1
|
Schalk IJ. Bacterial siderophores: diversity, uptake pathways and applications. Nat Rev Microbiol 2025; 23:24-40. [PMID: 39251840 DOI: 10.1038/s41579-024-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 09/11/2024]
Abstract
Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts.
Collapse
|
2
|
Zhang H, Cheng S, Yan W, Zhang Q, Jiang B, Xing Y, Zhang B. Interplay between vanadium distribution and microbial community in soil-plant system. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136303. [PMID: 39486340 DOI: 10.1016/j.jhazmat.2024.136303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Soil-plant system play an essential role in distribution and transformation of vanadium (V). V shapes the diversity of soil communities, while soil microorganisms mediate V transformation. Plants also absorb V from surrounding soil. However, the study of microbial response to V stress in different soil-plant compartments is limited, and the metabolic functions driving V transformation across these systems remain elusive. The study investigates the distribution of V in soil-plant systems nearby a V smelter. 16S rRNA sequencing and metagenomics are utilized to reveal the microbial adaptation and V transformation in bulk soil, rhizosphere, and endosphere. Bothriochloa ischaemum (L.) Keng. (BK) exhibits higher phytoextraction potential (TF = 0.74 ± 0.26). Environmental variables, including pH, V, OM, and AP, show significant (p < 0.05) influence in soil community composition, with homogeneous selection governing the assembly processes in bulk soil and rhizosphere, while stochastic process dominates endospheric assembly. Metagenomic investigation revealed a coordinated metabolic pathway between functional taxa in soil and plants, which lead to root uptake and translocation. V stress is mitigated through Nocardioide, Microvirga, and Solirubrobacter, putatively harboring V(V) reduction genes n arG and mtrC in soil. In rhizosphere, citrate synthase gltA and alkaline phosphatase phoD exhibit functional potential to facilitate formation of V-complexation to increase V mobility. In endoshere, endophytic Enterobacter further detoxifies V(V), and likely promotes V translocation through siderophore biosynthesis gene, iucA. These findings enhance our understanding on interplay between V and microbial community in soil-plant systems, which is instrumental in developing mitigation plan for V contaminated sites.
Collapse
Affiliation(s)
- Han Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Shu Cheng
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Wenyue Yan
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Qinghao Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A. Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 2024; 40:270. [PMID: 39030429 DOI: 10.1007/s11274-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Swarna Shaw
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | | | - Shatarupa Biswas
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Suman Bhandary
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
4
|
Timofeeva AM, Galyamova MR, Sedykh SE. Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223065. [PMID: 36432794 PMCID: PMC9694258 DOI: 10.3390/plants11223065] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/07/2023]
Abstract
Siderophores are synthesized and secreted by many bacteria, yeasts, fungi, and plants for Fe (III) chelation. A variety of plant-growth-promoting bacteria (PGPB) colonize the rhizosphere and contribute to iron assimilation by plants. These microorganisms possess mechanisms to produce Fe ions under iron-deficient conditions. Under appropriate conditions, they synthesize and release siderophores, thereby increasing and regulating iron bioavailability. This review focuses on various bacterial strains that positively affect plant growth and development through synthesizing siderophores. Here we discuss the diverse chemical nature of siderophores produced by plant root bacteria; the life cycle of siderophores, from their biosynthesis to the Fe-siderophore complex degradation; three mechanisms of siderophore biosynthesis in bacteria; the methods for analyzing siderophores and the siderophore-producing activity of bacteria and the methods for screening the siderophore-producing activity of bacterial colonies. Further analysis of biochemical, molecular-biological, and physiological features of siderophore synthesis by bacteria and their use by plants will allow one to create effective microbiological preparations for improving soil fertility and increasing plant biomass, which is highly relevant for sustainable agriculture.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Maria R. Galyamova
- Center for Entrepreneurial Initiatives, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, Jain D, Jiang M. Mechanistic Insights and Potential Use of Siderophores Producing Microbes in Rhizosphere for Mitigation of Stress in Plants Grown in Degraded Land. Front Microbiol 2022; 13:898979. [PMID: 35898908 PMCID: PMC9309559 DOI: 10.3389/fmicb.2022.898979] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
Plant growth performance under a stressful environment, notably in the agriculture field, is directly correlated with the rapid growth of the human population, which triggers the pressure on crop productivity. Plants perceived many stresses owing to degraded land, which induces low plant productivity and, therefore, becomes a foremost concern for the future to face a situation of food scarcity. Land degradation is a very notable environmental issue at the local, regional, and global levels for agriculture. Land degradation generates global problems such as drought desertification, heavy metal contamination, and soil salinity, which pose challenges to achieving many UN Sustainable Development goals. The plant itself has a varied algorithm for the mitigation of stresses arising due to degraded land; the rhizospheric system of the plant has diverse modes and efficient mechanisms to cope with stress by numerous root-associated microbes. The suitable root-associated microbes and components of root exudate interplay against stress and build adaptation against stress-mediated mechanisms. The problem of iron-deficient soil is rising owing to increasing degraded land across the globe, which hampers plant growth productivity. Therefore, in the context to tackle these issues, the present review aims to identify plant-stress status owing to iron-deficient soil and its probable eco-friendly solution. Siderophores are well-recognized iron-chelating agents produced by numerous microbes and are associated with the rhizosphere. These siderophore-producing microbes are eco-friendly and sustainable agents, which may be managing plant stresses in the degraded land. The review also focuses on the molecular mechanisms of siderophores and their chemistry, cross-talk between plant root and siderophores-producing microbes to combat plant stress, and the utilization of siderophores in plant growth on degraded land.
