1
|
Zhu FD, Fu X, Ye HC, Ding HX, Gu LS, Zhang J, Guo YX, Feng G. Antibacterial activities of coumarin-3-carboxylic acid against Acidovorax citrulli. Front Microbiol 2023; 14:1207125. [PMID: 37799610 PMCID: PMC10547900 DOI: 10.3389/fmicb.2023.1207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Coumarin-3-carboxylic acid (3-CCA), previously screened from natural coumarins, was found to possess strong antibacterial activity against Acidovorax citrulli (Ac). In order to further evaluate the activity of this compound against plant bacterial pathogens and explore its potential value as a bactericidal lead compound, the activity of 3-CCA against 14 plant pathogenic bacteria in vitro and in vivo was tested. Results showed that 3-CCA exhibited strong in vitro activities against Ac, Ralstonia solanacearum, Xanthomonas axonopodis pv. manihotis, X. oryzae pv. oryzae, and Dickeya zeae with EC50 values ranging from 26.64 μg/mL to 40.73 μg/mL. Pot experiment results showed that 3-CCA had powerful protective and curative effects against Ac. In addition, the protective efficiency of 3-CCA was almost equivalent to that of thiodiazole copper at the same concentration. The results of SEM and TEM observation and conductivity tests showed that 3-CCA disrupted the integrity of the cell membrane and inhibited polar flagella growth. Furthermore, 3-CCA resulted in reductions in motility and extracellular exopolysaccharide (EPS) production of Ac while inhibiting the biofilm formation of Ac. These findings indicate that 3-CCA could be a promising natural lead compound against plant bacterial pathogens to explore novel antibacterial agents.
Collapse
Affiliation(s)
- Fa-Di Zhu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
| | - Xin Fu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huo-Chun Ye
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou, China
| | - Hai-Xin Ding
- Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Liu-Shuang Gu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
| | - Jing Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou, China
| | - Yong-Xia Guo
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China of Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Gang Feng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou, China
| |
Collapse
|
2
|
Chung J, Eisha S, Park S, Morris AJ, Martin I. How Three Self-Secreted Biofilm Exopolysaccharides of Pseudomonas aeruginosa, Psl, Pel, and Alginate, Can Each Be Exploited for Antibiotic Adjuvant Effects in Cystic Fibrosis Lung Infection. Int J Mol Sci 2023; 24:ijms24108709. [PMID: 37240055 DOI: 10.3390/ijms24108709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In cystic fibrosis (CF), pulmonary infection with Pseudomonas aeruginosa is a cause of increased morbidity and mortality, especially in patients for whom infection becomes chronic and there is reliance on long-term suppressive therapies. Current antimicrobials, though varied mechanistically and by mode of delivery, are inadequate not only due to their failure to eradicate infection but also because they do not halt the progression of lung function decline over time. One of the reasons for this failure is thought to be the biofilm mode of growth of P. aeruginosa, wherein self-secreted exopolysaccharides (EPSs) provide physical protection against antibiotics and an array of niches with resulting metabolic and phenotypic heterogeneity. The three biofilm-associated EPSs secreted by P. aeruginosa (alginate, Psl, and Pel) are each under investigation and are being exploited in ways that potentiate antibiotics. In this review, we describe the development and structure of P. aeruginosa biofilms before examining each EPS as a potential therapeutic target for combating pulmonary infection with P. aeruginosa in CF, with a particular focus on the current evidence for these emerging therapies and barriers to bringing these therapies into clinic.
Collapse
Affiliation(s)
- Jonathan Chung
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Shafinaz Eisha
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Subin Park
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Amanda J Morris
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Isaac Martin
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
3
|
Sparviero S, Dicke MD, Rosch TM, Castillo T, Salgado-Lugo H, Galindo E, Peña C, Büchs J. Yeast extracts from different manufacturers and supplementation of amino acids and micro elements reveal a remarkable impact on alginate production by A. vinelandii ATCC9046. Microb Cell Fact 2023; 22:99. [PMID: 37170263 PMCID: PMC10176783 DOI: 10.1186/s12934-023-02112-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND In research and production, reproducibility is a key factor, to meet high quality and safety standards and maintain productivity. For microbial fermentations, complex substrates and media components are often used. The complex media components can vary in composition, depending on the lot and manufacturing process. These variations can have an immense impact on the results of biological cultivations. The aim of this work was to investigate and characterize the influence of the complex media component yeast extract on cultivations of Azotobacter vinelandii under microaerobic conditions. Under these conditions, the organism produces the biopolymer alginate. The focus of the investigation was on the respiration activity, cell growth and alginate production. RESULTS Yeast extracts from 6 different manufacturers and 2 different lots from one manufacturer were evaluated. Significant differences on respiratory activity, growth and production were observed. Concentration variations of three different yeast extracts showed that the performance of poorly performing yeast extracts can be improved by simply increasing their concentration. On the other hand, the results with well-performing yeast extracts seem to reach a saturation, when their concentration is increased. Cultivations with poorly performing yeast extract were supplemented with grouped amino acids, single amino acids and micro elements. Beneficial results were obtained with the supplementation of copper sulphate, cysteine or a combination of both. Furthermore, a correlation between the accumulated oxygen transfer and the final viscosity (as a key performance indicator), was established. CONCLUSION The choice of yeast extract is crucial for A. vinelandii cultivations, to maintain reproducibility and comparability between cultivations. The proper use of specific yeast extracts allows the cultivation results to be specifically optimised. In addition, supplements can be applied to modify and improve the properties of the alginate. The results only scratch the surface of the underlying mechanisms, as they are not providing explanations on a molecular level. However, the findings show the potential of optimising media containing yeast extract for alginate production with A. vinelandii, as well as the potential of targeted supplementation of the media.
Collapse
Affiliation(s)
- Sarah Sparviero
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Max Daniel Dicke
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Tobias M Rosch
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Tania Castillo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Holjes Salgado-Lugo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
- Programa Investigadoras e Investigadores por México del CONACyT, Consejo Nacional de Ciencia y Tecnología, 03940, Mexico City, México
| | - Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Carlos Peña
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Jochen Büchs
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Inohara Y, Chunqi J, Mino S, Swabe T. A First Marine Vibrio Biocatalyst to Produce Ethanol from Alginate, which is a Rich Polysaccharide in Brown Macroalgal Biomass. Curr Microbiol 2023; 80:143. [PMID: 36941373 DOI: 10.1007/s00284-023-03250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/01/2023] [Indexed: 03/22/2023]
Abstract
The use of un-utilized feedstock and seawater for material and/or energy production using marine microbial catalysts is one potential option toward contributing to the development of a more sustainable society. Ethanol production from alginate, which is an oxidized polysaccharide present in brown seaweed, is extremely difficult due to the imbalance of reducing power in the microbial cells. Production of ethanol by such means has so far been unsuccessful using marine microbial biocatalysts. To produce ethanol from alginate, an alternative pathway consisting of a pyruvate decarboxylase gene (pdc) and an alcohol dehydrogenase II gene (adhII) derived from Zymomonas mobilis strain ZM4 was implemented into a metabolically engineered bacterium, Vibrio halioticoli, which is a representative marine alginate decomposer. No ethanol from alginate was produced in the wild-type V. halioticoli; however, the engineered V. halioticoli harboring the pdc and adhII operon (Pet operon), designated to the V. halioticoli (Pet), was able to produce 880 mg/L ethanol in maximum from 1.5% alginate for 72 h. The Pet operon also worked on the other marine alginolytic vibrios for ethanol production from alginate. This is the first case of ethanol production from alginate using marine bacterial biocatalysts under seawater-based media.
