by bovine herpesvirus 1 can activate caspase 3 when overexpressed in transfected cells. J Gen Virol 2004; 85:3511-3516. [PMID: 15557224 DOI: 10.1099/vir.0.80371-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection of cattle or bovine cells with bovine herpesvirus 1 (BHV-1) leads to increased apoptosis. Previous studies indicated that BHV-1 infected cell protein 0 (bICP0), the major transcriptional regulatory protein of BHV-1, is toxic in transiently transfected cells. Point mutations within the zinc RING finger of bICP0 reduced toxicity and eliminated the ability of bICP0 to activate viral gene expression. In mouse neuroblastoma cells (neuro-2A) and bovine turbinate cells, bICP0 activated caspase 3, a key regulatory protein in the apoptotic pathway. A pro-apoptotic gene (Bax), but not bICP0, induced caspase 3 cleavage and activation by 8 h after transfection of neuro-2A cells. Conversely, bICP0 or the N-terminal 356 aa of bICP0 did not induce caspase 3 cleavage in neuro-2A cells until 30 h after transfection, suggesting that bICP0 stimulates caspase 3 cleavage by an indirect mechanism. These studies indicate that the toxic functions of bICP0 correlate with caspase 3 cleavage and activation.
Collapse
Affiliation(s)
- Gail Henderson
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Yange Zhang
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Melissa Inman
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Dallas Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Clinton Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| |
Collapse
|
49
|
Hushur O, Takashima Y, Matsumoto Y, Otsuka H. Restriction of bovine herpesvirus 1 (BHV-1) growth in non-permissive cells beyond the expression of immediate early genes. J Vet Med Sci 2004; 66:453-5. [PMID: 15133279 DOI: 10.1292/jvms.66.453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mouse BALB/3T3-A31-1-1 (A31) cells are non-permissive to bovine herpes virus-1 (BHV-1) but permissive to pseudorabies virus (PrV). The promoter activity of the immediate early gene of BHV-1 (BICP4) was very weak when compared with that of PrV in A31 cells. Infectious BHV-1 genomic DNA co-transfected into A31 cells with plasmids expressing BICP4 and BICP0 by a strong promoter failed to yield any progeny virus. Growth of BHV-1 in non-permissible A31 cells is restricted in many phases of the growth. The fact that expression of BICP4 and/or BICP0 in A31 cells does not improve the yield of progeny virus from infectious BHV-1 genomic DNA suggests that some more growth restrictions exist beyond the expression of BHV-1 immediate early proteins.
Collapse
Affiliation(s)
- Orkash Hushur
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
50
|
Inman M, Zhou J, Webb H, Jones C. Identification of a novel bovine herpesvirus 1 transcript containing a small open reading frame that is expressed in trigeminal ganglia of latently infected cattle. J Virol 2004; 78:5438-47. [PMID: 15113922 PMCID: PMC400376 DOI: 10.1128/jvi.78.10.5438-5447.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1), like other Alphaherpesvirinae subfamily members, establishes latency in sensory neurons. The latency-related (LR) RNA is abundantly expressed during latency, and expression of an LR protein is required for the latency reactivation cycle in cattle. Within LR promoter sequences, a 135-amino-acid open reading frame (ORF) was identified, ORF-E, that is antisense to the LR RNA. ORF-E is also downstream of the gene encoding the major viral transcriptional activator, bICP0. Strand-specific reverse transcription-PCR demonstrated that a transcript containing ORF-E was consistently expressed in trigeminal ganglia (TG) of latently infected calves, productively infected cultured cells, and acutely infected calves. As expected, a late transcript encoding glycoprotein C was not detected in TG of latently infected calves. The ORF-E transcript is polyadenylated and is expressed early when cultured bovine cells are productively infected. Protein coding sequences containing ORF-E were fused to green fluorescent protein (GFP) to examine the cellular localization of the putative protein. In transiently transfected mouse neuroblastoma (neuro-2A) and human neuroblastoma (SK-N-SH) cells, the ORF-E/GFP fusion protein was detected in discreet domains within the nucleus. In contrast, the ORF-E/GFP fusion protein was detected in the cytoplasm and nucleus of rabbit skin cells and bovine kidney cells. As expected, the GFP protein was expressed in the cytoplasm and nucleus of transfected cells. These studies indicate that the ORF-E transcript is consistently expressed during latency. We suggest that the ORF-E gene regulates some aspect of the latency reactivation cycle.
Collapse
Affiliation(s)
- Melissa Inman
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln Fair Street at East Campus Loop, Lincoln, NE 68583-0905, USA
| | | | | | | |
Collapse
|