1
|
Zhang J, Sommermann T, Li X, Gieselmann L, de la Rosa K, Stecklum M, Klein F, Kocks C, Rajewsky K. LMP1 and EBNA2 constitute a minimal set of EBV genes for transformation of human B cells. Front Immunol 2023; 14:1331730. [PMID: 38169736 PMCID: PMC10758421 DOI: 10.3389/fimmu.2023.1331730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Epstein-Barr virus (EBV) infection in humans is associated with a wide range of diseases including malignancies of different origins, most prominently B cells. Several EBV latent genes are thought to act together in B cell immortalization, but a minimal set of EBV genes sufficient for transformation remains to be identified. Methods Here, we addressed this question by transducing human peripheral B cells from EBV-negative donors with retrovirus expressing the latent EBV genes encoding Latent Membrane Protein (LMP) 1 and 2A and Epstein-Barr Nuclear Antigen (EBNA) 2. Results LMP1 together with EBNA2, but not LMP1 alone or in combination with LMP2A was able to transform human primary B cells. LMP1/EBNA2-immortalized cell lines shared surface markers with EBV-transformed lymphoblastoid cell lines (LCLs). They showed sustained growth for more than 60 days, albeit at a lower growth rate than EBV-transformed LCLs. LMP1/EBNA2-immortalized cell lines generated tumors when transplanted subcutaneously into severely immunodeficient NOG mice. Conclusion Our results identify a minimal set of EBV proteins sufficient for B cell transformation.
Collapse
Affiliation(s)
- Jingwei Zhang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Thomas Sommermann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Xun Li
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Kathrin de la Rosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Mechanisms and Human Antibodies, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Center of Biological Design, Berlin, Germany
| | - Maria Stecklum
- Experimental Pharmacology and Oncology (EPO) Berlin-Buch GmbH, Berlin, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christine Kocks
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| |
Collapse
|
2
|
Albanese M, Tagawa T, Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host. Front Microbiol 2022; 13:955603. [PMID: 35935191 PMCID: PMC9355577 DOI: 10.3389/fmicb.2022.955603] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is a double-stranded DNA virus of the Herpesviridae family. This virus preferentially infects human primary B cells and persists in the human B cell compartment for a lifetime. Latent EBV infection can lead to the development of different types of lymphomas as well as carcinomas such as nasopharyngeal and gastric carcinoma in immunocompetent and immunocompromised patients. The early phase of viral infection is crucial for EBV to establish latency, but different viral components are sensed by cellular sensors called pattern recognition receptors (PRRs) as the first line of host defense. The efficacy of innate immunity, in particular the interferon-mediated response, is critical to control viral infection initially and to trigger a broad spectrum of specific adaptive immune responses against EBV later. Despite these restrictions, the virus has developed various strategies to evade the immune reaction of its host and to establish its lifelong latency. In its different phases of infection, EBV expresses up to 44 different viral miRNAs. Some act as viral immunoevasins because they have been shown to counteract innate as well as adaptive immune responses. Similarly, certain virally encoded proteins also control antiviral immunity. In this review, we discuss how the virus governs innate immune responses of its host and exploits them to its advantage.
Collapse
Affiliation(s)
- Manuel Albanese
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
- Istituto Nazionale di Genetica Molecolare, “Romeo ed Enrica Invernizzi,” Milan, Italy
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Takanobu Tagawa
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
3
|
Huisman W, Gille I, van der Maarel LE, Hageman L, Morton LT, de Jong RCM, Heemskerk MHM, Amsen D, Falkenburg JHF, Jedema I. Identification of Functional HLA-A*01 :01-Restricted EBV-LMP2-Specific T-cell Receptors. J Infect Dis 2020; 226:833-842. [PMID: 32808978 PMCID: PMC9470112 DOI: 10.1093/infdis/jiaa512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adoptive transfer of genetically engineered T cells expressing antigen-specific T-cell receptors (TCRs), is an appealing therapeutic approach for Epstein-Barr virus (EBV)-associated malignancies of latency type II/III that express EBV-antigens (LMP1/2). Patients who are HLA-A*01:01pos could benefit from such products, since no T cells recognizing any EBV-derived peptide in this common HLA allele have been found thus far. METHODS HLA-A*01:01-restricted EBV-(LMP2)-specific T-cells were isolated using peptide-MHC-tetramers. Functionality was assessed by production of IFNγ and cytotoxicity when stimulated with EBV-LMP2-expressing cell-lines. Functionality of primary T cells transduced with HLA-A*01:01-restricted EBV-LMP2-specific TCRs was optimized by knocking out the endogenous TCR of primary T cells (ΔTCR) using CRISPR-Cas9 technology. RESULTS EBV-LMP2-specific T cells were successfully isolated and their TCRs were characterized. TCR gene-transfer in primary T cells resulted in specific peptide-MHC-tetramer binding and reactivity against EBV-LMP2-expressing cell-lines. The mean-fluorescence intensity of peptide-MHC-tetramer binding was increased 1.5-2 fold when the endogenous TCR of CD8pos T cells was knocked out. CD8pos/ΔTCR T cells modified to express EBV-LMP2-specific TCRs showed IFNγ secretion and cytotoxicity towards EBV-LMP2-expressing malignant cell-lines. DISCUSSION We isolated the first functional HLA-A*01:01-restricted EBV-LMP2-specific T-cell populations and TCRs, which can potentially be used in future TCR gene-therapy to treat EBV-associated latency type II/III malignancies.
