1
|
Tseng AC, Nerurkar VR, Neupane KR, Kae H, Kaufusi PH. Membrane Retention of West Nile Virus NS5 Depends on NS1 or NS3 for Enzymatic Activity. Viruses 2024; 16:1303. [PMID: 39205277 PMCID: PMC11360346 DOI: 10.3390/v16081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
West Nile virus (WNV) nonstructural protein 5 (NS5) possesses multiple enzymatic domains essential for viral RNA replication. During infection, NS5 predominantly localizes to unique replication organelles (ROs) at the rough endoplasmic reticulum (RER), known as vesicle packets (VPs) and convoluted membranes (CMs), with a portion of NS5 accumulating in the nucleus. NS5 is a soluble protein that must be in the VP, where its enzymatic activities are required for viral RNA synthesis. However, the mechanistic processes behind the recruitment of NS5 from the cytoplasm to the RER membrane remain unclear. Here, we utilize high-resolution confocal microscopy and sucrose density gradient ultracentrifugation to investigate whether the association of NS5 with other NS proteins contributes to its membrane recruitment and retention. We demonstrate that NS1 or NS3 partially influences the NS5 association with the membrane. We further demonstrate that processed NS5 is predominantly in the cytoplasm and nucleus, indicating that the processing of NS5 from the viral polyprotein does not contribute to its membrane localization. These observations suggest that other host or viral factors, such as the enwrapment of NS5 by the RO, may also be necessary for the complete membrane retention of NS5. Therefore, studies on the inhibitors that disrupt the membrane localization of WNV NS5 are warranted for antiviral drug development.
Collapse
Affiliation(s)
- Alanna C. Tseng
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
- Molecular Biosciences and Bioengineering Graduate Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
- Molecular Biosciences and Bioengineering Graduate Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Kabi R. Neupane
- Division of Math and Sciences, Leeward Community College, Pearl City, HI 96782, USA; (K.R.N.); (H.K.)
| | - Helmut Kae
- Division of Math and Sciences, Leeward Community College, Pearl City, HI 96782, USA; (K.R.N.); (H.K.)
| | - Pakieli H. Kaufusi
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
- Molecular Biosciences and Bioengineering Graduate Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
2
|
Wang X, Jing X, Shi J, Liu Q, Shen S, Cheung PPH, Wu J, Deng F, Gong P. A jingmenvirus RNA-dependent RNA polymerase structurally resembles the flavivirus counterpart but with different features at the initiation phase. Nucleic Acids Res 2024; 52:3278-3290. [PMID: 38296832 PMCID: PMC11014250 DOI: 10.1093/nar/gkae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Jingmenviruses are a category of emerging segmented viruses that have garnered global attention in recent years, and are close relatives of the flaviviruses in the Flaviviridae family. One of their genome segments encodes NSP1 homologous to flavivirus NS5. NSP1 comprises both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRP) modules playing essential roles in viral genome replication and capping. Here we solved a 1.8-Å resolution crystal structure of the NSP1 RdRP module from Jingmen tick virus (JMTV), the type species of jingmenviruses. The structure highly resembles flavivirus NS5 RdRP despite a sequence identity less than 30%. NSP1 RdRP enzymatic properties were dissected in a comparative setting with several representative Flaviviridae RdRPs included. Our data indicate that JMTV NSP1 produces characteristic 3-mer abortive products similar to the hepatitis C virus RdRP, and exhibits the highest preference of terminal initiation and shorter-primer usage. Unlike flavivirus NS5, JMTV RdRP may require the MTase for optimal transition from initiation to elongation, as an MTase-less NSP1 construct produced more 4-5-mer intermediate products than the full-length protein. Taken together, this work consolidates the evolutionary relationship between the jingmenvirus group and the Flaviviridae family, providing a basis to the further understanding of their viral replication/transcription process.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuping Jing
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Junming Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Qiaojie Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Peter Pak-Hang Cheung
- Department of Chemical Pathology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Jiqin Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Peng NYG, Sng JDJ, Setoh YX, Khromykh AA. Residue K28 of Zika Virus NS5 Protein Is Implicated in Virus Replication and Antagonism of STAT2. Microorganisms 2024; 12:660. [PMID: 38674605 PMCID: PMC11052099 DOI: 10.3390/microorganisms12040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The identification of four potential nonstructural 5 (NS5) residues-K28, K45, V335, and S749-that share the same amino acid preference in STAT2-interacting flaviviruses [Dengue virus (DENV) and Zika virus (ZIKV)], but not in STAT2-non-interacting flaviviruses [West Nile virus (WNV) and/or Yellow fever virus (YFV)] from an alignment of multiple flavivirus NS5 sequences, implied a possible association with the efficiency of ZIKV to antagonize the human signal transducer and activator of transcription factor 2 (STAT2). Through site-directed mutagenesis and reverse genetics, mutational impacts of these residues on ZIKV growth in vitro and STAT2 antagonism were assessed using virus growth kinetics assays and STAT2 immunoblotting. The results showed that mutations at the residue K28 significantly reduced the efficiency of ZIKV to antagonize STAT2. Further investigation involving residue K28 demonstrated its additional effects on the phenotypes of ZIKV-NS5 nuclear bodies. These findings demonstrate that K28, identified from sequence alignment, is an important determinant of replication and STAT2 antagonism by ZIKV.
Collapse
Affiliation(s)
- Nias Y. G. Peng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.D.J.S.); (Y.X.S.)
| | - Julian D. J. Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.D.J.S.); (Y.X.S.)
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.D.J.S.); (Y.X.S.)
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.D.J.S.); (Y.X.S.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Maus H, Gellert A, Englert OR, Chen JX, Schirmeister T, Barthels F. Designing photoaffinity tool compounds for the investigation of the DENV NS2B-NS3 protease allosteric binding pocket. RSC Med Chem 2023; 14:2365-2379. [PMID: 37974966 PMCID: PMC10650954 DOI: 10.1039/d3md00331k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023] Open
Abstract
Dengue virus (DENV) infection still lacks specific antiviral therapy, making the NS2B-NS3 protease an attractive target for drug development. However, allosteric inhibitors that bind to a site other than the active site still need to be better understood. In this study, we designed and synthesised tool compounds for photoaffinity labelling (PAL) to investigate the binding site of allosteric inhibitors on the DENV protease. These tool compounds contained an affinity moiety, a photoreactive group, and a reporter tag for detection. Upon irradiation, the photoreactive group formed a covalent bond with the protease, allowing for binding site identification. SDS-PAGE-based assays confirmed the qualitative binding of the designed inhibitors to the allosteric pocket, and pull-down experiments validated the interaction. Tryptic protein digestion following liquid chromatography/mass spectrometry analysis further supported the binding of the inhibitor to the proposed pocket revealing photo-attachment to an NS3 loop close to the C-terminus. These results enhance our understanding of allosteric inhibitors and their mechanism of action against the DENV protease. The developed tool compounds and PAL are potent tools for future drug discovery efforts and investigations targeting the DENV protease.
Collapse
Affiliation(s)
- Hannah Maus
- IPBS, Johannes Gutenberg-University Mainz Staudingerweg 5 55128 Mainz Germany
| | - Andrea Gellert
- IPBS, Johannes Gutenberg-University Mainz Staudingerweg 5 55128 Mainz Germany
| | - Olivia R Englert
- IPBS, Johannes Gutenberg-University Mainz Staudingerweg 5 55128 Mainz Germany
| | - Jia-Xuan Chen
- IMB, Johannes Gutenberg-University Mainz Ackermannweg 4 55128 Mainz Germany
| | - Tanja Schirmeister
- IPBS, Johannes Gutenberg-University Mainz Staudingerweg 5 55128 Mainz Germany
| | - Fabian Barthels
- IPBS, Johannes Gutenberg-University Mainz Staudingerweg 5 55128 Mainz Germany
| |
Collapse
|
5
|
Maus H, Müller P, Meta M, Hoba SN, Hammerschmidt SJ, Zimmermann RA, Zimmer C, Fuchs N, Schirmeister T, Barthels F. Next Generation of Fluorometric Protease Assays: 7-Nitrobenz-2-oxa-1,3-diazol-4-yl-amides (NBD-Amides) as Class-Spanning Protease Substrates. Chemistry 2023; 29:e202301855. [PMID: 37313627 DOI: 10.1002/chem.202301855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
Fluorometric assays are one of the most frequently used methods in medicinal chemistry. Over the last 50 years, the reporter molecules for the detection of protease activity have evolved from first-generation colorimetric p-nitroanilides, through FRET substrates, and 7-amino-4-methyl coumarin (AMC)-based substrates. The aim of further substrate development is to increase sensitivity and reduce vulnerability to assay interferences. Herein, we describe a new generation of substrates for protease assays based on 7-nitrobenz-2-oxa-1,3-diazol-4-yl-amides (NBD-amides). In this study, we synthesized and tested substrates for 10 different proteases from the serine-, cysteine-, and metalloprotease classes. Enzyme- and substrate-specific parameters as well as the inhibitory activity of literature-known inhibitors confirmed their suitability for application in fluorometric assays. Hence, we were able to present NBD-based alternatives for common protease substrates. In conclusion, these NBD substrates are not only less susceptible to common assay interference, but they are also able to replace FRET-based substrates with the requirement of a prime site amino acid residue.
Collapse
Affiliation(s)
- Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Patrick Müller
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Mergim Meta
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Natalie Fuchs
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
6
|
Barnard TR, Landry BN, Wang AB, Sagan SM. Zika virus NS3 and NS5 proteins determine strain-dependent differences in dsRNA accumulation in a host cell type-dependent manner. J Gen Virol 2023; 104. [PMID: 37289497 DOI: 10.1099/jgv.0.001855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
For positive-sense RNA viruses, initiation of viral RNA replication represents a major target of antiviral responses to infection. Despite this, the interplay between viral replication and the innate antiviral response at early steps in the Zika virus (ZIKV) life cycle is not well understood. We have previously identified ZIKV isolates with differing levels of dsRNA accumulation, ZIKVPR (high dsRNA per infected cell) and ZIKVCDN (low dsRNA per infected cell), and we hypothesized that we could use reverse genetics to investigate how host and viral factors contribute to the establishment of viral RNA replication. We found that both the ZIKV NS3 and NS5 proteins as well as host factors were necessary to determine the dsRNA accumulation phenotype. Additionally, we show that dsRNA correlates with viral negative-strand RNA measured by strand-specific RT-qPCR, suggesting that dsRNA is an accurate readout of viral RNA replication. Interestingly, although we did not observe NS3- and NS5-dependent differences in cells with defects in interferon (IFN) production, differences in RNA accumulation precede induction of the IFN response, suggesting that RNA sensing pathways or intrinsic restriction factors may differentially restrict ZIKV in an NS3- and NS5-dependent manner. This work expands our understanding of the interplay of early steps of viral RNA replication and the induction of the innate antiviral response to ZIKV infection.