Collapse
Affiliation(s)
- Yutaro Inohara
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Jiang Chunqi
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tomoo Swabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| |
Collapse
|
5
|
Madsen M, Prestel A, Madland E, Westh P, Tøndervik A, Sletta H, Peters GHJ, Aachmann FL, Kragelund BB, Svensson B. Molecular insights into alginate β-lactoglobulin A multivalencies-The foundation for their amorphous aggregates and coacervation. Protein Sci 2023; 32:e4556. [PMID: 36571497 PMCID: PMC9847093 DOI: 10.1002/pro.4556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
For improved control of biomaterial property design, a better understanding of complex coacervation involving anionic polysaccharides and proteins is needed. Here, we address the initial steps in condensate formation of β-lactoglobulin A (β-LgA) with nine defined alginate oligosaccharides (AOSs) and describe their multivalent interactions in structural detail. Binding of AOSs containing four, five, or six uronic acid residues (UARs), either all mannuronate (M), all guluronate (G), or alternating M and G embodying the block structural components of alginates, was characterized by isothermal titration calorimetry, nuclear magnetic resonance spectroscopy (NMR), and molecular docking. β-LgA was highly multivalent exhibiting binding stoichiometries decreasing from five to two AOSs with increasing degree of polymerization (DP) and similar affinities in the mid micromolar range. The different AOS binding sites on β-LgA were identified by NMR chemical shift perturbation analyses and showed diverse compositions of charged, polar and hydrophobic residues. Distinct sites for the shorter AOSs merged to accommodate longer AOSs. The AOSs bound dynamically to β-LgA, as concluded from saturation transfer difference and 1 H-ligand-targeted NMR analyses. Molecular docking using Glide within the Schrödinger suite 2016-1 revealed the orientation of AOSs to only vary slightly at the preferred β-LgA binding site resulting in similar XP glide scores. The multivalency coupled with highly dynamic AOS binding with lack of confined conformations in the β-LgA complexes may help explain the first steps toward disordered β-LgA alginate coacervate structures.
Collapse
Affiliation(s)
- Mikkel Madsen
- Enzyme and Protein Chemistry, Department of Biotechnology and BiomedicineTechnical University of DenmarkKgs. LyngbyDenmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagen NDenmark
| | - Eva Madland
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food ScienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Peter Westh
- Interfacial Enzymology, Department of Biotechnology and BiomedicineTechnical University of DenmarkKgs. LyngbyDenmark
| | - Anne Tøndervik
- Department of Biotechnology and Nanomedicine, SINTEF IndustryTrondheimNorway
| | - Håvard Sletta
- Department of Biotechnology and Nanomedicine, SINTEF IndustryTrondheimNorway
| | - Günther H. J. Peters
- Biophysical and Biomedicinal Chemistry, Department of ChemistryTechnical University of DenmarkKgs. LyngbyDenmark
| | - Finn L. Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food ScienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagen NDenmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and BiomedicineTechnical University of DenmarkKgs. LyngbyDenmark
| |
Collapse
|
6
|
Determination and standardization of the kefiran extraction protocol for possible pharmacological applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Barzkar N, Sheng R, Sohail M, Jahromi ST, Babich O, Sukhikh S, Nahavandi R. Alginate Lyases from Marine Bacteria: An Enzyme Ocean for Sustainable Future. Molecules 2022; 27:3375. [PMID: 35684316 PMCID: PMC9181867 DOI: 10.3390/molecules27113375] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
The cell wall of brown algae contains alginate as a major constituent. This anionic polymer is a composite of β-d-mannuronate (M) and α-l-guluronate (G). Alginate can be degraded into oligosaccharides; both the polymer and its products exhibit antioxidative, antimicrobial, and immunomodulatory activities and, hence, find many commercial applications. Alginate is attacked by various enzymes, collectively termed alginate lyases, that degrade glycosidic bonds through β-elimination. Considering the abundance of brown algae in marine ecosystems, alginate is an important source of nutrients for marine organisms, and therefore, alginate lyases play a significant role in marine carbon recycling. Various marine microorganisms, particularly those that thrive in association with brown algae, have been reported as producers of alginate lyases. Conceivably, the marine-derived alginate lyases demonstrate salt tolerance, and many are activated in the presence of salts and, therefore, find applications in the food industry. Therefore, this review summarizes the structural and biochemical features of marine bacterial alginate lyases along with their applications. This comprehensive information can aid in the expansion of future prospects of alginate lyases.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Ruilong Sheng
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal;
- Department of Radiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 9145, Iran;
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 8361, Iran;
| |
Collapse
|
8
|
Hurtado A, Aljabali AAA, Mishra V, Tambuwala MM, Serrano-Aroca Á. Alginate: Enhancement Strategies for Advanced Applications. Int J Mol Sci 2022; 23:4486. [PMID: 35562876 PMCID: PMC9102972 DOI: 10.3390/ijms23094486] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is an excellent biodegradable and renewable material that is already used for a broad range of industrial applications, including advanced fields, such as biomedicine and bioengineering, due to its excellent biodegradable and biocompatible properties. This biopolymer can be produced from brown algae or a microorganism culture. This review presents the principles, chemical structures, gelation properties, chemical interactions, production, sterilization, purification, types, and alginate-based hydrogels developed so far. We present all of the advanced strategies used to remarkably enhance this biopolymer's physicochemical and biological characteristics in various forms, such as injectable gels, fibers, films, hydrogels, and scaffolds. Thus, we present here all of the material engineering enhancement approaches achieved so far in this biopolymer in terms of mechanical reinforcement, thermal and electrical performance, wettability, water sorption and diffusion, antimicrobial activity, in vivo and in vitro biological behavior, including toxicity, cell adhesion, proliferation, and differentiation, immunological response, biodegradation, porosity, and its use as scaffolds for tissue engineering applications. These improvements to overcome the drawbacks of the alginate biopolymer could exponentially increase the significant number of alginate applications that go from the paper industry to the bioprinting of organs.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
9
|
Kumawat TK, Kumawat V, Sharma S, Sharma V, Pandit A, Kandwani N, Biyani M. Sustainable Green Methods for the Extraction of Biopolymers. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Morinval A, Averous L. Systems Based on Biobased Thermoplastics: From Bioresources to Biodegradable Packaging Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.2012802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alexis Morinval
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg, Cedex 2, France
| | - Luc Averous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg, Cedex 2, France
| |
Collapse
|
11
|
Aavani F, Biazar E, Heshmatipour Z, Arabameri N, Kamalvand M, Nazbar A. Applications of bacteria and their derived biomaterials for repair and tissue regeneration. Regen Med 2021; 16:581-605. [PMID: 34030458 DOI: 10.2217/rme-2020-0116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microorganisms such as bacteria and their derived biopolymers can be used in biomaterials and tissue regeneration. Various methods have been applied to regenerate damaged tissues, but using probiotics and biomaterials derived from bacteria with improved economic-production efficiency and highly applicable properties can be a new solution in tissue regeneration. Bacteria can synthesize numerous types of biopolymers. These biopolymers possess many desirable properties such as biocompatibility and biodegradability, making them good candidates for tissue regeneration. Here, we reviewed different types of bacterial-derived biopolymers and highlight their applications for tissue regeneration.
Collapse
Affiliation(s)
- Farzaneh Aavani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), 15916-34311 Tehran, Iran
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Tissue Engineering Group, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Nasibeh Arabameri
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomedical Engineering, Tissue Engineering Group, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Abolfazl Nazbar
- National Cell Bank, Pasteur Institute of Iran, 13169-43551 Tehran, Iran
| |
Collapse
|
12
|
Comparative Proteomics of Marinobacter sp. TT1 Reveals Corexit Impacts on Hydrocarbon Metabolism, Chemotactic Motility, and Biofilm Formation. Microorganisms 2020; 9:microorganisms9010003. [PMID: 33374976 PMCID: PMC7822026 DOI: 10.3390/microorganisms9010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
The application of chemical dispersants during marine oil spills can affect the community composition and activity of marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or reduced biodegradation rates. However, a major knowledge gap exists regarding the mechanisms underlying these physiological effects. Here, we performed comparative proteomics of the Deepwater Horizon isolate Marinobacter sp. TT1 grown under different conditions. Strain TT1 received different carbon sources (pyruvate vs. n-hexadecane) with and without added dispersant (Corexit EC9500A). Additional treatments contained crude oil in the form of a water-accommodated fraction (WAF) or chemically-enhanced WAF (CEWAF; with Corexit). For the first time, we identified the proteins associated with alkane metabolism and alginate biosynthesis in strain TT1, report on its potential for aromatic hydrocarbon biodegradation and present a protein-based proposed metabolism of Corexit components as carbon substrates. Our findings revealed that Corexit exposure affects hydrocarbon metabolism, chemotactic motility, biofilm formation, and induces solvent tolerance mechanisms, like efflux pumps, in strain TT1. This study provides novel insights into dispersant impacts on microbial hydrocarbon degraders that should be taken into consideration for future oil spill response actions.