Collapse
Affiliation(s)
- Wesley Huisman
- Department of Hematology, Leiden University Medical Center, The Netherlands.,Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory for Blood Cell Research, Amsterdam, the Netherlands
| | - Ilse Gille
- Department of Hematology, Leiden University Medical Center, The Netherlands
| | | | - Lois Hageman
- Department of Hematology, Leiden University Medical Center, The Netherlands
| | - Laura T Morton
- Department of Hematology, Leiden University Medical Center, The Netherlands
| | - Rob C M de Jong
- Department of Hematology, Leiden University Medical Center, The Netherlands
| | | | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory for Blood Cell Research, Amsterdam, the Netherlands
| | | | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, The Netherlands
| |
Collapse
|
4
|
Wang LW, Wang Z, Ersing I, Nobre L, Guo R, Jiang S, Trudeau S, Zhao B, Weekes MP, Gewurz BE. Epstein-Barr virus subverts mevalonate and fatty acid pathways to promote infected B-cell proliferation and survival. PLoS Pathog 2019; 15:e1008030. [PMID: 31518366 PMCID: PMC6760809 DOI: 10.1371/journal.ppat.1008030] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/25/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with multiple human malignancies. EBV drives B-cell proliferation, which contributes to the pathogenesis of multiple lymphomas. Yet, knowledge of how EBV subverts host biosynthetic pathways to transform resting lymphocytes into activated lymphoblasts remains incomplete. Using a temporal proteomic dataset of EBV primary human B-cell infection, we identified that cholesterol and fatty acid biosynthetic pathways were amongst the most highly EBV induced. Epstein-Barr nuclear antigen 2 (EBNA2), sterol response element binding protein (SREBP) and MYC each had important roles in cholesterol and fatty acid pathway induction. Unexpectedly, HMG-CoA reductase inhibitor chemical epistasis experiments revealed that mevalonate pathway production of geranylgeranyl pyrophosphate (GGPP), rather than cholesterol, was necessary for EBV-driven B-cell outgrowth, perhaps because EBV upregulated the low-density lipoprotein receptor in newly infected cells for cholesterol uptake. Chemical and CRISPR genetic analyses highlighted downstream GGPP roles in EBV-infected cell small G protein Rab activation. Rab13 was highly EBV-induced in an EBNA3-dependent manner and served as a chaperone critical for latent membrane protein (LMP) 1 and 2A trafficking and target gene activation in newly infected and in lymphoblastoid B-cells. Collectively, these studies identify highlight multiple potential therapeutic targets for prevention of EBV-transformed B-cell growth and survival. EBV, the first human tumor virus identified, persistently infects >95% of adults worldwide. Upon infection of small, resting B-lymphocytes, EBV establishes a state of viral latency, where viral oncoproteins and non-coding RNAs activate host pathways to promote rapid B-cell proliferation. EBV’s growth-transforming properties are closely linked to the pathogenesis of multiple immunoblastic lymphomas, particularly in immunosuppressed hosts. While EBV oncogenes important for B-cell transformation have been identified, knowledge remains incomplete of how these EBV factors remodel cellular metabolism, a hallmark of human cancers. Using a recently established proteomic map of EBV-mediated B-cell growth transformation, we found that EBV induces biosynthetic pathways that convert acetyl-coenzyme A (acetyl-CoA) into isoprenoids, steroids, terpenoids, cholesterol, and long-chain fatty acids. Viral nuclear antigens cooperated with EBV-activated host transcription factors to upregulate rate-limiting enzymes of these biosynthetic pathways. The isoprenoid geranylgeranyl pyrophosphate was identified as a key product of the EBV-induced mevalonate pathway. Our studies highlighted GGPP roles in Rab protein activation, and Rab13 was identified as a highly EBV-upregulated GTPase critical for LMP1 and LMP2A trafficking and signaling. These studies identify multiple EBV-induced metabolic enzymes important for B-cell transformation, including potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Wei Wang
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Zhonghao Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ina Ersing
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Sizun Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Stephen Trudeau
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin E. Gewurz
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Kaposi's Sarcoma-Associated Herpesvirus Nonstructural Membrane Protein pK15 Recruits the Class II Phosphatidylinositol 3-Kinase PI3K-C2α To Activate Productive Viral Replication. J Virol 2018; 92:JVI.00544-18. [PMID: 29950425 DOI: 10.1128/jvi.00544-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/24/2018] [Indexed: 12/16/2022] Open
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) causes the angiogenic tumor KS and two B-cell malignancies. The KSHV nonstructural membrane protein encoded by the open reading frame (ORF) K15 recruits and activates several cellular proteins, including phospholipase Cγ1 (PLCγ1), components of the NF-κB pathway, as well as members of the Src family of nonreceptor tyrosine kinases, and thereby plays an important role in the activation of angiogenic and inflammatory pathways that contribute to the pathogenesis of KS as well as KSHV productive (lytic) replication. In order to identify novel cellular components involved in the biology of pK15, we immunoprecipitated pK15 from KSHV-infected endothelial cells and identified associated proteins by label-free quantitative mass spectrometry. Cellular proteins interacting with pK15 point to previously unappreciated cellular processes, such as the endocytic pathway, that could be involved in the function of pK15. We found that the class II phosphatidylinositol 3-kinase (PI3K) PI3K-C2α, which is involved in the endocytosis of activated receptor tyrosine kinases and their signaling from intracellular organelles, interacts and colocalizes with pK15 in vesicular structures abundant in the perinuclear area. Further functional analysis revealed that PI3K-C2α contributes to the pK15-dependent phosphorylation of PLCγ1 and Erk1/2. PI3K-C2α also plays a role in KSHV lytic replication, as evidenced by the reduced expression of the viral lytic genes K-bZIP and ORF45 as well as the reduced release of infectious virus in PI3K-C2α-depleted KSHV-infected endothelial cells. Taken together, our results suggest a role of the cellular PI3K-C2α protein in the functional properties of the KSHV pK15 protein.IMPORTANCE The nonstructural membrane protein encoded by open reading frame K15 of Kaposi's sarcoma-associated herpesvirus (KSHV) (HHV8) activates several intracellular signaling pathways that contribute to the angiogenic properties of KSHV in endothelial cells and to its reactivation from latency. A detailed understanding of how pK15 activates these intracellular signaling pathways is a prerequisite for targeting these processes specifically in KSHV-infected cells. By identifying pK15-associated cellular proteins using a combination of immunoprecipitation and mass spectrometry, we provide evidence that pK15-dependent signaling may occur from intracellular vesicles and rely on the endocytotic machinery. Specifically, a class II PI3K, PI3K-C2α, is recruited by pK15 and involved in pK15-dependent intracellular signaling and viral reactivation from latency. These findings are of importance for future intervention strategies that aim to disrupt the activation of intracellular signaling by pK15 in order to antagonize KSHV productive replication and tumorigenesis.
Collapse
|
6
|
Characterization of the subcellular localization of Epstein-Barr virus encoded proteins in live cells. Oncotarget 2017; 8:70006-70034. [PMID: 29050259 PMCID: PMC5642534 DOI: 10.18632/oncotarget.19549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) is the pathogenic factor of numerous human tumors, yet certain of its encoded proteins have not been studied. As a first step for functional identification, we presented the construction of a library of expression constructs for most of the EBV encoded proteins and an explicit subcellular localization map of 81 proteins encoded by EBV in mammalian cells. Viral open reading frames were fused with enhanced yellow fluorescent protein (EYFP) tag in eukaryotic expression plasmid then expressed in COS-7 live cells, and protein localizations were observed by fluorescence microscopy. As results, 34.57% (28 proteins) of all proteins showed pan-nuclear or subnuclear localization, 39.51% (32 proteins) exhibitted pan-cytoplasmic or subcytoplasmic localization, and 25.93% (21 proteins) were found in both the nucleus and cytoplasm. Interestingly, most envelope proteins presented pan-cytoplasmic or membranous localization, and most capsid proteins displayed enriched or complete localization in the nucleus, indicating that the subcellular localization of specific proteins are associated with their roles during viral replication. Taken together, the subcellular localization map of EBV proteins in live cells may lay the foundation for further illustrating the functions of EBV-encoded genes in human diseases especially in its relevant tumors.
Collapse
|
7
|
Serrano JB, da Cruz E Silva OAB, Rebelo S. Lamina Associated Polypeptide 1 (LAP1) Interactome and Its Functional Features. MEMBRANES 2016; 6:membranes6010008. [PMID: 26784240 PMCID: PMC4812414 DOI: 10.3390/membranes6010008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/26/2022]
Abstract
Lamina-associated polypeptide 1 (LAP1) is a type II transmembrane protein of the inner nuclear membrane encoded by the human gene TOR1AIP1. LAP1 is involved in maintaining the nuclear envelope structure and appears be involved in the positioning of lamins and chromatin. To date, LAP1’s precise function has not been fully elucidated but analysis of its interacting proteins will permit unraveling putative associations to specific cellular pathways and cellular processes. By assessing public databases it was possible to identify the LAP1 interactome, and this was curated. In total, 41 interactions were identified. Several functionally relevant proteins, such as TRF2, TERF2IP, RIF1, ATM, MAD2L1 and MAD2L1BP were identified and these support the putative functions proposed for LAP1. Furthermore, by making use of the Ingenuity Pathways Analysis tool and submitting the LAP1 interactors, the top two canonical pathways were “Telomerase signalling” and “Telomere Extension by Telomerase” and the top functions “Cell Morphology”, “Cellular Assembly and Organization” and “DNA Replication, Recombination, and Repair”. Once again, putative LAP1 functions are reinforced but novel functions are emerging.