Collapse
Affiliation(s)
- Trisha R Barnard
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Breanna N Landry
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Alex B Wang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Lim PY, Ramapraba A, Loy T, Rouers A, Thein TL, Leo YS, Burton DR, Fink K, Wang CI. A nonstructural protein 1 capture enzyme-linked immunosorbent assay specific for dengue viruses. PLoS One 2023; 18:e0285878. [PMID: 37200264 PMCID: PMC10194908 DOI: 10.1371/journal.pone.0285878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Dengue non-structural protein (NS1) is an important diagnostic marker during the acute phase of infection. Because NS1 is partially conserved across the flaviviruses, a highly specific DENV NS-1 diagnostic test is needed to differentiate dengue infection from Zika virus (ZIKV) infection. In this study, we characterized three newly isolated antibodies against NS1 (A2, D6 and D8) from a dengue-infected patient and a previously published human anti-NS1 antibody (Den3). All four antibodies recognized multimeric forms of NS1 from different serotypes. A2 bound to NS1 from DENV-1, -2, and -3, D6 bound to NS1 from DENV-1, -2, and -4, and D8 and Den3 interacted with NS1 from all four dengue serotypes. Using a competition ELISA, we found that A2 and D6 bound to overlapping epitopes on NS1 whereas D8 recognized an epitope distinct from A2 and D6. In addition, we developed a capture ELISA that specifically detected NS1 from dengue viruses, but not ZIKV, using Den3 as the capture antibody and D8 as the detecting antibody. This assay detected NS1 from all the tested dengue virus strains and dengue-infected patients. In conclusion, we established a dengue-specific capture ELISA using human antibodies against NS1. This assay has the potential to be developed as a point-of-care diagnostic tool.
Collapse
Affiliation(s)
- Pei-Yin Lim
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Appanna Ramapraba
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Thomas Loy
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Angeline Rouers
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tun-Linn Thein
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
8
|
Nucleo-Cytoplasmic Transport of ZIKV Non-Structural 3 Protein Is Mediated by Importin-α/β and Exportin CRM-1. J Virol 2023; 97:e0177322. [PMID: 36475764 PMCID: PMC9888292 DOI: 10.1128/jvi.01773-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses have a cytoplasmic replicative cycle, and crucial events, such as genome translation and replication, occur in the endoplasmic reticulum. However, some viral proteins, such as C, NS1, and NS5 from Zika virus (ZIKV) containing nuclear localization signals (NLSs) and nuclear export signals (NESs), are also located in the nucleus of Vero cells. The NS2A, NS3, and NS4A proteins from dengue virus (DENV) have also been reported to be in the nucleus of A549 cells, and our group recently reported that the NS3 protein is also located in the nucleus of Huh7 and C636 cells during DENV infection. However, the NS3 protease-helicase from ZIKV locates in the perinuclear region of infected cells and alters the morphology of the nuclear lamina, a component of the nuclear envelope. Furthermore, ZIKV NS3 has been reported to accumulate on the concave face of altered kidney-shaped nuclei and may be responsible for modifying other elements of the nuclear envelope. However, nuclear localization of NS3 from ZIKV has not been substantially investigated in human host cells. Our group has recently reported that DENV and ZIKV NS3 alter the nuclear pore complex (NPC) by cleaving some nucleoporins. Here, we demonstrate the presence of ZIKV NS3 in the nucleus of Huh7 cells early in infection and in the cytoplasm at later times postinfection. In addition, we found that ZIKV NS3 contains an NLS and a putative NES and uses the classic import (importin-α/β) and export pathway via CRM-1 to be transported between the cytoplasm and the nucleus. IMPORTANCE Flaviviruses have a cytoplasmic replication cycle, but recent evidence indicates that nuclear elements play a role in their viral replication. Viral proteins, such as NS5 and C, are imported into the nucleus, and blocking their import prevents replication. Because of the importance of the nucleus in viral replication and the role of NS3 in the modification of nuclear components, we investigated whether NS3 can be localized in the nucleus during ZIKV infection. We found that NS3 is imported into the nucleus via the importin pathway and exported to the cytoplasm via CRM-1. The significance of viral protein nuclear import and export and its relationship with infection establishment is highlighted, emphasizing the development of new host-directed antiviral therapeutic strategies.
Collapse
|
9
|
Dengue Virus NS4b N-Terminus Disordered Region Interacts with NS3 Helicase C-Terminal Subdomain to Enhance Helicase Activity. Viruses 2022; 14:v14081712. [PMID: 36016333 PMCID: PMC9412862 DOI: 10.3390/v14081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Dengue virus replicates its single-stranded RNA genome in membrane-bound complexes formed on the endoplasmic reticulum, where viral non-structural proteins (NS) and RNA co-localize. The NS proteins interact with one another and with the host proteins. The interaction of the viral helicase and protease, NS3, with the RNA-dependent RNA polymerase, NS5, and NS4b proteins is critical for replication. In vitro, NS3 helicase activity is enhanced by interaction with NS4b. We characterized the interaction between NS3 and NS4b and explained a possible mechanism for helicase activity modulation by NS4b. Our bacterial two-hybrid assay results showed that the N-terminal 57 residues region of NS4b is enough to interact with NS3. The molecular docking of the predicted NS4b structure onto the NS3 structure revealed that the N-terminal disordered region of NS4b wraps around the C-terminal subdomain (CTD) of the helicase. Further, NS3 helicase activity is enhanced upon interaction with NS4b. Molecular dynamics simulations on the NS4b-docked NS3 crystal structure and intrinsic tryptophan fluorescence studies suggest that the interaction results in NS3 CTD domain motions. Based on the interpretation of our results in light of the mechanism explained for NS3 helicase, NS4b–NS3 interaction modulating CTD dynamics is a plausible explanation for the helicase activity enhancement.
Collapse
|
10
|
Yang SNY, Maher B, Wang C, Wagstaff KM, Fraser JE, Jans DA. High Throughput Screening Targeting the Dengue NS3-NS5 Interface Identifies Antivirals against Dengue, Zika and West Nile Viruses. Cells 2022; 11:730. [PMID: 35203378 PMCID: PMC8870125 DOI: 10.3390/cells11040730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Dengue virus (DENV) threatens almost 70% of the world's population, with no effective therapeutic currently available and controversy surrounding the one approved vaccine. A key factor in dengue viral replication is the interaction between DENV nonstructural proteins (NS) 5 and 3 (NS3) in the infected cell. Here, we perform a proof-of-principle high-throughput screen to identify compounds targeting the NS5-NS3 binding interface. We use a range of approaches to show for the first time that two small molecules-repurposed drugs I-OMe tyrphostin AG538 (I-OMe-AG238) and suramin hexasodium (SHS)-inhibit NS5-NS3 binding at low μM concentration through direct binding to NS5 that impacts thermostability. Importantly, both have strong antiviral activity at low μM concentrations against not only DENV-2, but also Zika virus (ZIKV) and West Nile virus (WNV). This work highlights the NS5-NS3 binding interface as a viable target for the development of anti-flaviviral therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - David A. Jans
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Monash, VIC 3800, Australia; (S.N.Y.Y.); (B.M.); (C.W.); (K.M.W.); (J.E.F.)
| |
Collapse
|
11
|
Wang S, Chan KWK, Tan MJA, Flory C, Luo D, Lescar J, Forwood JK, Vasudevan SG. A conserved arginine in NS5 binds genomic 3' stem-loop RNA for primer-independent initiation of flavivirus RNA replication. RNA (NEW YORK, N.Y.) 2022; 28:177-193. [PMID: 34759006 PMCID: PMC8906541 DOI: 10.1261/rna.078949.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The commitment to replicate the RNA genome of flaviviruses without a primer involves RNA-protein interactions that have been shown to include the recognition of the stem-loop A (SLA) in the 5' untranslated region (UTR) by the nonstructural protein NS5. We show that DENV2 NS5 arginine 888, located within the carboxy-terminal 18 residues, is completely conserved in all flaviviruses and interacts specifically with the top-loop of 3'SL in the 3'UTR which contains the pentanucleotide 5'-CACAG-3' previously shown to be critical for flavivirus RNA replication. We present virological and biochemical data showing the importance of this Arg 888 in virus viability and de novo initiation of RNA polymerase activity in vitro. Based on our binding studies, we hypothesize that ternary complex formation of NS5 with 3'SL, followed by dimerization, leads to the formation of the de novo initiation complex that could be regulated by the reversible zipping and unzipping of cis-acting RNA elements.