Collapse
|
13
|
Kabir II, Sorrell CC, Mofarah SS, Yang W, Yuen ACY, Nazir MT, Yeoh GH. Alginate/Polymer-Based Materials for Fire Retardancy: Synthesis, Structure, Properties, and Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1801726] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Imrana I. Kabir
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Charles C. Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Sajjad S. Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Wei Yang
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony Chun Yin Yuen
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Muhammad Tariq Nazir
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Guan Heng Yeoh
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
- Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, NSW, Australia
| |
Collapse
|
14
|
Use of Anionic Polysaccharides in the Development of 3D Bioprinting Technology. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132596] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three-dimensional (3D) bioprinting technology is now one of the best ways to generate new biomaterial for potential biomedical applications. Significant progress in this field since two decades ago has pointed the way toward use of natural biopolymers such as polysaccharides. Generally, these biopolymers such as alginate possess specific reactive groups such as carboxylate able to be chemically or enzymatically functionalized to generate very interesting hydrogel structures with biomedical applications in cell generation. This present review gives an overview of the main natural anionic polysaccharides and focuses on the description of the 3D bioprinting concept with the recent development of bioprinting processes using alginate as polysaccharide.
Collapse
|
15
|
Rudenko N, Golovchenko M, Kybicova K, Vancova M. Metamorphoses of Lyme disease spirochetes: phenomenon of Borrelia persisters. Parasit Vectors 2019; 12:237. [PMID: 31097026 PMCID: PMC6521364 DOI: 10.1186/s13071-019-3495-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
The survival of spirochetes from the Borrelia burgdorferi (sensu lato) complex in a hostile environment is achieved by the regulation of differential gene expression in response to changes in temperature, salts, nutrient content, acidity fluctuation, multiple host or vector dependent factors, and leads to the formation of dormant subpopulations of cells. From the other side, alterations in the level of gene expression in response to antibiotic pressure leads to the establishment of a persisters subpopulation. Both subpopulations represent the cells in different physiological states. "Dormancy" and "persistence" do share some similarities, e.g. both represent cells with low metabolic activity that can exist for extended periods without replication, both constitute populations with different gene expression profiles and both differ significantly from replicating forms of spirochetes. Persisters are elusive, present in low numbers, morphologically heterogeneous, multi-drug-tolerant cells that can change with the environment. The definition of "persisters" substituted the originally-used term "survivors", referring to the small bacterial population of Staphylococcus that survived killing by penicillin. The phenomenon of persisters is present in almost all bacterial species; however, the reasons why Borrelia persisters form are poorly understood. Persisters can adopt varying sizes and shapes, changing from well-known forms to altered morphologies. They are capable of forming round bodies, L-form bacteria, microcolonies or biofilms-like aggregates, which remarkably change the response of Borrelia to hostile environments. Persisters remain viable despite aggressive antibiotic challenge and are able to reversibly convert into motile forms in a favorable growth environment. Persisters are present in significant numbers in biofilms, which has led to the explanation of biofilm tolerance to antibiotics. Considering that biofilms are associated with numerous chronic diseases through their resilient presence in the human body, it is not surprising that interest in persisting cells has consequently accelerated. Certain diseases caused by pathogenic bacteria (e.g. tuberculosis, syphilis or leprosy) are commonly chronic in nature and often recur despite antibiotic treatment. Three decades of basic and clinical research have not yet provided a definite answer to the question: is there a connection between persisting spirochetes and recurrence of Lyme disease in patients?
Collapse
Affiliation(s)
- Natalie Rudenko
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Maryna Golovchenko
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Katerina Kybicova
- National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic
| | - Marie Vancova
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
16
|
Yasir M, Willcox MDP, Dutta D. Action of Antimicrobial Peptides against Bacterial Biofilms. MATERIALS 2018; 11:ma11122468. [PMID: 30563067 PMCID: PMC6317029 DOI: 10.3390/ma11122468] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
Microbes are known to colonize surfaces and form biofilms. These biofilms are communities of microbes encased in a self-produced matrix that often contains polysaccharides, DNA and proteins. Antimicrobial peptides (AMPs) have been used to control the formation and to eradicate mature biofilms. Naturally occurring or synthetic antimicrobial peptides have been shown to prevent microbial colonization of surfaces, to kill bacteria in biofilms and to disrupt the biofilm structure. This review systemically analyzed published data since 1970 to summarize the possible anti-biofilm mechanisms of AMPs. One hundred and sixty-two published reports were initially selected for this review following searches using the criteria ‘antimicrobial peptide’ OR ‘peptide’ AND ‘mechanism of action’ AND ‘biofilm’ OR ‘antibiofilm’ in the databases PubMed; Scopus; Web of Science; MEDLINE; and Cochrane Library. Studies that investigated anti-biofilm activities without describing the possible mechanisms were removed from the analysis. A total of 17 original reports were included which have articulated the mechanism of antimicrobial action of AMPs against biofilms. The major anti-biofilm mechanisms of antimicrobial peptides are: (1) disruption or degradation of the membrane potential of biofilm embedded cells; (2) interruption of bacterial cell signaling systems; (3) degradation of the polysaccharide and biofilm matrix; (4) inhibition of the alarmone system to avoid the bacterial stringent response; (5) downregulation of genes responsible for biofilm formation and transportation of binding proteins.
Collapse
Affiliation(s)
- Muhammad Yasir
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
17
|
Urtuvia V, Maturana N, Acevedo F, Peña C, Díaz-Barrera A. Bacterial alginate production: an overview of its biosynthesis and potential industrial production. World J Microbiol Biotechnol 2017; 33:198. [DOI: 10.1007/s11274-017-2363-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/01/2017] [Indexed: 10/18/2022]
|
18
|
Miles JR, Laughlin TD, Sargus-Patino CN, Pannier AK. In vitro porcine blastocyst development in three-dimensional alginate hydrogels. Mol Reprod Dev 2017; 84:775-787. [PMID: 28407335 DOI: 10.1002/mrd.22814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/07/2017] [Indexed: 11/08/2022]
Abstract
Appropriate embryonic and fetal development significantly impact pregnancy success and, therefore, the efficiency of swine production. The pre-implantation period of porcine pregnancy is characterized by several developmental hallmarks, which are initiated by the dramatic morphological change that occurs as pig blastocysts elongate from spherical to filamentous blastocysts. Deficiencies in blastocyst elongation contribute to approximately 20% of embryonic loss, and have a direct influence on within-litter birth weight variation. Although factors identified within the uterine environment may play a role in blastocyst elongation, little is known about the exact mechanisms by which porcine (or other species') blastocysts initiate and progress through the elongation process. This is partly due to the difficulty of replicating elongation in vitro, which would allow for its study in a controlled environment and in real-time. We developed a three dimensional (3-D) culture system using alginate hydrogel matrices that can encapsulate pig blastocysts, maintain viability and blastocyst architecture, and facilitate reproducible morphological changes with corresponding expression of steroidogenic enzyme transcripts and estrogen production, consistent with the initiation of elongation in vivo. This review highlights key aspects of the pre-implantation period of porcine pregnancy and the difficulty of studying blastocyst elongation in vivo or by using in vitro systems. This review also provides insights on the utility of 3-D hydrogels to study blastocyst elongation continuously and in real-time as a complementary and confirmatory approach to in vivo analysis.