Collapse
Affiliation(s)
- Joana B Serrano
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Odete A B da Cruz E Silva
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sandra Rebelo
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
8
|
Lin X, Chen S, Xue X, Lu L, Zhu S, Li W, Chen X, Zhong X, Jiang P, Sename TS, Zheng Y, Zhang L. Chimerically fused antigen rich of overlapped epitopes from latent membrane protein 2 (LMP2) of Epstein-Barr virus as a potential vaccine and diagnostic agent. Cell Mol Immunol 2015; 13:492-501. [PMID: 25864917 DOI: 10.1038/cmi.2015.29] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is prevalent throughout the world and is associated with several malignant diseases in humans. Latent membrane protein 2 (LMP2) of EBV plays a crucial role in the pathogenesis of EBV-associated tumors; therefore, LMP2 has been considered to be a potential immunodiagnostic and immunotherapeutic target. A multi-epitope-based antigen is a promising option for therapeutic vaccines and diagnoses of such malignancies. In this study, we systematically screened cytotoxic T lymphocyte (CTL), helper T cell (Th) and B-cell epitopes within EBV-LMP2 using bioinformatics. Based on the screen, two peptides rich in overlapping epitopes of both T cells and B cells were selected to construct a plasmid containing the sequence for a chimeric multi-epitope protein referred to as EBV-LMP2m, which is composed of LMP2aa195∼232 and LMP2aa419∼436. The EBV-LMP2m protein was expressed in E. coli BL21 (DE3) after prokaryotic codon optimization. Inoculation of the purified chimeric antigen in BALB/c mice induced not only high levels of specific IgG in the serum and secretory IgA in the vaginal mucus but also a specific CTL response. By using purified EBV-LMP2m as an antigen, the presence of specific IgG in the serum specimens of 202 nasopharyngeal carcinoma (NPC) patients was effectively detected with 52.84% sensitivity and 95.40% specificity, which represents an improvement over the traditional detection method based on VCA-IgA (60.53% sensitivity and 76.86% specificity). The above results indicate that EBV-LMP2m may be used not only as a potential target antigen for EBV-associated tumors but also a diagnostic agent for NPC patients.
Collapse
Affiliation(s)
- Xiaoyun Lin
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Shao Chen
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Lijun Lu
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Shanli Zhu
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Wenshu Li
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xiangmin Chen
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xiaozhi Zhong
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Pengfei Jiang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Torsoo Sophia Sename
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Yi Zheng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Ondondo B, Faulkner L, Williams NA, Morgan AJ, Morgan DJ. The B subunit of Escherichia coli enterotoxin helps control the in vivo growth of solid tumors expressing the Epstein-Barr virus latent membrane protein 2A. Cancer Med 2015; 4:457-71. [PMID: 25641882 PMCID: PMC4380971 DOI: 10.1002/cam4.380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/19/2014] [Accepted: 10/09/2014] [Indexed: 01/23/2023] Open
Abstract
Latent membrane protein 2A (LMP2A) is expressed on almost all Epstein–Barr virus (EBV)-associated tumors and is a potential target for immunotherapeutic intervention and vaccination. However, LMP2A is not efficiently processed and presented on major histocompatibility antigens class I molecules to generate potent cytotoxic T-lymphocytes (CTL) responses capable of killing these tumors. The B subunit of Escherichia coli enterotoxin (EtxB), causes rapid internalization and processing of membrane-bound LMP2A on EBV-infected B cells, and facilitates loading of processed-LMP2A peptides onto MHC class I. This re-directed trafficking/delivery of LMP2A to the MHC class I machinery enhances recognition and killing by LMP2A-specific CTL in vitro. To test the potential of EtxB to enhance immune targeting of LMP2A expressed in solid tumors, we generated a murine tumor model (Renca-LMP2A), in which LMP2A is expressed as a transgenic neoantigen on a renal carcinoma (Renca) cell line and forms solid tumors when injected subcutaneously into BALB/c mice. The data show that in BALB/c mice which have only low levels of peripheral Kd-LMP2A-specific CD8+ T cells, merely a transient inhibition of tumor growth is achieved compared with naïve mice; suggesting that there is suboptimal LMP2A-specifc CTL recognition and poorly targeted tumor killing. However, importantly, treatment of these mice with EtxB led to a significant delay in the onset of tumor growth and significantly lower tumor volumes compared with similar mice that did not receive EtxB. Moreover, this remarkable effect of EtxB was achieved despite progressive reduction in tumor expression of LMP2A and MHC class I molecules. These data clearly demonstrate the potential efficacy of EtxB as a novel therapeutic agent that could render EBV-associated tumors susceptible to immune control.
Collapse
Affiliation(s)
- Beatrice Ondondo
- The Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, Oxfordshire OX3 7DQ, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Abstract
LMP2A is an EBV-encoded protein with three domains: (a) an N-terminal cytoplasmic domain, which has PY motifs that bind to WW domain-containing E3 ubiquitin ligases and an ITAM that binds to SH2 domain-containing proteins, (b) a transmembrane domain with 12 transmembrane segments that localizes LMP2A in cellular membranes, and (c) a 27-amino acid C-terminal domain which mediates homodimerization and heterodimerization of LMP2 protein isoforms. The most prominent two isoforms of the protein are LMP2A and LMP2B. The LMP2B isoform lacks the 19-amino acid N-terminal domain found in LMP2A, which modulates cellular signaling resulting in a baseline activation of B cells and degradation of cellular kinases leading to the downregulation of normal B cell signaling pathways. These two seemingly contradictory processes allow EBV to establish and maintain latency. LMP2 is expressed in many EBV-associated malignancies. While its antigenic properties may be useful in developing LMP2-specific immunity, the LMP2A N-terminal motifs also provide a basis to target LMP2A-modulated cellular kinases for the development of treatment strategies.
Collapse
|
11
|
SYK interaction with ITGβ4 suppressed by Epstein-Barr virus LMP2A modulates migration and invasion of nasopharyngeal carcinoma cells. Oncogene 2014; 34:4491-9. [PMID: 25531330 DOI: 10.1038/onc.2014.380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 07/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus (EBV)-encoded Latent Membrane Protein 2A (LMP2A) is an EBV latency-associated protein regularly expressed in nasopharyngeal carcinoma (NPC). In B cells, LMP2A activity resembles that of a constitutively activated antigen receptor, which recruits the Syk tyrosine kinase to activate a set of downstream signaling pathways. LMP2A also downregulates cellular Syk levels. In the present study, we demonstrate that Syk interacts with the integrin β4 subunit (ITGβ4) of integrin α6β4 in epithelial cells and that concurrent LMP2A expression interferes with this interaction by competitive binding to Syk. We find that both Syk and LMP2A have an effect on ITGβ4 cell surface expression. However, in LMP2A expressing cells, ITGβ4 remains concentrated at the cellular protrusions, an expression pattern characteristic of motile cells, including NPC-derived epithelial cells. This effect of LMP2A on ITGβ4 localization is associated with a greater propensity for migration and invasion in-vitro, and may contribute to the invasive property of LMP2A-expressing NPC.
Collapse
|
12
|
Fukuda M, Kawaguchi Y. Role of the immunoreceptor tyrosine-based activation motif of latent membrane protein 2A (LMP2A) in Epstein-Barr virus LMP2A-induced cell transformation. J Virol 2014; 88:5189-94. [PMID: 24554661 PMCID: PMC3993816 DOI: 10.1128/jvi.03714-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/13/2014] [Indexed: 01/08/2023] Open
Abstract
Latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) is widely expressed in EBV-associated malignancies. We demonstrate that LMP2A has a transformation ability. This study shows that LMP2A-induced transformation in several human nonhematopoietic cell lines was blocked in those cells expressing an immunoreceptor tyrosine-based activation motif (ITAM) LMP2A mutant. The Syk inhibitor or Syk-specific small interfering RNA (siRNA) inhibited LMP2A-induced transformation. These results indicate that the interaction of the LMP2A ITAM with Syk is a key step for LMP2A-mediated transformation.
