1
|
Shakour N, Taheri E, Rajabian F, Tarighi S, Soheili V, Hadizadeh F. Evaluating the Antivirulence Effects of New Thiazolidinedione Compounds Against Pseudomonas aeruginosa PAO1. Microb Drug Resist 2022; 28:1003-1018. [PMID: 36219761 DOI: 10.1089/mdr.2022.0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes several serious health problems and numerous forms of virulence. During the treatment of P. aeruginosa infections, the development of multidrug-resistant isolates creates significant clinical problems. Using antivirulence compounds to disrupt pathogenicity rather than killing the bacterium may be an interesting strategy to overcome this problem, because less harsh conditions will exist for the development of resistance. To reduce pathogenicity and biofilm formation, newly synthesized analogs of imidazolyl (8n) and previously synthesized analogs (8a-8m) with a similar backbone [the 5-(imidazolyl-methyl) thiazolidinediones] were tested against pyoverdine and pyocyanin production, protease activity, and biofilm formation. Compared to the positive control group, the best compounds reduced the production of pyoverdine (8n) by 89.57% and pyocyanin (8i) by 22.68%, and protease activity (8n) by 2.80% for PAO1 strain, at a concentration of 10 μM. Moreover, the biofilm formation assay showed a reduction of 87.94% (8i) for PAO1, as well as 30.53% (8d) and 44.65% (8m) for 1074 and 1707 strains, respectively. The compounds used in this study did not show any toxicity in the human dermal fibroblasts and 4T1 cells (viability higher than 90%). The in silico study of these compounds revealed that their antivirulence activity could be due to their interaction with the PqsR, PqsE, and LasR receptors.
Collapse
Affiliation(s)
- Neda Shakour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Taheri
- Laboratory of Phytopathology, Department of Crop Protection, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Tarighi
- Laboratory of Phytopathology, Department of Crop Protection, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
David SR, Jaouen A, Ihiawakrim D, Geoffroy VA. Biodeterioration of asbestos cement by siderophore-producing Pseudomonas. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123699. [PMID: 32853889 DOI: 10.1016/j.jhazmat.2020.123699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Since the ban on the use of asbestos due to its carcinogenic properties, the removal of asbestos cement, representing the major asbestos-containing waste, has proven to be a challenge in most industrial countries. Asbestos-containing products are mainly disposed of in landfills and have remained untreated. Bioremediation involving bacteria previously reported the ability of Pseudomonas aeruginosa to release iron from flocking asbestos waste through a siderophore-driven mechanism. We examined the involvement of siderophore-producing Pseudomonas in the biodeterioration of asbestos cement. Iron and magnesium solubilization were evaluated by specific siderophore-producing mutants. The absence of one of the two siderophores affected iron extraction, whereas equivalent dissolution as that of the control was observed in the absence of siderophore. Both pyoverdine and pyochelin biosynthesis was repressed in the presence of asbestos cement, suggesting iron bioavailability from the waste. We compared the efficiency of various pyoverdines to scavenge iron from asbestos cement waste that revealed the efficiency of all pyoverdines. Pyoverdines were efficient in iron removal extracted continuously, with no evident extraction limit, in long-term weathering experiments with these pyoverdines. The optimization of pyoverdine-asbestos weathering may allow the development of a bioremediation process to avoid the disposal of such waste in landfills.
Collapse
Affiliation(s)
- Sébastien R David
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413 Illkirch, Strasbourg, France; Agence de l'Environnement et de la Maîtrise de l'Energie, 20 Avenue du Grésillé, BP 90406, 49004 Angers Cedex 01, France
| | - Agathe Jaouen
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413 Illkirch, Strasbourg, France
| | - Dris Ihiawakrim
- Université de Strasbourg, CNRS-UMR7504, IPCMS, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
| | - Valérie A Geoffroy
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413 Illkirch, Strasbourg, France.
| |
Collapse
|
3
|
David SR, Geoffroy VA. A Review of Asbestos Bioweathering by Siderophore-Producing Pseudomonas: A Potential Strategy of Bioremediation. Microorganisms 2020; 8:microorganisms8121870. [PMID: 33256219 PMCID: PMC7761222 DOI: 10.3390/microorganisms8121870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Asbestos, silicate minerals present in soil and used for building constructions for many years, are highly toxic due primarily to the presence of high concentrations of the transition metal iron. Microbial weathering of asbestos occurs through various alteration mechanisms. Siderophores, complex agents specialized in metal chelation, are common mechanisms described in mineral alteration. Solubilized metals from the fiber can serve as micronutrients for telluric microorganisms. The review focuses on the bioweathering of asbestos fibers, found in soil or manufactured by humans with gypsum (asbestos flocking) or cement, by siderophore-producing Pseudomonas. A better understanding of the interactions between asbestos and bacteria will give a perspective of a detoxification process inhibiting asbestos toxicity.
Collapse
Affiliation(s)
| | - Valérie A. Geoffroy
- Department of Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, Illkirch, 67413 Strasbourg, France
- Correspondence:
| |
Collapse
|
4
|
Singh P, Khan A, Kumar R, Kumar R, Singh VK, Srivastava A. Recent developments in siderotyping: procedure and application. World J Microbiol Biotechnol 2020; 36:178. [PMID: 33128090 DOI: 10.1007/s11274-020-02955-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022]
Abstract
Siderophores are metal chelating secondary metabolites secreted by almost all organisms. Beside iron starvation, the ability to produce siderophores depends upon several other factors. Chemical structure of siderophore is very complex with vast structural diversity, thus the principle challenge involves its detection, quantification, purification and characterisation. Metal chelation is its most fascinating attribute. This metal chelation property is now forming the basis of its application as molecular markers, siderotyping tool for taxonomic clarification, biosensors and bioremediation agents. This has led researchers to develop and continuously modify previous techniques in order to provide accurate and reproducible methods of studying siderophores. Knowledge obtained via computational approaches provides a new horizon in the field of siderophore biosynthetic gene clusters and their interaction with various proteins/peptides. This review illustrates various techniques, bioinformatics tools and databases employed in siderophores' studies, the principle of analytical methods and their recent applications.