Collapse
Affiliation(s)
- Jeremy R Miles
- USDA, U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska
| | - Taylor D Laughlin
- Department of Biological Systems Engineering, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska
| | - Catherine N Sargus-Patino
- Department of Biological Systems Engineering, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska
| |
Collapse
|
19
|
Ghadam P, Akhlaghi F, Ali AA. One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:467-473. [PMID: 28656080 PMCID: PMC5478773 DOI: 10.22038/ijbms.2017.8668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/12/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Pseudomonas aeruginosa is a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Alginate lyase gene (algl) is a member of alginate producing operon which by glycosidase activity produces primer for other enzymes in this cluster. Also this activity can destroy the extracellular alginate; therefore this enzyme participates in alginate production and destruction pathway. Alginate lyase causes detachment of a biofilm by reducing its adhesion to the surfaces, and increases phagocytosis and antibiotic susceptibility. In this study, alginate lyase was purified in just one step and its properties were investigated. MATERIALS AND METHODS The purification was done by affinity chromatography, analysed by SDS-PAGE, and its effect on P. aeruginosa biofilms was surveyed by micro titer plate assay and SEM. The substrate specificity of the enzyme was determined by PCR. RESULTS Alginate lyase from isolate 48 was purified in one step. It is more thermally resistant than alginate lyase from Pseudomonas aeruginosa PAO1 and poly M, poly G and poly MG alginate were the substrate of this enzyme. Moreover, it has an eradication effect on biofilms from P. aeruginosa 48 and PAO1. CONCLUSION In this study an alginate lyase with many characteristics suitable in medicine such as thermal stability, effective on poly M alginate, and bacterial biofilm destructive was introduced and purified.
Collapse
Affiliation(s)
- Parinaz Ghadam
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Fatemeh Akhlaghi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ahya Abdi Ali
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
20
|
Genome Shuffling of Stenotrophomonas maltophilia OK-5 for Improving the Degradation of Explosive RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine). Curr Microbiol 2016; 74:268-276. [DOI: 10.1007/s00284-016-1179-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
|
21
|
Xu B, Ju Y, Soukup RJ, Ramsey DM, Fishel R, Wysocki VH, Wozniak DJ. The Pseudomonas aeruginosa AmrZ C-terminal domain mediates tetramerization and is required for its activator and repressor functions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:85-90. [PMID: 26549743 PMCID: PMC4769699 DOI: 10.1111/1758-2229.12354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/01/2015] [Indexed: 05/14/2023]
Abstract
Pseudomonas aeruginosa is an important bacterial opportunistic pathogen, presenting a significant threat towards individuals with underlying diseases such as cystic fibrosis. The transcription factor AmrZ regulates expression of multiple P. aeruginosa virulence factors. AmrZ belongs to the ribbon-helix-helix protein superfamily, in which many members function as dimers, yet others form higher order oligomers. In this study, four independent approaches were undertaken and demonstrated that the primary AmrZ form in solution is tetrameric. Deletion of the AmrZ C-terminal domain leads to loss of tetramerization and reduced DNA binding to both activated and repressed target promoters. Additionally, the C-terminal domain is essential for efficient AmrZ-mediated activation and repression of its targets.
Collapse
Affiliation(s)
- Binjie Xu
- Department of Microbiology, The Ohio State University, Columbus, Ohio, 43210
- Department of Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, 43210
| | - Yue Ju
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Randal J. Soukup
- Department of Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, 43210
| | - Deborah M. Ramsey
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Richard Fishel
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Daniel J. Wozniak
- Department of Microbiology, The Ohio State University, Columbus, Ohio, 43210
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, 43210
- Department of Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, 43210
- All correspondence should be addressed to Daniel J. Wozniak, . Address: BRT 704, 460 W. 12 Ave, Columbus, OH, 43210. Phone: 614-247-7629; Fax: 614-2929-616
| |
Collapse
|
22
|
Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2016; 7:493-512. [PMID: 25875875 DOI: 10.4155/fmc.15.6] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biofilms are communities of microorganisms that are attached to a surface and play a significant role in the persistence of bacterial infections. Bacteria within a biofilm are several orders of magnitude more resistant to antibiotics, compared with planktonic bacteria. Thus far, no drugs are in clinical use that specifically target bacterial biofilms. This is probably because until recently the molecular details of biofilm formation were poorly understood. Bacteria integrate information from the environment, such as quorum-sensing autoinducers and nutrients, into appropriate biofilm-related gene expression, and the identity of the key players, such as cyclic dinucleotide second messengers and regulatory RNAs are beginning to be uncovered. Herein, we highlight the current understanding of the processes that lead to biofilm formation in many bacteria.
Collapse
|
23
|
Alginate Biosynthesis inAzotobacter vinelandii: Overview of Molecular Mechanisms in Connection with the Oxygen Availability. INT J POLYM SCI 2016. [DOI: 10.1155/2016/2062360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Gram-negative bacteriumAzotobacter vinelandiican synthetize the biopolymer alginate that has material properties appropriate for plenty of applications in industry as well as in medicine. In order to settle the foundation for improving alginate production without compromising its quality, a better understanding of the polymer biosynthesis and the mechanism of regulation during fermentation processes is necessary. This knowledge is crucial for the development of novel production strategies. Here, we highlight the key aspects of alginate biosynthesis that can lead to producing an alginate with specific material properties with particular focus on the role of oxygen availability linked with the molecular mechanisms involved in the alginate production.
Collapse
|
24
|
Kim HS, Chu YJ, Park CH, Lee EY, Kim HS. Site-Directed Mutagenesis-Based Functional Analysis and Characterization of Endolytic Lyase Activity of N- and C-Terminal Domains of a Novel Oligoalginate Lyase from Sphingomonas sp. MJ-3 Possessing Exolytic Lyase Activity in the Intact Enzyme. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:782-792. [PMID: 26342491 DOI: 10.1007/s10126-015-9658-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/14/2015] [Indexed: 06/05/2023]
Abstract
A novel oligoalginate lyase from a marine bacterium, Sphingomonas sp. strain MJ-3, exhibited a unique alginate degradation activity that completely depolymerizes alginate to monomers through the formation of oligomers. In order to reveal the reason why MJ-3 oligoalginate can exhibit both endolytic and exolytic alginate lyase activities, ten mutants were developed and characterized on the basis of homology modeling. When the recombinant cell lysates containing the mutated proteins of MJ-3 oligoalginate lyase were allowed to react with alginate, the Asn177Ala, His178Ala, Tyr234Phe, His389Ala, and Tyr426Phe mutants showed reduced oligoalginate lyase activity, whereas the Arg236Ala mutant exhibited endolytic activity. Interestingly, the overexpressed Arg236Ala protein (79.6 kDa) was proteolytically cleaved into two fragments, i.e., the N-terminal 32.0-kDa and the C-terminal 47.6-kDa fragments. Both the purified N-terminal and C-terminal fragments showed endolytic lyase activity. They preferentially degraded a heteropolymeric (polyMG) block than poly-β-D-mannuronate (polyM) or poly-α-L-guluronate (polyG) blocks. These results suggest that the oligoalginate lyase activity of MJ-3 enzyme is derived from the cooperative interaction between the N- and C-terminal endolytic alginate lyase domains in the intact enzyme.
Collapse
Affiliation(s)
- Hae Sol Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, 608-736, Republic of Korea
| | - Yu Jeong Chu
- Department of Food Science and Biotechnology, Kyungsung University, Busan, 608-736, Republic of Korea
| | - Chang-Ho Park
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 446-701, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 446-701, Republic of Korea.
| | - Hee Sook Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, 608-736, Republic of Korea.
| |
Collapse
|
25
|
Feng K, Li R, Chen Y, Zhao B, Yin T. Sequencing and Analysis of the Pseudomonas fluorescens GcM5-1A Genome: A Pathogen Living in the Surface Coat of Bursaphelenchus xylophilus. PLoS One 2015; 10:e0141515. [PMID: 26517369 PMCID: PMC4627797 DOI: 10.1371/journal.pone.0141515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/07/2015] [Indexed: 12/27/2022] Open
Abstract
It is known that several bacteria are adherent to the surface coat of pine wood nematode (Bursaphelenchus xylophilus), but their function and role in the pathogenesis of pine wilt disease remains debatable. The Pseudomonas fluorescens GcM5-1A is a bacterium isolated from the surface coat of pine wood nematodes. In previous studies, GcM5-1A was evident in connection with the pathogenicity of pine wilt disease. In this study, we report the de novo sequencing of the GcM5-1A genome. A 600-Mb collection of high-quality reads was obtained and assembled into sequence contigs spanning a 6.01-Mb length. Sequence annotation predicted 5,413 open reading frames, of which 2,988 were homologous to genes in the other four sequenced P. fluorescens isolates (SBW25, WH6, Pf0-1 and Pf-5) and 1,137 were unique to GcM5-1A. Phylogenetic studies and genome comparison revealed that GcM5-1A is more closely related to SBW25 and WH6 isolates than to Pf0-1 and Pf-5 isolates. Towards study of pathogenesis, we identified 79 candidate virulence factors in the genome of GcM5-1A, including the Alg, Fl, Waa gene families, and genes coding the major pathogenic protein fliC. In addition, genes for a complete T3SS system were identified in the genome of GcM5-1A. Such systems have proved to play a critical role in subverting and colonizing the host organisms of many gram-negative pathogenic bacteria. Although the functions of the candidate virulence factors need yet to be deciphered experimentally, the availability of this genome provides a basic platform to obtain informative clues to be addressed in future studies by the pine wilt disease research community.
