1
|
Zheng M, Liu Y, Zhang G, Yang Z, Xu W, Chen Q. The Antioxidant Properties, Metabolism, Application and Mechanism of Ferulic Acid in Medicine, Food, Cosmetics, Livestock and Poultry. Antioxidants (Basel) 2024; 13:853. [PMID: 39061921 PMCID: PMC11273498 DOI: 10.3390/antiox13070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Ferulic acid is a ubiquitous ingredient in cereals, vegetables, fruits and Chinese herbal medicines. Due to the ferulic phenolic nucleus coupled to an extended side chain, it readily forms a resonant-stable phenoxy radical, which explains its potent antioxidant potential. In addition, it also plays an important role in anti-cancer, pro-angiogenesis, anti-thrombosis, neuroprotection, food preservation, anti-aging, and improving the antioxidant performance of livestock and poultry. This review provides a comprehensive summary of the structure, mechanism of antioxidation, application status, molecular mechanism of pharmacological activity, existing problems, and application prospects of ferulic acid and its derivatives. The aim is to establish a theoretical foundation for the utilization of ferulic acid in medicine, food, cosmetics, livestock, and poultry.
Collapse
Affiliation(s)
| | | | | | | | | | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Identification of a Phylogenetically Divergent Vanillate O-Demethylase from Rhodococcus ruber R1 Supporting Growth on Meta-Methoxylated Aromatic Acids. Microorganisms 2022; 11:microorganisms11010078. [PMID: 36677370 PMCID: PMC9867520 DOI: 10.3390/microorganisms11010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Rieske-type two-component vanillate O-demethylases (VanODs) catalyze conversion of the lignin-derived monomer vanillate into protocatechuate in several bacterial species. Currently, VanODs have received attention because of the demand of effective lignin valorization technologies, since these enzymes own the potential to catalyze methoxy group demethylation of distinct lignin monomers. In this work, we identified a phylogenetically divergent VanOD from Rhodococcus ruber R1, only distantly related to previously described homologues and whose presence, along with a 3-hydroxybenzoate/gentisate pathway, correlated with the ability to grow on other meta-methoxylated aromatics, such as 3-methoxybenzoate and 5-methoxysalicylate. The complementation of catabolic abilities by heterologous expression in a host strain unable to grow on vanillate, and subsequent resting cell assays, suggest that the vanAB genes of R1 strain encode a proficient VanOD acting on different vanillate-like substrates; and also revealed that a methoxy group in the meta position and a carboxylic acid moiety in the aromatic ring are key for substrate recognition. Phylogenetic analysis of the oxygenase subunit of bacterial VanODs revealed three divergent groups constituted by homologues found in Proteobacteria (Type I), Actinobacteria (Type II), or Proteobacteria/Actinobacteria (Type III) in which the R1 VanOD is placed. These results suggest that VanOD from R1 strain, and its type III homologues, expand the range of methoxylated aromatics used as substrates by bacteria.
Collapse
|
3
|
Li F, Zhao Y, Xue L, Ma F, Dai SY, Xie S. Microbial lignin valorization through depolymerization to aromatics conversion. Trends Biotechnol 2022; 40:1469-1487. [PMID: 36307230 DOI: 10.1016/j.tibtech.2022.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Lignin is the most abundant source of renewable aromatic biopolymers and its valorization presents significant value for biorefinery sustainability, which promotes the utilization of renewable resources. However, it is challenging to fully convert the structurally complex, heterogeneous, and recalcitrant lignin into high-value products. The in-depth research on the lignin degradation mechanism, microbial metabolic pathways, and rational design of new systems using synthetic biology have significantly accelerated the development of lignin valorization. This review summarizes the key enzymes involved in lignin depolymerization, the mechanisms of microbial lignin conversion, and the lignin valorization application with integrated systems and synthetic biology. Current challenges and future strategies to further study lignin biodegradation and the trends of lignin valorization are also discussed.
Collapse
Affiliation(s)
- Fei Li
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiquan Zhao
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Le Xue
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuying Ma
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Susie Y Dai
- Department of Plant Pathology and Microbiology, Texas A&M University, College station, TX 77843, USA.
| | - Shangxian Xie
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
4
|
Suzuki Y, Okamura-Abe Y, Otsuka Y, Araki T, Nojiri M, Kamimura N, Masai E, Nakamura M. Integrated process development for grass biomass utilization through enzymatic saccharification and upgrading hydroxycinnamic acids via microbial funneling. BIORESOURCE TECHNOLOGY 2022; 363:127836. [PMID: 36031121 DOI: 10.1016/j.biortech.2022.127836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In grass biomass, hydroxycinnamic acids (HCAs) play crucial roles in the crosslinking of lignin and polysaccharides and can be easily extracted by mild alkaline pretreatment, albeit heterogeneously. Here, HCAs were extracted from bamboo and rice straw as model grass biomass with different HCAs composition, and microbial funneling was then conducted to produce 2-pyrone-4,6-dicarboxylic acid (PDC) and (4S)-3-carboxymuconolactone (4S-3CML), promising building blocks for bio-based polymers, respectively. Pseudomonas putida PpY1100 engineered for efficient microbial funneling completely converted HCAs to PDC and 4S-3CML with high titers of 3.9-9.3 g/L and molar yields of 92-99%, respectively. The enzymatic saccharification efficiencies of lignocellulose after HCAs extraction were 29.5% in bamboo and 73.8% in rice straw, which are 8.9 and 6.8 times higher than in alkaline-untreated media, respectively. These results provide a green-like process for total valorization of grass biomass through enzymatic saccharification integrated with upgrading heterogeneous HCAs to a valuable single chemical via microbial funneling.
Collapse
Affiliation(s)
- Yuzo Suzuki
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan.
| | - Yuriko Okamura-Abe
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
| | - Yuichiro Otsuka
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Takuma Araki
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Masanobu Nojiri
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masaya Nakamura
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| |
Collapse
|
5
|
Biochemical and structural characterization of an aromatic ring-hydroxylating dioxygenase for terephthalic acid catabolism. Proc Natl Acad Sci U S A 2022; 119:e2121426119. [PMID: 35312352 PMCID: PMC9060491 DOI: 10.1073/pnas.2121426119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SignificanceMore than 400 million tons of plastic waste is produced each year, the overwhelming majority of which ends up in landfills. Bioconversion strategies aimed at plastics have emerged as important components of enabling a circular economy for synthetic plastics, especially those that exhibit chemically similar linkages to those found in nature, such as polyesters. The enzyme system described in this work is essential for mineralization of the xenobiotic components of poly(ethylene terephthalate) (PET) in the biosphere. Our description of its structure and substrate preferences lays the groundwork for in vivo or ex vivo engineering of this system for PET upcycling.
Collapse
|
6
|
Elframawy A, El-Hanafy A, Sharamant M, Ghozlan H. Molecular identification of native Egyptian Actinobacteria: Screening for lignin utilization and degradation of lignin model compounds. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Ma Y, Donohue TJ, Noguera DR. Kinetic modeling of anaerobic degradation of plant-derived aromatic mixtures by Rhodopseudomonas palustris. Biodegradation 2021; 32:179-192. [PMID: 33675449 PMCID: PMC7997838 DOI: 10.1007/s10532-021-09932-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/23/2021] [Indexed: 11/23/2022]
Abstract
Rhodopseudomonas palustris is a model microorganism for studying the anaerobic metabolism of aromatic compounds. While it is well documented which aromatics can serve as sole organic carbon sources, co-metabolism of other aromatics is poorly understood. This study used kinetic modeling to analyze the simultaneous degradation of aromatic compounds present in corn stover hydrolysates and model the co-metabolism of aromatics not known to support growth of R. palustris as sole organic substrates. The simulation predicted that p-coumaroyl amide and feruloyl amide were hydrolyzed to p-coumaric acid and ferulic acid, respectively, and further transformed via p-coumaroyl-CoA and feruloyl-CoA. The modeling also suggested that metabolism of p-hydroxyphenyl aromatics was slowed by substrate inhibition, whereas the transformation of guaiacyl aromatics was inhibited by their p-hydroxyphenyl counterparts. It also predicted that substrate channeling may occur during degradation of p-coumaroyl-CoA and feruloyl-CoA, resulting in no detectable accumulation of p-hydroxybenzaldehyde and vanillin, during the transformation of these CoA ligated compounds to p-hydroxybenzoic acid and vanillic acid, respectively. While the simulation correctly represented the known transformation of p-hydroxybenzoic acid via the benzoyl-CoA pathway, it also suggested co-metabolism of vanillic acid and syringic acid, which are known not to serve as photoheterotrophic growth substrate for R. palustris.