Collapse
Affiliation(s)
- Pratika Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Azmi Khan
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Rakesh Kumar
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Ravinsh Kumar
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Vijay Kumar Singh
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India.
| |
Collapse
|
5
|
David SR, Ihiawakrim D, Regis R, Geoffroy VA. Efficiency of pyoverdines in iron removal from flocking asbestos waste: An innovative bacterial bioremediation strategy. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122532. [PMID: 32200235 DOI: 10.1016/j.jhazmat.2020.122532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
The use of asbestos-containing products has been banned in many countries since the beginning of the 80's due to its carcinogenic properties. However, asbestos is widely present in private and public buildings, resulting in the need to process a vast amount of asbestos-containing waste. Among the current technologies for the destruction of asbestos fibers, biodegradation by fungi, lichens, and, more recently, bacteria has been described. We previously reported the involvement of the bacterial siderophore pyoverdine in the release of iron from the two asbestos groups, serpentines and amphiboles. Among the large diversity encountered in the pyoverdine family, we examined whether these siderophores can alter flocking asbestos waste as well. All the tested pyoverdines were efficient in chrysotile-gypsum and amosite-gypsum weathering, although some exhibited higher iron dissolution. Iron was solubilized by pyoverdines from Pseudomonas aeruginosa and mandelii in a time-dependent manner from chrysotile-gypsum within 24 h. Renewal of pyoverdine-containing supernatant every 24 or 96 h allowed iron removal from chrysotile-gypsum at each cycle, until a limit was reached after 42 days of total incubation. Moreover, the dissolution was concentration-dependent, as demonstrated for the pyoverdine of P. mandelii. Pyoverdine-asbestos weathering could therefore become an innovative method to reduce anthropogenic waste.
Collapse
Affiliation(s)
- Sébastien R David
- Université De Strasbourg, CNRS, UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413 Illkirch, Strasbourg, France; Agence De l'Environnement Et De La Maîtrise De l'Energie, 20 Avenue Du Grésillé, BP 90406, 49004 Angers Cedex 01, France
| | - Dris Ihiawakrim
- Université De Strasbourg, CNRS, UMR7504, IPCM, 23 Rue Du Loess, BP 43, 67034 Strasbourg, France
| | - Robert Regis
- SOMEZ, Parc Marcel Dassault, 470 Rue Alberto Santos Dumont, 34430 Saint Jean De Vedas, France
| | - Valérie A Geoffroy
- Université De Strasbourg, CNRS, UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413 Illkirch, Strasbourg, France.
| |
Collapse
|
6
|
Kirienko DR, Kang D, Kirienko NV. Novel Pyoverdine Inhibitors Mitigate Pseudomonas aeruginosa Pathogenesis. Front Microbiol 2019; 9:3317. [PMID: 30687293 PMCID: PMC6333909 DOI: 10.3389/fmicb.2018.03317] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a clinically important pathogen that causes a variety of infections, including urinary, respiratory, and other soft-tissue infections, particularly in hospitalized patients with immune defects, cystic fibrosis, or significant burns. Antimicrobial resistance is a substantial problem in P. aeruginosa treatment due to the inherent insensitivity of the pathogen to a wide variety of antimicrobial drugs and its rapid acquisition of additional resistance mechanisms. One strategy to circumvent this problem is the use of anti-virulent compounds to disrupt pathogenesis without directly compromising bacterial growth. One of the principle regulatory mechanisms for P. aeruginosa’s virulence is the iron-scavenging siderophore pyoverdine, as it governs in-host acquisition of iron, promotes expression of multiple virulence factors, and is directly toxic. Some combination of these activities renders pyoverdine indispensable for pathogenesis in mammalian models. Here we report identification of a panel of novel small molecules that disrupt pyoverdine function. These molecules directly act on pyoverdine, rather than affecting its biosynthesis. The compounds reduce the pathogenic effect of pyoverdine and improve the survival of Caenorhabditis elegans when challenged with P. aeruginosa by disrupting only this single virulence factor. Finally, these compounds can synergize with conventional antimicrobials, forming a more effective treatment. These compounds may help to identify, or be modified to become, viable drug leads in their own right. Finally, they also serve as useful tool compounds to probe pyoverdine activity.
Collapse
Affiliation(s)
- Daniel R Kirienko
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Donghoon Kang
- Department of BioSciences, Rice University, Houston, TX, United States
| | | |
Collapse
|
7
|
Becker F, Wienand K, Lechner M, Frey E, Jung H. Interactions mediated by a public good transiently increase cooperativity in growing Pseudomonas putida metapopulations. Sci Rep 2018; 8:4093. [PMID: 29511247 PMCID: PMC5840296 DOI: 10.1038/s41598-018-22306-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/21/2018] [Indexed: 01/13/2023] Open
Abstract
Bacterial communities have rich social lives. A well-established interaction involves the exchange of a public good in Pseudomonas populations, where the iron-scavenging compound pyoverdine, synthesized by some cells, is shared with the rest. Pyoverdine thus mediates interactions between producers and non-producers and can constitute a public good. This interaction is often used to test game theoretical predictions on the "social dilemma" of producers. Such an approach, however, underestimates the impact of specific properties of the public good, for example consequences of its accumulation in the environment. Here, we experimentally quantify costs and benefits of pyoverdine production in a specific environment, and build a model of population dynamics that explicitly accounts for the changing significance of accumulating pyoverdine as chemical mediator of social interactions. The model predicts that, in an ensemble of growing populations (metapopulation) with different initial producer fractions (and consequently pyoverdine contents), the global producer fraction initially increases. Because the benefit of pyoverdine declines at saturating concentrations, the increase need only be transient. Confirmed by experiments on metapopulations, our results show how a changing benefit of a public good can shape social interactions in a bacterial population.