Collapse
Affiliation(s)
| | - Yasushi Kawaguchi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
The effect of Epstein-Barr virus Latent Membrane Protein 2 expression on the kinetics of early B cell infection. PLoS One 2013; 8:e54010. [PMID: 23308294 PMCID: PMC3540077 DOI: 10.1371/journal.pone.0054010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/07/2012] [Indexed: 02/07/2023] Open
Abstract
Infection of human B cells with wild-type Epstein-Barr virus (EBV) in vitro leads to activation and proliferation that result in efficient production of lymphoblastoid cell lines (LCLs). Latent Membrane Protein 2 (LMP2) is expressed early after infection and previous research has suggested a possible role in this process. Therefore, we generated recombinant EBV with knockouts of either or both protein isoforms, LMP2A and LMP2B (Δ2A, Δ2B, Δ2A/Δ2B) to study the effect of LMP2 in early B cell infection. Infection of B cells with Δ2A and Δ2A/Δ2B viruses led to a marked decrease in activation and proliferation relative to wild-type (wt) viruses, and resulted in higher percentages of apoptotic B cells. Δ2B virus infection showed activation levels comparable to wt, but fewer numbers of proliferating B cells. Early B cell infection with wt, Δ2A and Δ2B viruses did not result in changes in latent gene expression, with the exception of elevated LMP2B transcript in Δ2A virus infection. Infection with Δ2A and Δ2B viruses did not affect viral latency, determined by changes in LMP1/Zebra expression following BCR stimulation. However, BCR stimulation of Δ2A/Δ2B cells resulted in decreased LMP1 expression, which suggests loss of stability in viral latency. Long-term outgrowth assays revealed that LMP2A, but not LMP2B, is critical for efficient long-term growth of B cells in vitro. The lowest levels of activation, proliferation, and LCL formation were observed when both isoforms were deleted. These results suggest that LMP2A appears to be critical for efficient activation, proliferation and survival of EBV-infected B cells at early times after infection, which impacts the efficient long-term growth of B cells in culture. In contrast, LMP2B did not appear to play a significant role in these processes, and long-term growth of infected B cells was not affected by the absence of this protein.
Collapse
|
14
|
Yeo KS, Mohidin TBM, Ng CC. Epstein-Barr virus-encoded latent membrane protein-1 upregulates 14-3-3σ and Reprimo to confer G(2)/M phase cell cycle arrest. C R Biol 2012; 335:713-21. [PMID: 23312294 DOI: 10.1016/j.crvi.2012.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 08/30/2012] [Accepted: 11/16/2012] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous tumor-causing virus which infects more than 90% of the world population asymptomatically. Recent studies suggest that LMP-1, -2A and -2B cooperate in the tumorigenesis of EBV-associated epithelial cancers such as nasopharygeal carcinoma, oral and gastric cancer. In this study, LMPs were expressed in the HEK293T cell line to reveal their oncogenic mechanism via investigation on their involvement in the regulation of the cell cycle and genes that are involved. LMPs were expressed in HEK293T in single and co-expression manner. The transcription of cell cycle arrest genes were examined via real-time PCR. Cell cycle progression was examined via flow cytometry. 14-3-3σ and Reprimo were upregulated in all LMP-1 expressing cells. Moreover, cell cycle arrest at G(2)/M progression was detected in all LMP-1 expressing cells. Therefore, we conclude that LMP-1 may induce cell cycle arrest at G(2)/M progression via upregulation of 14-3-3σ and Reprimo.
Collapse
Affiliation(s)
- Kok-Siong Yeo
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
15
|
Dergai O, Dergai M, Skrypkina I, Matskova L, Tsyba L, Gudkova D, Rynditch A. The LMP2A protein of Epstein-Barr virus regulates phosphorylation of ITSN1 and Shb adaptors by tyrosine kinases. Cell Signal 2012; 25:33-40. [PMID: 22975684 DOI: 10.1016/j.cellsig.2012.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/04/2012] [Indexed: 01/20/2023]
Abstract
Latent Membrane Protein 2A (LMP2A) is an Epstein-Barr virus-encoded protein that is important for the maintenance of latent infection. Its activity affects cellular differentiation, migration, proliferation and B cell survival. LMP2A resembles a constitutively activated B cell antigen receptor and exploits host kinases to activate a set of downstream signaling pathways. In the current study we demonstrate the interaction of LMP2A with intersectin 1 (ITSN1), a key endocytic adaptor protein. This interaction occurs via both the N- and C-tails of LMP2A and is mediated by the SH3 domains of ITSN1. Additionally, we identified the Shb adaptor and the Syk kinase as novel binding ligands of ITSN1. The Shb adaptor interacts simultaneously with the phosphorylated tyrosines of LMP2A and the SH3 domains of ITSN1 and mediates indirect interaction of ITSN1 to LMP2A. Syk kinase promotes phosphorylation of both ITSN1 and Shb adaptors in LMP2A-expressing cells. In contrast to ITSN1, Shb phosphorylation depends additionally on Lyn kinase activity. Considering that Shb and ITSN1 are implicated in various receptor tyrosine kinase signaling, our results indicate that LMP2A can affect a number of signaling pathways by regulating the phosphorylation of the ITSN1 and Shb adaptors.
Collapse
Affiliation(s)
- Oleksandr Dergai
- State Key Laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | | | | | | | | | | | | |
Collapse
|
16
|
Engels N, Yigit G, Emmerich CH, Czesnik D, Schild D, Wienands J. Epstein-Barr virus LMP2A signaling in statu nascendi mimics a B cell antigen receptor-like activation signal. Cell Commun Signal 2012; 10:9. [PMID: 22472181 PMCID: PMC3352256 DOI: 10.1186/1478-811x-10-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/03/2012] [Indexed: 01/04/2023] Open
Abstract
Background The latent membrane protein (LMP) 2A of Epstein-Barr virus (EBV) is expressed during different latency stages of EBV-infected B cells in which it triggers activation of cytoplasmic protein tyrosine kinases. Early studies revealed that an immunoreceptor tyrosine-based activation motif (ITAM) in the cytoplasmic N-terminus of LMP2A can trigger a transient increase of the cytosolic Ca2+ concentration similar to that observed in antigen-activated B cells when expressed as a chimeric transmembrane receptor. Even so, LMP2A was subsequently ascribed an inhibitory rather than an activating function because its expression seemed to partially inhibit B cell antigen receptor (BCR) signaling in EBV-transformed B cell lines. However, the analysis of LMP2A signaling has been hampered by the lack of cellular model systems in which LMP2A can be studied without the influence of other EBV-encoded factors. Results We have reanalyzed LMP2A signaling using B cells in which LMP2A is expressed in an inducible manner in the absence of any other EBV signaling protein. This allowed us for the first time to monitor LMP2A signaling in statu nascendi as it occurs during the EBV life cycle in vivo. We show that mere expression of LMP2A not only stimulated protein tyrosine kinases but also induced phospholipase C-γ2-mediated Ca2+ oscillations followed by activation of the extracellular signal-regulated kinase (Erk) mitogen-activated protein kinase pathway and induction of the lytic EBV gene bzlf1. Furthermore, expression of the constitutively phosphorylated LMP2A ITAM modulated rather than inhibited BCR-induced Ca2+ mobilization. Conclusion Our data establish that LMP2A expression has a function beyond the putative inhibition of the BCR by generating a ligand-independent cellular activation signal that may provide a molecular switch for different EBV life cycle stages and most probably contributes to EBV-associated lymphoproliferative disorders.