Collapse
Affiliation(s)
- Yanjun Ma
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Timothy J Donohue
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel R Noguera
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA. .,Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Paul V, Rai DC, T.S RL, Srivastava SK, Tripathi AD. A comprehensive review on vanillin: its microbial synthesis, isolation and recovery. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2020.1869039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Dinesh Chandra Rai
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Ramyaa Lakshmi T.S
- Department of Zoology and Microbiology, Thiagarajar College, Madurai, India
| | | | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Zhang Y, Chen CX, Feng HP, Wang XJ, Roessner U, Walker R, Cheng ZY, An YQ, Du B, Bai JG. Transcriptome Profiling Combined With Activities of Antioxidant and Soil Enzymes Reveals an Ability of Pseudomonas sp. CFA to Mitigate p-Hydroxybenzoic and Ferulic Acid Stresses in Cucumber. Front Microbiol 2020; 11:522986. [PMID: 33193118 PMCID: PMC7652996 DOI: 10.3389/fmicb.2020.522986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
Continuous-cropping leads to obstacles in crop productivity by the accumulation of p-hydroxybenzoic acid (PHBA) and ferulic acid (FA). In this study, a strain CFA of Pseudomonas was shown to have a higher PHBA- and FA-degrading ability in media and soil and the mechanisms underlying this were explored. Optimal conditions for PHBA and FA degradation by CFA were 0.2 g/l of PHBA and FA, 37°C, and pH 6.56. Using transcriptome analysis, complete pathways that converted PHBA and FA to acetyl coenzyme A were proposed in CFA. When CFA was provided with PHBA and FA, we observed upregulation of genes in the pathways and detected intermediate metabolites including vanillin, vanillic acid, and protocatechuic acid. Moreover, 4-hydroxybenzoate 3-monooxygenase and vanillate O-demethylase were rate-limiting enzymes by gene overexpression. Knockouts of small non-coding RNA (sRNA) genes, including sRNA 11, sRNA 14, sRNA 20, and sRNA 60, improved the degradation of PHBA and FA. When applied to cucumber-planted soil supplemented with PHBA and FA, CFA decreased PHBA and FA in soil. Furthermore, a reduction of superoxide radical, hydrogen peroxide, and malondialdehyde in cucumber was observed by activating superoxide dismutase, catalase, glutathione peroxidase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase in seedlings, increasing the reduced glutathione and ascorbate in leaves, and inducing catalase, urease, and phosphatase in the rhizosphere. CFA has potential to mitigate PHBA and FA stresses in cucumber and alleviate continuous-cropping obstacles.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Chang-Xia Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hui-Ping Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xiu-Juan Wang
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Ute Roessner
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Robert Walker
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Zeng-Yan Cheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yan-Qiu An
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Binghai Du
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Ji-Gang Bai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
10
|
Chen B, Li RF, Zhou L, Qiu JH, Song K, Tang JL, He YW. The phytopathogen Xanthomonas campestris utilizes the divergently transcribed pobA/pobR locus for 4-hydroxybenzoic acid recognition and degradation to promote virulence. Mol Microbiol 2020; 114:870-886. [PMID: 32757400 DOI: 10.1111/mmi.14585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/29/2020] [Indexed: 01/26/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot in crucifers. Our previous findings revealed that Xcc can degrade 4-hydroxybenzoic acid (4-HBA) via the β-ketoadipate pathway. This present study expands on this knowledge in several ways. First, we show that infective Xcc cells induce in situ biosynthesis of 4-HBA in host plants, and Xcc can efficiently degrade 4-HBA via the pobA/pobR locus, which encodes a 4-hydroxybenzoate hydroxylase and an AraC-family transcription factor respectively. Next, the transcription of pobA is specifically induced by 4-HBA and is positively regulated by PobR, which is constitutively expressed in Xcc. 4-HBA directly binds to PobR dimers, resulting in activation of pobA expression. Point mutation and subsequent isothermal titration calorimetry and size exclusion chromatography analysis identified nine key conserved residues required for 4-HBA binding and/or dimerization of PobR. Furthermore, overlapping promoters harboring fully overlapping -35 elements were identified between the divergently transcribed pobA and pobR. The 4-HBA/PobR dimer complex specifically binds to a 25-bp site, which encompasses the -35 elements shared by the overlapping promoters. Finally, GUS histochemical staining and subsequent quantitative assay showed that both pobA and pobR genes are transcribed during Xcc infection of Chinese radish, and the strain ΔpobR exhibited compromised virulence in Chinese radish. These findings suggest that the ability of Xcc to survive the 4-HBA stress might be important for its successful colonization of host plants.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui-Fang Li
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Lian Zhou
- Zhiyuan Innovation Research Centre, Student Innovation Institute, Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Hui Qiu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Chauhan PS. Role of various bacterial enzymes in complete depolymerization of lignin: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101498] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Upadhyay P, Singh NK, Tupe R, Odenath A, Lali A. Biotransformation of corn bran derived ferulic acid to vanillic acid using engineered Pseudomonas putida KT2440. Prep Biochem Biotechnol 2019; 50:341-348. [PMID: 31809239 DOI: 10.1080/10826068.2019.1697935] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ferulic acid is a fraction of the phenolics present in cereals such as rice and corn as a component of the bran. Substantial amounts of waste bran are generated by the grain processing industry and this can be valorized via extraction, purification and conversion of phenolics to value added chemical products. Alkaline alcohol based extracted and purified ferulic acid from corn bran was converted to vanillic acid using engineered Pseudomonas putida KT2440. The strain was engineered by rendering the vanAB gene nonfunctional and obtaining the mutant defective in vanillic acid metabolism. Biotransformation of ferulic acid using resting Pseudomonas putida KT2440 mutant cells resulted in more than 95 ± 1.4% molar yield from standard ferulic acid; while the corn bran derived ferulic acid gave 87 ± 0.38% molar yield. With fermentation time of less than 24 h the mutant becomes a promising candidate for the stable biosynthesis of vanillic acid at industrial scale.
Collapse
Affiliation(s)
- Priya Upadhyay
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Nitesh K Singh
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Rasika Tupe
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Annamma Odenath
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Arvind Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.,Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
13
|
D'Arrigo I, Cardoso JGR, Rennig M, Sonnenschein N, Herrgård MJ, Long KS. Analysis of Pseudomonas putida growth on non-trivial carbon sources using transcriptomics and genome-scale modelling. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:87-97. [PMID: 30298597 DOI: 10.1111/1758-2229.12704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Pseudomonas putida is characterized by a versatile metabolism and stress tolerance traits that allow the bacterium to cope with different environmental conditions. In this work, the mechanisms that allow P. putida KT2440 to grow in the presence of four sole carbon sources (glucose, citrate, ferulic acid, serine) were investigated by RNA sequencing (RNA-seq) and genome-scale metabolic modelling. Transcriptomic data identified uptake systems for the four carbon sources, and candidates were subjected to preliminary experimental characterization by mutant strain growth to test their involvement in substrate assimilation. The OpdH and BenF-like porins were involved in citrate and ferulic acid uptake respectively. The citrate transporter (encoded by PP_0147) and the TctABC system were important for supporting cell growth in citrate; PcaT and VanK were associated with ferulic acid uptake; and the ABC transporter AapJPQM was involved in serine transport. A genome-scale metabolic model of P. putida KT2440 was used to integrate and analyze the transcriptomic data, identifying and confirming the active catabolic pathways for each carbon source. This study reveals novel information about transporters that are essential for understanding bacterial adaptation to different environments.