Collapse
Affiliation(s)
- Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Ronggui Li
- Department of Biology, Qingdao University, Qingdao, 266071, China
| | - Yingnan Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Boguang Zhao
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- * E-mail: (BZ); (TY)
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- * E-mail: (BZ); (TY)
| |
Collapse
|
26
|
Sodium houttuyfonate inhibits biofilm formation and alginate biosynthesis-associated gene expression in a clinical strain of Pseudomonas aeruginosa in vitro. Exp Ther Med 2015; 10:753-758. [PMID: 26622388 DOI: 10.3892/etm.2015.2562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 05/08/2015] [Indexed: 11/05/2022] Open
Abstract
The increasing multidrug resistance of Pseudomonas aeruginosa has become a serious public-health problem. In the present study, the inhibitory activities of sodium houttuyfonate (SH) against biofilm formation and alginate production in a clinical strain of P.aeruginosa (AH16) were investigated in vitro using crystal violet dying and standard curve methods, respectively. The cellular morphology of P. aeruginosa treated with SH was observed using a scanning electron microscope. Furthermore, reverse transcription-quantitative polymerase chain reaction was used to identify differences in the expression levels of genes associated with alginate biosynthesis as a result of the SH treatment. The results indicated that SH significantly inhibited biofilm formation, and decreased the levels of the primary biofilm constituent, alginate, in P. aeruginosa AH16 at various stages of biofilm development. In addition, scanning electron microscopy observations demonstrated that SH markedly altered the cellular morphology and biofilm structure of P. aeruginosa. Furthermore, the results from the reverse transcription-quantitative polymerase chain reaction analysis indicated that SH inhibited biofilm formation by mitigating the expression of the algD and algR genes, which are associated with alginate biosynthesis. Therefore, the present study has provided novel insights into the potent effects and underlying mechanisms of SH-induced inhibition of biofilm formation in a clinical strain of P. aeruginosa.
Collapse
|
27
|
Laganà P, Caruso G, Mazzù F, Caruso G, Parisi S, Santi Delia A. Brief Notes About Biofilms. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2015. [DOI: 10.1007/978-3-319-20559-5_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Characterization of the algC gene expression pattern in the multidrug resistant Acinetobacter baumannii AIIMS 7 and correlation with biofilm development on abiotic surface. ScientificWorldJournal 2014; 2014:593546. [PMID: 25544957 PMCID: PMC4269089 DOI: 10.1155/2014/593546] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 01/06/2023] Open
Abstract
Relative quantification of algC gene expression was evaluated in the multidrug resistant strain Acinetobacter baumannii AIIMS 7 biofilm (3 to 96 h, on polystyrene surface) compared to the planktonic counterparts. Comparison revealed differential algC expression pattern with maximum 81.59-fold increase in biofilm cells versus 3.24-fold in planktonic cells (P < 0.05). Expression levels strongly correlated with specific biofilm stages (scale of 3 to 96 h), coinciding maximum at initial surface attachment stage (9 h) and biofilm maturation stage (48 h). Cloning, heterologous expression, and bioinformatics analyses indicated algC gene product as the bifunctional enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) of ∼ 53 kDa size, which augmented biofilms significantly in algC clones compared to controls (lacking algC gene), further localized by scanning electron microscopy. Moreover, molecular dynamics analysis on the three-dimensional structure of PMM/PGM (simulated up to 10 ns) revealed enzyme structure as stable and similar to that in P. aeruginosa (synthesis of alginate and lipopolysaccharide core) and involved in constitution of biofilm EPS (extracellular polymeric substances). Our observation on differential expression pattern of algC having strong correlation with important biofilm stages, scanning electron-microscopic evidence of biofilm augmentation taken together with predictive enzyme functions via molecular dynamic (MD) simulation, proposes a new basis of A. baumannii AIIMS 7 biofilm development on inanimate surfaces.
Collapse
|
29
|
Baker P, Ricer T, Moynihan PJ, Kitova EN, Walvoort MTC, Little DJ, Whitney JC, Dawson K, Weadge JT, Robinson H, Ohman DE, Codée JDC, Klassen JS, Clarke AJ, Howell PL. P. aeruginosa SGNH hydrolase-like proteins AlgJ and AlgX have similar topology but separate and distinct roles in alginate acetylation. PLoS Pathog 2014; 10:e1004334. [PMID: 25165982 PMCID: PMC4148444 DOI: 10.1371/journal.ppat.1004334] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/08/2014] [Indexed: 02/05/2023] Open
Abstract
The O-acetylation of polysaccharides is a common modification used by pathogenic organisms to protect against external forces. Pseudomonas aeruginosa secretes the anionic, O-acetylated exopolysaccharide alginate during chronic infection in the lungs of cystic fibrosis patients to form the major constituent of a protective biofilm matrix. Four proteins have been implicated in the O-acetylation of alginate, AlgIJF and AlgX. To probe the biological function of AlgJ, we determined its structure to 1.83 Å resolution. AlgJ is a SGNH hydrolase-like protein, which while structurally similar to the N-terminal domain of AlgX exhibits a distinctly different electrostatic surface potential. Consistent with other SGNH hydrolases, we identified a conserved catalytic triad composed of D190, H192 and S288 and demonstrated that AlgJ exhibits acetylesterase activity in vitro. Residues in the AlgJ signature motifs were found to form an extensive network of interactions that are critical for O-acetylation of alginate in vivo. Using two different electrospray ionization mass spectrometry (ESI-MS) assays we compared the abilities of AlgJ and AlgX to bind and acetylate alginate. Binding studies using defined length polymannuronic acid revealed that AlgJ exhibits either weak or no detectable polymer binding while AlgX binds polymannuronic acid specifically in a length-dependent manner. Additionally, AlgX was capable of utilizing the surrogate acetyl-donor 4-nitrophenyl acetate to catalyze the O-acetylation of polymannuronic acid. Our results, combined with previously published in vivo data, suggest that the annotated O-acetyltransferases AlgJ and AlgX have separate and distinct roles in O-acetylation. Our refined model for alginate acetylation places AlgX as the terminal acetlytransferase and provides a rationale for the variability in the number of proteins required for polysaccharide O-acetylation. Bacteria utilize many defense strategies to protect themselves against external forces. One mechanism used by the bacterium Pseudomonas aeruginosa is the production of the long sugar polymer alginate. The bacteria use this polymer to form a biofilm – a barrier to protect against antibiotics and the host immune response. During its biosynthesis alginate undergoes a chemical modification whereby acetate is added to the polymer. Acetylation of alginate is important as this modification makes the bacterial biofilm less susceptible to recognition and clearance by the host immune system. In this paper we present the atomic structure of AlgJ; one of four proteins required for O-acetylation of the polymer. AlgJ is structurally similar to AlgX, which we have shown previously is also required for alginate acetylation. To understand why both enzymes are required for O-acetylation we functionally characterized the proteins and found that although AlgJ exhibits acetylesterase activity – catalyzing the removal of acetyl groups from a surrogate substrate – it does not bind to short mannuornic acid polymers. In contrast, AlgX bound alginate in a length-dependent manner and was capable of transfering acetate from a surrogate substrate onto alginate. This has allowed us to not only understand how acetate is added to alginate, but increases our understanding of how acetate is added to other bacterial sugar polymers.