Collapse
Affiliation(s)
- Niklas Engels
- Institute of Cellular and Molecular Immunology, Georg-August-University Göttingen, Humboldtallee 34, Göttingen 37073, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Nouri MZ, Hiraga S, Yanagawa Y, Sunohara Y, Matsumoto H, Komatsu S. Characterization of calnexin in soybean roots and hypocotyls under osmotic stress. PHYTOCHEMISTRY 2012; 74:20-9. [PMID: 22169501 DOI: 10.1016/j.phytochem.2011.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 10/27/2011] [Accepted: 11/15/2011] [Indexed: 05/31/2023]
Abstract
Calnexin is an endoplasmic reticulum-localized molecular chaperone protein which is involved in folding and quality control of proteins. To evaluate the expression of calnexin in soybean seedlings under osmotic stress, immunoblot analysis was performed using a total membrane protein fraction. Calnexin constantly accumulated at an early growth stage of soybean under normal growth conditions. Expression of this protein decreased in 14-day-old soybean roots when treated with 10% polyethylene glycol for 2 days. Other abiotic stresses such as drought, salinity, cold as well as abscisic acid treatment, similarly reduced accumulation of calnexin and this reduction was correlated with reduction in root length in soybean seedlings under abiotic stresses. When compared between soybean and rice, calnexin expression was not changed in rice under abiotic stresses. Using Flag-tagged calnexin, a 70 kDa heat shock cognate protein was identified as an interacting protein. These results suggest that osmotic or other abiotic stresses highly reduce accumulation of the calnexin protein in developing soybean roots. It is also suggested that calnexin interacts with a 70 kDa heat shock cognate protein and probably functions as molecular chaperone in soybean.
Collapse
Affiliation(s)
- Mohammad-Zaman Nouri
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Dawson CW, Port RJ, Young LS. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol 2012; 22:144-53. [PMID: 22249143 DOI: 10.1016/j.semcancer.2012.01.004] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 02/08/2023]
Abstract
Although frequently expressed in EBV-positive malignancies, the contribution of the oncogenic latent membrane proteins, LMP1 and LMP2, to the pathogenesis of nasopharyngeal carcinoma (NPC) is not fully defined. As a key effector in EBV-driven B cell transformation and an established "transforming" gene, LMP1 displays oncogenic properties in rodent fibroblasts and induces profound morphological and phenotypic effects in epithelial cells. LMP1 functions as a viral mimic of the TNFR family member, CD40, engaging a number of signalling pathways that induce morphological and phenotypic alterations in epithelial cells. Although LMP2A plays an essential role in maintaining viral latency in EBV infected B cells, its role in epithelial cells is less clear. Unlike LMP1, LMP2A does not display "classical" transforming functions in rodent fibroblasts but its ability to engage a number of potentially oncogenic cell signalling pathways suggests that LMP2A can also participate in EBV-induced epithelial cell growth transformation. Here we review the effects of LMP1 and LMP2 on various aspects of epithelial cell behaviour highlighting key aspects that may contribute to the pathogenesis of NPC.
Collapse
Affiliation(s)
- Christopher W Dawson
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | | | | |
Collapse
|
19
|
Lee IS. Epstein-Barr Virus-Associated Classical Hodgkin Lymphoma and Its Therapeutic Strategies. Biomol Ther (Seoul) 2011. [DOI: 10.4062/biomolther.2011.19.4.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
20
|
Xue X, Zhu S, Li W, Chen J, Ou Q, Zheng M, Gong W, Zhang L. Identification and characterization of novel B-cell epitopes within EBV latent membrane protein 2 (LMP2). Viral Immunol 2011; 24:227-36. [PMID: 21668364 DOI: 10.1089/vim.2010.0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to screen and identify the linear B-cell epitopes of Epstein-Barr virus (EBV) latent membrane protein 2 (LMP2). The secondary structure and surface properties of EBV LMP2A protein were analyzed. In combination with hydrophilicity, accessibility, flexibility, and antigenicity analysis, and average antigenicity index (AI) of epitope peptide investigation, three peptides were selected as potential candidates of linear B-cell epitopes. The peptides were 199-209 (RIEDPPFNSLL), 318-322 (TLNLT), and 381-391 (KSLSSTEFIPN). The fragments encoding potential B-cell epitopes were cloned and overexpressed in an E. coli system. The immune sera of these fusion proteins were collected from BALB/c mice by subcutaneously immunizing them three times. Western blotting results showed that these epitope recombinant proteins could be recognized by the serum antibodies against the whole LMP2 from nasopharyngeal carcinoma (NPC). Indirect ELISA measuring individual sera from 196 NPC patients, 44 infectious mononucleosis (IM) patients, 253 healthy adults, and 61 healthy children, indicated that NPC patients had significantly higher reactivity to these epitope-fused proteins compared with IM and healthy individuals (p < 0.05). In addition, all the immune sera of peptide-fused proteins responded to native LMP2A antigen obtained from the EBV prototype strain, B95-8 cells. IFA results confirmed that specific antibodies induced by epitope peptide-fused proteins recognized intracellular regions of LMP2A. These results demonstrated that these three predictive epitopes not only were immunodominant B-cell epitopes of LMP2A, but also may be potential targets for applications in the design of diagnostic tools.
Collapse
Affiliation(s)
- Xiangyang Xue
- Department of Microbiology and Immunology, Wenzhou Medical College, Wenzhou, Zhejiang, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Antony JM, Deslauriers AM, Bhat RK, Ellestad KK, Power C. Human endogenous retroviruses and multiple sclerosis: innocent bystanders or disease determinants? Biochim Biophys Acta Mol Basis Dis 2010; 1812:162-76. [PMID: 20696240 PMCID: PMC7172332 DOI: 10.1016/j.bbadis.2010.07.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 07/14/2010] [Accepted: 07/26/2010] [Indexed: 12/21/2022]
Abstract
Human endogenous retroviruses (HERVs) constitute 5–8% of human genomic DNA and are replication incompetent despite expression of individual HERV genes from different chromosomal loci depending on the specific tissue. Several HERV genes have been detected as transcripts and proteins in the central nervous system, frequently in the context of neuroinflammation. The HERV-W family has received substantial attention in large part because of associations with diverse syndromes including multiple sclerosis (MS) and several psychiatric disorders. A HERV-W-related retroelement, multiple sclerosis retrovirus (MSRV), has been reported in MS patients to be both a biomarker as well as an effector of aberrant immune responses. HERV-H and HERV-K have also been implicated in MS and other neurological diseases but await delineation of their contributions to disease. The HERV-W envelope-encoded glycosylated protein, syncytin-1, is encoded by chromosome 7q21 and exhibits increased glial expression within MS lesions. Overexpression of syncytin-1 in glia induces endoplasmic reticulum stress leading to neuroinflammation and the induction of free radicals, which damage proximate cells. Syncytin-1's receptor, ASCT1 is a neutral amino acid transporter expressed on glia and is suppressed in white matter of MS patients. Of interest, antioxidants ameliorate syncytin-1's neuropathogenic effects raising the possibility of using these agents as therapeutics for neuroinflammatory diseases. Given the multiple insertion sites of HERV genes as complete and incomplete open reading frames, together with their differing capacity to be expressed and the complexities of individual HERVs as both disease markers and bioactive effectors, HERV biology is a compelling area for understanding neuropathogenic mechanisms and developing new therapeutic strategies.