Collapse
Affiliation(s)
- Isotta D'Arrigo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kongens Lyngby, Denmark
| | - João G R Cardoso
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kongens Lyngby, Denmark
| | - Maja Rennig
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kongens Lyngby, Denmark
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kongens Lyngby, Denmark
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kongens Lyngby, Denmark
| | - Katherine S Long
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Lanfranchi E, Trajković M, Barta K, de Vries JG, Janssen DB. Exploring the Selective Demethylation of Aryl Methyl Ethers with a
Pseudomonas
Rieske Monooxygenase. Chembiochem 2018; 20:118-125. [DOI: 10.1002/cbic.201800594] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Elisa Lanfranchi
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
- Present address: School of Food and Nutritional Science SciencesUniversity College Cork College Road Cork T12 YN60 Republic of Ireland
| | - Miloš Trajković
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
| | - Katalin Barta
- Synthetic Organic ChemistryStratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
| | - Johannes G. de Vries
- Synthetic Organic ChemistryStratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Dick B. Janssen
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
| |
Collapse
|
15
|
Nishimura M, Kawakami S, Otsuka H. Molecular cloning and characterization of vanillin dehydrogenase from Streptomyces sp. NL15-2K. BMC Microbiol 2018; 18:154. [PMID: 30355315 PMCID: PMC6201588 DOI: 10.1186/s12866-018-1309-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/10/2018] [Indexed: 12/03/2022] Open
Abstract
Background Streptomyces sp. NL15-2K, previously isolated from the forest soil, features an extensive catabolic network for lignin-derived aromatic compounds, including pathways transforming ferulic acid to vanillin, vanillic acid, and protocatechuic acid. To successfully use Streptomyces sp. NL15-2K as a biocatalyst for vanillin production, it is necessary to characterize the vanillin dehydrogenase (VDH) that degrades the produced vanillin to vanillic acid, as well as the gene encoding this enzyme. Here, we cloned the VDH-encoding gene (vdh) from strain NL15-2K and comprehensively characterized its gene product. Results The vdh open reading frame contains 1488 bp and encodes a 496-amino-acid protein with a calculated molecular mass of 51,705 Da. Whereas the apparent native molecular mass of recombinant VDH was estimated to be 214 kDa by gel filtration analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a subunit molecular mass of ca. 56 kDa, indicating that VDH is a homotetramer. The recombinant enzyme showed optimal activity at 45 °C and pH 9.5. The VDH substrate specificity followed this order: vanillin (100%) > protocatechualdehyde (91%) > benzaldehyde (79%) > p-hydroxybenzaldehyde (56%) > isovanillin (49%) ≈ salicylaldehyde (48%) > anisaldehyde (15%) ≈ veratraldehyde (12%). Although peptide mass fingerprinting and BLAST searches indicated that this enzyme is a salicylaldehyde dehydrogenase (SALDH), the determined kinetic parameters clearly demonstrated that the enzyme is a vanillin dehydrogenase. Lastly, phylogenetic analysis revealed that VDH from Streptomyces sp. NL15-2K forms an independent branch in the phylogenetic tree and, hence, is evolutionarily distinct from other VDHs and SALDHs whose activities have been confirmed experimentally. Conclusions Our findings not only enhance the understanding of the enzymatic properties of VDH and the characteristics of its amino acid sequence, but also contribute to the development of Streptomyces sp. NL15-2K into a biocatalyst for the biotransformation of ferulic acid to vanillin. Electronic supplementary material The online version of this article (10.1186/s12866-018-1309-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Motohiro Nishimura
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima, 731-0153, Japan.
| | - Susumu Kawakami
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima, 731-0153, Japan
| | - Hideaki Otsuka
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima, 731-0153, Japan
| |
Collapse
|
16
|
Okai N, Masuda T, Takeshima Y, Tanaka K, Yoshida KI, Miyamoto M, Ogino C, Kondo A. Biotransformation of ferulic acid to protocatechuic acid by Corynebacterium glutamicum ATCC 21420 engineered to express vanillate O-demethylase. AMB Express 2017; 7:130. [PMID: 28641405 PMCID: PMC5479773 DOI: 10.1186/s13568-017-0427-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/12/2017] [Indexed: 11/10/2022] Open
Abstract
Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) is a lignin-derived phenolic compound abundant in plant biomass. The utilization of FA and its conversion to valuable compounds is desired. Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a precursor of polymers and plastics and a constituent of food. A microbial conversion system to produce PCA from FA was developed in this study using a PCA-producing strain of Corynebacterium glutamicum F (ATCC 21420). C. glutamicum strain F grown at 30 °C for 48 h utilized 2 mM each of FA and vanillic acid (4-hydroxy-3-methoxybenzoic acid, VA) to produce PCA, which was secreted into the medium. FA may be catabolized by C. glutamicum through proposed (I) non-β-oxidative, CoA-dependent or (II) β-oxidative, CoA-dependent phenylpropanoid pathways. The conversion of VA to PCA is the last step in each pathway. Therefore, the vanillate O-demethylase gene (vanAB) from Corynebacterium efficiens NBRC 100395 was expressed in C. glutamicum F (designated strain FVan) cultured at 30 °C in AF medium containing FA. Strain C. glutamicum FVan converted 4.57 ± 0.07 mM of FA into 2.87 ± 0.01 mM PCA after 48 h with yields of 62.8% (mol/mol), and 6.91 mM (1064 mg/L) of PCA was produced from 16.0 mM of FA after 12 h of fed-batch biotransformation. Genomic analysis of C. glutamicum ATCC 21420 revealed that the PCA-utilization genes (pca cluster) were conserved in strain ATCC 21420 and that mutations were present in the PCA importer gene pcaK.
Collapse
Affiliation(s)
- Naoko Okai
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Kobe, 657-8501 Japan
| | - Takaya Masuda
- Raw Materials and Polymers Division, Raw Materials and Polymers Technology Department, Teijin Limited, 2345 Nishihabu-cho, Matsuyama, Ehime 791-8536 Japan
| | - Yasunobu Takeshima
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Kobe, 657-8501 Japan
| | - Kosei Tanaka
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Kobe, 657-8501 Japan
| | - Ken-ichi Yoshida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Kobe, 657-8501 Japan
| | - Masanori Miyamoto
- Raw Materials and Polymers Division, Raw Materials and Polymers Technology Department, Teijin Limited, 2345 Nishihabu-cho, Matsuyama, Ehime 791-8536 Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Kobe, 657-8501 Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Kobe, 657-8501 Japan
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| |
Collapse
|
17
|
Hughes JG, Zhang X, Parales JV, Ditty JL, Parales RE. Pseudomonas putida F1 uses energy taxis to sense hydroxycinnamic acids. MICROBIOLOGY-SGM 2017; 163:1490-1501. [PMID: 28954643 DOI: 10.1099/mic.0.000533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Soil bacteria such as pseudomonads are widely studied due to their diverse metabolic capabilities, particularly the ability to degrade both naturally occurring and xenobiotic aromatic compounds. Chemotaxis, the directed movement of cells in response to chemical gradients, is common in motile soil bacteria and the wide range of chemicals detected often mirrors the metabolic diversity observed. Pseudomonas putida F1 is a soil isolate capable of chemotaxis toward, and degradation of, numerous aromatic compounds. We showed that P. putida F1 is capable of degrading members of a class of naturally occurring aromatic compounds known as hydroxycinnamic acids, which are components of lignin and are ubiquitous in the soil environment. We also demonstrated the ability of P. putida F1 to sense three hydroxycinnamic acids: p-coumaric, caffeic and ferulic acids. The chemotaxis response to hydroxycinnamic acids was induced during growth in the presence of hydroxycinnamic acids and was negatively regulated by HcaR, the repressor of the hydroxycinnamic acid catabolic genes. Chemotaxis to the three hydroxycinnamic acids was dependent on catabolism, as a mutant lacking the gene encoding feruloyl-CoA synthetase (Fcs), which catalyzes the first step in hydroxycinnamic acid degradation, was unable to respond chemotactically toward p-coumaric, caffeic, or ferulic acids. We tested whether an energy taxis mutant could detect hydroxycinnamic acids and determined that hydroxycinnamic acid sensing is mediated by the energy taxis receptor Aer2.