Collapse
Affiliation(s)
- Pratiksha Singh
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Prabhat K. Chauhan
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Sudhir K. Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
- Sudhir K. Upadhyay
| | - Rajesh Kumar Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Jing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
- *Correspondence: Mingguo Jiang
| |
Collapse
|
6
|
Nandre V, Kumbhar N, Battu S, Kale Y, Bagade A, Haram S, Kodam K. Siderophore mediated mineralization of struvite: A novel greener route of sustainable phosphate management. WATER RESEARCH 2021; 203:117511. [PMID: 34375932 DOI: 10.1016/j.watres.2021.117511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/24/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Efficient and sustainable removal of phosphate ions from an aqueous solution is of great challenge. Herein we demonstrated a greener route for phosphate recovery through struvite formation by using bacterial siderophore. This method was efficient for removal of phosphate as low as 1.3 mM with 99% recovery efficiency. The siderophore produced by Pseudomonas taiwanensis R-12-2 act as template for the nucleation of struvite crystals and was found sustainable for recycling the phosphorous efficiently after twenty cycles. The formation of struvite crystals is driven by surrounding pH (9.0) and presence of Mg2+ and NH4+ ions along with PO43- and siderophore which was further validated by computational studies. The morphology of struvite was characterized by scanning electron microscopy, followed by elemental analysis. Furthermore, our results revealed that the siderophore plays an important role in struvite biomineralization. We have successfully demonstrated the phosphate sequestration by using industrial waste samples, as possible application for environmental sustainability and phosphate conservation. For the first time electrochemical super-capacitance performance of the struvite was studied. The specific capacitance value for the struvite was found to be 320 F g-1 at 1.87 A g-1 and retained 92 % capacitance after 250 cycles. The study revealed the potential implications of siderophore for the phosphate recycling and the new mechanism for biomineralization by sequestering into struvite.
Collapse
Affiliation(s)
- Vinod Nandre
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Navanath Kumbhar
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Shateesh Battu
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Yuvraj Kale
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Aditi Bagade
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Santosh Haram
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Kisan Kodam
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
7
|
Kang D, Revtovich AV, Deyanov AE, Kirienko NV. Pyoverdine Inhibitors and Gallium Nitrate Synergistically Affect Pseudomonas aeruginosa. mSphere 2021; 6:e0040121. [PMID: 34133200 PMCID: PMC8265654 DOI: 10.1128/msphere.00401-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that frequently causes ventilator-associated pneumonia in intensive care units and chronic lung infections in cystic fibrosis patients. The rising prevalence of drug-resistant bacteria demands the exploration of new therapeutic avenues for treating P. aeruginosa infections. Perhaps the most thoroughly explored alternative is to use novel treatments to target pathogen virulence factors, like biofilm or toxin production. Gallium(III) nitrate is one such agent. It has been recognized for its ability to inhibit pathogen growth and biofilm formation in P. aeruginosa by disrupting bacterial iron homeostasis. However, irreversible sequestration by pyoverdine substantially limits its effectiveness. In this report, we show that disrupting pyoverdine production (genetically or chemically) potentiates the efficacy of gallium nitrate. Interestingly, we report that the pyoverdine inhibitor 5-fluorocytosine primarily functions as an antivirulent, even when it indirectly affects bacterial growth in the presence of gallium, and that low selective pressure for resistance occurs. We also demonstrate that the antibiotic tetracycline inhibits pyoverdine at concentrations below those required to prevent bacterial growth, and this activity allows it to synergize with gallium to inhibit bacterial growth and rescue Caenorhabditis elegans during P. aeruginosa pathogenesis. IMPORTANCE P. aeruginosa is one of the most common causative agents for ventilator-associated pneumonia and nosocomial bacteremia and is a leading cause of death in patients with cystic fibrosis. Pandrug-resistant strains of P. aeruginosa are increasingly identified in clinical samples and show resistance to virtually all major classes of antibiotics, including aminoglycosides, cephalosporins, and carbapenems. Gallium(III) nitrate has received considerable attention as an antipseudomonal agent that inhibits P. aeruginosa growth and biofilm formation by disrupting bacterial iron homeostasis. This report demonstrates that biosynthetic inhibitors of pyoverdine, such as 5-fluorocytosine and tetracycline, synergize with gallium nitrate to inhibit P. aeruginosa growth and biofilm formation, rescuing C. elegans hosts during pathogenesis.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | | | | | | |
Collapse
|
8
|
AlMatar M, Albarri O, Makky EA, Var I, Köksal F. A Glance on the Role of Bacterial Siderophore from the Perspectives of Medical and Biotechnological Approaches. Curr Drug Targets 2020; 21:1326-1343. [PMID: 32564749 DOI: 10.2174/1389450121666200621193018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022]
Abstract
Iron, which is described as the most basic component found in nature, is hard to be assimilated by microorganisms. It has become increasingly complicated to obtain iron from nature as iron (II) in the presence of oxygen oxidized to press (III) oxide and hydroxide, becoming unsolvable at neutral pH. Microorganisms appeared to produce organic molecules known as siderophores in order to overcome this condition. Siderophore's essential function is to connect with iron (II) and make it dissolvable and enable cell absorption. These siderophores, apart from iron particles, have the ability to chelate various other metal particles that have collocated away to focus the use of siderophores on wound care items. There is a severe clash between the host and the bacterial pathogens during infection. By producing siderophores, small ferric iron-binding molecules, microorganisms obtain iron. In response, host immune cells produce lipocalin 2 to prevent bacterial reuptake of siderophores loaded with iron. Some bacteria are thought to produce lipocalin 2-resistant siderophores to counter this risk. The aim of this article is to discuss the recently described roles and applications of bacterial siderophore.