Collapse
|
22
|
Role of latent membrane protein 2 isoforms in Epstein-Barr virus latency. Trends Microbiol 2008; 16:520-7. [PMID: 18835714 DOI: 10.1016/j.tim.2008.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 12/12/2022]
Abstract
The oncogenic Epstein-Barr virus (EBV) infects the majority of the human population without doing harm and establishes a latent infection in the memory B-cell compartment. To accomplish this, EBV hijacks B-cell differentiation pathways and uses its own viral genes to interfere with B-cell signalling to achieve life-long persistence. EBV latent membrane protein 2A (LMP2A) provides a surrogate B-cell receptor signal essential for cell survival and is believed to have a crucial role in the maintenance of latency by blocking B-cell activation which would otherwise lead to lytic EBV infection. These two functions demand tight control of LMP2A activity and expression levels. Based on recent insights in the function of LMP2B, an isoform of LMP2A, we propose a model for how LMP2B modulates the activity of LMP2A contributing to maintenance of EBV latency.
Collapse
|
23
|
Wang Q, Zheng JY, Kreth J, Yan X, Kamata M, Campbell RA, Xie Y, Chiu R, Berenson JR, Shi W, Chen ISY, Pang S. Regulation of prostate-specific antigen expression by the junctional adhesion molecule A. Urology 2008; 73:1119-25. [PMID: 18602143 DOI: 10.1016/j.urology.2008.02.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 02/06/2008] [Accepted: 02/29/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Prostate-specific antigen (PSA) is a protein specifically expressed in prostate cells. Therefore, the expression levels of PSA in the blood are an important indicator when diagnosing prostate cancer. Defining the mechanism of PSA expression in prostate cells will be helpful for interpreting the expression of this protein during prostate cancer progression. Reports show that a membrane protein, claudin-7 (CLDN-7), is involved in the expression of PSA. However, the mechanism by which CLDN-7 regulates PSA expression is not clear. Here we identify proteins that interact with CLDN-7 and determine whether such proteins can regulate PSA expression in a pattern similar to that of CLDN-7. METHODS Our previous studies have demonstrated that in prostate cells, PSA can be regulated by a membrane protein, CLDN-7. It is important to identify the proteins that associate with CLDN-7 in its pathway of regulating PSA expression, because it is very unlikely that CLDN-7 can directly regulate PSA expression in the nucleus. To identify potential proteins that may directly interact with CLDN-7, we studied proteins that can interact with claudins. RESULTS We found that CLDN-7 interacts with the junctional adhesion molecule A (JAM-A), which is expressed in the prostate cancer cell line, LNCaP, which expresses PSA, but not the PSA-negative prostate cell line, DU145. JAM-A regulates the expression of the prostate-specific antigen in LNCaP cells in a pattern similar to CLDN-7. CONCLUSIONS Our results suggest that JAM-A associates with CLDN-7 and it is a component in the pathway by which CLDN-7 regulates the expression of PSA.
Collapse
Affiliation(s)
- Qiuwei Wang
- University of California-Los Angeles Dental Research Institute and University of California-Los Angeles School of Dentistry, Los Angeles, California 90095-1668 , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Latent membrane protein 2B regulates susceptibility to induction of lytic Epstein-Barr virus infection. J Virol 2007; 82:1739-47. [PMID: 18057232 DOI: 10.1128/jvi.01723-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The B-lymphotropic Epstein-Barr virus (EBV) encodes two isoforms of latent membrane protein 2 (LMP2), LMP2A and LMP2B, which are expressed during latency in B cells. The function of LMP2B is largely unknown, whereas LMP2A blocks B-cell receptor (BCR) signaling transduction and induction of lytic EBV infection, thereby promoting B-cell survival. Transfection experiments on LMP2B in EBV-negative B cells and the silencing of LMP2B in EBV-harboring Burkitt's lymphoma-derived Akata cells suggest that LMP2B interferes with the function of LMP2A, but the role of LMP2B in the presence of functional EBV has not been established. Here, LMP2B, LMP2A, or both were overexpressed in EBV-harboring Akata cells to study the function of LMP2B. The overexpression of LMP2B increased the magnitude of EBV switching from its latent to its lytic form upon BCR cross-linking, as indicated by a more-enhanced upregulation and expression of EBV lytic genes and significantly increased production of transforming EBV compared to Akata vector control cells or LMP2A-overexpressing cells. Moreover, LMP2B lowered the degree of BCR cross-linking required to induce lytic EBV infection. Finally, LMP2B colocalized with LMP2A as demonstrated by immunoprecipitation and immunofluorescence and restored calcium mobilization upon BCR cross-linking, a signaling process inhibited by LMP2A. Thus, our findings suggest that LMP2B negatively regulates the function of LMP2A in preventing the switch from latent to lytic EBV replication.
Collapse
|
25
|
Tomaszewski-Flick MJ, Rowe DT. Minimal protein domain requirements for the intracellular localization and self-aggregation of Epstein-Barr Virus Latent Membrane Protein 2. Virus Genes 2007; 35:225-34. [PMID: 17564822 DOI: 10.1007/s11262-007-0118-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Accepted: 05/14/2007] [Indexed: 12/11/2022]
Abstract
The EBV Latent Membrane Protein 2 (LMP2) may have a role in the establishment and maintenance of in vivo latency. The gene is transcribed into two mRNAs that produce two LMP2 protein isoforms. The LMP2a protein isoform has 12 transmembrane segments (TMs) and an amino terminal cytoplasmic signaling domain (CSD) while the LMP2b isoform is identical but lacks the CSD. There has not been a consensus on the cellular membrane localization being sometimes ascribed to either a plasma membrane or an intracellular location [M. Rovedo, R. Longnecker, J. Virol. 81:89-94, 2007; D. Lynch, J. Zimmerman, D.T. Rowe, J. Gen. Virol. 83:1025-1035, 2002; C. Dawson, J. George, S. Blake, R. Longnecker, L.S. Young, Virology 289:192-207, 2001]. Fluorescent marker and epitope tagged LMP2b truncation mutants progressively removing TMs from the N and C termini were used to assess the localization and aggregation properties of LMP2b. wtLMP2b had an exclusively intracellular perinuclear localization, while all truncations of the protein resulted in localization to the cell surface. By epitope loop-tagging, all the truncated LMP2b proteins were verified to be in the predicted membrane orientation. In co-transfection experiments, the C-terminal region was implicated in the self-aggregation properties of LMP2b. Thus, an intact 12 TM domain was required for intracellular localization and protein-protein interaction while a C-terminal region was responsible for auto-aggregative properties.
Collapse
Affiliation(s)
- Monica Jo Tomaszewski-Flick
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 DeSoto St, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
26
|
Rechsteiner MP, Berger C, Weber M, Sigrist JA, Nadal D, Bernasconi M. Silencing of latent membrane protein 2B reduces susceptibility to activation of lytic Epstein-Barr virus in Burkitt's lymphoma Akata cells. J Gen Virol 2007; 88:1454-1459. [PMID: 17412973 DOI: 10.1099/vir.0.82790-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) blocks B-cell receptor (BCR) signalling after BCR cross-linking to inhibit activation of lytic EBV, and ectopically expressed LMP2B negatively regulates LMP2A. Here, it is demonstrated that silencing of LMP2B in EBV-harbouring Burkitt's lymphoma Akata cells results in reduced expression of EBV immediate-early lytic BZLF1 gene mRNA and late lytic gp350/220 protein upon BCR cross-linking. Similarly, reduction of lytic EBV activation was observed in Akata cells overexpressing LMP2A. In contrast, silencing of LMP2A expression resulted in higher lytic EBV mRNA and protein expression in BCR cross-linked Akata cells. These observations indicate a role for LMP2B distinct from that of LMP2A in regulation of lytic EBV activation in the host cell and support the hypothesis that LMP2B exhibits a negative-regulatory effect on the ability of LMP2A to maintain EBV latency by preventing the switch to lytic replication.