Collapse
Affiliation(s)
- Jonathan G Hughes
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, California, USA
| | - Xiangsheng Zhang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, California, USA.,Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, PR China
| | - Juanito V Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, California, USA
| | - Jayna L Ditty
- Department of Biology, College of Arts and Sciences, University of St Thomas, St Paul, MN, USA
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
18
|
Kundu A. Vanillin biosynthetic pathways in plants. PLANTA 2017; 245:1069-1078. [PMID: 28357540 DOI: 10.1007/s00425-017-2684-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/25/2017] [Indexed: 05/09/2023]
Abstract
The present review compiles the up-to-date knowledge on vanillin biosynthesis in plant systems to focus principally on the enzymatic reactions of in planta vanillin biosynthetic pathway and to find out its impact and prospect in future research in this field. Vanillin, a very popular flavouring compound, is widely used throughout the world. The principal natural resource of vanillin is the cured vanilla pods. Due to the high demand of vanillin as a flavouring agent, it is necessary to explore its biosynthetic enzymes and genes, so that improvement in its commercial production can be achieved through metabolic engineering. In spite of significant advancement in elucidating vanillin biosynthetic pathway in the last two decades, no conclusive demonstration had been reported yet for plant system. Several biosynthetic enzymes have been worked upon but divergences in published reports, particularly in characterizing the crucial biochemical steps of vanillin biosynthesis, such as side-chain shortening, methylation, and glucoside formation and have created a space for discussion. Recently, published reviews on vanillin biosynthesis have focused mainly on the biotechnological approaches and bioconversion in microbial systems. This review, however, aims to compile in brief the overall vanillin biosynthetic route and present a comparative as well as comprehensive description of enzymes involved in the pathway in Vanilla planifolia and other plants. Special emphasis has been given on the key enzymatic biochemical reactions that have been investigated extensively. Finally, the present standpoint and future prospects have been highlighted.
Collapse
Affiliation(s)
- Anish Kundu
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India.
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
19
|
Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86. Appl Environ Microbiol 2017; 83:AEM.03326-16. [PMID: 28188206 DOI: 10.1128/aem.03326-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/02/2017] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida CSV86 degrades lignin-derived metabolic intermediates, viz, veratryl alcohol, ferulic acid, vanillin, and vanillic acid, as the sole sources of carbon and energy. Strain CSV86 also degraded lignin sulfonate. Cell respiration, enzyme activity, biotransformation, and high-pressure liquid chromatography (HPLC) analyses suggest that veratryl alcohol and ferulic acid are metabolized to vanillic acid by two distinct carbon source-dependent inducible pathways. Vanillic acid was further metabolized to protocatechuic acid and entered the central carbon pathway via the β-ketoadipate route after ortho ring cleavage. Genes encoding putative enzymes involved in the degradation were found to be present at fer, ver, and van loci. The transcriptional analysis suggests a carbon source-dependent cotranscription of these loci, substantiating the metabolic studies. Biochemical and quantitative real-time (qRT)-PCR studies revealed the presence of two distinct O-demethylases, viz, VerAB and VanAB, involved in the oxidative demethylation of veratric acid and vanillic acid, respectively. This report describes the various steps involved in metabolizing lignin-derived aromatic compounds at the biochemical level and identifies the genes involved in degrading veratric acid and the arrangement of phenylpropanoid metabolic genes as three distinct inducible transcription units/operons. This study provides insight into the bacterial degradation of lignin-derived aromatics and the potential of P. putida CSV86 as a suitable candidate for producing valuable products.IMPORTANCEPseudomonas putida CSV86 metabolizes lignin and its metabolic intermediates as a carbon source. Strain CSV86 displays a unique property of preferential utilization of aromatics, including for phenylpropanoids over glucose. This report unravels veratryl alcohol metabolism and genes encoding veratric acid O-demethylase, hitherto unknown in pseudomonads, thereby providing new insight into the metabolic pathway and gene pool for lignin degradation in bacteria. The biochemical and genetic characterization of phenylpropanoid metabolism makes it a prospective system for its application in producing valuable products, such as vanillin and vanillic acid, from lignocellulose. This study supports the immense potential of P. putida CSV86 as a suitable candidate for bioremediation and biorefinery.
Collapse
|
20
|
A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of syringaldehyde. Sci Rep 2017; 7:44422. [PMID: 28294121 PMCID: PMC5353671 DOI: 10.1038/srep44422] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/07/2017] [Indexed: 01/18/2023] Open
Abstract
Vanillin and syringaldehyde obtained from lignin are essential intermediates for the production of basic chemicals using microbial cell factories. However, in contrast to vanillin, the microbial conversion of syringaldehyde is poorly understood. Here, we identified an aromatic aldehyde dehydrogenase (ALDH) gene responsible for syringaldehyde catabolism from 20 putative ALDH genes of Sphingobium sp. strain SYK-6. All these genes were expressed in Escherichia coli, and nine gene products, including previously characterized BzaA, BzaB, and vanillin dehydrogenase (LigV), exhibited oxidation activities for syringaldehyde to produce syringate. Among these genes, SLG_28320 (desV) and ligV were most highly and constitutively transcribed in the SYK-6 cells. Disruption of desV in SYK-6 resulted in a significant reduction in growth on syringaldehyde and in syringaldehyde oxidation activity. Furthermore, a desV ligV double mutant almost completely lost its ability to grow on syringaldehyde. Purified DesV showed similar kcat/Km values for syringaldehyde (2100 s−1·mM−1) and vanillin (1700 s−1·mM−1), whereas LigV substantially preferred vanillin (8800 s−1·mM−1) over syringaldehyde (1.4 s−1·mM−1). These results clearly demonstrate that desV plays a major role in syringaldehyde catabolism. Phylogenetic analyses showed that DesV-like ALDHs formed a distinct phylogenetic cluster separated from the vanillin dehydrogenase cluster.