Collapse
Affiliation(s)
- Perrin Baker
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tyler Ricer
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Patrick J. Moynihan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Dustin J. Little
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John C. Whitney
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen Dawson
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Joel T. Weadge
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Howard Robinson
- Photon Sciences Division, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Dennis E. Ohman
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center and McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Anthony J. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - P. Lynne Howell
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
30
|
Laverty G, Gorman SP, Gilmore BF. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation. Pathogens 2014; 3:596-632. [PMID: 25438014 PMCID: PMC4243431 DOI: 10.3390/pathogens3030596] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.
Collapse
Affiliation(s)
- Garry Laverty
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Sean P Gorman
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Brendan F Gilmore
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
31
|
Lee BU, Baek H, Oh KH. Use of an algD promoter-driven expression system for the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Pseudomonas sp. HK-6. Curr Microbiol 2013; 67:480-6. [PMID: 23715665 DOI: 10.1007/s00284-013-0387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
Pseudomonas sp. HK-6 is able to utilize hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a sole nitrogen source. The HK-6 strain was stimulated to produce an exopolymer, mainly alginate, as a stress response when grown in LB broth containing RDX, synthesizing ~230 μg/mL after 48 h. The algA mRNA levels in HK-6 increased by 7-8-fold after 2-6 h of exposure to 0.1 mM RDX, as measured by RT-qPCR. HK-6 was able to degrade ~25 % of 0.1 mM RDX after 20 days and 60 % after 50 days, whereas the pnrB null mutant only degraded less than 1 % after 50 days. The introduction of an algD promoter-pnrB gene fusion into the pnrB mutant fully restored RDX-degradation capability. To facilitate a study of PnrB action on RDX, a His6-PnrB fusion protein was heterologously expressed in E. coli BL21 cells, and the enzymatic activity on RDX was assayed by measuring the decrease in absorbance at 340 nm due to NADH oxidation. At the fixed condition of 0.1 mM RDX, 0.2 mM NADH, and 1 μg His6-PnrB, the absorbance at 340 nM gradually decreased and reached to its minimum value after 30 min. However, calculating the V max and K m values of PnrB for RDX was challenging due to extremely low solubility of RDX in water. The results clearly indicate the potential use of the algD promoter in studies of some genes in Pseudomonas species.
Collapse
Affiliation(s)
- Bheong-Uk Lee
- Divison of Biological Sciences, Kosin University, Busan 606-701, Republic of Korea
| | | | | |
Collapse
|
32
|
Xue Z, Seo Y. Impact of chlorine disinfection on redistribution of cell clusters from biofilms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:1365-1372. [PMID: 23256749 DOI: 10.1021/es304113e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Detachment and redistribution are essential stages in the biofilm life cycle; however they are the least studied, especially in the presence of disinfectant. In this study, three Pseudomonas aeruginosa strains (wild-type, alginate-deficient mutant, and alginate-overproducing mutant) were used to cultivate three single strain biofilms in flowcell systems. Both physiochemical and biological properties of cells detached from different growth stages of biofilm and their ability to reattach on new surfaces were analyzed and compared. The presence of chlorine influenced bacterial surface functional groups and further prevented the transition from reversible to irreversible attachment by interrupting hydrogen bonding, polymeric interaction and hydrophobic interaction. Even though chlorine inhibited bacterial attachment, the detached clusters from all tested strains were still able to survive and immobilize themselves downstream, forming viable new biofilms. Furthermore, alginate EPS production increased the size and surface charge of detached clusters as well as their resistance to chlorine disinfection. The redistributed biofilms of alginate-producing strains had a higher amount of total biomass, greater biofilm thickness, and more complex structural properties (both with and without chlorine conditions) and elevated viability (95% viable ratio) in the presence of chlorine when compared to the alginate-deficient strain (54% viable ratio).
Collapse
Affiliation(s)
- Zheng Xue
- Department of Civil Engineering, University of Toledo, Toledo, Ohio, United States
| | | |
Collapse
|
33
|
Allydice-Francis K, Brown PD. Diversity of Antimicrobial Resistance and Virulence Determinants in Pseudomonas aeruginosa Associated with Fresh Vegetables. Int J Microbiol 2012; 2012:426241. [PMID: 23213336 PMCID: PMC3508576 DOI: 10.1155/2012/426241] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022] Open
Abstract
With the increased focus on healthy eating and consuming raw vegetables, this study assessed the extent of contamination of fresh vegetables by Pseudomonas aeruginosa in Jamaica and examined the antibiotic susceptibility profiles and the presence of various virulence associated determinants of P. aeruginosa. Analyses indicated that vegetables from retail markets and supermarkets were widely contaminated by P. aeruginosa; produce from markets were more frequently contaminated, but the difference was not significant. Lettuce and carrots were the most frequently contaminated vegetables, while tomatoes were the least. Pigment production (Pyoverdine, pyocyanin, pyomelanin and pyorubin), fluorescein and alginate were common in these isolates. Imipenem, gentamicin and ciprofloxacin were the most inhibitory antimicrobial agents. However, isolates were resistant or showed reduced susceptibility to ampicillin, chloramphenicol, sulphamethoxazole/trimethoprim and aztreonam, and up to 35% of the isolates were resistant to four antimicrobial agents. As many as 30% of the isolates were positive for the fpv1 gene, and 13% had multiple genes. Sixty-four percent of the isolates harboured an exoenzyme gene (exoS, exoT, exoU or exoY), and multiple exo genes were common. We conclude that P. aeruginosa is a major contaminant of fresh vegetables, which might be a source of infection for susceptible persons within the community.
Collapse
Affiliation(s)
| | - Paul D. Brown
- Biochemistry Section, Department of Basic Medical Sciences, University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
34
|
Gauri SS, Mandal SM, Pati BR. Impact of Azotobacter exopolysaccharides on sustainable agriculture. Appl Microbiol Biotechnol 2012; 95:331-8. [PMID: 22615056 DOI: 10.1007/s00253-012-4159-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/04/2012] [Accepted: 05/04/2012] [Indexed: 11/25/2022]
Abstract
Recently, increasing attention have lead to search other avenue of biofertilizers with multipurpose activities as a manner of sustainable soil health to improve the plant productivity. Azotobacter have been universally accepted as a major inoculum used in biofertilizer to restore the nitrogen level into cultivated field. Azotobacter is well characterized for their profuse production of exopolysaccharides (EPS). Several reviews on biogenesis and multifunctional role of Azotobacter EPS have been documented with special emphasis on industrial applications. But the impact of Azotobacter EPS in plant growth promotion has not received adequate attention. This review outlines the evidence that demonstrates not only the contribution of Azotobacter EPS in global nutrient cycle but also help to compete successfully in different adverse ecological and edaphic conditions. This also focuses on new insights and concepts of Azotobacter EPS which have positive effects caused by the biofilm formation on overall plant growth promotion with other PGPRs. In addition, their potentials in agricultural improvement are also discussed. Recent data realized that Azotobacter EPS have an immense agro-economical importance including the survivability and maintenance of microbial community in their habitat. This leads us to confirm that the next generation Azotobacter inoculum with high yielding EPS and high nitrogen fixing ability can be utilized to satisfy the future demand of augmented crop production attributed to increase plant growth promoting agents.