Collapse
Affiliation(s)
- Felix Becker
- Microbiology, Department Biology 1, Ludwig-Maximilians-Universität Munich, Grosshaderner Strasse 2-4, D-82152 Martinsried, Germany
| | - Karl Wienand
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität, Theresienstrasse 37, D-80333, Munich, Germany
| | - Matthias Lechner
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität, Theresienstrasse 37, D-80333, Munich, Germany
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität, Theresienstrasse 37, D-80333, Munich, Germany.
| | - Heinrich Jung
- Microbiology, Department Biology 1, Ludwig-Maximilians-Universität Munich, Grosshaderner Strasse 2-4, D-82152 Martinsried, Germany.
| |
Collapse
|
8
|
A High-Content, Phenotypic Screen Identifies Fluorouridine as an Inhibitor of Pyoverdine Biosynthesis and Pseudomonas aeruginosa Virulence. mSphere 2016; 1:mSphere00217-16. [PMID: 27579370 PMCID: PMC4999921 DOI: 10.1128/msphere.00217-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/11/2022] Open
Abstract
Despite intense research effort from scientists and the advent of the molecular age of biomedical research, many of the mechanisms that underlie pathogenesis are still understood poorly, if at all. The opportunistic human pathogen Pseudomonas aeruginosa causes a variety of soft tissue infections and is responsible for over 50,000 hospital-acquired infections per year. In addition, P. aeruginosa exhibits a striking degree of innate and acquired antimicrobial resistance, complicating treatment. It is increasingly important to understand P. aeruginosa virulence. In an effort to gain this information in an unbiased fashion, we used a high-throughput phenotypic screen to identify small molecules that disrupted bacterial pathogenesis and increased host survival using the model nematode Caenorhabditis elegans. This method led to the unexpected discovery that addition of a modified nucleotide, 5-fluorouridine, disrupted bacterial RNA metabolism and inhibited synthesis of pyoverdine, a critical toxin. Our results demonstrate that this compound specifically functions as an antivirulent. Pseudomonas aeruginosa is an opportunistic pathogen that causes severe health problems. Despite intensive investigation, many aspects of microbial virulence remain poorly understood. We used a high-throughput, high-content, whole-organism, phenotypic screen to identify small molecules that inhibit P. aeruginosa virulence in Caenorhabditis elegans. Approximately half of the hits were known antimicrobials. A large number of hits were nonantimicrobial bioactive compounds, including the cancer chemotherapeutic 5-fluorouracil. We determined that 5-fluorouracil both transiently inhibits bacterial growth and reduces pyoverdine biosynthesis. Pyoverdine is a siderophore that regulates the expression of several virulence determinants and is critical for pathogenesis in mammals. We show that 5-fluorouridine, a downstream metabolite of 5-fluorouracil, is responsible for inhibiting pyoverdine biosynthesis. We also show that 5-fluorouridine, in contrast to 5-fluorouracil, is a genuine antivirulence compound, with no bacteriostatic or bactericidal activity. To our knowledge, this is the first report utilizing a whole-organism screen to identify novel compounds with antivirulent properties effective against P. aeruginosa. IMPORTANCE Despite intense research effort from scientists and the advent of the molecular age of biomedical research, many of the mechanisms that underlie pathogenesis are still understood poorly, if at all. The opportunistic human pathogen Pseudomonas aeruginosa causes a variety of soft tissue infections and is responsible for over 50,000 hospital-acquired infections per year. In addition, P. aeruginosa exhibits a striking degree of innate and acquired antimicrobial resistance, complicating treatment. It is increasingly important to understand P. aeruginosa virulence. In an effort to gain this information in an unbiased fashion, we used a high-throughput phenotypic screen to identify small molecules that disrupted bacterial pathogenesis and increased host survival using the model nematode Caenorhabditis elegans. This method led to the unexpected discovery that addition of a modified nucleotide, 5-fluorouridine, disrupted bacterial RNA metabolism and inhibited synthesis of pyoverdine, a critical toxin. Our results demonstrate that this compound specifically functions as an antivirulent.
Collapse
|
9
|
Wei H, Aristilde L. Structural characterization of multiple pyoverdines secreted by two Pseudomonas strains using liquid chromatography-high resolution tandem mass spectrometry with varying dissociation energies. Anal Bioanal Chem 2015; 407:4629-38. [DOI: 10.1007/s00216-015-8659-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/01/2023]
|
10
|
Unni KN, Priji P, Geoffroy VA, Doble M, Benjamin S. <i>Pseudomonas aeruginosa</i> BUP2—A Novel Strain Isolated from Malabari Goat Produces Type 2 Pyoverdine. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abb.2014.511102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Founoune H, Duponnois R, Meyer JM, Thioulouse J, Masse D, Chotte JL, Neyra M. Interactions between ectomycorrhizal symbiosis and fluorescent pseudomonads on Acacia holosericea: isolation of mycorrhiza helper bacteria (MHB) from a Soudano-Sahelian soil. FEMS Microbiol Ecol 2012; 41:37-46. [PMID: 19709237 DOI: 10.1111/j.1574-6941.2002.tb00964.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract Acacia holosericea seedlings were planted in 1-l pots filled with a soil collected from an Australian Acacia plantation in Southern Senegal. After 6 months of culture, mycorrhizosphere soil, roots, galls induced by root-knot nematodes and Rhizobium nodules were sampled from each pot. The diversity of this bacterial group was characterized by siderotyping (pyoverdine IsoElectric Focusing (IEF) analysis) and by restriction fragment length polymorphism (RFLP). The effect of these isolates on the establishment of the ectomycorrhizal symbiosis between an Australian Acacia (A. holosericea) and Pisolithus sp. strain IR100 was studied. In the mycorrhizosphere soil, the population of fluorescent pseudomonads was represented by strains of two different siderovars (groups of bacterial strains presenting an identical pyoverdine-IEF pattern): siderovar 1 (74%) and siderovar 2 (26%). The siderotyping of the isolates around galls of the root-knot nematodes revealed three siderovars (40% from siderovar 1, 40% from siderovar 2 and about 15% from siderovar 3). RFLP of 16S rDNA divided the isolates into four different groups with MspI, two with HhaI and two with HaeIII endonucleases. The establishment of the ectomycorrhizal symbiosis with A. holosericea was promoted by 14 bacterial strains isolated from the mycorrhizosphere soil, three isolates from the roots and four from the galls. Shoot biomass of A. holosericea seedlings was stimulated by eight bacterial isolates from soil, six isolates from galls and seven from roots. These mycorrhiza helper bacteria could have a great ecological importance in tropical areas through the reforestation programs.