Collapse
|
21
|
A functional 4-hydroxybenzoate degradation pathway in the phytopathogen Xanthomonas campestris is required for full pathogenicity. Sci Rep 2015; 5:18456. [PMID: 26672484 PMCID: PMC4682078 DOI: 10.1038/srep18456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/17/2015] [Indexed: 11/23/2022] Open
Abstract
Plants contain significant levels of natural phenolic compounds essential for reproduction and growth, as well as defense mechanisms against pathogens. Xanthomonas campestris pv. campestris (Xcc) is the causal agent of crucifers black rot. Here we showed that genes required for the synthesis, utilization, transportation, and degradation of 4-hydroxybenzoate (4-HBA) are present in Xcc. Xcc rapidly degrades 4-HBA, but has no effect on 2-hydroxybenzoate and 3-hydroxybenzoate when grown in XOLN medium. The genes for 4-HBA degradation are organized in a superoperonic cluster. Bioinformatics, biochemical, and genetic data showed that 4-HBA is hydroxylated by 4-HBA 3-hydroxylase (PobA), which is encoded by Xcc0356, to yield PCA. The resulting PCA is further metabolized via the PCA branches of the β-ketoadipate pathway, including Xcc0364, Xcc0365, and PcaFHGBDCR. Xcc0364 and Xcc0365 encode a new form of β-ketoadipate succinyl-coenzyme A transferase that is required for 4-HBA degradation. pobA expression was induced by 4-HBA via the transcriptional activator, PobR. Radish and cabbage hydrolysates contain 2-HBA, 3-HBA, 4-HBA, and other phenolic compounds. Addition of radish and cabbage hydrolysates to Xcc culture significantly induced the expression of pobA via PobR. The 4-HBA degradation pathway is required for full pathogenicity of Xcc in radish.
Collapse
|
22
|
Wang W, Guo J, Zhang J, Peng J, Liu T, Xin Z. Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran. Food Chem 2015; 171:40-9. [DOI: 10.1016/j.foodchem.2014.08.095] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022]
|
23
|
Ding W, Si M, Zhang W, Zhang Y, Chen C, Zhang L, Lu Z, Chen S, Shen X. Functional characterization of a vanillin dehydrogenase in Corynebacterium glutamicum. Sci Rep 2015; 5:8044. [PMID: 25622822 PMCID: PMC4306973 DOI: 10.1038/srep08044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/29/2014] [Indexed: 11/09/2022] Open
Abstract
Vanillin dehydrogenase (VDH) is a crucial enzyme involved in the degradation of lignin-derived aromatic compounds. Herein, the VDH from Corynebacterium glutamicum was characterized. The relative molecular mass (Mr) determined by SDS-PAGE was ~51 kDa, whereas the apparent native Mr values revealed by gel filtration chromatography were 49.5, 92.3, 159.0 and 199.2 kDa, indicating the presence of dimeric, trimeric and tetrameric forms. Moreover, the enzyme showed its highest level of activity toward vanillin at pH 7.0 and 30°C, and interestingly, it could utilize NAD(+) and NADP(+) as coenzymes with similar efficiency and showed no obvious difference toward NAD(+) and NADP(+). In addition to vanillin, this enzyme exhibited catalytic activity toward a broad range of substrates, including p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, o-phthaldialdehyde, cinnamaldehyde, syringaldehyde and benzaldehyde. Conserved catalytic residues or putative cofactor interactive sites were identified based on sequence alignment and comparison with previous studies, and the function of selected residues were verified by site-directed mutagenesis analysis. Finally, the vdh deletion mutant partially lost its ability to grow on vanillin, indicating the presence of alternative VDH(s) in Corynebacterium glutamicum. Taken together, this study contributes to understanding the VDH diversity from bacteria and the aromatic metabolism pathways in C. glutamicum.
Collapse
Affiliation(s)
- Wei Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Meiru Si
- 1] State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China [2] Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weipeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yaoling Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Can Chen
- 1] State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China [2] Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lei Zhang
- 1] State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China [2] Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhiqiang Lu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shaolin Chen
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xihui Shen
- 1] State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China [2] Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
24
|
Gallage NJ, Møller BL. Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. MOLECULAR PLANT 2015; 8:40-57. [PMID: 25578271 DOI: 10.1016/j.molp.2014.11.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/15/2014] [Indexed: 05/24/2023]
Abstract
In recent years, biotechnology-derived production of flavors and fragrances has expanded rapidly. The world's most popular flavor, vanillin, is no exception. This review outlines the current state of biotechnology-based vanillin synthesis with the use of ferulic acid, eugenol, and glucose as substrates and bacteria, fungi, and yeasts as microbial production hosts. The de novo biosynthetic pathway of vanillin in the vanilla orchid and the possible applied uses of this new knowledge in the biotechnology-derived and pod-based vanillin industries are also highlighted.
Collapse
Affiliation(s)
- Nethaji J Gallage
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark; Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark; Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark; Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark; Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark; Carlsberg Laboratory, 10 Gamle Carlsberg Vej, DK-1799 Copenhagen V, Denmark.
| |
Collapse
|
25
|
Zhang L, Gao W, Chen X, Wang H. The Effect of Bioprocessing on the Phenolic Acid Composition and Antioxidant Activity of Wheat Bran. Cereal Chem 2014. [DOI: 10.1094/cchem-03-13-0056-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lixia Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
- Corresponding author. Phone: +86 2287401895. E-mail:
| | - Xuetao Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Haiyang Wang
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| |
Collapse
|
26
|
Zamzuri N, Abd-Aziz S, Rahim R, Phang L, Alitheen N, Maeda T. A rapid colorimetric screening method for vanillic acid and vanillin-producing bacterial strains. J Appl Microbiol 2014; 116:903-910. [DOI: 10.1111/jam.12410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- N.A. Zamzuri
- Department of Bioprocess Technology; Faculty of Biotechnology and Biomolecular Sciences; Universiti Putra Malaysia (UPM); Serdang Malaysia
| | - S. Abd-Aziz
- Department of Bioprocess Technology; Faculty of Biotechnology and Biomolecular Sciences; Universiti Putra Malaysia (UPM); Serdang Malaysia
| | - R.A. Rahim
- Department of Cell and Molecular Biology; Faculty of Biotechnology and Biomolecular Sciences; Universiti Putra Malaysia (UPM); Serdang Malaysia
| | - L.Y. Phang
- Department of Bioprocess Technology; Faculty of Biotechnology and Biomolecular Sciences; Universiti Putra Malaysia (UPM); Serdang Malaysia
| | - N.B. Alitheen
- Department of Cell and Molecular Biology; Faculty of Biotechnology and Biomolecular Sciences; Universiti Putra Malaysia (UPM); Serdang Malaysia
| | - T. Maeda
- Department of Biological Functions and Engineering; Graduate School of Life Science and Systems Engineering; Kyushu Institute of Technology; Kitakyushu Japan
| |
Collapse
|
27
|
Yang W, Tang H, Ni J, Wu Q, Hua D, Tao F, Xu P. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin. PLoS One 2013; 8:e67339. [PMID: 23840666 PMCID: PMC3696112 DOI: 10.1371/journal.pone.0067339] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/17/2013] [Indexed: 11/18/2022] Open
Abstract
Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent Km, kcat, and Vmax values to be 0.35 mM, 67.7 s−1, and 78.2 U mg−1, respectively. The catalytic efficiency (kcat/Km) value of Fcs was 193.4 mM−1 s−1 for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation.
Collapse
Affiliation(s)
- Wenwen Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- * E-mail: (HT); (PX)
| | - Jun Ni
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Qiulin Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Dongliang Hua
- Key Laboratory for Biomass Gasification Technology of Shandong Province, Energy Research Institute of Shandong Academy of Sciences, Jinan, People’s Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- * E-mail: (HT); (PX)
| |
Collapse
|
28
|
Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B. amyloliquefaciens in biphasic reaction system. Appl Microbiol Biotechnol 2012; 97:1501-11. [DOI: 10.1007/s00253-012-4358-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
|
29
|
Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin. Appl Environ Microbiol 2012; 79:81-90. [PMID: 23064333 DOI: 10.1128/aem.02358-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDH(ATCC 39116)). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vanillin dehydrogenase in Amycolatopsis sp. ATCC 39116 was investigated for the first time by using data from our genome sequence analysis and further bioinformatic approaches. The vdh gene was heterologously expressed in Escherichia coli, and the encoded vanillin dehydrogenase was characterized in detail. VDH(ATCC 39116) was purified to apparent electrophoretic homogeneity and exhibited NAD(+)-dependent activity toward vanillin, coniferylaldehyde, cinnamaldehyde, and benzaldehyde. The enzyme showed its highest level of activity toward vanillin at pH 8.0 and at a temperature of 44°C. In a next step, a precise vdh deletion mutant of Amycolatopsis sp. ATCC 39116 was generated. The mutant lost its ability to grow on vanillin and did not show vanillin dehydrogenase activity. A 2.3-times-higher vanillin concentration and a substantially reduced amount of vanillic acid occurred with the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant when ferulic acid was provided for biotransformation in a cultivation experiment on a 2-liter-bioreactor scale. Based on these results and taking further metabolic engineering into account, the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant represents an optimized and industrially applicable platform for the biotechnological production of natural vanillin.