Collapse
Affiliation(s)
- Markus P Rechsteiner
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Christoph Berger
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Matthias Weber
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Jürg A Sigrist
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zurich, Zurich, Switzerland
| | - David Nadal
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Michele Bernasconi
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Rovedo M, Longnecker R. Epstein-barr virus latent membrane protein 2B (LMP2B) modulates LMP2A activity. J Virol 2007; 81:84-94. [PMID: 17035319 PMCID: PMC1797235 DOI: 10.1128/jvi.01302-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 09/28/2006] [Indexed: 12/14/2022] Open
Abstract
Latent membrane protein 2A (LMP2A) and LMP2B are viral proteins expressed during Epstein-Barr virus (EBV) latency in EBV-infected B cells both in cell culture and in vivo. LMP2A has important roles in modulating B-cell receptor (BCR) signal transduction by associating with the cellular tyrosine kinases Lyn and Syk via specific phosphotyrosine motifs found within the LMP2A N-terminal tail domain. LMP2A has been shown to alter normal BCR signal transduction in B cells by reducing levels of Lyn and by blocking tyrosine phosphorylation and calcium mobilization following BCR cross-linking. Although little is currently known about the function of LMP2B in B cells, the similarity in structure between LMP2A and LMP2B suggests that they may localize to the same cellular compartments. To investigate the function of LMP2B, B-cell lines expressing LMP2A, LMP2B, LMP2A/LMP2B, and the relevant vector controls were analyzed. As was previously shown, cells expressing LMP2A had a dramatic block in normal BCR signal transduction as measured by calcium mobilization and tyrosine phosphorylation. There was no effect on BCR signal transduction in cells expressing LMP2B. Interestingly, when LMP2B was expressed in conjunction with LMP2A, there was a restoration of normal BCR signal transduction upon BCR cross-linking. The expression of LMP2B did not alter the cellular localization of LMP2A but did bind to and prevent the phosphorylation of LMP2A. A restoration of Lyn levels, but not a change in LMP2A levels, was also observed in cells coexpressing LMP2B with LMP2A. From these results, we conclude that LMP2B modulates LMP2A activity.
Collapse
Affiliation(s)
- Mark Rovedo
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Ward 6-231, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
28
|
Ikeda M, Longnecker R. Cholesterol is critical for Epstein-Barr virus latent membrane protein 2A trafficking and protein stability. Virology 2006; 360:461-8. [PMID: 17150237 PMCID: PMC1868700 DOI: 10.1016/j.virol.2006.10.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/17/2006] [Accepted: 10/27/2006] [Indexed: 12/12/2022]
Abstract
Latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) plays a key role in regulating viral latency and EBV pathogenesis by functionally mimicking signals induced by the B cell receptor (BCR) altering normal B cell development. LMP2A specifically associates with Nedd4 family ubiquitin-protein ligases which downmodulate LMP2A activity by ubiquitinating LMP2A and LMP2A-associated protein tyrosine kinases (PTKs). Since specific ubiquitin tags provide an endocytic sorting signal for plasma membrane proteins which traffic to membrane vesicles, we examined LMP2A localization and trafficking. We found that LMP2A is secreted through exosomes, small endocytic membrane vesicles, as previously demonstrated for LMP1. Interestingly, the treatment of cells with methyl-beta-cyclodextrin (MCD), which depletes cholesterol from plasma membrane, dramatically increased LMP2A abundance and LMP2A exosome secretion. Cholesterol depletion also blocked LMP2A endocytosis resulting in the accumulation of LMP2A on plasma membrane. LMP2A phosphorylation and ubiquitination were blocked by cholesterol depletion. LMP2A in the exosomal fraction was ubiquitinated but not phosphorylated. These results indicate that cholesterol-dependent LMP2A trafficking determines the fate of LMP2A degradation.
Collapse
Affiliation(s)
| | - Richard Longnecker
- *Corresponding author, Phone: +1-312-503-0467, Fax: +1-312-503-1339, E-mail:
| |
Collapse
|
29
|
Ingham RJ, Raaijmakers J, Lim CSH, Mbamalu G, Gish G, Chen F, Matskova L, Ernberg I, Winberg G, Pawson T. The Epstein-Barr virus protein, latent membrane protein 2A, co-opts tyrosine kinases used by the T cell receptor. J Biol Chem 2005; 280:34133-42. [PMID: 16087662 DOI: 10.1074/jbc.m507831200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is the causative agent of infectious mononucleosis and is associated with several human malignancies. The EBV protein latent membrane protein 2A (LMP2A) promotes viral latency in memory B cells by interfering with B cell receptor signaling and provides a survival signal for mature B cells that have lost expression of surface immunoglobulin. The latter function has suggested that LMP2A may enhance the survival of EBV-positive tumors. EBV is associated with several T cell malignancies and, since LMP2A has been detected in several of these disorders, we examined the ability of LMP2A to transmit signals and interfere with T cell receptor signaling in T cells. We show that LMP2A is tyrosine-phosphorylated in Jurkat TAg T cells, which requires expression of the Src family tyrosine kinases, Lck and Fyn. Lck and Fyn are recruited to the tyrosine-phosphorylated Tyr112 site in LMP2A, whereas phosphorylation of an ITAM motif in LMP2A creates a binding site for the ZAP-70/Syk tyrosine kinases. LMP2A also associates through its two PPPPY motifs with AIP4, a NEDD4 family E3 ubiquitin ligase; this interaction results in ubiquitylation of LMP2A and serves to regulate the stability of LMP2A and LMP2A-kinase complexes. Furthermore, stable expression of LMP2A in Jurkat T cells down-regulated T cell receptor levels and attenuated T cell receptor signaling. Thus, through recruiting tyrosine kinases involved in T cell receptor activation, LMP2A may provide a survival signal for EBV-positive T cell tumors, whereas LMP2A-associated NEDD4 E3 ligases probably titer the strength of this signal.
Collapse
Affiliation(s)
- Robert J Ingham
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ojala K, Tikka PJ, Kautto L, Käpylä P, Marjomäki V, Oker-Blom C. Expression and trafficking of fluorescent viral membrane proteins in baculovirus-transduced BHK cells. J Biotechnol 2005; 114:165-75. [PMID: 15464610 DOI: 10.1016/j.jbiotec.2004.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 06/18/2004] [Accepted: 06/29/2004] [Indexed: 11/28/2022]
Abstract
Baculovirus vectors show promise as a novel tool for gene delivery into mammalian cells and gene transfer with wild-type baculovirus has been demonstrated both in vitro and in vivo. To study expression and intracellular trafficking of foreign viral membrane proteins in baculovirus-transduced mammalian cells, the envelope proteins, E1 and E2, of rubella virus (RV) were chosen as a model. The enhanced green fluorescent protein (EGFP) and a red fluorescent protein (RFP) were fused to the C-terminus of E1 and E2, respectively. The proteins were cloned under a cytomegalovirus (CMV) promoter and expressed as fluorescent fusion proteins in baculovirus-transduced baby hamster kidney (BHK) cells. Expression of the chimeric proteins in these cells showed that E1 was retained within the ER and cis-Golgi when expressed alone. In contrast, E2 was efficiently transported to the trans-Golgi network (TGN). However, when expressed together, E1 co-localized with E2 in TGN and to some extent in the lysosomes. The recombinant baculovirus vectors were able to transduce the BHK cells efficiently and the fluorescent fusion constructs allowed easy detection of the trafficking events in the transduced mammalian cells. Consequently, this technique should have wide applications when intracellular analysis of protein synthesis and maturation is under study.