Collapse
Affiliation(s)
- Hassna Founoune
- IRD, UR 'IBIS' (Interactions BIologiques dans les Sols des systèmes anthropisés tropicaux), BP 1386 Dakar, Senegal
| | | | | | | | | | | | | |
Collapse
|
12
|
Ghirardi S, Dessaint F, Mazurier S, Corberand T, Raaijmakers JM, Meyer JM, Dessaux Y, Lemanceau P. Identification of traits shared by rhizosphere-competent strains of fluorescent pseudomonads. MICROBIAL ECOLOGY 2012; 64:725-737. [PMID: 22576821 DOI: 10.1007/s00248-012-0065-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 04/21/2012] [Indexed: 05/31/2023]
Abstract
Rhizosphere competence of fluorescent pseudomonads is a prerequisite for the expression of their beneficial effects on plant growth and health. To date, knowledge on bacterial traits involved in rhizosphere competence is fragmented and derived mostly from studies with model strains. Here, a population approach was taken by investigating a representative collection of 23 Pseudomonas species and strains from different origins for their ability to colonize the rhizosphere of tomato plants grown in natural soil. Rhizosphere competence of these strains was related to phenotypic traits including: (1) their carbon and energetic metabolism represented by the ability to use a wide range of organic compounds, as electron donors, and iron and nitrogen oxides, as electron acceptors, and (2) their ability to produce antibiotic compounds and N-acylhomoserine lactones (N-AHSL). All these data including origin of the strains (soil/rhizosphere), taxonomic identification, phenotypic cluster based on catabolic profiles, nitrogen dissimilating ability, siderovars, susceptibility to iron starvation, antibiotic and N-AHSL production, and rhizosphere competence were submitted to multiple correspondence analyses. Colonization assays revealed a significant diversity in rhizosphere competence with survival rates ranging from approximately 0.1 % to 61 %. Multiple correspondence analyses indicated that rhizosphere competence was associated with siderophore-mediated iron acquisition, substrate utilization, and denitrification. However, the catabolic profile of one rhizosphere-competent strain differed from the others and its competence was associated with its ability to produce antibiotics phenazines and N-AHSL. Taken together, these data suggest that competitive strains have developed two types of strategies to survive in the rhizosphere.
Collapse
Affiliation(s)
- Sandrine Ghirardi
- INRA, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Djavaheri M, Mercado-Blanco J, Versluis C, Meyer JM, Loon LC, Bakker PAHM. Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. tomato in Arabidopsis. Microbiologyopen 2012; 1:311-25. [PMID: 23170230 PMCID: PMC3496975 DOI: 10.1002/mbo3.32] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 11/10/2022] Open
Abstract
The plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS374r produces several iron-regulated metabolites, including the fluorescent siderophore pseudobactin (Psb374), salicylic acid (SA), and pseudomonine (Psm), a siderophore that contains a SA moiety. After purification of Psb374 from culture supernatant of WCS374r, its structure was determined following isoelectrofocusing and tandem mass spectrometry, and found to be identical to the fluorescent siderophore produced by P. fluorescens ATCC 13525. To study the role of SA and Psm production in colonization of Arabidopsis thaliana roots and in induced systemic resistance (ISR) against Pseudomonas syringae pv. tomato (Pst) by strain WCS374r, mutants disrupted in the production of these metabolites were obtained by homologous recombination. These mutants were further subjected to transposon Tn5 mutagenesis to generate mutants also deficient in Psb374 production. The mutants behaved similar to the wild type in both their Arabidopsis rhizosphere-colonizing capacity and their ability to elicit ISR against Pst. We conclude that Psb374, SA, and Psm production by P. fluorescens WCS374r are not required for eliciting ISR in Arabidopsis.
Collapse
Affiliation(s)
- Mohammad Djavaheri
- Plant-Microbe Interactions, Department of Biology, Utrecht University Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Saha R, Saha N, Donofrio RS, Bestervelt LL. Microbial siderophores: a mini review. J Basic Microbiol 2012; 53:303-17. [PMID: 22733623 DOI: 10.1002/jobm.201100552] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/20/2012] [Indexed: 01/22/2023]
Abstract
Iron is one of the major limiting factors and essential nutrients of microbial life. Since in nature it is not readily available in the preferred form, microorganisms produce small high affinity chelating molecules called siderophores for its acquisition. Microorganisms produce a wide variety of siderophores controlled at the molecular level by different genes to accumulate, mobilize and transport iron for metabolism. Siderophores also play a critical role in the expression of virulence and development of biofilms by different microbes. Apart from maintaining microbial life, siderophores can be harnessed for the sustainability of human, animals and plants. With the advent of modern molecular tools, a major breakthrough is taking place in the understanding of the multifaceted role of siderophores in nature. This mini review is intended to provide a general overview on siderophore along with its role and applications.