Collapse
Affiliation(s)
- Sai Wang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Min Jie Alvin Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Charlotte Flory
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921 Singapore
| | - Julian Lescar
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
- Department of Microbiology and Immunology, National University of Singapore, 117545 Singapore
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
12
|
Roney M, Huq AKMM, Rullah K, Hamid HA, Imran S, Islam MA, Mohd Aluwi MFF. Virtual Screening-Based Identification of Potent DENV-3 RdRp Protease Inhibitors via In-House Usnic Acid Derivative Database. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic disease and dengue shock syndrome (DSS), transmitted predominantly in tropical and subtropical regions by Aedes aegypti. It infects millions of people and causes thousands of deaths each year, but there is no antiviral drug against DENV. Usnic acid lately piqued the interest of researchers for extraordinary biological characteristics, including antiviral activity. Based on high larvicidal activities against Aedes aegypti, this study aims to search usnic acid derivatives as novel anti-DENV agents through a combination of ligand-based and pharmacophore-based virtual screening. One hundred and sixteen (116) usnic acid derivatives were obtained from a database of 428 in-house usnic acid derivatives through pharmacophore filtering steps. Subsequent docking simulation on DENV-3 NS-5 RdRp afforded 41 compounds with a strong binding affinity towards the enzyme. The pharmacokinetics and drug likeness prediction resulted in seven hit compounds, which eventually undergo cytochrome P450 enzyme screening to obtain the lead compound, labelled as 362. In addition, molecular dynamic (MD) simulation of lead compound 362 was performed to verify the stability of the docked complex and the binding posture acquired in docking experiments. Overall, the lead compounds have shown a high fit value of pharmacophore, strong binding affinity towards RdRp enzyme, good pharmacokinetics, and drug likeness properties. The discovery of a new usnic acid derivative as a novel anti-DENV agent targeting RdRp could lead to further drug development and optimization to treat dengue.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - AKM Moyeenul Huq
- Department of Pharmacy, School of Medicine, University of Asia Pacific, 74/A, Green Road, Dhaka 1205, Bangladesh
| | - Kamal Rullah
- Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia
| | - Hazrulrizawati Abd Hamid
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, UiTM Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Malaysia
| | - Md. Alimul Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University Mymensingh 2202, Bangladesh
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
13
|
Maus H, Barthels F, Hammerschmidt SJ, Kopp K, Millies B, Gellert A, Ruggieri A, Schirmeister T. SAR of novel benzothiazoles targeting an allosteric pocket of DENV and ZIKV NS2B/NS3 proteases. Bioorg Med Chem 2021; 47:116392. [PMID: 34509861 DOI: 10.1016/j.bmc.2021.116392] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 01/12/2023]
Abstract
In recent years, dengue virus (DENV) and Zika virus (ZIKV), both mosquito-borne members of the Flaviviridae family, have emerged as intercontinental health issues since their vectors have spread from their tropical origins to temperate climate zones due to climate change and increasing globalization. DENV and ZIKV are positive-sense, single-stranded RNA viruses, whose genomes consist of three structural (capsid, membrane precursor, envelope) and seven non-structural (NS) proteins, all of which are initially expressed as a single precursor polyprotein. For virus maturation, the polyprotein processing is accomplished by host proteases and the viral NS2B/NS3 protease complex, whose inhibitors have been shown to be effective antiviral agents with loss of viral pathogenicity. In this work, we elucidate new structure-activity relationships of benzo[d]thiazole-based allosteric NS2B/NS3 inhibitors. We developed a new series of Y-shaped inhibitors, which, with its larger hydrophobic contact surface, should bind to previously unaddressed regions of the allosteric NS2B/NS3 binding pocket. By scaffold-hopping, we varied the benzo[d]thiazole core and identified benzofuran as a new lead scaffold shifting the selectivity of initially ZIKV-targeting inhibitors to higher activities towards the DENV protease. In addition, we were able to increase the ligand efficiency from 0.27 to 0.41 by subsequent inhibitor truncation and identified N-(5,6-dihydroxybenzo[d]thiazol-2-yl)-4-iodobenzamide as a novel sub-micromolar NS2B/NS3 inhibitor. Utilizing cell-based assays, we could prove the antiviral activity in cellulo. Overall, we report new series of sub-micromolar allosteric DENV and ZIKV inhibitors with good efficacy profile in terms of cytotoxicity and protease inhibition selectivity.
Collapse
Affiliation(s)
- Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Stefan Josef Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Katja Kopp
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, University of Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Benedikt Millies
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Andrea Gellert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, University of Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany.
| |
Collapse
|
14
|
Zeng M, Chen S, Zhang W, Duan Y, Jiang B, Pan X, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Tian B, Gao Q, Cheng A. Nuclear localization of duck Tembusu virus NS5 protein attenuates viral replication in vitro and NS5-NS2B3 interaction. Vet Microbiol 2021; 262:109239. [PMID: 34555732 DOI: 10.1016/j.vetmic.2021.109239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/11/2021] [Indexed: 11/15/2022]
Abstract
Duck Tembusu virus (TMUV) belongs to the flavivirus genus whose genome replication involved in capping and RNA synthesis dominating by nonstructural protein 5 (NS5). Flaviviral replication has been well documented to occur in the cytoplasm, but the effect of NS5 to gain access to the nucleus remains controversial. Here, TMUV NS5 was observed to localize within the cytoplasm of transfected and infected cells and co-localized with the endoplasmic reticulum. We introduced two arginine mutations into the N390 and Q392 (N390R and Q392R) of the NS5 bipartite nuclear localization sequence (α/βNLS) and designated that mutagenesis as NS5NLSmut, which has shown the ability to access the nucleus and hence attenuates viral replication and production in vitro. Additionally, there was no significant difference between the recovered wild-type TMUV (rTMUV-WT) and engineered mutant (rTMUV-NS5NLSmut) on plaque morphology, survival rate of infected duck embryos or virus copies in tissues. Considering that NS5NLSmut is mainly located in the cytoplasm of rTMUV-NS5NLSmut infected cells at the early stage of infection. We further confirmed that NS5NLSmut attenuated its interaction with nonstructural NS2B-NS3 (NS2B3) following transfection and infection. Meanwhile, the rTMUV-NS5NLSmut tended to stimulate more interferon beta (IFNβ) than rTMUV-WT. However, preliminary study on transient NS5 and NS5NLSmut detected the same levels of IFNβ mRNA mediated by RIG-I detection of NS5 RNA polymerase activity in cell. In summary, these results provide further insights into the relationship between the viral property and subcellular localization of flavivirus NS5 in terms of the NS5-NS2B3 interaction.
Collapse
Affiliation(s)
- Miao Zeng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China.
| | - Wei Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Yanping Duan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Bowen Jiang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Xin Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China.
| |
Collapse
|
15
|
Bhatia S, Narayanan N, Nagpal S, Nair DT. Antiviral therapeutics directed against RNA dependent RNA polymerases from positive-sense viruses. Mol Aspects Med 2021; 81:101005. [PMID: 34311994 DOI: 10.1016/j.mam.2021.101005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/18/2023]
Abstract
Viruses with positive-sense single stranded RNA (+ssRNA) genomes are responsible for different diseases and represent a global health problem. In addition to developing new vaccines that protect against severe illness on infection, it is imperative to identify new antiviral molecules to treat infected patients. The genome of these RNA viruses generally codes for an enzyme with RNA dependent RNA polymerase (RdRP) activity. This molecule is centrally involved in the duplication of the RNA genome. Inhibition of this enzyme by small molecules will prevent duplication of the RNA genome and thus reduce the viral titer. An overview of the different therapeutic strategies used to inhibit RdRPs from +ssRNA viruses is provided, along with an analysis of these enzymes to highlight new binding sites for inhibitors.
Collapse
Affiliation(s)
- Sonam Bhatia
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Shilpi Nagpal
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
16
|
Shen Q, Wang YE, Palazzo AF. Crosstalk between nucleocytoplasmic trafficking and the innate immune response to viral infection. J Biol Chem 2021; 297:100856. [PMID: 34097873 PMCID: PMC8254040 DOI: 10.1016/j.jbc.2021.100856] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
The nuclear pore complex is the sole gateway connecting the nucleoplasm and cytoplasm. In humans, the nuclear pore complex is one of the largest multiprotein assemblies in the cell, with a molecular mass of ∼110 MDa and consisting of 8 to 64 copies of about 34 different nuclear pore proteins, termed nucleoporins, for a total of 1000 subunits per pore. Trafficking events across the nuclear pore are mediated by nuclear transport receptors and are highly regulated. The nuclear pore complex is also used by several RNA viruses and almost all DNA viruses to access the host cell nucleoplasm for replication. Viruses hijack the nuclear pore complex, and nuclear transport receptors, to access the nucleoplasm where they replicate. In addition, the nuclear pore complex is used by the cell innate immune system, a network of signal transduction pathways that coordinates the first response to foreign invaders, including viruses and other pathogens. Several branches of this response depend on dynamic signaling events that involve the nuclear translocation of downstream signal transducers. Mounting evidence has shown that these signaling cascades, especially those steps that involve nucleocytoplasmic trafficking events, are targeted by viruses so that they can evade the innate immune system. This review summarizes how nuclear pore proteins and nuclear transport receptors contribute to the innate immune response and highlights how viruses manipulate this cellular machinery to favor infection. A comprehensive understanding of nuclear pore proteins in antiviral innate immunity will likely contribute to the development of new antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Qingtang Shen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Yifan E Wang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Götz C, Hinze G, Gellert A, Maus H, von Hammerstein F, Hammerschmidt SJ, Lauth LM, Hellmich UA, Schirmeister T, Basché T. Conformational Dynamics of the Dengue Virus Protease Revealed by Fluorescence Correlation and Single-Molecule FRET Studies. J Phys Chem B 2021; 125:6837-6846. [PMID: 34137269 DOI: 10.1021/acs.jpcb.1c01797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dengue virus protease (DENV-PR) represents an attractive target for counteracting DENV infections. It is generally assumed that DENV-PR can exist in an open and a closed conformation and that active site directed ligands stabilize the closed state. While crystal structures of both the open and the closed conformation were successfully resolved, information about the prevalence of these conformations in solution remains elusive. Herein, we address the question of whether there is an equilibrium between different conformations in solution which can be influenced by addition of a competitive inhibitor. To this end, DENV-PR was statistically labeled by two dye molecules constituting a FRET (fluorescence resonance energy transfer) couple. Fluorescence correlation spectroscopy and photon-burst detection were employed to examine FRET pair labeled DENV-PRs freely diffusing in solution. The measurements were performed with two double mutants and with two dye couples. The data provide strong evidence that an equilibrium of at least two conformations of DENV-PR exists in solution. The competitive inhibitor stabilizes the closed state. Because the open and closed conformations appear to coexist in solution, our results support the picture of a conformational selection rather than that of an induced fit mechanism with respect to the inhibitor-induced formation of the closed state.