Collapse
|
30
|
Solid-Phase Extraction and Procedure for Determination of Phenolic Compounds in Maple Syrup. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9474-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Appl Microbiol Biotechnol 2012; 95:77-89. [DOI: 10.1007/s00253-012-4139-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 11/26/2022]
|
32
|
Kasai D, Kamimura N, Tani K, Umeda S, Abe T, Fukuda M, Masai E. Characterization of FerC, a MarR-type transcriptional regulator, involved in transcriptional regulation of the ferulate catabolic operon in Sphingobium sp. strain SYK-6. FEMS Microbiol Lett 2012; 332:68-75. [PMID: 22515452 DOI: 10.1111/j.1574-6968.2012.02576.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/28/2022] Open
Abstract
Sphingobium sp. strain SYK-6 is able to degrade various lignin-derived aromatic compounds including ferulate, vanillate, and syringate. In the SYK-6 cells, ferulate is converted to vanillin and acetyl-coenzyme A (acetyl-CoA) through the reactions catalyzed by feruloyl-CoA synthetase and feruloyl-CoA hydratase/lyase encoded by ferA and ferB, respectively. Here, we characterized the transcriptional regulation of ferBA controlled by a MarR-type transcriptional regulator, FerC. The ferC gene is located upstream of ferB. Reverse transcription (RT)-PCR analysis suggested that the ferBA genes form an operon. Quantitative RT-PCR analyses of SYK-6 and its mutant cells revealed that the transcription of the ferBA operon is negatively regulated by FerC, and feruloyl-CoA was identified as an inducer. The transcription start site of ferB was mapped at 30 nucleotides upstream from the ferB initiation codon. Purified His-tagged FerC bound to the ferC-ferB intergenic region. This region contains an inverted repeat sequence, which overlaps with a part of the -10 sequence and the transcriptional start site of ferB. The binding of FerC to the operator sequence was inhibited by the addition of feruloyl-CoA, indicating that FerC interacts with feruloyl-CoA as an effector molecule. Furthermore, hydroxycinnamoyl-CoAs, including p-coumaroyl-CoA, caffeoyl-CoA, and sinapoyl-CoA also acted as effector.
Collapse
Affiliation(s)
- Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Mishra S, Mishra A, Chauhan P, Mishra S, Kumari M, Niranjan A, Nautiyal C. Pseudomonas putida NBRIC19 dihydrolipoamide succinyltransferase (SucB) gene controls degradation of toxic allelochemicals produced by Parthenium hysterophorus. J Appl Microbiol 2012; 112:793-808. [DOI: 10.1111/j.1365-2672.2012.05256.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 2011; 28:1883-96. [PMID: 21918777 DOI: 10.1039/c1np00042j] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lignin is a heterogeneous aromatic polymer found as 10-35% of lignocellulose, found in plant cell walls. The bio-conversion of plant lignocellulose to glucose is an important part of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process, hence there is considerable interest in the microbial breakdown of lignin. White-rot fungi are known to break down lignin with the aid of extracellular peroxidase and laccase enzymes. There are also reports of bacteria that can degrade lignin, and recent work indicates that bacterial lignin breakdown may be more significant than previously thought. The review will discuss the enzymes for lignin breakdown in fungi and bacteria, and the catabolic pathways for breakdown of the β-aryl ether, biphenyl and other components of lignin in bacteria and fungi. The review will also discuss small molecule phenolic breakdown products from lignin that have been identified from lignin-degrading microbes, and includes a bioinformatic analysis of the occurrence of known lignin-degradation pathways in Gram-positive and Gram-negative bacteria.
Collapse
|
35
|
Rodríguez H, Angulo I, de Las Rivas B, Campillo N, Páez JA, Muñoz R, Mancheño JM. p-Coumaric acid decarboxylase from Lactobacillus plantarum: structural insights into the active site and decarboxylation catalytic mechanism. Proteins 2010; 78:1662-76. [PMID: 20112419 DOI: 10.1002/prot.22684] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
p-Coumaric acid decarboxylases (PDCs) catalyze the nonoxidative decarboxylation of hydroxycinnamic acids to generate the corresponding vinyl derivatives. Despite the biotechnological relevance of PDCs in food industry, their catalytic mechanism remains largely unknown. Here, we report insights into the structural basis of catalysis for the homodimeric PDC from Lactobacillus plantarum (LpPDC). The global fold of LpPDC is based on a flattened beta-barrel surrounding an internal cavity. Crystallographic and functional analyses of single-point mutants of residues located within this cavity have permitted identifying a potential substrate-binding pocket and also to provide structural evidences for rearrangements of surface loops so that they can modulate the accessibility to the active site. Finally, combination of the structural and functional data with in silico results enables us to propose a two-step catalytic mechanism for decarboxylation of p-coumaric acid by PDCs where Glu71 is involved in proton transfer, and Tyr18 and Tyr20 are involved in the proper substrate orientation and in the release of the CO(2) product.
Collapse
Affiliation(s)
- Héctor Rodríguez
- Departamento de Microbiología, Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Verhoef S, Ballerstedt H, Volkers RJM, de Winde JH, Ruijssenaars HJ. Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement. Appl Microbiol Biotechnol 2010; 87:679-90. [PMID: 20449741 PMCID: PMC2874742 DOI: 10.1007/s00253-010-2626-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 11/25/2022]
Abstract
A transcriptomics and proteomics approach was employed to study the expression changes associated with p-hydroxybenzoate production by the engineered Pseudomonas putida strain S12palB1. To establish p-hydroxybenzoate production, phenylalanine-tyrosine ammonia lyase (pal/tal) was introduced to connect the tyrosine biosynthetic and p-coumarate degradation pathways. In agreement with the efficient p-hydroxybenzoate production, the tyrosine biosynthetic and p-coumarate catabolic pathways were upregulated. Also many transporters were differentially expressed, one of which--a previously uncharacterized multidrug efflux transporter with locus tags PP1271-PP1273--was found to be associated with p-hydroxybenzoate export. In addition to tyrosine biosynthesis, also tyrosine degradative pathways were upregulated. Eliminating the most prominent of these resulted in a 22% p-hydroxybenzoate yield improvement. Remarkably, the upregulation of genes contributing to p-hydroxybenzoate formation was much higher in glucose than in glycerol-cultured cells.