Collapse
Affiliation(s)
- Ratul Saha
- Department of Microbiology and Molecular Biology, NSF International, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
15
|
Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer JM, Défago G, Sutra L, Moënne-Loccoz Y. Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 2011; 34:180-8. [PMID: 21392918 DOI: 10.1016/j.syapm.2010.10.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 10/18/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
Fluorescent Pseudomonas strains producing the antimicrobial secondary metabolite 2,4-diacetylphloroglucinol (Phl) play a prominent role in the biocontrol of plant diseases. A subset of Phl-producing fluorescent Pseudomonas strains, which can additionally synthesize the antimicrobial compound pyoluteorin (Plt), appears to cluster separately from other fluorescent Pseudomonas spp. based on 16S rRNA gene analysis and shares at most 98.4% 16S rRNA gene sequence identity with any other Pseudomonas species. In this study, a polyphasic approach based on molecular and phenotypic methods was used to clarify the taxonomy of representative Phl(+) Plt(+) strains isolated from tobacco, cotton or wheat on different continents. Phl(+) Plt(+) strains clustered separately from their nearest phylogenetic neighbors (i.e. species from the 'P. syringae', 'P. fluorescens' and 'P. chlororaphis' species complexes) based on rpoB, rpoD or gyrB phylogenies. DNA-DNA hybridization experiments clarified that Phl(+) Plt(+) strains formed a tight genomospecies that was distinct from P. syringae, P. fluorescens, or P. chlororaphis type strains. Within Phl(+) strains, the Phl(+) Plt(+) strains were differentiated from other biocontrol fluorescent Pseudomonas strains that produced Phl but not Plt, based on phenotypic and molecular data. Discriminative phenotypic characters were also identified by numerical taxonomic analysis and siderotyping. Altogether, this polyphasic approach supported the conclusion that Phl(+) Plt(+) fluorescent Pseudomonas strains belonged to a novel species for which the name Pseudomonas protegens is proposed, with CHA0(T) (=CFBP 6595(T), =DSM 19095(T)) as the type strain.
Collapse
Affiliation(s)
- Alban Ramette
- Plant Pathology Group, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH), CH-8092 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Brown AG, Luke RKJ. Siderophore production and utilization by milk spoilage Pseudomonas species. J Dairy Sci 2010; 93:1355-63. [PMID: 20338412 DOI: 10.3168/jds.2009-2395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 12/16/2009] [Indexed: 11/19/2022]
Abstract
Many bacteria respond to potentially growth-limiting availability of iron by producing low-molecular-weight iron chelators (siderophores). The aim of this work was to examine the siderophores synthesized and utilized by Pseudomonas spp. implicated in milk spoilage. Twenty isolates of Pseudomonas spp. previously shown to have significant milk spoilage potential were tested for the ability to produce siderophores. Of these, 14 produced pyoverdin and 2 of these also produced pyochelin; 1 produced only pyochelin; 1 produced only salicylate; 2 produced non-pyoverdin, hydroxamate-containing siderophore; and 2 produced chrome azurol sulfonate reactive material that was neither pyoverdin nor pyochelin. There was considerable diversity among the pyoverdins produced. All isolates were shown to utilize iron complexed with exogenous pyoverdin, but usage of particular exogenous pyoverdins differed among isolates. Interference with the iron-uptake systems of the Pseudomonas spp. may be a means by which food spoilage can be slowed, and the pyoverdin system would appear to be a potential target. However, given the diversity of pyoverdins produced and utilized, and the presence of other siderophores, successful interference with bacterial iron acquisition in this context may be challenging.
Collapse
Affiliation(s)
- A G Brown
- Department of Agricultural Sciences, School of Life Sciences, La Trobe University 3086, Australia.
| | | |
Collapse
|
17
|
|
18
|
Yang L, Nilsson M, Gjermansen M, Givskov M, Tolker-Nielsen T. Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation. Mol Microbiol 2009; 74:1380-92. [DOI: 10.1111/j.1365-2958.2009.06934.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Behrendt U, Schumann P, Meyer JM, Ulrich A. Pseudomonas cedrina subsp. fulgida subsp. nov., a fluorescent bacterium isolated from the phyllosphere of grasses; emended description of Pseudomonas cedrina and description of Pseudomonas cedrina subsp. cedrina subsp. nov. Int J Syst Evol Microbiol 2009; 59:1331-5. [DOI: 10.1099/ijs.0.005025-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Marshall B, Stintzi A, Gilmour C, Meyer JM, Poole K. Citrate-mediated iron uptake in Pseudomonas aeruginosa: involvement of the citrate-inducible FecA receptor and the FeoB ferrous iron transporter. MICROBIOLOGY-SGM 2009; 155:305-315. [PMID: 19118371 DOI: 10.1099/mic.0.023531-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In an attempt to identify components of a ferric citrate uptake system in Pseudomonas aeruginosa, a mutant library of a siderophore-deficient strain (IA614) was constructed and screened for defects in citrate-promoted growth in an Fe-restricted medium. A mutant disrupted in gene PA3901, encoding a homologue of the outer-membrane ferric citrate receptor, FecA, of Escherichia coli (FecA(E.c.)), was recovered and shown to be deficient in citrate-promoted growth and citrate-mediated Fe uptake. A mutant disrupted in gene PA4825, encoding a homologue of the MgtA/MgtB Mg2+ transporters in Salmonella enterica, was similarly deficient in citrate-promoted growth, though this was due to a citrate sensitivity of the mutant apparently resulting from citrate-promoted acquisition of Fe2+ and resultant oxidative stress. Consistent with citrate delivering Fe to cells as Fe2+, a P. aeruginosa mutant lacking the FeoB Fe2+ transporter homologue, PA4358, was compromised for citrate-promoted growth in Fe-restricted medium and showed markedly reduced citrate-mediated Fe uptake. Subsequent elimination of two Fe3+ transporter homologues, PA5216 and PA4687, in the feoB mutant failed to further compromise citrate-promoted growth or Fe uptake, though the additional loss of pcoA, encoding a periplasmic ferroxidase implicated in Fe2+ acquisition, completely abrogated citrate-mediated Fe uptake. Fe acquisition mediated by other siderophores (e.g. pyoverdine) was, however, unaffected in the quadruple knockout strain. These data indicate that Fe delivered to P. aeruginosa by citrate is released as Fe2+, probably in the periplasm, prior to its transport into cells via Fe transport components.