Collapse
Affiliation(s)
- Christian Götz
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gerald Hinze
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrea Gellert
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franziska von Hammerstein
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luca M Lauth
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ute A Hellmich
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Frankfurt, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Basché
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
18
|
Yong XE, Palur VR, Anand GS, Wohland T, Sharma KK. Dengue virus 2 capsid protein chaperones the strand displacement of 5'-3' cyclization sequences. Nucleic Acids Res 2021; 49:5832-5844. [PMID: 34037793 PMCID: PMC8191770 DOI: 10.1093/nar/gkab379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 01/02/2023] Open
Abstract
By virtue of its chaperone activity, the capsid protein of dengue virus strain 2 (DENV2C) promotes nucleic acid structural rearrangements. However, the role of DENV2C during the interaction of RNA elements involved in stabilizing the 5′-3′ panhandle structure of DENV RNA is still unclear. Therefore, we determined how DENV2C affects structural functionality of the capsid-coding region hairpin element (cHP) during annealing and strand displacement of the 9-nt cyclization sequence (5CS) and its complementary 3CS. cHP has two distinct functions: a role in translation start codon selection and a role in RNA synthesis. Our results showed that cHP impedes annealing between 5CS and 3CS. Although DENV2C does not modulate structural functionality of cHP, it accelerates annealing and specifically promotes strand displacement of 3CS during 5′-3′ panhandle formation. Furthermore, DENV2C exerts its chaperone activity by favouring one of the active conformations of cHP. Based on our results, we propose mechanisms for annealing and strand displacement involving cHP. Thus, our results provide mechanistic insights into how DENV2C regulates RNA synthesis by modulating essential RNA elements in the capsid-coding region, that in turn allow for DENV replication.
Collapse
Affiliation(s)
- Xin Ee Yong
- NUS Graduate School Integrative Sciences and Engineering Programme, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore.,Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - V Raghuvamsi Palur
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Thorsten Wohland
- Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Kamal K Sharma
- Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
19
|
De Jesús-González LA, Palacios-Rápalo S, Reyes-Ruiz JM, Osuna-Ramos JF, Cordero-Rivera CD, Farfan-Morales CN, Gutiérrez-Escolano AL, del Ángel RM. The Nuclear Pore Complex Is a Key Target of Viral Proteases to Promote Viral Replication. Viruses 2021; 13:v13040706. [PMID: 33921849 PMCID: PMC8073804 DOI: 10.3390/v13040706] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Various viruses alter nuclear pore complex (NPC) integrity to access the nuclear content favoring their replication. Alteration of the nuclear pore complex has been observed not only in viruses that replicate in the nucleus but also in viruses with a cytoplasmic replicative cycle. In this last case, the alteration of the NPC can reduce the transport of transcription factors involved in the immune response or mRNA maturation, or inhibit the transport of mRNA from the nucleus to the cytoplasm, favoring the translation of viral mRNAs or allowing access to nuclear factors necessary for viral replication. In most cases, the alteration of the NPC is mediated by viral proteins, being the viral proteases, one of the most critical groups of viral proteins that regulate these nucleus–cytoplasmic transport changes. This review focuses on the description and discussion of the role of viral proteases in the modification of nucleus–cytoplasmic transport in viruses with cytoplasmic replicative cycles and its repercussions in viral replication.
Collapse
|
20
|
Bhatnagar P, Sreekanth GP, Murali-Krishna K, Chandele A, Sitaraman R. Dengue Virus Non-Structural Protein 5 as a Versatile, Multi-Functional Effector in Host-Pathogen Interactions. Front Cell Infect Microbiol 2021; 11:574067. [PMID: 33816326 PMCID: PMC8015806 DOI: 10.3389/fcimb.2021.574067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/19/2021] [Indexed: 12/22/2022] Open
Abstract
Dengue is emerging as one of the most prevalent mosquito-borne viral diseases of humans. The 11kb RNA genome of the dengue virus encodes three structural proteins (envelope, pre-membrane, capsid) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5), all of which are translated as a single polyprotein that is subsequently cleaved by viral and host cellular proteases at specific sites. Non-structural protein 5 (NS5) is the largest of the non-structural proteins, functioning as both an RNA-dependent RNA polymerase (RdRp) that replicates the viral RNA and an RNA methyltransferase enzyme (MTase) that protects the viral genome by RNA capping, facilitating polyprotein translation. Within the human host, NS5 interacts with several proteins such as those in the JAK-STAT pathway, thereby interfering with anti-viral interferon signalling. This mini-review presents annotated, consolidated lists of known and potential NS5 interactors in the human host as determined by experimental and computational approaches respectively. The most significant protein interactors and the biological pathways they participate in are also highlighted and their implications discussed, along with the specific serotype of dengue virus as appropriate. This information can potentially stimulate and inform further research efforts towards providing an integrative understanding of the mechanisms by which NS5 manipulates the human-virus interface in general and the innate and adaptive immune responses in particular.
Collapse
Affiliation(s)
- Priya Bhatnagar
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India.,ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Gopinathan Pillai Sreekanth
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,Department of Paediatrics and Emory Vaccine Centre, Emory University School of Medicine, Atlanta, GA, United States
| | - Anmol Chandele
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | |
Collapse
|
21
|
Tan MJA, Brown NG, Chan KWK, Jin JY, Zu Kong SY, Vasudevan SG. Mutations in the cytoplasmic domain of dengue virus NS4A affect virus fitness and interactions with other non-structural proteins. J Gen Virol 2021; 101:941-953. [PMID: 32589122 DOI: 10.1099/jgv.0.001462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The dengue virus (DENV) replication complex is made up of its non-structural (NS) proteins and yet-to-be identified host proteins, but the molecular interactions between these proteins are not fully elucidated. In this work, we sought to uncover the interactions between DENV NS1 and its fellow NS proteins using a yeast two-hybrid (Y2H) approach, and found that domain II of NS1 binds to an N-terminal cytoplasmic fragment of NS4A. Mutations in amino acid residues 41 and 43 in this cytoplasmic region of NS4A disrupted the interaction between NS1 and the NS4A-2K-4B precursor protein. When the NS4A Y41F mutation was introduced into the context of the virus via a DENV2 infectious clone, this mutant virus exhibited impaired viral fitness and decreased infectious virus production. The NS4A Y41F mutant virus triggered a significantly muted transcriptional activation of interferon-stimulated genes compared to wild-type virus that is independent of NS4A's ability to antagonize type I interferon signalling. Taken together, we have identified a link between DENV NS1 and the cytoplasmic domain in NS4A that is important for its cellular and viral functions.
Collapse
Affiliation(s)
- Min Jie Alvin Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Nancy G Brown
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jocelyn Y Jin
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Sean Yao Zu Kong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore.,Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4022, Australia.,Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| |
Collapse
|
22
|
Picarazzi F, Vicenti I, Saladini F, Zazzi M, Mori M. Targeting the RdRp of Emerging RNA Viruses: The Structure-Based Drug Design Challenge. Molecules 2020; 25:E5695. [PMID: 33287144 PMCID: PMC7730706 DOI: 10.3390/molecules25235695] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) is an essential enzyme for the viral replication process, catalyzing the viral RNA synthesis using a metal ion-dependent mechanism. In recent years, RdRp has emerged as an optimal target for the development of antiviral drugs, as demonstrated by recent approvals of sofosbuvir and remdesivir against Hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively. In this work, we overview the main sequence and structural features of the RdRp of emerging RNA viruses such as Coronaviruses, Flaviviruses, and HCV, as well as inhibition strategies implemented so far. While analyzing the structural information available on the RdRp of emerging RNA viruses, we provide examples of success stories such as for HCV and SARS-CoV-2. In contrast, Flaviviruses' story has raised attention about how the lack of structural details on catalytically-competent or ligand-bound RdRp strongly hampers the application of structure-based drug design, either in repurposing and conventional approaches.
Collapse
Affiliation(s)
- Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (I.V.); (F.S.); (M.Z.)
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (I.V.); (F.S.); (M.Z.)
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (I.V.); (F.S.); (M.Z.)
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| |
Collapse
|
23
|
The Nuclear Pore Complex: A Target for NS3 Protease of Dengue and Zika Viruses. Viruses 2020; 12:v12060583. [PMID: 32466480 PMCID: PMC7354628 DOI: 10.3390/v12060583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 12/22/2022] Open
Abstract
During flavivirus infection, some viral proteins move to the nucleus and cellular components are relocated from the nucleus to the cytoplasm. Thus, the integrity of the main regulator of the nuclear-cytoplasmic transport, the nuclear pore complex (NPC), was evaluated during infection with dengue virus (DENV) and Zika virus (ZIKV). We found that while during DENV infection the integrity and distribution of at least three nucleoporins (Nup), Nup153, Nup98, and Nup62 were altered, during ZIKV infection, the integrity of TPR, Nup153, and Nup98 were modified. In this work, several lines of evidence indicate that the viral serine protease NS2B3 is involved in Nups cleavage. First, the serine protease inhibitors, TLCK and Leupeptin, prevented Nup98 and Nup62 cleavage. Second, the transfection of DENV and ZIKV NS2B3 protease was sufficient to inhibit the nuclear ring recognition detected in mock-infected cells with the Mab414 antibody. Third, the mutant but not the active (WT) protease was unable to cleave Nups in transfected cells. Thus, here we describe for the first time that the NS3 protein from flavivirus plays novel functions hijacking the nuclear pore complex, the main controller of the nuclear-cytoplasmic transport.
Collapse
|
24
|
Gao X, Zhu K, Wojdyla JA, Chen P, Qin B, Li Z, Wang M, Cui S. Crystal structure of the NS3-like helicase from Alongshan virus. IUCRJ 2020; 7:375-382. [PMID: 32431821 PMCID: PMC7201283 DOI: 10.1107/s2052252520003632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/11/2020] [Indexed: 05/05/2023]
Abstract
Alongshan virus (ALSV) is an emerging human pathogen that was identified in China and rapidly spread to the European continent in 2019, raising concerns about public health. ALSV belongs to the distinct Jingmenvirus group within the Flaviviridae family with segmented RNA genomes. While segments 2 and 4 of the ALSV genome encode the VP1-VP3 proteins of unknown origin, segments 1 and 3 encode the NS2b-NS3 and NS5 proteins, which are related to Flavivirus nonstructural proteins, suggesting an evolutionary link between segmented and unsegmented viruses within the Flaviviridae family. Here, the enzymatic activity of the ALSV NS3-like helicase (NS3-Hel) was characterized and its crystal structure was determined to 2.9 Å resolution. ALSV NS3-Hel exhibits an ATPase activity that is comparable to those measured for Flavivirus NS3 helicases. The structure of ALSV NS3-Hel exhibits an overall fold similar to those of Flavivirus NS3 helicases. Despite the limited amino-acid sequence identity between ALSV NS3-Hel and Flavivirus NS3 helicases, structural features at the ATPase active site and the RNA-binding groove remain conserved in ALSV NS3-Hel. These findings provide a structural framework for drug design and suggest the possibility of developing a broad-spectrum antiviral drug against both Flavivirus and Jingmenvirus.