Collapse
Affiliation(s)
- Samiran S Gauri
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | | | | |
Collapse
|
35
|
Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 2012; 33:3279-305. [DOI: 10.1016/j.biomaterials.2012.01.007] [Citation(s) in RCA: 983] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/04/2012] [Indexed: 12/14/2022]
|
36
|
Tran VB, Sung YS, Fleiszig SM, Evans DJ, Radke C. Dynamics of Pseudomonas aeruginosa association with anionic hydrogel surfaces in the presence of aqueous divalent-cation salts. J Colloid Interface Sci 2011; 362:58-66. [PMID: 21723562 PMCID: PMC3789522 DOI: 10.1016/j.jcis.2011.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/03/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
Abstract
Binding of bacteria to solid surfaces is complex with many aspects incompletely understood. We investigate Pseudomonas aeruginosa uptake kinetics onto hydrogel surfaces representative of soft-contact lenses made of nonionic poly(2-hydroxyethylmethacrylate) (p-HEMA), anionic poly(methacrylic acid) (p-MAA), and anionic poly(acrylic acid) (p-AA). Using a parallel-plate flow cell under phase-contrast microscopy, we document a kinetic "burst" at the anionic hydrogel surface: dilute aqueous P. aeruginosa first rapidly accumulates and then rapidly depletes. Upon continuing flow, divalent cations in the suspending solution sorb into the hydrogel network causing the previously surface-accumulated bacteria to desorb. The number of bacteria eventually bound to the surface is low compared to the nonionic p-HEMA hydrogel. We propose that the kinetic burst is due to reversible divalent-cation bridging between the anionic bacteria and the negatively charged hydrogel surface. The number of surface bridging sites diminishes as divalent cations impregnate into and collapse the gel. P. aeruginosa association with the surface then falls. Low eventual binding of P. aeruginosa to the anionic hydrogel is ascribed to increased surface hydrophilicity compared to the counterpart nonionic p-HEMA hydrogel.
Collapse
Affiliation(s)
- Victoria B. Tran
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, United States
| | - Ye Suel Sung
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, United States
| | - Suzanne M.J. Fleiszig
- School of Optometry, University of California, Berkeley, CA 94720, United States
- Graduate Group in Vision Science, University of California, Berkeley, CA 94720, United States
- Graduate Groups in Plant and Microbial Biology, and Infectious Disease and Immunity, University of California, Berkeley, CA 94720, United States
| | - David J. Evans
- School of Optometry, University of California, Berkeley, CA 94720, United States
- Touro University – California, College of Pharmacy, Vallejo, CA 94592, United States
| | - C.J. Radke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, United States
- Graduate Group in Vision Science, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
37
|
Structural basis for alginate secretion across the bacterial outer membrane. Proc Natl Acad Sci U S A 2011; 108:13083-8. [PMID: 21778407 DOI: 10.1073/pnas.1104984108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 Å crystal structure of AlgE, which reveals a monomeric 18-stranded β-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 (ΔT8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or ΔL2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with ΔT8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.
Collapse
|
38
|
Fox SC, Li B, Xu D, Edgar KJ. Regioselective esterification and etherification of cellulose: a review. Biomacromolecules 2011; 12:1956-72. [PMID: 21524055 DOI: 10.1021/bm200260d] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deep understanding of the structure-property relationships of polysaccharide derivatives depends on the ability to control the position of the substituents around the monosaccharide ring and along the chain. Equally important is the ability to analyze position of substitution. Historically, both synthetic control and analysis of regiochemistry have been very difficult for cellulose derivatives, as for most other polysaccharide derivatives. With the advent of cellulose solvents that are suitable for chemical transformations, it has become possible to carry out cellulose derivatization under conditions sufficiently mild to permit increasingly complete regiochemical control, particularly with regard to the position of the substituents around the anhydroglucose ring. In addition, new techniques for forming cellulose and its derivatives from monomers, either by enzyme-catalyzed processes or chemical polymerization, permit us to address new frontiers in regiochemical control. We review these exciting developments in regiocontrolled synthesis of cellulose derivatives and their implications for in-depth structure-property studies.
Collapse
Affiliation(s)
- S Carter Fox
- Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
39
|
Tielen P, Narten M, Rosin N, Biegler I, Haddad I, Hogardt M, Neubauer R, Schobert M, Wiehlmann L, Jahn D. Genotypic and phenotypic characterization of Pseudomonas aeruginosa isolates from urinary tract infections. Int J Med Microbiol 2011; 301:282-92. [DOI: 10.1016/j.ijmm.2010.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/27/2010] [Accepted: 10/31/2010] [Indexed: 10/18/2022] Open
|
40
|
Qi M, Wang D, Bradley CA, Zhao Y. Genome sequence analyses of Pseudomonas savastanoi pv. glycinea and subtractive hybridization-based comparative genomics with nine pseudomonads. PLoS One 2011; 6:e16451. [PMID: 21304594 PMCID: PMC3029378 DOI: 10.1371/journal.pone.0016451] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/16/2010] [Indexed: 11/19/2022] Open
Abstract
Bacterial blight, caused by Pseudomonas savastanoi pv. glycinea (Psg), is a common disease of soybean. In an effort to compare a current field isolate with one isolated in the early 1960s, the genomes of two Psg strains, race 4 and B076, were sequenced using 454 pyrosequencing. The genomes of both Psg strains share more than 4,900 highly conserved genes, indicating very low genetic diversity between Psg genomes. Though conserved, genome rearrangements and recombination events occur commonly within the two Psg genomes. When compared to each other, 437 and 163 specific genes were identified in B076 and race 4, respectively. Most specific genes are plasmid-borne, indicating that acquisition and maintenance of plasmids may represent a major mechanism to change the genetic composition of the genome and even acquire new virulence factors. Type three secretion gene clusters of Psg strains are near identical with that of P. savastanoi pv. phaseolicola (Pph) strain 1448A and they shared 20 common effector genes. Furthermore, the coronatine biosynthetic cluster is present on a large plasmid in strain B076, but not in race 4. In silico subtractive hybridization-based comparative genomic analyses with nine sequenced phytopathogenic pseudomonads identified dozens of specific islands (SIs), and revealed that the genomes of Psg strains are more similar to those belonging to the same genomospecies such as Pph 1448A than to other phytopathogenic pseudomonads. The number of highly conserved genes (core genome) among them decreased dramatically when more genomes were included in the subtraction, suggesting the diversification of pseudomonads, and further indicating the genome heterogeneity among pseudomonads. However, the number of specific genes did not change significantly, suggesting these genes are indeed specific in Psg genomes. These results reinforce the idea of a species complex of P. syringae and support the reclassification of P. syringae into different species.
Collapse
Affiliation(s)
- Mingsheng Qi
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Dongping Wang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Carl A. Bradley
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
41
|
Basavaraja C, Jo EA, Kim BS, Kim DG, Huh DS. Electrical conduction mechanism of polypyrrole-alginate polymer films. Macromol Res 2010. [DOI: 10.1007/s13233-010-1108-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
The lack of a nitrogen source and/or the C/N ratio affects the molecular weight of alginate and its productivity in submerged cultures of Azotobacter vinelandii. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0111-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
43
|
Mejía MA, Segura D, Espín G, Galindo E, Peña C. Two-stage fermentation process for alginate production by Azotobacter vinelandii mutant altered in poly-beta-hydroxybutyrate (PHB) synthesis. J Appl Microbiol 2010; 108:55-61. [PMID: 19583796 DOI: 10.1111/j.1365-2672.2009.04403.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS A two-stage fermentation strategy, based on batch cultures conducted first under non-oxygen-limited conditions, and later under oxygen-limited conditions, was used to improve alginate production by Azotobacter vinelandii (AT6), a strain impaired in poly-beta-hydroxybutyrate (PHB) production. METHODS AND RESULTS The use of sucrose as carbon source, as well as a high oxygen concentration (10%), allowed to obtain a maximum biomass concentration of 7.5 g l(-1) in the first stage of cultivation. In the second stage, the cultures were limited by oxygen (oxygen close to 0%) and fed with a sucrose solution at high concentration. Under those conditions, the growth rate decreased considerably and the cells used the carbon source mainly for alginate biosynthesis, obtaining a maximum concentration of 9.5 g l(-1), after 50 h of cultivation. CONCLUSION Alginate concentration obtained from the AT6 strain was two times higher than that obtained using the wild-type strain (ATCC 9046) and was the highest reported in the literature. However, the mean molecular mass of the alginate produced in the second stage of the process by the mutant AT6 was lower (400 kDa) than the polymer molecular mass obtained from the cultures developed with the parental strain (950 kDa). SIGNIFICANCE AND IMPACT OF THE STUDY The use of a mutant of A. vinelandii impaired in the PHB production in combination with a two-stage fermentation process could be a feasible strategy for the production of alginate at industrial level.