Collapse
Affiliation(s)
- Manaf AlMatar
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Osman Albarri
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitusu) Cukurova University, Adana, Turkey
| | - Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Cukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
9
|
Bashir A, Tian T, Yu X, Meng C, Ali M, Li L. Pyoverdine-Mediated Killing of Caenorhabditis elegans by Pseudomonas syringae MB03 and the Role of Iron in Its Pathogenicity. Int J Mol Sci 2020; 21:ijms21062198. [PMID: 32235814 PMCID: PMC7139650 DOI: 10.3390/ijms21062198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022] Open
Abstract
The pathogenicity of the common phytopathogenic bacterium Pseudomonas syringae toward Caenorhabditis elegans has been recently demonstrated. However, the major virulence factors involved in this interaction remain unknown. In this study, we investigated the nematocidal activity of P. syringae against C. elegans under iron-sufficient/limited conditions, primarily focusing on the role of the ferric chelator pyoverdine in a P. syringae–C. elegans liquid-based pathogenicity model. Prediction-based analysis of pyoverdine-encoding genes in the genome of the wild-type P. syringae strain MB03 revealed that the genes are located in one large cluster. Two non-ribosomal peptide synthetase genes (pvdD and pvdJ) were disrupted via a Rec/TE recombination system, resulting in mutant strains with abrogated pyoverdine production and attenuated virulence against C. elegans. When used alone, pure pyoverdine also showed nematocidal activity. The role of iron used alone or with pyoverdine was further investigated in mutant and MB03-based bioassays. The results indicated that pyoverdine in P. syringae MB03 is a robust virulence factor that promotes the killing of C. elegans. We speculate that pyoverdine functions as a virulence determinant by capturing environmentally available iron for host bacterial cells, by limiting its availability for C. elegans worms, and by regulating and/or activating other intracellular virulence factors that ultimately kills C. elegans worms.
Collapse
Affiliation(s)
- Anum Bashir
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.B.); (T.T.); (X.Y.); (M.A.)
| | - Tian Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.B.); (T.T.); (X.Y.); (M.A.)
| | - Xun Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.B.); (T.T.); (X.Y.); (M.A.)
| | - Cui Meng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.B.); (T.T.); (X.Y.); (M.A.)
| | - Muhammad Ali
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.B.); (T.T.); (X.Y.); (M.A.)
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.B.); (T.T.); (X.Y.); (M.A.)
- Correspondence: ; Tel.: +86-27-8728-6952
| |
Collapse
|
10
|
Almeida MC, Branco R, Morais PV. Response to vanadate exposure in Ochrobactrum tritici strains. PLoS One 2020; 15:e0229359. [PMID: 32092126 PMCID: PMC7039435 DOI: 10.1371/journal.pone.0229359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/04/2020] [Indexed: 01/02/2023] Open
Abstract
Vanadium is a transition metal that has been added recently to the EU list of Raw Critical Metals. The growing needs of vanadium primarily in the steel industry justify its increasing economic value. However, because mining of vanadium sources (i. e. ores, concentrates and vanadiferous slags) is expanding, so is vanadium environmental contamination. Bioleaching comes forth as smart strategy to deal with supply demand and environmental contamination. It requires organisms that are able to mobilize the metal and at the same time are resistant to the leachate generated. Here, we investigated the molecular mechanisms underlying vanadium resistance in Ochrobactrum tritici strains. The highly resistant strain 5bvl1 was able to grow at concentrations > 30 mM vanadate, while the O. tritici type strain only tolerated < 3 mM vanadate concentrations. Screening of O. tritici single mutants (chrA, chrC, chrF and recA) growth during vanadate exposure revealed that vanadate resistance was associated with chromate resistance mechanisms (in particular ChrA, an efflux pump and ChrC, a superoxide dismutase). We also showed that sensitivity to vanadate was correlated with increased accumulation of vanadate intracellularly, while in resistant cells this was not found. Other up-regulated proteins found during vanadate exposure were ABC transporters for methionine and iron, suggesting that cellular responses to vanadate toxicity may also induce changes in unspecific transport and chelation of vanadate.
Collapse
Affiliation(s)
- Mariana Cruz Almeida
- CEMMPRE, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Rita Branco
- CEMMPRE, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paula V. Morais
- CEMMPRE, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Schalk IJ, Rigouin C, Godet J. An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ Microbiol 2020; 22:1447-1466. [PMID: 32011068 DOI: 10.1111/1462-2920.14937] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 01/02/2023]
Abstract
Siderophores are iron-chelating molecules produced by bacteria to access iron, a key nutrient. These compounds have highly diverse chemical structures, with various chelating groups. They are released by bacteria into their environment to scavenge iron and bring it back into the cells. The biosynthesis of siderophores requires complex enzymatic processes and expression of the enzymes involved is very finely regulated by iron availability and diverse transcriptional regulators. Recent data have also highlighted the organization of the enzymes involved in siderophore biosynthesis into siderosomes, multi-enzymatic complexes involved in siderophore synthesis. An understanding of siderophore biosynthesis is of great importance, as these compounds have many potential biotechnological applications because of their metal-chelating properties and their key role in bacterial growth and virulence. This review focuses on the biosynthesis of siderophores produced by fluorescent Pseudomonads, bacteria capable of colonizing a large variety of ecological niches. They are characterized by the production of chromopeptide siderophores, called pyoverdines, which give the typical green colour characteristic of fluorescent pseudomonad cultures. Secondary siderophores are also produced by these strains and can have highly diverse structures (such as pyochelins, pseudomonine, yersiniabactin, corrugatin, achromobactin and quinolobactin).
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Coraline Rigouin
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Julien Godet
- Université de Strasbourg, Laboratoire de BioImagerie et Pathologies, UMR CNRS, 7021, Illkirch, France
| |
Collapse
|
12
|
Hofmann M, Retamal-Morales G, Tischler D. Metal binding ability of microbial natural metal chelators and potential applications. Nat Prod Rep 2020; 37:1262-1283. [DOI: 10.1039/c9np00058e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metallophores can chelate many different metal and metalloid ions next to iron, make them valuable for many applications.