Collapse
Affiliation(s)
- Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People’s Republic of China
| | - Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People’s Republic of China
| | | | - Pu Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People’s Republic of China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People’s Republic of China
| | - Ziheng Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People’s Republic of China
| | - Meitian Wang
- Swiss Light Source at the Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People’s Republic of China
| |
Collapse
|
25
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Shi W, Ye HQ, Deng CL, Li R, Zhang B, Gong P. A nucleobase-binding pocket in a viral RNA-dependent RNA polymerase contributes to elongation complex stability. Nucleic Acids Res 2020; 48:1392-1405. [PMID: 31863580 PMCID: PMC7026628 DOI: 10.1093/nar/gkz1170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022] Open
Abstract
The enterovirus 71 (EV71) 3Dpol is an RNA-dependent RNA polymerase (RdRP) that plays the central role in the viral genome replication, and is an important target in antiviral studies. Here, we report a crystal structure of EV71 3Dpol elongation complex (EC) at 1.8 Å resolution. The structure reveals that the 5′-end guanosine of the downstream RNA template interacts with a fingers domain pocket, with the base sandwiched by H44 and R277 side chains through hydrophobic stacking interactions, and these interactions are still maintained after one in-crystal translocation event induced by nucleotide incorporation, implying that the pocket could regulate the functional properties of the polymerase by interacting with RNA. When mutated, residue R277 showed an impact on virus proliferation in virological studies with residue H44 having a synergistic effect. In vitro biochemical data further suggest that mutations at these two sites affect RNA binding, EC stability, but not polymerase catalytic rate (kcat) and apparent NTP affinity (KM,NTP). We propose that, although rarely captured by crystallography, similar surface pocket interaction with nucleobase may commonly exist in nucleic acid motor enzymes to facilitate their processivity. Potential applications in antiviral drug and vaccine development are also discussed.
Collapse
Affiliation(s)
- Wei Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Rui Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44 Xiao Hong Shan, Wuhan, Hubei 430071, China.,Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin 300350, China
| |
Collapse
|
27
|
Ji W, Luo G. Zika virus NS5 nuclear accumulation is protective of protein degradation and is required for viral RNA replication. Virology 2020; 541:124-135. [DOI: 10.1016/j.virol.2019.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
|
28
|
Millies B, von Hammerstein F, Gellert A, Hammerschmidt S, Barthels F, Göppel U, Immerheiser M, Elgner F, Jung N, Basic M, Kersten C, Kiefer W, Bodem J, Hildt E, Windbergs M, Hellmich UA, Schirmeister T. Proline-Based Allosteric Inhibitors of Zika and Dengue Virus NS2B/NS3 Proteases. J Med Chem 2019; 62:11359-11382. [DOI: 10.1021/acs.jmedchem.9b01697] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Benedikt Millies
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Franziska von Hammerstein
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Andrea Gellert
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Stefan Hammerschmidt
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Fabian Barthels
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ulrike Göppel
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Melissa Immerheiser
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany
| | - Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Nathalie Jung
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Michael Basic
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian Kersten
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Werner Kiefer
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Jochen Bodem
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Ute A. Hellmich
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Johann-Joachim-Becherweg 30, 55128 Mainz, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, 60438 Frankfurt am Main, Germany
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
29
|
Tan MJA, Chan KWK, Ng IHW, Kong SYZ, Gwee CP, Watanabe S, Vasudevan SG. The Potential Role of the ZIKV NS5 Nuclear Spherical-Shell Structures in Cell Type-Specific Host Immune Modulation during ZIKV Infection. Cells 2019; 8:cells8121519. [PMID: 31779251 PMCID: PMC6953166 DOI: 10.3390/cells8121519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
The Zika virus (ZIKV) non-structural protein 5 (NS5) plays multiple viral and cellular roles during infection, with its primary role in virus RNA replication taking place in the cytoplasm. However, immunofluorescence assay studies have detected the presence of ZIKV NS5 in unique spherical shell-like structures in the nuclei of infected cells, suggesting potentially important cellular roles of ZIKV NS5 in the nucleus. Hence ZIKV NS5′s subcellular distribution and localization must be tightly regulated during ZIKV infection. Both ZIKV NS5 expression or ZIKV infection antagonizes type I interferon signaling, and induces a pro-inflammatory transcriptional response in a cell type-specific manner, but the mechanisms involved and the role of nuclear ZIKV NS5 in these cellular functions has not been elucidated. Intriguingly, these cells originate from the brain and placenta, which are also organs that exhibit a pro-inflammatory signature and are known sites of pathogenesis during ZIKV infection in animal models and humans. Here, we discuss the regulation of the subcellular localization of the ZIKV NS5 protein, and its putative role in the induction of an inflammatory response and the occurrence of pathology in specific organs during ZIKV infection.
Collapse
Affiliation(s)
- Min Jie Alvin Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Ivan H. W. Ng
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Sean Yao Zu Kong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Chin Piaw Gwee
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Subhash G. Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4022, Australia
- Correspondence: ; Tel.: +65-6516-6718
| |
Collapse
|
30
|
Abstract
The flavivirus virion consists of an envelope outer layer, formed by envelope (E) and membrane (M) proteins on a lipid bilayer, and an internal core, formed by capsid (C) protein and genomic RNA. The molecular mechanism of flavivirus assembly is not well understood. Here, we show that Zika virus (ZIKV) NS2A protein recruits genomic RNA, the structural protein prM/E complex, and the NS2B/NS3 protease complex to the virion assembly site and orchestrates virus morphogenesis. Coimmunoprecipitation analysis showed that ZIKV NS2A binds to prM, E, NS2B, and NS3 (but not C, NS4B, or NS5) in a viral RNA-independent manner, whereas prM/E complex does not interact with NS2B/NS3 complex. Remarkably, a single-amino-acid mutation (E103A) of NS2A impairs its binding to prM/E and NS2B/NS3 and abolishes virus production, demonstrating the indispensable role of NS2A/prM/E and NS2A/NS2B/NS3 interactions in virion assembly. In addition, RNA-protein pulldown analysis identified a stem-loop RNA from the 3' untranslated region (UTR) of the viral genome as an "RNA recruitment signal" for ZIKV assembly. The 3' UTR RNA binds to a cytoplasmic loop of NS2A protein. Mutations of two positively charged residues (R96A and R102A) from the cytoplasmic loop reduce NS2A binding to viral RNA, leading to a complete loss of virion assembly. Collectively, our results support a virion assembly model in which NS2A recruits viral NS2B/NS3 protease and structural C-prM-E polyprotein to the virion assembly site; once the C-prM-E polyprotein has been processed, NS2A presents viral RNA to the structural proteins for virion assembly.IMPORTANCE ZIKV is a recently emerged mosquito-borne flavivirus that can cause devastating congenital Zika syndrome in pregnant women and Guillain-Barré syndrome in adults. The molecular mechanism of ZIKV virion assembly is largely unknown. Here, we report that ZIKV NS2A plays a central role in recruiting viral RNA, structural protein prM/E, and viral NS2B/NS3 protease to the virion assembly site and orchestrating virion morphogenesis. One mutation that impairs these interactions does not significantly affect viral RNA replication but selectively abolishes virion assembly, demonstrating the specific role of these interactions in virus morphogenesis. We also show that the 3' UTR of ZIKV RNA may serve as a "recruitment signal" through binding to NS2A to enter the virion assembly site. Following a coordinated cleavage of C-prM-E at the virion assembly site, NS2A may present the viral RNA to C protein for nucleocapsid formation followed by envelopment with prM/E proteins. The results have provided new insights into flavivirus virion assembly.
Collapse
|
31
|
Duan Y, Zeng M, Jiang B, Zhang W, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Pan L, Chen S, Cheng A. Flavivirus RNA-Dependent RNA Polymerase Interacts with Genome UTRs and Viral Proteins to Facilitate Flavivirus RNA Replication. Viruses 2019; 11:v11100929. [PMID: 31658680 PMCID: PMC6832647 DOI: 10.3390/v11100929] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Flaviviruses, most of which are emerging and re-emerging human pathogens and significant public health concerns worldwide, are positive-sense RNA viruses. Flavivirus replication occurs on the ER and is regulated by many mechanisms and factors. NS5, which consists of a C-terminal RdRp domain and an N-terminal methyltransferase domain, plays a pivotal role in genome replication and capping. The C-terminal RdRp domain acts as the polymerase for RNA synthesis and cooperates with diverse viral proteins to facilitate productive RNA proliferation within the replication complex. Here, we provide an overview of the current knowledge of the functions and characteristics of the RdRp, including the subcellular localization of NS5, as well as the network of interactions formed between the RdRp and genome UTRs, NS3, and the methyltransferase domain. We posit that a detailed understanding of RdRp functions may provide a target for antiviral drug discovery and therapeutics.
Collapse
Affiliation(s)
- YanPing Duan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Miao Zeng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Bowen Jiang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Wei Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - ShaQiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - YunYa Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - YanLing Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Leichang Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| |
Collapse
|
32
|
Faheem M, Barbosa Lima JC, Jamal SB, Silva PA, Barbosa JARG. An insight into dengue virus proteins as potential drug/vaccine targets. Future Virol 2019. [DOI: 10.2217/fvl-2019-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dengue virus (DENV) is an arbovirus that belongs to family flaviviridae. Its genome is composed of a single stranded RNA molecule that encodes a single polyprotein. The polyprotein is processed by viral and cellular proteases to generate ten viral proteins. There are four antigenically distinct serotypes of DENV (DENV1, DENV2, DENV3 and DENV4), which are genetically related. Although protein variability is a major problem in dengue treatment, the functional and structural studies of individual proteins are equally important in treatment development. The data accumulated on dengue proteins are significant to provide detailed understanding of viral infection, replication, host-immune evasion and pathogenesis. In this review, we summarized the detailed current knowledge about DENV proteins.