Collapse
Affiliation(s)
- Bryan Marshall
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Christie Gilmour
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jean-Marie Meyer
- Laboratoire de Microbiologie et Génétique, Université Louis Pasteur/CNRS FRE 2326, 28 rue Goethe, 67083 Strasbourg, France
| | - Keith Poole
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
21
|
Pakchung A, Soe C, Codd R. Studies of Iron-Uptake Mechanisms in Two Bacterial Species of theShewanellaGenus Adapted to Middle-Range (Shewanella putrefaciens) or Antarctic (Shewanella gelidimarina) Temperatures. Chem Biodivers 2008; 5:2113-2123. [DOI: 10.1002/cbdv.200890192] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
|
23
|
Gupta V, Saharan K, Kumar L, Gupta R, Sahai V, Mittal A. Spectrophotometric ferric ion biosensor fromPseudomonas fluorescens culture. Biotechnol Bioeng 2008; 100:284-96. [DOI: 10.1002/bit.21754] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Meyer JM, Gruffaz C, Raharinosy V, Bezverbnaya I, Schäfer M, Budzikiewicz H. Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 2007; 21:259-71. [PMID: 17846862 DOI: 10.1007/s10534-007-9115-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
The numerous pyoverdines so far characterized as siderophores of fluorescent Pseudomonas could be usually differentiated one from each others by the two physico-chemical and physiological methods of siderotyping, i.e., siderophore-isoelectrofocusing and siderophore-mediated iron uptake. As shown in the present paper, the structural diversity of the peptide chain characterizing these molecules results in a very large panel of molecular masses representing 64 different values ranging from 889 to 1,764 Da for the 68 compounds included in the study, with only a few structurally different compounds presenting an identical molecular mass. Thus, the molecular mass determination of pyoverdines through mass spectrometry could be used as a powerful siderotyping method.
Collapse
Affiliation(s)
- Jean-Marie Meyer
- Département Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS/Université Louis-Pasteur, 28 rue Goethe, 67000 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
25
|
Behrendt U, Ulrich A, Schumann P, Meyer JM, Spröer C. Pseudomonas lurida sp. nov., a fluorescent species associated with the phyllosphere of grasses. Int J Syst Evol Microbiol 2007; 57:979-985. [PMID: 17473245 DOI: 10.1099/ijs.0.64793-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of a group of fluorescent pseudomonad strains isolated from the phyllosphere of grasses was investigated through a polyphasic approach. Riboprinting analysis revealed highly similar patterns for the investigated strains which supported, together with the agreement of many phenotypic characteristics, their affiliation to the same species. A comparison of 16S rRNA gene sequences of strain P 513/18(T), a representative strain from the grass isolates, revealed that it was affiliated to the cluster of the 'Pseudomonas fluorescens group', with Pseudomonas costantinii as the closest phylogenetic neighbour. However, DNA-DNA hybridization showed a clear demarcation at the species level between strain P 513/18(T) and P. costantinii. Furthermore, a comparison of riboprint patterns with Pseudomonas species clustering next to the novel grass isolates on the basis of 16S rRNA gene sequences supported their separate species status at the phylogenetic level. Based on phenotypic features, the novel isolates could also be differentiated from the other fluorescent Pseudomonas species that share positive arginine dihydrolase and oxidase reactions. As a consequence of these phenotypic and phylogenetic analyses, the isolates from the grass pyllosphere represent a novel species for which the name Pseudomonas lurida sp. nov. is proposed. The type strain is P 513/18(T) (=DSM 15835(T)=LMG 21995(T)).
Collapse
MESH Headings
- Amino Acids/metabolism
- Bacterial Typing Techniques
- Cluster Analysis
- DNA Fingerprinting
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA/genetics
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Phylogeny
- Poaceae/microbiology
- Pseudomonas/classification
- Pseudomonas/genetics
- Pseudomonas/isolation & purification
- Pseudomonas/metabolism
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Ribotyping
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Undine Behrendt
- Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Matter Dynamics, Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Andreas Ulrich
- Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Matter Dynamics, Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Peter Schumann
- DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| | - Jean-Marie Meyer
- Département Microorganismes, Génomes, Environnement, Université Louis-Pasteur-CNRS, UMR 7156, F-67000 Strasbourg, France
| | - Cathrin Spröer
- DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| |
Collapse
|
26
|
Robin A, Mazurier S, Mougel C, Vansuyt G, Corberand T, Meyer JM, Lemanceau P. Diversity of root-associated fluorescent pseudomonads as affected by ferritin overexpression in tobacco. Environ Microbiol 2007; 9:1724-37. [PMID: 17564606 DOI: 10.1111/j.1462-2920.2007.01290.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transgenic tobacco overexpressing ferritin (P6) was recently shown to accumulate more iron than the wild type (WT), leading to a reduced availability of iron in the rhizosphere and shifts in the pseudomonad community. The impact of the transgenic line on the community of fluorescent pseudomonads was assessed. The diversity of 635 isolates from rhizosphere soils, rhizoplane + root tissues, and root tissues of WT and P6, and that of 98 isolates from uncultivated soil was characterized. Their ability to grow under iron stress conditions was assessed by identifying their minimal inhibitory concentrations of 8-hydroxyquinoline for each isolate, pyoverdine diversity by isoelectrofocusing and genotypic diversity by random amplified polymorphism DNA. The antagonistic activity of representative isolates and of some purified pyoverdines against a plant pathogen (Pythium aphanidermatum Op4) was tested in vitro. In overall, isolates taken from P6 tobacco showed a greater ability to grow in iron stress conditions than WT isolates. The antagonism by some of the representative isolates was only expressed under iron stress conditions promoting siderophore synthesis and their pyoverdines appeared to have a specific structure as assessed by mass spectrometry. For other isolates, antagonism was still expressed in the presence of iron, suggesting the involvement of metabolites other than siderophores. Altogether, these data indicate that the transgenic tobacco that over-accumulates iron selected fluorescent pseudomonads, less susceptible to iron depletion and more antagonistic to the tested plant pathogen than those selected by the tobacco WT.