Collapse
Affiliation(s)
- Marika Hofmann
- Institute of Biosciences
- Chemistry and Physics Faculty
- TU Bergakademie Freiberg
- 09599 Freiberg
- Germany
| | - Gerardo Retamal-Morales
- Laboratorio de Microbiología Básica y Aplicada
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Dirk Tischler
- Microbial Biotechnology
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
13
|
Taouai M, Chakroun K, Sommer R, Michaud G, Giacalone D, Ben Maaouia MA, Vallin-Butruille A, Mathiron D, Abidi R, Darbre T, Cragg PJ, Mullié C, Reymond JL, O'Toole GA, Benazza M. Glycocluster Tetrahydroxamic Acids Exhibiting Unprecedented Inhibition of Pseudomonas aeruginosa Biofilms. J Med Chem 2019; 62:7722-7738. [PMID: 31449405 DOI: 10.1021/acs.jmedchem.9b00481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Opportunistic Gram-negative Pseudomonas aeruginosa uses adhesins (e.g., LecA and LecB lectins, type VI pili and flagella) and iron to invade host cells with the formation of a biofilm, a thick barrier that protects bacteria from drugs and host immune system. Hindering iron uptake and disrupting adhesins' function could be a relevant antipseudomonal strategy. To test this hypothesis, we designed an iron-chelating glycocluster incorporating a tetrahydroxamic acid and α-l-fucose bearing linker to interfere with both iron uptake and the glycan recognition process involving the LecB lectin. Iron depletion led to increased production of the siderophore pyoverdine by P. aeruginosa to counteract the loss of iron uptake, and strong biofilm inhibition was observed not only with the α-l-fucocluster (72%), but also with its α-d-manno (84%), and α-d-gluco (92%) counterparts used as negative controls. This unprecedented finding suggests that both LecB and biofilm inhibition are closely related to the presence of hydroxamic acid groups.
Collapse
Affiliation(s)
- Marwa Taouai
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France.,Laboratoire LACReSNE, Unité "Interactions Moléculaires Spécifiques", Faculté des Sciences de Bizerte , Université de Carthage Zarzouna-Bizerte TN 7021 , Tunisie
| | - Khouloud Chakroun
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France.,Department of Microbiology and Immunology , Geisel School of Medicine at Dartmouth , Room 202, Remsen Building 66, College Street , Hanover , New Hampshire 03755 , United States
| | - Roman Sommer
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland , 66123 Saarbrücken , Germany
| | - Gaelle Michaud
- Chemistry and Biochemistry , University of Berne , Freistrasse 3 , 3012 Berne , Switzerland
| | - David Giacalone
- Department of Microbiology and Immunology , Geisel School of Medicine at Dartmouth , Room 202, Remsen Building 66, College Street , Hanover , New Hampshire 03755 , United States
| | - Mohamed Amine Ben Maaouia
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France.,Laboratoire LACReSNE, Unité "Interactions Moléculaires Spécifiques", Faculté des Sciences de Bizerte , Université de Carthage Zarzouna-Bizerte TN 7021 , Tunisie
| | - Aurélie Vallin-Butruille
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| | - David Mathiron
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| | - Rym Abidi
- Laboratoire LACReSNE, Unité "Interactions Moléculaires Spécifiques", Faculté des Sciences de Bizerte , Université de Carthage Zarzouna-Bizerte TN 7021 , Tunisie
| | - Tamis Darbre
- Chemistry and Biochemistry , University of Berne , Freistrasse 3 , 3012 Berne , Switzerland
| | - Peter J Cragg
- School of Pharmacy and Biomolecular Science University of Brighton , Brighton BN2 4GJ , U.K
| | - Catherine Mullié
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| | - Jean-Louis Reymond
- Chemistry and Biochemistry , University of Berne , Freistrasse 3 , 3012 Berne , Switzerland
| | - George A O'Toole
- Department of Microbiology and Immunology , Geisel School of Medicine at Dartmouth , Room 202, Remsen Building 66, College Street , Hanover , New Hampshire 03755 , United States
| | - Mohammed Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| |
Collapse
|
14
|
Carballido Lopez A, Cunrath O, Forster A, Pérard J, Graulier G, Legendre R, Varet H, Sismeiro O, Perraud Q, Pesset B, Saint Auguste P, Bumann D, Mislin GLA, Coppee JY, Michaud-Soret I, Fechter P, Schalk IJ. Non-specific interference of cobalt with siderophore-dependent iron uptake pathways. Metallomics 2019; 11:1937-1951. [DOI: 10.1039/c9mt00195f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presence of Co2+affects the production of the siderophore Pyochelin inPseudomonas aeruginosa. This repression is not Fur-dependent but due to competition of Pyochelin–Co2+with Pyochein–Fe3+for PchR (transcriptional activator).
Collapse
|
15
|
Dirhodium (II) complex interferes with iron-transport system to exert antibacterial action against Streptococcus pneumoniae. J Proteomics 2018; 194:160-167. [PMID: 30521977 DOI: 10.1016/j.jprot.2018.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 01/03/2023]
Abstract
Drug resistance in bacteria is becoming a significant threat to global public health, and the development of novel and efficient antibacterial compounds is urgently needed. Recently, rhodium complexes have attracted attention as antimicrobial agents, yet their antibacterial mechanism remains unknown. In this study, we observed that the dirhodium (II) complex Rh2Ac4 inhibited Streptococcus. pneumoniae growth without significant cytotoxic side-effects on host cells in vitro. We subsequently investigated the antibacterial mechanism of Rh2Ac4 using iTRAQ-based proteomics combined with cellular and biochemical assays. Bioinformatics analysis on the proteomic alterations demonstrated that six molecular functional groups, including metal ion binding and twelve metabolic pathways, were significantly affected after treatment with Rh2Ac4. The interaction network analysis of metal ion binding proteins suggested that Rh2Ac4 decreased the protein expression levels of SPD_1652, SPD_1590 and Gap, which are associated with haem uptake/metabolism. Cellular and biochemical assays further confirmed that Rh2Ac4 could be taken up by bacteria via the PiuABCD haem-uptake system. The structurally similar Rh complex may compete with Fe-haem to decrease Fe-uptake via the PiuABCD system, disrupting iron metabolism to exert its antibacterial activity against S. pneumoniae. These data indicate that Rh2Ac4 is a promising new drug for the treatment of S. pneumoniae infections.