Collapse
Affiliation(s)
- Muhammad Faheem
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - Jônatas Cunha Barbosa Lima
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, The Mall road, Rawalpindi, Punjab 46000, Pakistan
| | - Paula Andreia Silva
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - João Alexandre Ribeiro Gonçalves Barbosa
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| |
Collapse
|
33
|
Xu S, Ci Y, Wang L, Yang Y, Zhang L, Xu C, Qin C, Shi L. Zika virus NS3 is a canonical RNA helicase stimulated by NS5 RNA polymerase. Nucleic Acids Res 2019; 47:8693-8707. [PMID: 31361901 PMCID: PMC6895266 DOI: 10.1093/nar/gkz650] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 01/19/2023] Open
Abstract
Zika virus is a positive single-strand RNA virus whose replication involved RNA unwinding and synthesis. ZIKV NS3 contains a helicase domain, but its enzymatic activity is not fully characterized. Here, we established a dsRNA unwinding assay based on the FRET effect to study the helicase activity of ZIKV NS3, which provided kinetic information in real time. We found that ZIKV NS3 specifically unwound dsRNA/dsDNA with a 3' overhang in the 3' to 5' direction. The RNA unwinding ability of NS3 significantly decreased when the duplex was longer than 18 base pairs. The helicase activity of NS3 depends on ATP hydrolysis and binding to RNA. Mutations in the ATP binding region or the RNA binding region of NS3 impair its helicase activity, thus blocking viral replication in the cell. Furthermore, we showed that ZIKV NS5 interacted with NS3 and stimulated its helicase activity. Disrupting NS3-NS5 interaction resulted in a defect in viral replication, revealing the tight coupling of RNA unwinding and synthesis. We suggest that NS3 helicase activity is stimulated by NS5; thus, viral replication can be carried out efficiently. Our work provides a molecular mechanism of ZIKV NS3 unwinding and novel insights into ZIKV replication.
Collapse
MESH Headings
- Adenosine Triphosphate/chemistry
- Adenosine Triphosphate/metabolism
- Animals
- Binding Sites
- Chlorocebus aethiops
- Cloning, Molecular
- Cricetulus
- Epithelial Cells/virology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Gene Expression Regulation, Viral
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Kinetics
- Models, Molecular
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Structure, Tertiary
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Serine Endopeptidases/chemistry
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Substrate Specificity
- Vero Cells
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/metabolism
- Zika Virus/genetics
- Zika Virus/metabolism
Collapse
Affiliation(s)
- Shan Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yali Ci
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Leijie Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yang Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Leiliang Zhang
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Caimin Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lei Shi
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
34
|
Tessier TM, Dodge MJ, Prusinkiewicz MA, Mymryk JS. Viral Appropriation: Laying Claim to Host Nuclear Transport Machinery. Cells 2019; 8:E559. [PMID: 31181773 PMCID: PMC6627039 DOI: 10.3390/cells8060559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Protein nuclear transport is an integral process to many cellular pathways and often plays a critical role during viral infection. To overcome the barrier presented by the nuclear membrane and gain access to the nucleus, virally encoded proteins have evolved ways to appropriate components of the nuclear transport machinery. By binding karyopherins, or the nuclear pore complex, viral proteins influence their own transport as well as the transport of key cellular regulatory proteins. This review covers how viral proteins can interact with different components of the nuclear import machinery and how this influences viral replicative cycles. We also highlight the effects that viral perturbation of nuclear transport has on the infected host and how we can exploit viruses as tools to study novel mechanisms of protein nuclear import. Finally, we discuss the possibility that drugs targeting these transport pathways could be repurposed for treating viral infections.
Collapse
Affiliation(s)
- Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada.
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada.
- Department of Oncology, The University of Western Ontario, London, ON N6A 3K7, Canada.
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada.
| |
Collapse
|
35
|
Ferrero DS, Ruiz-Arroyo VM, Soler N, Usón I, Guarné A, Verdaguer N. Supramolecular arrangement of the full-length Zika virus NS5. PLoS Pathog 2019; 15:e1007656. [PMID: 30951555 PMCID: PMC6469808 DOI: 10.1371/journal.ppat.1007656] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/17/2019] [Accepted: 02/23/2019] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV), a member of the Flaviviridae family, has emerged as a major public health threat, since ZIKV infection has been connected to microcephaly and other neurological disorders. Flavivirus genome replication is driven by NS5, an RNA-dependent RNA polymerase (RdRP) that also contains a N-terminal methyltransferase domain essential for viral mRNA capping. Given its crucial roles, ZIKV NS5 has become an attractive antiviral target. Here, we have used integrated structural biology approaches to characterize the supramolecular arrangement of the full-length ZIKV NS5, highlighting the assembly and interfaces between NS5 monomers within a dimeric structure, as well as the dimer-dimer interactions to form higher order fibril-like structures. The relative orientation of each monomer within the dimer provides a model to explain the coordination between MTase and RdRP domains across neighboring NS5 molecules and mutational studies underscore the crucial role of the MTase residues Y25, K28 and K29 in NS5 dimerization. The basic residue K28 also participates in GTP binding and competition experiments indicate that NS5 dimerization is disrupted at high GTP concentrations. This competition represents a first glimpse at a molecular level explaining how dimerization might regulate the capping process. The lack of vaccine or antiviral drugs to combat Zika virus (ZIKV) infection has encouraged scientists to characterize in depth potential drug targets. One attractive candidate is NS5, responsible for the catalysis of the 5’-RNA capping, methylation and RNA synthesis, during flavivirus genome replication. To fulfill these activities, the methyltransferase and RNA-dependent RNA polymerase domains of NS5 need to cooperate with each other. The structural and biophysical data presented in this work demonstrate that the ZIKV NS5 protein has the ability to form dimers, as well as higher order oligomers that may participate in the fine-tuning regulation of the multiple enzyme functions in the replication complex. In addition, we have found that NS5 dimerization is disrupted at high GTP concentrations, explaining how dimerization might regulate the capping process.
Collapse
Affiliation(s)
- Diego S. Ferrero
- Structural Biology Unit, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
| | - Victor M. Ruiz-Arroyo
- Structural Biology Unit, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
| | - Nicolas Soler
- Structural Biology Unit, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
| | - Isabel Usón
- Structural Biology Unit, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
- ICREA Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Alba Guarné
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Núria Verdaguer
- Structural Biology Unit, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
- * E-mail:
| |
Collapse
|
36
|
Mazeaud C, Freppel W, Chatel-Chaix L. The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front Genet 2018. [PMID: 30564270 DOI: 10.3389/fgene.2018.00595/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
The Flavivirus genus comprises many viruses (including dengue, Zika, West Nile and yellow fever viruses) which constitute important public health concerns worldwide. For several of these pathogens, neither antivirals nor vaccines are currently available. In addition to this unmet medical need, flaviviruses are of particular interest since they constitute an excellent model for the study of spatiotemporal regulation of RNA metabolism. Indeed, with no DNA intermediate or nuclear step, the flaviviral life cycle entirely relies on the cytoplasmic fate of a single RNA species, namely the genomic viral RNA (vRNA) which contains all the genetic information necessary for optimal viral replication. From a single open reading frame, the vRNA encodes a polyprotein which is processed to generate the mature viral proteins. In addition to coding for the viral polyprotein, the vRNA serves as a template for RNA synthesis and is also selectively packaged into newly assembled viral particles. Notably, vRNA translation, replication and encapsidation must be tightly coordinated in time and space via a fine-tuned equilibrium as these processes cannot occur simultaneously and hence, are mutually exclusive. As such, these dynamic processes involve several vRNA secondary and tertiary structures as well as RNA modifications. Finally, the vRNA can be detected as a foreign molecule by cytosolic sensors which trigger upon activation antiviral signaling pathways and the production of antiviral factors such as interferons and interferon-stimulated genes. However, to create an environment favorable to infection, flaviviruses have evolved mechanisms to dampen these antiviral processes, notably through the production of a specific vRNA degradation product termed subgenomic flavivirus RNA (sfRNA). In this review, we discuss the current understanding of the fates of flavivirus vRNA and how this is regulated at the molecular level to achieve an optimal replication within infected cells.
Collapse
Affiliation(s)
- Clément Mazeaud
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Wesley Freppel
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
37
|
Mazeaud C, Freppel W, Chatel-Chaix L. The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front Genet 2018; 9:595. [PMID: 30564270 PMCID: PMC6288177 DOI: 10.3389/fgene.2018.00595] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
The Flavivirus genus comprises many viruses (including dengue, Zika, West Nile and yellow fever viruses) which constitute important public health concerns worldwide. For several of these pathogens, neither antivirals nor vaccines are currently available. In addition to this unmet medical need, flaviviruses are of particular interest since they constitute an excellent model for the study of spatiotemporal regulation of RNA metabolism. Indeed, with no DNA intermediate or nuclear step, the flaviviral life cycle entirely relies on the cytoplasmic fate of a single RNA species, namely the genomic viral RNA (vRNA) which contains all the genetic information necessary for optimal viral replication. From a single open reading frame, the vRNA encodes a polyprotein which is processed to generate the mature viral proteins. In addition to coding for the viral polyprotein, the vRNA serves as a template for RNA synthesis and is also selectively packaged into newly assembled viral particles. Notably, vRNA translation, replication and encapsidation must be tightly coordinated in time and space via a fine-tuned equilibrium as these processes cannot occur simultaneously and hence, are mutually exclusive. As such, these dynamic processes involve several vRNA secondary and tertiary structures as well as RNA modifications. Finally, the vRNA can be detected as a foreign molecule by cytosolic sensors which trigger upon activation antiviral signaling pathways and the production of antiviral factors such as interferons and interferon-stimulated genes. However, to create an environment favorable to infection, flaviviruses have evolved mechanisms to dampen these antiviral processes, notably through the production of a specific vRNA degradation product termed subgenomic flavivirus RNA (sfRNA). In this review, we discuss the current understanding of the fates of flavivirus vRNA and how this is regulated at the molecular level to achieve an optimal replication within infected cells.