Collapse
Affiliation(s)
- Agnès Robin
- INRA, Université de Bourgogne, UMR1229 Microbiologie du Sol et de l'Environnement, CMSE, 17 rue Sully, BV 86510, F-21034 Dijon cedex, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Borsodi AK, Rusznyák A, Molnár P, Vladár P, Reskóné MN, Tóth EM, Sipos R, Gedeon G, Márialigeti K. Metabolic activity and phylogenetic diversity of reed (Phragmites australis) periphyton bacterial communities in a hungarian shallow soda lake. MICROBIAL ECOLOGY 2007; 53:612-20. [PMID: 17406774 DOI: 10.1007/s00248-006-9133-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 06/16/2006] [Accepted: 06/22/2006] [Indexed: 05/14/2023]
Abstract
In the present study, the species composition and potential metabolic activities of bacterial communities of reed Phragmites australis (Cav.) (Trin. ex Steudel) periphyton from Lake Velencei were studied by cultivation-based and metabolic fingerprinting methods. Serially diluted spring biofilm samples were used to test the community-level physiological profiling (CLPP) using BIOLOG microplates, and for plating onto different media. On the basis of their morphological, biochemical, and physiological test results, 173 strains were clustered by numerical analysis. Representatives of amplified ribosomal DNA restriction analysis (ARDRA) groups were identified by their 16S rDNA sequence comparison. Based on the results of the CLPP investigations, regional differences were detected among the utilized substrate numbers and types, parallel with the increase in incubation time. The phenotypic test results of the strains showed considerable variability with respect to the sampling sites and the media used for cultivation. The most frequently isolated strains were identified as members of genera Agrobacterium, Pseudomonas (P. anguilliseptica, P. marginalis, P. alcaligenes, P. fragi) with aerobic or facultative anaerobic respiratory metabolism, and the species Aeromonas sobria and A. veronii with strong facultative fermentative metabolism. Other strains were identified as Gram-positive Arthrobacter, Bacillus, and Kocuria species. The rarely isolated strains were members of beta-Proteobacteria (Acidovorax, Delftia, Hydrogenophaga, and Rhodoferax), gamma-Proteobacteria (Psychrobacter and Shewanella), low G + C Gram-positives (Brevibacillus, Paenibacillus, and Exiguobacterium) and high G + C Gram-positives (Aureobacterium and Microbacterium).
Collapse
Affiliation(s)
- Andrea K Borsodi
- Department of Microbiology, Eotvos Loránd University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Budzikiewicz H. Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 2004; 87:81-237. [PMID: 15079896 DOI: 10.1007/978-3-7091-0581-8_2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- H Budzikiewicz
- Institut für Organische Chemie, Universität zu Köln, Germany
| |
Collapse
|
29
|
Inoue H, Takimura O, Kawaguchi K, Nitoda T, Fuse H, Murakami K, Yamaoka Y. Tin-carbon cleavage of organotin compounds by pyoverdine from Pseudomonas chlororaphis. Appl Environ Microbiol 2003; 69:878-83. [PMID: 12571007 PMCID: PMC143631 DOI: 10.1128/aem.69.2.878-883.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The triphenyltin (TPT)-degrading bacterium Pseudomonas chlororaphis CNR15 produces extracellular yellow substances to degrade TPT. Three substances (F-I, F-IIa, and F-IIb) were purified, and their structural and catalytic properties were characterized. The primary structure of F-I was established using two-dimensional nuclear magnetic resonance techniques; the structure was identical to that of suc-pyoverdine from P. chlororaphis ATCC 9446, which is a peptide siderophore produced by fluorescent pseudomonads. Spectral and isoelectric-focusing analyses revealed that F-IIa and F-IIb were also pyoverdines, differing only in the acyl substituent attached to the chromophore part of F-I. Furthermore, we found that the fluorescent pseudomonads producing pyoverdines structurally different from F-I showed TPT degradation activity in the solid extracts of their culture supernatants. F-I and F-IIa degraded TPT to monophenyltin via diphenyltin (DPT) and degraded DPT and dibutyltin to monophenyltin and monobutyltin, respectively. The total amount of organotin metabolites produced by TPT degradation was nearly equivalent to that of the F-I added to the reaction mixture, whereas DPT degradation was not influenced by monophenyltin production. The TPT degradation activity of F-I was remarkably inhibited by the addition of metal ions chelated with pyoverdine. On the other hand, the activity of DPT was increased 13- and 8-fold by the addition of Cu(2+) and Sn(4+), respectively. These results suggest that metal-chelating ligands common to pyoverdines may play important roles in the Sn-C cleavage of organotin compounds in both the metal-free and metal-complexed states.