Collapse
Affiliation(s)
- Suzanne Verhoef
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
- B-Basic, Julianalaan 67, 2628 BC Delft, the Netherlands
- TNO Quality of Life, Business Unit Food and Biotechnology Innovations, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
- Present Address: Purac, Arkelsedijk 46, 4206 AC Gorinchem, The Netherlands
| | - Hendrik Ballerstedt
- B-Basic, Julianalaan 67, 2628 BC Delft, the Netherlands
- TNO Quality of Life, Business Unit Food and Biotechnology Innovations, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
| | - Rita J. M. Volkers
- B-Basic, Julianalaan 67, 2628 BC Delft, the Netherlands
- TNO Quality of Life, Business Unit Food and Biotechnology Innovations, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
| | - Johannes H. de Winde
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
- B-Basic, Julianalaan 67, 2628 BC Delft, the Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
| | - Harald J. Ruijssenaars
- B-Basic, Julianalaan 67, 2628 BC Delft, the Netherlands
- TNO Quality of Life, Business Unit Food and Biotechnology Innovations, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
- Present Address: Bird Engineering, Westfrankelandsedijk 1, 3115 HG Schiedam, The Netherlands
| |
Collapse
|
37
|
Zhang ZY, Pan LP, Li HH. Isolation, identification and characterization of soil microbes which degrade phenolic allelochemicals. J Appl Microbiol 2010; 108:1839-49. [DOI: 10.1111/j.1365-2672.2009.04589.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Genomic analysis of the aromatic catabolic pathways fromSilicibacter pomeroyi DSS-3. ANN MICROBIOL 2009. [DOI: 10.1007/bf03179225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
39
|
LasI/R and RhlI/R quorum sensing in a strain of Pseudomonas aeruginosa beneficial to plants. Appl Environ Microbiol 2009; 75:5131-40. [PMID: 19525275 DOI: 10.1128/aem.02914-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa possesses three quorum-sensing (QS) systems which are key in the expression of a large number of genes, including many virulence factors. Most studies of QS in P. aeruginosa have been performed in clinical isolates and have therefore focused on its role in pathogenicity. P. aeruginosa, however, is regarded as a ubiquitous organism capable of colonizing many different environments and also of establishing beneficial associations with plants. In this study we examined the role of the two N-acyl homoserine lactone systems known as RhlI/R and LasI/R in the environmental rice rhizosphere isolate P. aeruginosa PUPa3. Both the Rhl and Las systems are involved in the regulation of plant growth-promoting traits. The environmental P. aeruginosa PUPa3 is pathogenic in two nonmammalian infection models, and only the double las rhl mutants are attenuated for virulence. In fact it was established that the two QS systems are not hierarchically organized and that they are both important for the colonization of the rice rhizosphere. This is an in-depth genetic and molecular study of QS in an environmental P. aeruginosa strain and highlights several differences with QS regulation in the clinical isolate PAO1.
Collapse
|
40
|
De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 2009; 75:2765-74. [PMID: 19286778 DOI: 10.1128/aem.02681-08] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin beta-D-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.
Collapse
|
41
|
Bernini R, Barontini M, Mosesso P, Pepe G, Willför SM, Sjöholm RE, Eklund PC, Saladino R. A selective de-O-methylation of guaiacyl lignans to corresponding catechol derivatives by 2-iodoxybenzoic acid (IBX). The role of the catechol moiety on the toxicity of lignans. Org Biomol Chem 2009; 7:2367-77. [DOI: 10.1039/b822661j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Bell SG, Tan ABH, Johnson EOD, Wong LL. Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2. ACTA ACUST UNITED AC 2009; 6:206-14. [DOI: 10.1039/b913487e] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Tharayil N, Bhowmik PC, Xing B. Bioavailability of allelochemicals as affected by companion compounds in soil matrices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:3706-13. [PMID: 18435537 DOI: 10.1021/jf073310a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Multicompound allelochemical interactions were studied using Centaurea maculosa as a model source to understand how the bioavailability of complex allelochemical mixtures is modified in soil-microbial systems. Litter decomposition of C. maculosa in sandy loam soil yielded five phenolic acids, namely, hydroxybenzoic, vanillic, protocatechuic, p-coumaric, and ferulic acids. The degradation studies were conducted by exogenous application of catechin, the primary allelochemical exuded by C. maculosa, and the phenolic acid cosolutes in a sandy loam and silt loam soil. Compared to a single-solute system, in a multisolute system the persistence of individual allelochemicals was significantly increased in both soils. Oxidation and sorption were primarily involved in the disappearance of allelochemicals. Mass spectrometric data showed that catechin rapidly underwent polymerization to form procyanidin dimer both in soil and in bioassay medium, resulting in reduced persistence and phytotoxicity. Hence, catechin phytotoxicity could occur only under conditions that would inhibit these condensation reactions. This study clearly demonstrates that various soil mechanisms including competitive sorption and preferential degradation would increase the persistence of allelochemical mixtures in a soil matrix.
Collapse
Affiliation(s)
- Nishanth Tharayil
- Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
44
|
Nonaka K, Ohta H, Sato Y, Hosokawa K. Utilization of Phenylpropanoids by Pseudomonas putida Soil Isolates and Its Probable Taxonomic Significance. Microbes Environ 2008; 23:360-4. [DOI: 10.1264/jsme2.me08545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kazuhiro Nonaka
- Department of Bioresource Science, Ibaraki University College of Agriculture
| | - Hiroyuki Ohta
- Department of Bioresource Science, Ibaraki University College of Agriculture
| | - Yoshinori Sato
- Department of Bioresource Science, Ibaraki University College of Agriculture
| | | |
Collapse
|
45
|
Characterization of ligV essential for catabolism of vanillin by Sphingomonas paucimobilis SYK-6. Biosci Biotechnol Biochem 2007; 71:2487-92. [PMID: 17928721 DOI: 10.1271/bbb.70267] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The vanillin dehydrogenase gene (ligV), which conferred the ability to transform vanillin into vanillate on Escherichia coli, was isolated from Sphingomonas paucimobilis SYK-6. The ligV gene consists of a 1,440-bp open reading frame encoding a polypeptide with a molecular mass of 50,301 Da. The deduced amino acid sequence of ligV showed about 50% identity with the known vanillin dehydrogenases of Pseudomonas vanillin degraders. The gene product of ligV (LigV) produced in E. coli preferred NAD+ to NADP+ and exhibited a broad substrate preference, including vanillin, benzaldehyde, protocatechualdehyde, m-anisaldehyde, and p-hydroxybenzaldehyde, but the activity toward syringaldehyde was less than 5% of that toward vanillin. Insertional inactivation of ligV in SYK-6 indicated that ligV is essential for normal growth on vanillin. On the other hand, growth on syringaldehyde was only slightly affected by ligV disruption, indicating the presence of a syringaldehyde dehydrogenase gene or genes in SYK-6.
Collapse
|
46
|
Verhoef S, Ruijssenaars HJ, de Bont JAM, Wery J. Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. J Biotechnol 2007; 132:49-56. [PMID: 17900735 DOI: 10.1016/j.jbiotec.2007.08.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/09/2007] [Accepted: 08/20/2007] [Indexed: 11/19/2022]
Abstract
Pseudomonas putida strain S12palB1 was constructed that produces p-hydroxybenzoate from renewable carbon sources via the central metabolite l-tyrosine. P. putida S12palB1 was based on the platform strain P. putida S12TPL3, which has an optimised carbon flux towards l-tyrosine. Phenylalanine ammonia lyase (Pal) was introduced for the conversion of l-tyrosine into p-coumarate, which is further converted into p-hydroxybenzoate by endogenous enzymes. p-Hydroxybenzoate hydroxylase (PobA) was inactivated to prevent the degradation of p-hydroxybenzoate. These modifications resulted in stable accumulation of p-hydroxybenzoate at a yield of 11% (C-molC-mol(-1)) on glucose or on glycerol in shake flask cultures. In a glycerol-limited fed-batch fermentation, a final p-hydroxybenzoate concentration of 12.9mM (1.8gl(-1)) was obtained, at a yield of 8.5% (C-molC-mol(-1)). A 2-fold increase of the specific p-hydroxybenzoate production rate (q(p)) was observed when l-tyrosine was supplied to a steady-state C-limited chemostat culture of P. putida S12palB1. This implied that l-tyrosine availability was the bottleneck for p-hydroxybenzoate production under these conditions. When p-coumarate was added instead, q(p) increased by a factor 4.7, indicating that Pal activity is the limiting factor when sufficient l-tyrosine is available. Thus, two major leads for further improvement of the p-hydroxybenzoate production by P. putida S12palB1 were identified.