Collapse
Affiliation(s)
- Clément Mazeaud
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Wesley Freppel
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
38
|
Nncube NB, Ramharack P, Soliman MES. Using bioinformatics tools for the discovery of Dengue RNA-dependent RNA polymerase inhibitors. PeerJ 2018; 6:e5068. [PMID: 30280009 PMCID: PMC6161702 DOI: 10.7717/peerj.5068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022] Open
Abstract
Background Dengue fever has rapidly manifested into a serious global health concern. The emergence of various viral serotypes has prompted the urgent need for innovative drug design techniques. Of the viral non-structural enzymes, the NS5 RNA-dependent RNA polymerase has been established as a promising target due to its lack of an enzymatic counterpart in mammalian cells and its conserved structure amongst all serotypes. The onus is now on scientists to probe further into understanding this enzyme and its mechanism of action. The field of bioinformatics has evolved greatly over recent decades, with updated drug design tools now being publically available. Methods In this study, bioinformatics tools were used to provide a comprehensive sequence and structural analysis of the two most prominent serotypes of Dengue RNA-dependent RNA polymerase. A list of popular flavivirus inhibitors were also chosen to dock to the active site of the enzyme. The best docked compound was then used as a template to generate a pharmacophore model that may assist in the design of target-specific Dengue virus inhibitors. Results Comparative sequence alignment exhibited similarity between all three domains of serotype 2 and 3.Sequence analysis revealed highly conserved regions at residues Meth530, Thr543 Asp597, Glu616, Arg659 and Pro671. Mapping of the active site demonstrated two highly conserved residues: Ser710 and Arg729. Of the active site interacting residues, Ser796 was common amongst all ten docked compounds, indicating its importance in the drug design process. Of the ten docked flavivirus inhibitors, NITD-203 showed the best binding affinity to the active site. Further pharmacophore modeling of NITD-203 depicted significant pharmacophoric elements that are necessary for stable binding to the active site. Discussion This study utilized publically available bioinformatics tools to provide a comprehensive framework on Dengue RNA-dependent RNA polymerase. Based on docking studies, a pharmacophore model was also designed to unveil the crucial pharmacophoric elements that are required when constructing an efficacious DENV inhibitor. We believe that this study will be a cornerstone in paving the road toward the design of target-specific inhibitors against DENV RdRp.
Collapse
Affiliation(s)
- Nomagugu B Nncube
- Molecular Bio-computation and Drug Design laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Pritika Ramharack
- Molecular Bio-computation and Drug Design laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
39
|
Lei Y, Takeda K, Yu L. Impaired heterologous protein-protein interaction is an essential cause for non-viability of WNV/DENV recombinants. Virology 2018; 524:140-150. [PMID: 30195251 DOI: 10.1016/j.virol.2018.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Flavivirus RNA replication starts at 3'-end, where it folds into a highly conserved stem-loop structure. We attempted to identify the viral non-structural proteins (NSPs) that might specifically interact with the 3'-stemloop (3'SL) through a genetic approach. WNV/DENV2 chimeric recombinants that contain Dengue2 (DENV2) gene(s) in West Nile virus (WNV) backbone were tested for replication competence. Three of seven recombinant viruses, containing the DENV2 NS1, NS2A, or NS4B gene and terminated with a mutated 3'SL (MutC 3'SL), were viable. Of these three, only those bearing the DENV2 NS1 and NS2A substitutions remained infectious when the MutC 3'SL was replaced by the wildtype WNV 3'SL. However, none of the seven chimeric recombinants bearing the DENV2 3'SL were viable. We then investigated the causes for failed replication of WNV/DENV2 chimeric recombinants. Proteolytic cleavage of NS polyproteins was defective by heterologous protease NS2B/3, but was efficient by homologous DENV2 NS2B/3 protease. Whereas, the heterologous polyproteins that contained DENV2 homologous protease were found to produce abnormal vesicles. WNV/DENV2 recombinants expressing the DENV2 homologous protease did not produce infectious virus either. We examined NS protein-protein interaction (PPI) and found that heterologous PPI (hPPI) between WNV and DENV2 NSPs were impaired to various degrees. Insufficient PPIs occurred mainly between heterologous NS2B and NS3; NS2B and NS4A; NS3 and NS5, correlating to those non-viability of substitution mutants. Our results indicate that impaired PPI may decrease protease activity and affect vesicle formation, and is the essential cause for non-viability of the WNV/DENV2 recombinants.
Collapse
Affiliation(s)
- Yingfen Lei
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20852, USA; Department of Microbiology, The Fourth Military Medical University, 17 Changle Xilu, Xi'an, Shaanxi 710032, PR China
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Office of Vaccines Research and Review Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Li Yu
- Division of Viral Products, Office of Vaccines Research and Review Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
40
|
Dwivedi VD, Tripathi IP, Tripathi RC, Bharadwaj S, Mishra SK. Genomics, proteomics and evolution of dengue virus. Brief Funct Genomics 2018; 16:217-227. [PMID: 28073742 DOI: 10.1093/bfgp/elw040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The genome of a pathogenic organism possesses a specific order of nucleotides that contains not only information about the synthesis and expression of proteomes, which are required for its growth and survival, but also about its evolution. Inhibition of any particular protein, which is required for the survival of that pathogenic organism, can be used as a potential therapeutic target for the development of effective drugs to treat its infections. In this review, the genomics, proteomics and evolution of dengue virus have been discussed, which will be helpful in better understanding of its origin, growth, survival and evolution, and may contribute toward development of new efficient anti-dengue drugs.
Collapse
|
41
|
Khan A, Saleem S, Idrees M, Ali SS, Junaid M, Chandra Kaushik A, Wei DQ. Allosteric ligands for the pharmacologically important Flavivirus target (NS5) from ZINC database based on pharmacophoric points, free energy calculations and dynamics correlation. J Mol Graph Model 2018; 82:37-47. [PMID: 29677482 DOI: 10.1016/j.jmgm.2018.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/19/2018] [Accepted: 03/17/2018] [Indexed: 12/15/2022]
Abstract
Dengue virus belongs to a group of human pathogens, which causes different diseases, dengue hemorrhagic fever and dengue shock syndrome in humans. It possesses RNA as a genetic material and is replicated with the aid of NS5 protein. RNA-dependent RNA polymerase (RdRp) is an important domain of NS5 in the replication of that virus. The catalytic process activity of RdRp is making it an important target for antiviral chemical therapy. To date, No FDA drug has been approved and marketed for the treatment of diseases caused by Dengue virus. So, there is a dire need to advance an area of active antiviral inhibitors that is safe, less expensive and widely available. An experimentally validated complex of Dengue NS5 and compound 27 (6LS) were used as pharmacophoric input and hits were identified. We also used Molecular dynamics (MD) simulations alongside free energy and dynamics of the internal residues of the apo and holo systems to understand the binding mechanism. Our analysis resulted that the three inhibitors (ZINC72070002, ZINC6551486, and ZINC39588257) greatly affected the interior dynamics and residual signaling to dysfunction the replicative role of NS5. The interaction of these inhibitors caused the loss of the correlated motion of NS5 near to the N terminus and helped the stability of the binding complex. This investigation provided a methodological route to discover allosteric inhibitors against the epidemics of this Flaviviruses. Allosteric inhibitors are important and major assets in considering the development of the competitive and robust antiviral agents such as against Dengue viral infection.
Collapse
Affiliation(s)
- Abbas Khan
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Center for Biotechnology and Microbiology, University of Swat, Pakistan.
| | - Shoaib Saleem
- Center for Biotechnology and Microbiology, University of Swat, Pakistan.
| | - Muhammad Idrees
- Center for Biotechnology and Microbiology, University of Swat, Pakistan.
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Pakistan.
| | - Muhammad Junaid
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Aman Chandra Kaushik
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
42
|
Nuovo G, Tran H, Gutierrez A, Fadda P, Pichiorri F, Caserta E, Hofmeister CC, Chesi M, Leif Bergsagel P, Morris D, Shi Q, Coffey M, Thirukkumaran C. Importin-β and exportin-5 are strong biomarkers of productive reoviral infection of cancer cells. Ann Diagn Pathol 2018; 32:28-34. [PMID: 29414394 DOI: 10.1016/j.anndiagpath.2017.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/24/2023]
Abstract
Acute reoviral infection has been extensively studied given the virus's propensity to target malignant cells and activate caspase-3 mediated apoptosis. Reovirus infection of malignant N1E-115 mouse neuroblastoma cells led to significant increased expression of importin-β and exportin-5 mRNAs (qRTPCR) and proteins (immunohistochemistry) which was partially blocked by small interfering LNA oligomers directed against the reoviral genome. Co-expression analysis showed that the N1E-115 cells that contained reoviral capsid protein had accumulated importin-β and exportin-5, as well as activated caspase 3. Reoviral oncolysis using a syngeneic mouse model of multiple myeloma similarly induced a significant increase in importin-β and exportin-5 proteins that were co-expressed with reoviral capsid protein and caspase-3. Apoptotic proteins (BAD, BIM, PUMA, NOXA, BAK, BAX) were increased with infection and co-localized with reoviral capsid protein. Surprisingly the anti-apoptotic MCL1 and bcl2 were also increased and co-localized with the capsid protein suggesting that it was the balance of pro-apoptotic molecules that correlated with activation of caspase-3. In summary, productive reoviral infection is strongly correlated with elevated importin-β and exportin-5 levels which may serve as biomarkers of the disease in clinical specimens.