Collapse
Affiliation(s)
- M A Mejía
- Departamentos de Ingeniería Celular y Biocatálisis y de 2 Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, México
| | | | | | | | | |
Collapse
|
44
|
Rodríguez-Palenzuela P, Matas IM, Murillo J, López-Solanilla E, Bardaji L, Pérez-Martínez I, Rodríguez-Moskera ME, Penyalver R, López MM, Quesada JM, Biehl BS, Perna NT, Glasner JD, Cabot EL, Neeno-Eckwall E, Ramos C. Annotation and overview of thePseudomonas savastanoipv. savastanoi NCPPB 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. Environ Microbiol 2010; 12:1604-20. [DOI: 10.1111/j.1462-2920.2010.02207.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Tielen P, Rosenau F, Wilhelm S, Jaeger KE, Flemming HC, Wingender J. Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2010; 156:2239-2252. [PMID: 20360178 DOI: 10.1099/mic.0.037036-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa secretes a variety of hydrolases, many of which contribute to virulence or are thought to play a role in the nutrition of the bacterium. As most studies concerning extracellular enzymes have been performed on planktonic cultures of non-mucoid P. aeruginosa strains, knowledge of the potential role of these enzymes in biofilm formation in mucoid (alginate-producing) P. aeruginosa remains limited. Here we show that mucoid P. aeruginosa produces extracellular hydrolases during biofilm growth. Overexpression of the extracellular lipases LipA and LipC, the esterase EstA and the proteolytic elastase LasB from plasmids revealed that some of these hydrolases affected the composition and physicochemical properties of the extracellular polymeric substances (EPS). While no influence of LipA was observed, the overexpression of estA and lasB led to increased concentrations of extracellular rhamnolipids with enhanced levels of mono-rhamnolipids, elevated amounts of total carbohydrates and decreased alginate concentrations, resulting in increased EPS hydrophobicity and viscosity. Moreover, we observed an influence of the enzymes on cellular motility. Overexpression of estA resulted in a loss of twitching motility, although it enhanced the ability to swim and swarm. The lasB-overexpression strain showed an overall enhanced motility compared with the parent strain. Moreover, the EstA- and LasB-overproduction strains completely lost the ability to form 3D biofilms, whereas the overproduction of LipC increased cell aggregation and the heterogeneity of the biofilms formed. Overall, these findings indicate that directly or indirectly, the secreted enzymes EstA, LasB and LipC can influence the formation and architecture of mucoid P. aeruginosa biofilms as a result of changes in EPS composition and properties, as well as the motility of the cells.
Collapse
Affiliation(s)
- Petra Tielen
- University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre, Department of Aquatic Microbiology, Geibelstrasse 41, D-47057 Duisburg, Germany
| | - Frank Rosenau
- Heinrich-Heine-University of Duesseldorf, Institute for Molecular Enzyme Technology, Research Centre Juelich, Stetternicher Forst, D-52425 Juelich, Germany
| | - Susanne Wilhelm
- Heinrich-Heine-University of Duesseldorf, Institute for Molecular Enzyme Technology, Research Centre Juelich, Stetternicher Forst, D-52425 Juelich, Germany
| | - Karl-Erich Jaeger
- Heinrich-Heine-University of Duesseldorf, Institute for Molecular Enzyme Technology, Research Centre Juelich, Stetternicher Forst, D-52425 Juelich, Germany
| | - Hans-Curt Flemming
- University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre, Department of Aquatic Microbiology, Geibelstrasse 41, D-47057 Duisburg, Germany
| | - Jost Wingender
- University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre, Department of Aquatic Microbiology, Geibelstrasse 41, D-47057 Duisburg, Germany
| |
Collapse
|
46
|
Behrends V, Ryall B, Wang X, Bundy JG, Williams HD. Metabolic profiling of Pseudomonas aeruginosa demonstrates that the anti-sigma factor MucA modulates osmotic stress tolerance. MOLECULAR BIOSYSTEMS 2010; 6:562-9. [DOI: 10.1039/b918710c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Analysis of lipid export in hydrocarbonoclastic bacteria of the genus Alcanivorax: identification of lipid export-negative mutants of Alcanivorax borkumensis SK2 and Alcanivorax jadensis T9. J Bacteriol 2009; 192:643-56. [PMID: 19933359 DOI: 10.1128/jb.00700-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triacylglycerols (TAGs), wax esters (WEs), and polyhydroxyalkanoates (PHAs) are the major hydrophobic compounds synthesized in bacteria and deposited as cytoplasmic inclusion bodies when cells are cultivated under imbalanced growth conditions. The intracellular occurrence of these compounds causes high costs for downstream processing. Alcanivorax species are able to produce extracellular lipids when the cells are cultivated on hexadecane or pyruvate as the sole carbon source. In this study, we developed a screening procedure to isolate lipid export-negative transposon-induced mutants of bacteria of the genus Alcanivorax for identification of genes required for lipid export by employing the dyes Nile red and Solvent Blue 38. Three transposon-induced mutants of A. jadensis and seven of A. borkumensis impaired in lipid secretion were isolated. All isolated mutants were still capable of synthesizing and accumulating these lipids intracellularly and exhibited no growth defect. In the A. jadensis mutants, the transposon insertions were mapped in genes annotated as encoding a putative DNA repair system specific for alkylated DNA (Aj17), a magnesium transporter (Aj7), and a transposase (Aj5). In the A. borkumensis mutants, the insertions were mapped in genes encoding different proteins involved in various transport processes, like genes encoding (i) a heavy metal resistance (CZCA2) in mutant ABO_6/39, (ii) a multidrug efflux (MATE efflux) protein in mutant ABO_25/21, (iii) an alginate lyase (AlgL) in mutants ABO_10/30 and ABO_19/48, (iv) a sodium-dicarboxylate symporter family protein (GltP) in mutant ABO_27/29, (v) an alginate transporter (AlgE) in mutant ABO_26/1, or (vi) a two-component system protein in mutant ABO_27/56. Site-directed MATE, algE, and algL gene disruption mutants, which were constructed in addition, were also unable to export neutral lipids and confirmed the phenotype of the transposon-induced mutants. The putative localization of the different gene products and their possible roles in lipid excretion are discussed. Beside this, the composition of the intra- and extracellular lipids in the wild types and mutants were analyzed in detail.
Collapse
|
48
|
Allard JB, Rinaldi L, Wargo MJ, Allen G, Akira S, Uematsu S, Poynter ME, Hogan DA, Rincon M, Whittaker LA. Th2 allergic immune response to inhaled fungal antigens is modulated by TLR-4-independent bacterial products. Eur J Immunol 2009; 39:776-88. [PMID: 19224641 DOI: 10.1002/eji.200838932] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allergic airway disease is characterized by eosinophilic inflammation, mucus hypersecretion and increased airway resistance. Fungal antigens are ubiquitous within the environment and are well known triggers of allergic disease. Bacterial products are also frequently encountered within the environment and may alter the immune response to certain antigens. The consequence of simultaneous exposure to bacterial and fungal products on the lung adaptive immune response has not been explored. Here, we show that oropharyngeal aspiration of fungal lysates (Candida albicans, Aspergillus fumigatus) promotes airway eosinophilia, secretion of Th2 cytokines and mucus cell metaplasia. In contrast, oropharyngeal exposure to bacterial lysates (Pseudomonas aeruginosa) promotes airway inflammation characterized by neutrophils, Th1 cytokine secretion and no mucus production. More importantly, administration of bacterial lysates together with fungal lysates deviates the adaptive immune response to a Th1 type associated with neutrophilia and diminished mucus production. The immunomodulatory effect that bacterial lysates have on the response to fungi is TLR4 independent but MyD88 dependent. Thus, different types of microbial products within the airway can alter the host's adaptive immune response and potentially impact the development of allergic airway disease to environmental fungal antigens.
Collapse
Affiliation(s)
- Jenna B Allard
- Department of Medicine, Division of Pulmonary Disease and Critical Care, Vermont Lung Center, University of Vermont, Burlington, VT, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Alginate Production: Precursor Biosynthesis, Polymerization and Secretion. ALGINATES: BIOLOGY AND APPLICATIONS 2009. [DOI: 10.1007/978-3-540-92679-5_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
50
|
|