Collapse
Affiliation(s)
- Kirsi Ojala
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä, Finland
| | | | | | | | | | | |
Collapse
|
31
|
Allen MD, Young LS, Dawson CW. The Epstein-Barr virus-encoded LMP2A and LMP2B proteins promote epithelial cell spreading and motility. J Virol 2005; 79:1789-802. [PMID: 15650203 PMCID: PMC544088 DOI: 10.1128/jvi.79.3.1789-1802.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 09/13/2004] [Indexed: 12/26/2022] Open
Abstract
The frequent expression of latent membrane proteins LMP2A and LMP2B in Epstein Barr virus (EBV)-associated tumors suggests that these proteins play a role in EBV-induced epithelial cell growth transformation. Expression of LMP2A and LMP2B had no effect on the morphology of squamous epithelial cells in monolayer culture, but their expression was associated with an increased capacity to spread and migrate on extracellular matrix. Although the mechanisms by which LMP2A and LMP2B promote cell spreading and motility are unclear, the use of selective pharmacological inhibitors has established a role for tyrosine kinases in this phenotype but ruled out contributions of phosphatidylinositol 3-kinase, extracellular signal-regulated kinase/mitogen-activated protein kinase, and protein kinase C. The ability of LMP2B to induce a phenotype that is virtually indistinguishable from that of LMP2A suggests that regions of the LMP2 protein in addition to the cytosolic amino terminus are capable of inducing phenotypic effects in epithelial cells. Thus, rather than serving to modulate the activity of LMP2A, LMP2B may directly engage signaling pathways to influence epithelial cell behavior such as cell adhesion and motility.
Collapse
Affiliation(s)
- Michael D Allen
- Cancer Research UK Institute for Cancer Studies, University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
32
|
Maruyama M, Nishio T, Yoshida T, Ishida C, Ishida K, Watanabe Y, Nishikawa M, Takakura Y. Simultaneous detection of DsRed2-tagged and EGFP-tagged human beta-interferons in the same single cells. J Cell Biochem 2004; 93:497-502. [PMID: 15372621 DOI: 10.1002/jcb.20203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The red fluorescent protein DsRed2 is a useful fusion tag for various proteins, together with the enhanced green fluorescent protein (EGFP). These chromoproteins have spectral properties that allow simultaneous distinctive detection of tagged proteins in the same single cells by dual color imaging. We used them for tagging a secretory protein, human interferon-beta (IFN-beta). Expression plasmids for human IFN-beta tagged with DsRed2 or with EGFP at the carboxyl terminal were constructed and their coexpression was examined in Mardin-Darby canine kidney epithelial cells. Although maturation of DsRed2 for coloration was slow and the color intensity was weak compared with EGFP, low temperature treatment (20 degrees C) allowed DsRed2-tagged human IFN-beta to be detected in the cells using color imaging. Consequently, the two chimeric proteins were shown to be colocalized in the same single cells by dual color confocal microscopy. This approach will be useful for investigating subcellular localization of not only cell resident proteins but also secretory proteins.
Collapse
Affiliation(s)
- Masato Maruyama
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Taylor GS, Haigh TA, Gudgeon NH, Phelps RJ, Lee SP, Steven NM, Rickinson AB. Dual stimulation of Epstein-Barr Virus (EBV)-specific CD4+- and CD8+-T-cell responses by a chimeric antigen construct: potential therapeutic vaccine for EBV-positive nasopharyngeal carcinoma. J Virol 2004; 78:768-78. [PMID: 14694109 PMCID: PMC368843 DOI: 10.1128/jvi.78.2.768-778.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 09/30/2003] [Indexed: 12/14/2022] Open
Abstract
Virus-associated malignancies are potential targets for immunotherapeutic vaccines aiming to stimulate T-cell responses against viral antigens expressed in tumor cells. Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma, a high-incidence tumor in southern China, expresses a limited set of EBV proteins, including the nuclear antigen EBNA1, an abundant source of HLA class II-restricted CD4(+) T-cell epitopes, and the latent membrane protein LMP2, a source of subdominant CD8(+) T-cell epitopes presented by HLA class I alleles common in the Chinese population. We used appropriately modified gene sequences from a Chinese EBV strain to generate a modified vaccinia virus Ankara recombinant, MVA-EL, expressing the CD4 epitope-rich C-terminal domain of EBNA1 fused to full-length LMP2. The endogenously expressed fusion protein EL is efficiently processed via the HLA class I pathway, and MVA-EL-infected dendritic cells selectively reactivate LMP2-specific CD8(+) memory T-cell responses from immune donors in vitro. Surprisingly, endogenously expressed EL also directly accesses the HLA class II presentation pathway and, unlike endogenously expressed EBNA1 itself, efficiently reactivates CD4(+) memory T-cell responses in vitro. This unscheduled access to the HLA class II pathway is coincident with EL-mediated redirection of the EBNA1 domain from its native nuclear location to dense cytoplasmic patches. Given its immunogenicity to both CD4(+) and CD8(+) T cells, MVA-EL has potential as a therapeutic vaccine in the context of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- G S Taylor
- CRUK Institute for Cancer Studies and MRC Centre for Immune Regulation, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
34
|
Morrison JA, Klingelhutz AJ, Raab-Traub N. Epstein-Barr virus latent membrane protein 2A activates beta-catenin signaling in epithelial cells. J Virol 2003; 77:12276-84. [PMID: 14581564 PMCID: PMC254275 DOI: 10.1128/jvi.77.22.12276-12284.2003] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) functions to maintain latency in EBV-infected B lymphocytes. Although LMP2A is nonessential for the immortalization of B lymphocytes by EBV, its expression in B lymphocytes prevents viral reactivation by blocking B-cell receptor activation and signaling. LMP2A also provides an antiapoptotic signal in transgenic mice that express LMP2A in B lymphocytes. LMP2A activates phosphatidylinositol 3-kinase (PI3K) and the serine/threonine kinase Akt in lymphocytes and epithelial cells. Here we show that EBV LMP2A activates the PI3K and beta-catenin signaling pathways in telomerase-immortalized human foreskin keratinocytes (HFK). LMP2A activated Akt in a PI3K-dependent manner, and the downstream Akt targets glycogen synthase kinase 3beta (GSK3beta) and the Forkhead transcription factor FKHR were phosphorylated and inactivated in LMP2A-expressing HFK cells. GSK3beta is a negative regulator of the Wnt signaling pathway, and inactivation of GSK3beta by LMP2A signaling led to stabilization of beta-catenin, the central oncoprotein of Wnt signaling. In LMP2A-expressing cells, beta-catenin accumulated in the cytoplasm and translocated into the nucleus via a two-step mechanism. The cytoplasmic accumulation of beta-catenin downstream of LMP2A was independent of PI3K signaling, whereas its nuclear translocation was dependent on PI3K signaling. In the nucleus, beta-catenin activated a reporter responsive to T-cell factor, and this activation was augmented by LMP2A coexpression. The Wnt pathway is inappropriately activated in 90% of colon cancers and is dysregulated in several other cancers, and these data suggest that activation of this pathway by LMP2A may contribute to the generation of EBV-associated cancers.
Collapse
Affiliation(s)
- J A Morrison
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|