Collapse
Affiliation(s)
- Gerard Nuovo
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; Phylogeny Medical Laboratory, Powell, OH, USA.
| | | | | | - Paolo Fadda
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | | | - Craig C Hofmeister
- Division of hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | | | - Don Morris
- Tom Baker Cancer Centre, University of Calgary 1331, 29th Street NW, Calgary, Canada
| | - Qiao Shi
- Tom Baker Cancer Centre, University of Calgary 1331, 29th Street NW, Calgary, Canada
| | | | | |
Collapse
|
43
|
The Transactions of NS3 and NS5 in Flaviviral RNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:147-163. [PMID: 29845531 DOI: 10.1007/978-981-10-8727-1_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dengue virus (DENV) replication occurs in virus-induced vesicles that contain the replication complex (RC) where viral RNA, viral proteins and host proteins participate in RNA-RNA, RNA-protein and protein-protein interactions to ensure viral genome synthesis. However, the details of the multitude of interactions involved in the biogenesis of the infectious virion are not fully understood. In this review, we will focus on the interaction between non-structural (NS) proteins NS3 and NS5, as well as their interactions with viral RNA and briefly also the interaction of NS5 with the host nuclear transport receptor protein importin-α. The multifunctional NS3 protease/helicase and NS5 methyltransferase (MTase)/RNA-dependent RNA polymerase (RdRp) contain all the enzymatic activities required to synthesize the viral RNA genome. The success stories of drug discovery and development with Hepatitis C virus (HCV), a member of the Flaviviridae family, has led to the view that DENV NS3 and NS5 may be attractive antiviral drug targets. However, more than 10 years of intensive research effort by Novatis has revealed that they are not "low hanging fruits" and therefore, the search for potent directly acting antivirals (DAAs) remains a pipeline goal for several medium to large drug discovery enterprises. The effort to discover DAAs for DENV has been boosted by the epidemic outbreak of the closely related flavivirus member - Zika virus (ZIKV). Because the viral RNA replication occurs within a molecular machine that is composed several viral and host proteins, much interest has turned to characterising functionally essential protein-protein interactions in order to identify potential allosteric inhibitor binding sites within the RC.
Collapse
|
44
|
Jans DA, Martin AJ. Nucleocytoplasmic Trafficking of Dengue Non-structural Protein 5 as a Target for Antivirals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:199-213. [DOI: 10.1007/978-981-10-8727-1_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Brand C, Bisaillon M, Geiss BJ. Organization of the Flavivirus RNA replicase complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28815931 DOI: 10.1002/wrna.1437] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022]
Abstract
Flaviviruses, such as dengue, Japanese encephalitis, West Nile, yellow fever, and Zika viruses, are serious human pathogens that cause significant morbidity and mortality globally each year. Flaviviruses are single-stranded, positive-sense RNA viruses, and encode two multidomain proteins, NS3 and NS5, that possess all enzymatic activities required for genome replication and capping. NS3 and NS5 interact within virus-induced replication compartments to form the RNA genome replicase complex. Although the individual enzymatic activities of both proteins have been extensively studied and are well characterized, there are still gaps in our understanding of how they interact to efficiently coordinate their respective activities during positive-strand RNA synthesis and capping. Here, we discuss what is known about the structures and functions of the NS3 and NS5 proteins and propose a preliminary NS3:NS5:RNA interaction model based on a large body of literature about how the viral enzymes function, physical restraints between NS3 and NS5, as well as critical steps in the replication process. WIREs RNA 2017, 8:e1437. doi: 10.1002/wrna.1437 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Carolin Brand
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Bisaillon
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Brian J Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.,School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
46
|
Pan A, Saw WG, Subramanian Manimekalai MS, Grüber A, Joon S, Matsui T, Weiss TM, Grüber G. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin. Acta Crystallogr D Struct Biol 2017; 73:402-419. [PMID: 28471365 PMCID: PMC5417341 DOI: 10.1107/s2059798317003849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/09/2017] [Indexed: 11/10/2022] Open
Abstract
Dengue virus (DENV), which has four serotypes (DENV-1 to DENV-4), is the causative agent of the viral infection dengue. DENV nonstructural protein 3 (NS3) comprises a serine protease domain and an RNA helicase domain which has nucleotide triphosphatase activities that are essential for RNA replication and viral assembly. Here, solution X-ray scattering was used to provide insight into the overall structure and flexibility of the entire NS3 and its recombinant helicase and protease domains for Dengue virus serotypes 2 and 4 in solution. The DENV-2 and DENV-4 NS3 forms are elongated and flexible in solution. The importance of the linker residues in flexibility and domain-domain arrangement was shown by the compactness of the individual protease and helicase domains. Swapping of the 174PPAVP179 linker stretch of the related Hepatitis C virus (HCV) NS3 into DENV-2 NS3 did not alter the elongated shape of the engineered mutant. Conformational alterations owing to RNA binding are described in the protease domain, which undergoes substantial conformational alterations that are required for the optimal catalysis of bound RNA. Finally, the effects of ATPase inhibitors on the enzymatically active DENV-2 and DENV-4 NS3 and the individual helicases are presented, and insight into the allosteric effect of the inhibitor quercetin is provided.
Collapse
Affiliation(s)
- Ankita Pan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Wuan Geok Saw
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Ardina Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Shin Joon
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Laboratory, Menlo Park, California, USA
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Laboratory, Menlo Park, California, USA
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
47
|
Li Y, Yang Z. Adaptive Diversification Between Yellow Fever Virus West African and South American Lineages: A Genome-Wide Study. Am J Trop Med Hyg 2017; 96:727-734. [PMID: 28044043 DOI: 10.4269/ajtmh.16-0698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Yellow fever virus (YFV) has emerged as the causative agent of a vector-borne disease with devastating mortality in the tropics of Africa and the Americas. YFV phylogenies indicate that the isolates collected from West Africa, East and Central Africa, and South America cluster into different lineages and the virus spread into the Americas from Africa. To determine the nature of genetic variation accompanying the intercontinental epidemic, we performed a genome-wide evolutionary study on the West African and South American lineages of YFV. Our results reveal that adaptive genetic diversification has occurred on viral nonstructural protein 5 (NS5), which is crucially required for viral genome replication, in the early epidemic phase of these currently circulating lineages. Furthermore, major amino acid changes relevant to the adaptive diversification generally cluster in different structural regions of NS5 in a lineage-specific manner. These results suggest that YFV has experienced adaptive diversification in the epidemic spread between the continents and shed insights into the genetic determinants of such diversification, which might be beneficial for understanding the emergence and re-emergence of yellow fever as an important global public health issue.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People's Republic of China
| |
Collapse
|
48
|
Oliveira AFCDS, Teixeira RR, Oliveira ASD, Souza APMD, Silva MLD, Paula SOD. Potential Antivirals: Natural Products Targeting Replication Enzymes of Dengue and Chikungunya Viruses. Molecules 2017; 22:E505. [PMID: 28327521 PMCID: PMC6155337 DOI: 10.3390/molecules22030505] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) and chikungunya virus (CHIKV) are reemergent arboviruses that are transmitted by mosquitoes of the Aedes genus. During the last several decades, these viruses have been responsible for millions of cases of infection and thousands of deaths worldwide. Therefore, several investigations were conducted over the past few years to find antiviral compounds for the treatment of DENV and CHIKV infections. One attractive strategy is the screening of compounds that target enzymes involved in the replication of both DENV and CHIKV. In this review, we describe advances in the evaluation of natural products targeting the enzymes involved in the replication of these viruses.
Collapse
Affiliation(s)
- Ana Flávia Costa da Silveira Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas, 39900-000 Almenara, MG, Brazil.
| | - Róbson Ricardo Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
| | - André Silva de Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas, 39900-000 Almenara, MG, Brazil.
| | - Ana Paula Martins de Souza
- Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
| | - Milene Lopes da Silva
- Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
| | - Sérgio Oliveira de Paula
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
49
|
Duan W, Song H, Wang H, Chai Y, Su C, Qi J, Shi Y, Gao GF. The crystal structure of Zika virus NS5 reveals conserved drug targets. EMBO J 2017; 36:919-933. [PMID: 28254839 DOI: 10.15252/embj.201696241] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/16/2017] [Accepted: 02/02/2017] [Indexed: 12/31/2022] Open
Abstract
Zika virus (ZIKV) has emerged as major health concern, as ZIKV infection has been shown to be associated with microcephaly, severe neurological disease and possibly male sterility. As the largest protein component within the ZIKV replication complex, NS5 plays key roles in the life cycle and survival of the virus through its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains. Here, we present the crystal structures of ZIKV NS5 MTase in complex with an RNA cap analogue (m7GpppA) and the free NS5 RdRp. We have identified the conserved features of ZIKV NS5 MTase and RdRp structures that could lead to development of current antiviral inhibitors being used against flaviviruses, including dengue virus and West Nile virus, to treat ZIKV infection. These results should inform and accelerate the structure-based design of antiviral compounds against ZIKV.
Collapse
Affiliation(s)
- Wenqian Duan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Haiyuan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Su
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
50
|
Lu G, Gong P. A structural view of the RNA-dependent RNA polymerases from the Flavivirus genus. Virus Res 2017; 234:34-43. [PMID: 28131854 DOI: 10.1016/j.virusres.2017.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/15/2017] [Accepted: 01/22/2017] [Indexed: 12/17/2022]
Abstract
The RNA-dependent RNA polymerase (RdRP) from the Flavivirus genus is naturally fused to a methyltransferase (MTase), and the full-length protein is named nonstructural protein 5 (NS5). Similar to polymerases from other RNA viruses, the flavivirus RdRP has an encircled human right hand architecture with palm, fingers, and thumb domains surrounding its polymerase active site. In contrast to primer-dependent RdRPs that have a spacious front channel to accommodate the template-product RNA duplex, the flavivirus RdRP has a priming element as a thumb domain insertion, partially occupying the front channel to facilitate the de novo initiation process. Seven catalytic motifs A through G have been identified for all viral RdRPs and have highly homologous spatial arrangement around the active site despite low sequence conservation in several motifs if considering all viral families, forming an important basis to the understandings of the common features for viral RdRPs. In the two different global conformations identified in full-length crystal structures of Japanese encephalitis virus (JEV) and Dengue virus (DENV) NS5 proteins, the MTase approaches the RdRP consistently from the backside but its orientation and the interaction details with the RdRP are drastically different. Further investigations are required to clarify the conservation, functional relevance, and relationship of these conformations. Remaining challenges with respect to flavivirus RdRP structure are also discussed.
Collapse
Affiliation(s)
- Guoliang Lu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei 430071, China.
| |
Collapse
|