Collapse
|
16
|
Benedetti A, Gambaro S, Valenza F, Faimali M, Colli M, Hostaša J, Delucchi M. Ag and AgCu as brazing materials for Ti6Al4V-Y3Al5O12 joints: Does ennoblement affect the galvanic behaviour in seawater? Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Butt AT, Thomas MS. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species. Front Cell Infect Microbiol 2017; 7:460. [PMID: 29164069 PMCID: PMC5681537 DOI: 10.3389/fcimb.2017.00460] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022] Open
Abstract
Burkholderia is a genus within the β-Proteobacteriaceae that contains at least 90 validly named species which can be found in a diverse range of environments. A number of pathogenic species occur within the genus. These include Burkholderia cenocepacia and Burkholderia multivorans, opportunistic pathogens that can infect the lungs of patients with cystic fibrosis, and are members of the Burkholderia cepacia complex (Bcc). Burkholderia pseudomallei is also an opportunistic pathogen, but in contrast to Bcc species it causes the tropical human disease melioidosis, while its close relative Burkholderia mallei is the causative agent of glanders in horses. For these pathogens to survive within a host and cause disease they must be able to acquire iron. This chemical element is essential for nearly all living organisms due to its important role in many enzymes and metabolic processes. In the mammalian host, the amount of accessible free iron is negligible due to the low solubility of the metal ion in its higher oxidation state and the tight binding of this element by host proteins such as ferritin and lactoferrin. As with other pathogenic bacteria, Burkholderia species have evolved an array of iron acquisition mechanisms with which to capture iron from the host environment. These mechanisms include the production and utilization of siderophores and the possession of a haem uptake system. Here, we summarize the known mechanisms of iron acquisition in pathogenic Burkholderia species and discuss the evidence for their importance in the context of virulence and the establishment of infection in the host. We have also carried out an extensive bioinformatic analysis to identify which siderophores are produced by each Burkholderia species that is pathogenic to humans.
Collapse
Affiliation(s)
- Aaron T Butt
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Mark S Thomas
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
Si M, Feng Y, Chen K, Kang Y, Chen C, Wang Y, Shen X. Functional comparison of methionine sulphoxide reductase A and B in Corynebacterium glutamicum. J GEN APPL MICROBIOL 2017; 63:280-286. [PMID: 28904252 DOI: 10.2323/jgam.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Methionine sulphoxide reductases (Msr) are able to reduce methionine sulfoxide to methionine and protect bacteria against reactive oxygen species (ROS). Many organisms express both methionine sulphoxide reductase A (MsrA), specific for methionine-S-sulfoxide and methionine sulphoxide reductase B (MsrB), active against methionine-R-sulfoxide. Corynebacterium glutamicum expresses MsrA, the function of which has been well defined; however, the function of MsrB has not been studied. Whether MsrB and MsrA play an equally important role in the antioxidant process is also poorly understood. In this study, we identified MsrB encoded by ncgl1823 in C. glutamicum, investigated its function and made a comparison with MsrA. The msrB gene showed a slight effect on utilizing methionine sulfoxide (MetO) as the sole Met source; however, the survival rates showed no sensitivity to oxidants. MsrB showed catalytic activity using thioredoxin/thioredoxin reductase (Trx/TrxR) reducing system as electron donors, but independent from the mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) system. Therefore, MsrB plays a limited role in resisting oxidative stress and it could reduce MetO to Met by the Trx/TrxR reducing system, which is useful for expanding the understanding of the functions of Msr in this important industrial microbe.