Collapse
Affiliation(s)
- Hiroyuki Inoue
- Institute for Marine Resources and Environment, National Institute of Advanced Industrial Science and Technology, Hiroshima 737-0197, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Meyer JM, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni NJ. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol 2002; 68:2745-53. [PMID: 12039729 PMCID: PMC123936 DOI: 10.1128/aem.68.6.2745-2753.2002] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 301 strains of fluorescent pseudomonads previously characterized by conventional phenotypic and/or genomic taxonomic methods were analyzed through siderotyping, i.e., by the isoelectrophoretic characterization of their main siderophores and pyoverdines and determination of the pyoverdine-mediated iron uptake specificity of the strains. As a general rule, strains within a well-circumscribed taxonomic group, namely the species Pseudomonas brassicacearum, Pseudomonas fuscovaginae, Pseudomonas jessenii, Pseudomonas mandelii, Pseudomonas monteilii, "Pseudomonas mosselii," "Pseudomonas palleronii," Pseudomonas rhodesiae, "Pseudomonas salomonii," Pseudomonas syringae, Pseudomonas thivervalensis, Pseudomonas tolaasii, and Pseudomonas veronii and the genomospecies FP1, FP2, and FP3 produced an identical pyoverdine which, in addition, was characteristic of the group, since it was structurally different from the pyoverdines produced by the other groups. In contrast, 28 strains belonging to the notoriously heterogeneous Pseudomonas fluorescens species were characterized by great heterogeneity at the pyoverdine level. The study of 23 partially characterized phenotypic clusters demonstrated that siderotyping is very useful in suggesting correlations between clusters and well-defined species and in detecting misclassified individual strains, as verified by DNA-DNA hybridization. The usefulness of siderotyping as a determinative tool was extended to the nonfluorescent species Pseudomonas corrugata, Pseudomonas frederiksbergensis, Pseudomonas graminis, and Pseudomonas plecoglossicida, which were seen to have an identical species-specific siderophore system and thus were easily differentiated from one another. Thus, the fast, accurate, and easy-to-perform siderotyping method compares favorably with the usual phenotypic and genomic methods presently necessary for accurate identification of pseudomonads at the species level.
Collapse
Affiliation(s)
- Jean-Marie Meyer
- Laboratoire de Microbiologie et de Génétique, CNRS/Université Louis-Pasteur FRE 2326, 67000 Strasbourg, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Meyer JM, Geoffroy VA, Baysse C, Cornelis P, Barelmann I, Taraz K, Budzikiewicz H. Siderophore-mediated iron uptake in fluorescent Pseudomonas: characterization of the pyoverdine-receptor binding site of three cross-reacting pyoverdines. Arch Biochem Biophys 2002; 397:179-83. [PMID: 11795869 DOI: 10.1006/abbi.2001.2667] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two Pseudomonas fluorescens and one Pseudomonas aeruginosa strains, although producing structurally different pyoverdines, demonstrated highly efficient cross-reactions when tested for pyoverdine-mediated iron uptake. A ferripyoverdine receptor-deficient mutant of the P. aeruginosa strain was unable to use any of the three pyoverdines. Moreover, the three strains presented each a specific outer membrane siderophore-receptor pattern. Thus, the capacity of using heterologous pyoverdines was related not to the presence of supplementary specific ferripyoverdine receptors but to the existence within the respective pyoverdine-peptide chains of a common dipeptide motif which should act as the receptor-binding site for the three pyoverdines. Other pyoverdines sharing the same motif but at another position within the peptide chain were not efficient in iron transport, demonstrating the importance of the spatial position of the binding site.
Collapse
Affiliation(s)
- Jean-Marie Meyer
- Laboratoire de Microbiologie et Génétique, UPRES-A 7010 du CNRS, ULP, Strasbourg 67083, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Sultana R, Siddiqui BS, Taraz K, Budzikiewicz H, Meyer JM. An isopyoverdin from Pseudomonas putida CFML 90-33. Tetrahedron 2001. [DOI: 10.1016/s0040-4020(00)01079-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Munsch P, Geoffroy VA, Alatossava T, Meyer JM. Application of siderotyping for characterization of Pseudomonas tolaasii and "Pseudomonas reactans" isolates associated with brown blotch disease of cultivated mushrooms. Appl Environ Microbiol 2000; 66:4834-41. [PMID: 11055932 PMCID: PMC92388 DOI: 10.1128/aem.66.11.4834-4841.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyoverdine isoelectric focusing analysis and pyoverdine-mediated iron uptake were used as siderotyping methods to analyze a collection of 57 northern and central European isolates of P. tolaasii and "P. reactans." The bacteria, isolated from cultivated Agaricus bisporus or Pleurotus ostreatus mushroom sporophores presenting brown blotch disease symptoms, were identified according to the white line test (W. C. Wong and T. F. Preece, J. Appl. Bacteriol. 47:401-407, 1979) and their pathogenicity towards A. bisporus and were grouped into siderovars according to the type of pyoverdine they produced. Seventeen P. tolaasii isolates were recognized, which divided into two siderovars, with the first one containing reference strains and isolates of various geographical origins while the second one contained Finnish isolates exclusively. The 40 "P. reactans" isolates divided into eight siderovars. Pyoverdine isoelectric focusing profiles and cross-uptake studies demonstrated an identity for some "P. reactans" isolates, with reference strains belonging to the P. fluorescens biovars II, III, or V. Thus, the easy and rapid methods of siderotyping proved to be reliable by supporting and strengthening previous taxonomical data. Moreover, two potentially novel pyoverdines characterizing one P. tolaasii siderovar and one "P. reactans" siderovar were found.
Collapse
Affiliation(s)
- P Munsch
- Biotechnology Laboratory, REDEC of Kajaani, University of Oulu, 88600 Sotkamo, Finland
| | | | | | | |
Collapse
|