Collapse
Affiliation(s)
- Suzanne Verhoef
- TNO Quality of Life, Business Unit Food and Biotechnology Innovations, Julianalaan 67, 2628 BC Delft, The Netherlands; B-Basic, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Barghini P, Di Gioia D, Fava F, Ruzzi M. Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb Cell Fact 2007; 6:13. [PMID: 17437627 PMCID: PMC1857700 DOI: 10.1186/1475-2859-6-13] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 04/16/2007] [Indexed: 11/20/2022] Open
Abstract
Background Vanillin is one of the most important aromatic flavour compounds used in the food and cosmetic industries. Natural vanillin is extracted from vanilla beans and is relatively expensive. Moreover, the consumer demand for natural vanillin highly exceeds the amount of vanillin extracted by plant sources. This has led to the investigation of other routes to obtain this flavour such as the biotechnological production from ferulic acid. Studies concerning the use of engineered recombinant Escherichia coli cells as biocatalysts for vanillin production are described in the literature, but yield optimization and biotransformation conditions have not been investigated in details. Results Effect of plasmid copy number in metabolic engineering of E. coli for the synthesis of vanillin has been evaluated by the use of genes encoding feruloyl-CoA synthetase and feruloyl hydratase/aldolase from Pseudomonas fluorescens BF13. The higher vanillin production yield was obtained using resting cells of E. coli strain JM109 harbouring a low-copy number vector and a promoter exhibiting a low activity to drive the expression of the catabolic genes. Optimization of the bioconversion of ferulic acid to vanillin was accomplished by a response surface methodology. The experimental conditions that allowed us to obtain high values for response functions were 3.3 mM ferulic acid and 4.5 g/L of biomass, with a yield of 70.6% and specific productivity of 5.9 μmoles/g × min after 3 hours of incubation. The final concentration of vanillin in the medium was increased up to 3.5 mM after a 6-hour incubation by sequential spiking of 1.1 mM ferulic acid. The resting cells could be reused up to four times maintaining the production yield levels over 50%, thus increasing three times the vanillin obtained per gram of biomass. Conclusion Ferulic acid can be efficiently converted to vanillin, without accumulation of undesirable vanillin reduction/oxidation products, using E. coli JM109 cells expressing genes from the ferulic acid-degrader Pseudomonas fluorescens BF13. Optimization of culture conditions and bioconversion parameters, together with the reuse of the biomass, leaded to a final production of 2.52 g of vanillin per liter of culture, which is the highest found in the literature for recombinant strains and the highest achieved so far applying such strains under resting cells conditions.
Collapse
Affiliation(s)
- Paolo Barghini
- Department of Agrobiology and Agrochemistry, University of Tuscia, via Camillo de Lellis – snc, 01100 Viterbo, Italy
| | - Diana Di Gioia
- DICASM, Faculty of Engineering, University of Bologna, Bologna, Italy
| | - Fabio Fava
- DICASM, Faculty of Engineering, University of Bologna, Bologna, Italy
| | - Maurizio Ruzzi
- Department of Agrobiology and Agrochemistry, University of Tuscia, via Camillo de Lellis – snc, 01100 Viterbo, Italy
| |
Collapse
|
48
|
Nishimura M, Ooi O, Davies J. Isolation and characterization of Streptomyces sp. NL15-2K capable of degrading lignin-related aromatic compounds. J Biosci Bioeng 2007; 102:124-7. [PMID: 17027874 DOI: 10.1263/jbb.102.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 04/26/2006] [Indexed: 11/17/2022]
Abstract
Strain NL15-2K was isolated from soil by screening for bacteria capable of catabolizing lignin-related aromatic acids. This isolate was identified as a Streptomyces sp. on the basis of morphology and an analysis of its 16S rRNA gene sequence. NL15-2K utilized caffeic acid, coniferyl alcohol, ferulic acid, isovanillic acid, protocatechuic acid, vanillic acid, vanillin, and veratric acid as sole carbon sources.
Collapse
Affiliation(s)
- Motohiro Nishimura
- Department of Chemical and Biological Engineering, Ube National College of Technology, 2-14-1 Tokiwadai, Ube, Yamaguchi 755-8555, Japan.
| | | | | |
Collapse
|
49
|
Nijkamp K, Westerhof RGM, Ballerstedt H, de Bont JAM, Wery J. Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Appl Microbiol Biotechnol 2006; 74:617-24. [PMID: 17111138 DOI: 10.1007/s00253-006-0703-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/05/2006] [Accepted: 10/09/2006] [Indexed: 11/29/2022]
Abstract
A Pseudomonas putida S12 strain was constructed that is able to convert glucose to p-coumarate via the central metabolite L: -tyrosine. Efficient production was hampered by product degradation, limited cellular L: -tyrosine availability, and formation of the by-product cinnamate via L: -phenylalanine. The production host was optimized by inactivation of fcs, the gene encoding the first enzyme in the p-coumarate degradation pathway in P. putida, followed by construction of a phenylalanine-auxotrophic mutant. These steps resulted in a P. putida S12 strain that showed dramatically enhanced production characteristics with controlled L: -phenylalanine feeding. During fed-batch cultivation, 10 mM (1.7 g l(-1)) of p-coumarate was produced from glucose with a yield of 3.8 Cmol% and a molar ratio of p-coumarate to cinnamate of 85:1.
Collapse
Affiliation(s)
- Karin Nijkamp
- Business Unit, Food and Biotechnology Innovations, TNO Quality of Life, P.O. Box 342, 7300 AH, Apeldoorn, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Providenti MA, O'Brien JM, Ruff J, Cook AM, Lambert IB. Metabolism of isovanillate, vanillate, and veratrate by Comamonas testosteroni strain BR6020. J Bacteriol 2006; 188:3862-9. [PMID: 16707678 PMCID: PMC1482911 DOI: 10.1128/jb.01675-05] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 03/23/2006] [Indexed: 11/20/2022] Open
Abstract
In Comamonas testosteroni strain BR6020, metabolism of isovanillate (iVan; 3-hydroxy-4-methoxybenzoate), vanillate (Van; 4-hydroxy-3-methoxybenzoate), and veratrate (Ver; 3,4-dimethoxybenzoate) proceeds via protocatechuate (Pca; 3,4-dihydroxybenzoate). A 13.4-kb locus coding for the catabolic enzymes that channel the three substrates to Pca was cloned. O demethylation is mediated by the phthalate family oxygenases IvaA (converts iVan to Pca and Ver to Van) and VanA (converts Van to Pca and Ver to iVan). Reducing equivalents from NAD(P)H are transferred to the oxygenases by the class IA oxidoreductase IvaB. Studies using whole cells, cell extracts, and reverse transcriptase PCR showed that degradative activity and expression of vanA, ivaA, and ivaB are inducible. In succinate- and Pca-grown cells, there is negligible degradative activity towards Van, Ver, and iVan and little to no expression of vanA, ivaA, and ivaB. Growth on Van or Ver results in production of oxygenases with activity towards Van, Ver, and iVan and expression of vanA, ivaA, and ivaB. With iVan-grown cultures, ivaA and ivaB are expressed, and in assays with whole cells, production of the iVan oxygenase is observed, but there is little activity towards Van or Ver. In cell extracts, though, Ver metabolism is observed, which suggests that the system mediating iVan uptake in whole cells does not mediate Ver uptake.
Collapse
Affiliation(s)
- Miguel A Providenti
- Institute of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| | | | | | | | | |
Collapse
|