Collapse
Affiliation(s)
- Meiru Si
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University.,College of Life Sciences, Qufu Normal University
| | - Yanyan Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| | - Keqi Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| | - Yiwen Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| | - Can Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University.,College of Life Science and Agronomy, Zhoukou Normal University
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| |
Collapse
|
19
|
Fierros-Romero G, Wrosek-Cabrera JA, Gómez-Ramírez M, Pless RC, Rivas-Castillo AM, Rojas-Avelizapa NG. Expression Changes in Metal-Resistance Genes in Microbacterium liquefaciens Under Nickel and Vanadium Exposure. Curr Microbiol 2017; 74:840-847. [DOI: 10.1007/s00284-017-1252-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 02/04/2023]
|
20
|
Thyagarajan SL, Ramanathan G, Singaravelu S, Kandhasamy S, Perumal P, Sivagnanam UT. Microbial Siderophore as MMP inhibitor:An interactive approach on wound healing application. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.wndm.2016.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Shi P, Xing Z, Zhang Y, Chai T. Effect of heavy-metal on synthesis of siderophores by Pseudomonas aeruginosa ZGKD3. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/52/1/012103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Identification and characterization of a FAD-dependent putrescine N-hydroxylase (GorA) from Gordonia rubripertincta CWB2. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Characterization and evaluation of siderophore-loaded gelatin microspheres: a potent tool for wound-dressing material. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1840-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Sasirekha B, Srividya S. Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.anres.2016.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Yamaji K, Nagata S, Haruma T, Ohnuki T, Kozaki T, Watanabe N, Nanba K. Root endophytic bacteria of a (137)Cs and Mn accumulator plant, Eleutherococcus sciadophylloides, increase (137)Cs and Mn desorption in the soil. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 153:112-119. [PMID: 26760221 DOI: 10.1016/j.jenvrad.2015.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/09/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
We found that root endophytes of (137)Cs accumulator plant produce siderophores, resulting in the desorption of (137)Cs from the contaminated soil collected at Fukushima, Japan. We selected an endemic Japanese deciduous tree, Eleutherococcus sciadophylloides (Franch. et Sav), that accumulates high concentrations of (137)Cs and Mn. Root endophytic bacteria were isolated from E. sciadophylloides and microbial siderophore production was evaluated via chrome azurol S (CAS) Fe and CAS Al assays. Of the 463 strains that we isolated, 107 (23.1%) produced the siderophores. Using eight strains that showed high siderophore production in our assays, we examined desorption of (137)Cs, Mn, Fe and Al by the bacterial culture filtrates from (137)Cs-contaminated soil after decomposing the soil organic matter using hydrogen peroxide. We found (137)Cs and Mn desorption concomitant with Al and Fe desorption, as well as a decrease of pH. We also detected succinic acid, a well-known siderophore, in the bacterial culture filtrates of our two root endophytic bacteria. Our results strongly suggest that the root endophytic bacteria of E. sciadophylloides produce the siderophores that enhance (137)Cs and Mn desorption in the rhizosphere, making the resulting (137)Cs and Mn ions easier for E. sciadophylloides to absorb from the rhizosphere.
Collapse
Affiliation(s)
- Keiko Yamaji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8572, Japan.
| | - Satoshi Nagata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8572, Japan
| | - Toshikatsu Haruma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8572, Japan
| | - Toshihiko Ohnuki
- Advanced Science Research Center, Japan Atomic Energy Agency, 4-49, Muramatsu, Tokai, Ibaraki 319-1195, Japan
| | - Tamotsu Kozaki
- Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kitaku, Sapporo, Hokkaido, 060-8628, Japan
| | - Naoko Watanabe
- Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kitaku, Sapporo, Hokkaido, 060-8628, Japan
| | - Kenji Nanba
- Faculty of Symbiotic Systems Science, Fukushima University, 1, Kanayagawa, Fukushima, 960-1296, Japan
| |
Collapse
|
26
|
Fierros-Romero G, Gómez-Ramírez M, Arenas-Isaac GE, Pless RC, Rojas-Avelizapa NG. Identification of Bacillus megaterium and Microbacterium liquefaciens genes involved in metal resistance and metal removal. Can J Microbiol 2016; 62:505-13. [PMID: 27210016 DOI: 10.1139/cjm-2015-0507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacillus megaterium MNSH1-9K-1 and Microbacterium liquefaciens MNSH2-PHGII-2, 2 nickel- and vanadium-resistant bacteria from mine tailings located in Guanajuato, Mexico, are shown to have the ability to remove 33.1% and 17.8% of Ni, respectively, and 50.8% and 14.0% of V, respectively, from spent petrochemical catalysts containing 428 ± 30 mg·kg(-1) Ni and 2165 ± 77 mg·kg(-1) V. In these strains, several Ni resistance determinants were detected by conventional PCR. The nccA (nickel-cobalt-cadmium resistance) was found for the first time in B. megaterium. In M. liquefaciens, the above gene as well as the czcD gene (cobalt-zinc-cadmium resistance) and a high-affinity nickel transporter were detected for the first time. This study characterizes the resistance of M. liquefaciens and B. megaterium to Ni through the expression of genes conferring metal resistance.
Collapse
Affiliation(s)
- Grisel Fierros-Romero
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| | - Marlenne Gómez-Ramírez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| | - Ginesa E Arenas-Isaac
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| | - Reynaldo C Pless
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| | - Norma G Rojas-Avelizapa
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico.,Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro, Querétaro 76090, Mexico
| |
Collapse
|
27
|
Noumsi CJ, Pourhassan N, Darnajoux R, Deicke M, Wichard T, Burrus V, Bellenger JP. Effect of organic matter on nitrogenase metal cofactors homeostasis in Azotobacter vinelandii under diazotrophic conditions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:76-84. [PMID: 26549632 DOI: 10.1111/1758-2229.12353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
Biological nitrogen fixation can be catalysed by three isozymes of nitrogenase: molybdenum (Mo)-nitrogenase, vanadium (V)-nitrogenase and iron-only (Fe)-nitrogenase. The activity of these isozymes strongly depends on their metal cofactors, molybdenum, vanadium and iron, and their bioavailability in ecosystems. Here, we show how metal bioavailability can be affected by the presence of tannic acid (organic matter), and the subsequent consequences on diazotrophic growth of the soil bacterium Azotobacter vinelandii. In the presence of tannic acids, A. vinelandii produces a higher amount of metallophores, which coincides with an active, regulated and concomitant acquisition of molybdenum and vanadium under cellular conditions that are usually considered not molybdenum limiting. The associated nitrogenase genes exhibit decreased nifD expression and increased vnfD expression. Thus, in limiting bioavailable metal conditions, A. vinelandii takes advantage of its nitrogenase diversity to ensure optimal diazotrophic growth.
Collapse
Affiliation(s)
- Christelle Jouogo Noumsi
- Département de Chimie, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'université, Sherbrooke, Québec, J1K 2R1, Canada
- Laboratory of Bacterial Molecular Genetics, Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Nina Pourhassan
- Département de Chimie, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Romain Darnajoux
- Département de Chimie, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Michael Deicke
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Vincent Burrus
- Laboratory of Bacterial Molecular Genetics, Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Jean-Philippe Bellenger
- Département de Chimie, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'université, Sherbrooke, Québec, J1K 2R1, Canada
| |
Collapse
|
28
|
Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress. Appl Environ Microbiol 2016; 82:1734-1744. [PMID: 26729719 DOI: 10.1128/aem.03689-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/29/2015] [Indexed: 11/20/2022] Open
Abstract
Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd(2+) MIC, >250 mg liter(-1)) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion.
Collapse
|
29
|
Park AJ, Murphy K, Surette MD, Bandoro C, Krieger JR, Taylor P, Khursigara CM. Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms. J Proteome Res 2015; 14:4524-37. [PMID: 26378716 DOI: 10.1021/acs.jproteome.5b00262] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The transition of the opportunistic pathogen Pseudomonas aeruginosa from free-living bacteria into surface-associated biofilm communities represents a viable target for the prevention and treatment of chronic infectious disease. We have established a proteomics platform that identified 2443 and 1142 high-confidence proteins in P. aeruginosa whole cells and outer-membrane vesicles (OMVs), respectively, at three time points during biofilm development (ProteomeXchange identifier PXD002605). The analysis of cellular systems, specifically the phenazine biosynthetic pathway, demonstrates that whole-cell protein abundance correlates to end product (i.e., pyocyanin) concentrations in biofilm but not in planktonic cultures. Furthermore, increased cellular protein abundance in this pathway results in quantifiable pyocyanin in early biofilm OMVs and OMVs from both growth modes isolated at later time points. Overall, our data indicate that the OMVs being released from the surface of the biofilm whole cells have unique proteomes in comparison to their planktonic counterparts. The relative abundance of OMV proteins from various subcellular sources showed considerable differences between the two growth modes over time, supporting the existence and preferential activation of multiple OMV biogenesis mechanisms under different conditions. The consistent detection of cytoplasmic proteins in all of the OMV subproteomes challenges the notion that OMVs are composed of outer membrane and periplasmic proteins alone. Direct comparisons of outer-membrane protein abundance levels between OMVs and whole cells shows ratios that vary greatly from 1:1 and supports previous studies that advocate the specific inclusion, or "packaging", of proteins into OMVs. The quantitative analysis of packaged protein groups suggests biogenesis mechanisms that involve untethered, rather than absent, peptidoglycan-binding proteins. Collectively, individual protein and biological system analyses of biofilm OMVs show that drug-binding cytoplasmic proteins and porins are potentially shuttled from the whole cell into the OMVs and may contribute to the antibiotic resistance of P. aeruginosa whole cells within biofilms.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Kathleen Murphy
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Matthew D Surette
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Christopher Bandoro
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Jonathan R Krieger
- SPARC BioCentre, The Hospital for Sick Children , Toronto, Ontario, Canada , M5G 0A4
| | - Paul Taylor
- SPARC BioCentre, The Hospital for Sick Children , Toronto, Ontario, Canada , M5G 0A4
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| |
Collapse
|
30
|
Cunrath O, Geoffroy VA, Schalk IJ. Metallome of Pseudomonas aeruginosa: a role for siderophores. Environ Microbiol 2015; 18:3258-3267. [PMID: 26147433 DOI: 10.1111/1462-2920.12971] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/17/2015] [Accepted: 06/26/2015] [Indexed: 11/29/2022]
Abstract
In this paper, we describe the total metal composition (metallome) of Pseudomonas aeruginosa. Inductively coupled plasma atomic emission spectroscopy analyses showed that P. aeruginosa cells concentrate each metal of the metallome from the extracellular media with different efficiencies. Growth in nutrient-restricted media did not substantially affect the overall profile of the metallome; however, the uptake of some metals was strongly stimulated, showing the high potential of some metal acquisition pathways to adapt to changing growth conditions. We also investigated the role of the two major siderophores produced by P. aeruginosa, pyoverdine and pyochelin, in iron uptake and more generally in metallome homeostasis. In addition to their role in iron acquisition, siderophore production also significantly prevented the accumulation of toxic metals in P. aeruginosa cells, thus preserving the equilibrium of the metallome in a polluted environment.
Collapse
Affiliation(s)
- Olivier Cunrath
- Université de Strasbourg, ESBS, Blvd Sébastien Brant, Illkirch, F-67413, France.,CNRS, UMR7242, Blvd Sébastien Brant, Illkirch, F-67413, France
| | - Valérie A Geoffroy
- Université de Strasbourg, ESBS, Blvd Sébastien Brant, Illkirch, F-67413, France.,CNRS, UMR7242, Blvd Sébastien Brant, Illkirch, F-67413, France
| | - Isabelle J Schalk
- Université de Strasbourg, ESBS, Blvd Sébastien Brant, Illkirch, F-67413, France. .,CNRS, UMR7242, Blvd Sébastien Brant, Illkirch, F-67413, France.
| |
Collapse
|
31
|
O'Brien S, Hodgson DJ, Buckling A. Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proc Biol Sci 2015; 281:rspb.2014.0858. [PMID: 24898376 PMCID: PMC4071558 DOI: 10.1098/rspb.2014.0858] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteria are often iron-limited, and hence produce extracellular iron-scavenging siderophores. A crucial feature of siderophore production is that it can be an altruistic behaviour (individually costly but benefitting neighbouring cells), thus siderophore producers can be invaded by non-producing social 'cheats'. Recent studies have shown that siderophores can also bind other heavy metals (such as Cu and Zn), but in this case siderophore chelation actually reduces metal uptake by bacteria. These complexes reduce heavy metal toxicity, hence siderophore production may contribute to toxic metal bioremediation. Here, we show that siderophore production in the context of bioremediation is also an altruistic trait and can be exploited by cheating phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. Specifically, we show that in toxic copper concentrations (i) siderophore non-producers evolve de novo and reach high frequencies, and (ii) producing strains are fitter than isogenic non-producing strains in monoculture, and vice versa in co-culture. Moreover, we show that the evolutionary effect copper has on reducing siderophore production is greater than the reduction observed under iron-limited conditions. We discuss the relevance of these results to the evolution of siderophore production in natural communities and heavy metal bioremediation.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - David J Hodgson
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Angus Buckling
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
32
|
Ferret C, Sterckeman T, Cornu JY, Gangloff S, Schalk IJ, Geoffroy VA. Siderophore-promoted dissolution of smectite by fluorescent Pseudomonas. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:459-67. [PMID: 25646536 DOI: 10.1111/1758-2229.12146] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Siderophores are organic chelators produced by microorganisms to fulfil their iron requirements. Siderophore-promoted dissolution of iron-bearing minerals has been clearly documented for some siderophores, but few studies have addressed metabolizing siderophore-producing bacteria. We investigated iron acquisition from clays by fluorescent Pseudomonads, bacteria that are ubiquitous in the environment. We focused on the interactions between smectite and Pseudomonas aeruginosa, a bacterium producing two structurally different siderophores: pyoverdine and pyochelin. The presence of smectite in iron-limited growth media promoted planktonic growth of P. aeruginosa and biofilm surrounding the smectite aggregates. Chemical analysis of the culture media indicated increases in the dissolved silicon, iron and aluminium concentrations following smectite supplementation. The use of P. aeruginosa mutants unable to produce either one or both of the two siderophores indicated that pyoverdine, the siderophore with the higher affinity for iron, was involved in iron and aluminium solubilization by the wild-type strain. However, in the absence of pyoverdine, pyochelin was also able to solubilize iron but with a twofold lower efficiency. In conclusion, pyoverdine and pyochelin, two structurally different siderophores, can solubilize structural iron from smectite and thereby make it available for bacterial growth.
Collapse
|
33
|
Park AJ, Surette MD, Khursigara CM. Antimicrobial targets localize to the extracellular vesicle-associated proteome of Pseudomonas aeruginosa grown in a biofilm. Front Microbiol 2014; 5:464. [PMID: 25232353 PMCID: PMC4153316 DOI: 10.3389/fmicb.2014.00464] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/14/2014] [Indexed: 01/21/2023] Open
Abstract
Microbial biofilms are particularly resistant to antimicrobial therapies. These surface-attached communities are protected against host defenses and pharmacotherapy by a self-produced matrix that surrounds and fortifies them. Recent proteomic evidence also suggests that some bacteria, including the opportunistic pathogen Pseudomonas aeruginosa, undergo modifications within a biofilm that make them uniquely resistant compared to their planktonic (free-living) counterparts. This study examines 50 proteins in the resistance subproteome of both surface-associated and free-living P. aeruginosa PAO1 over three time points. Proteins were grouped into categories based on their roles in antimicrobial: (i) binding, (ii) efflux, (iii) resistance, and (iv) susceptibility. In addition, the extracellular outer membrane vesicle-associated proteome is examined and compared between the two growth modes. We show that in whole cells between 12-24% of the proteins are present at significantly different abundance levels over time, with some proteins being unique to a specific growth mode; however, the total abundance levels in the four categories remain consistent. In contrast, marked differences are seen in the protein content of the outer membrane vesicles, which contain a greater number of drug-binding proteins in vesicles purified from late-stage biofilms. These results show how the method of analysis can impact the interpretation of proteomic data (i.e., individual proteins vs. systems), and highlight the advantage of using protein-based methods to identify potential antimicrobial resistance mechanisms in extracellular sample components. Furthermore, this information has the potential to inform the development of specific antipseudomonal therapies that quench possible drug-sequestering vesicle proteins. This strategy could serve as a novel approach for combating the high-level of antimicrobial resistance in P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Matthew D Surette
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| |
Collapse
|
34
|
Archer SDJ, McDonald IR, Herbold CW, Cary SC. Characterisation of bacterioplankton communities in the meltwater ponds of Bratina Island, Victoria Land, Antarctica. FEMS Microbiol Ecol 2014; 89:451-64. [PMID: 24862286 DOI: 10.1111/1574-6941.12358] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/12/2014] [Accepted: 05/17/2014] [Indexed: 12/01/2022] Open
Abstract
A unique collection of Antarctic aquatic environments (meltwater ponds) lies in close proximity on the rock and sediment-covered undulating surface of the McMurdo Ice Shelf, near Bratina Island (Victoria Land, Antarctica). During the 2009-10 mid-austral summer, sets of discrete water samples were collected across the vertical geochemical gradients of five meltwater ponds (Egg, P70E, Legin, Salt and Orange) for geochemical and microbial community structure analysis. Bacterial DNA fingerprints (using Automated Ribosomal Intergenic Spacer Analysis) statistically clustered communities within ponds based on anosim (R = 0.766, P = 0.001); however, one highly stratified pond (Egg) had two distinct depth-related bacterial communities (R = 0.975, P = 0.008). 454 pyrosequencing at three depths within Egg also identified phylum level shifts and increased diversity with depth, Bacteroidetes being the dominant phyla in the surface sample and Proteobacteria being dominant in the bottom two depths. best analysis, which attempts to link community structure and the geochemistry of a pond, identified conductivity and pH individually, and to a lesser extent Ag(109) , NO2 and V(51) as dominant influences to the microbial community structure in these ponds. Increasing abundances of major halo-tolerant OTUs across the strong conductivity gradient reinforce it as the primary driver of community structure in this study.
Collapse
Affiliation(s)
- Stephen D J Archer
- International Centre for Terrestrial Antarctic Research, School of Science, University of Waikato, Hamilton, New Zealand
| | | | | | | |
Collapse
|
35
|
Parker DL, Lee SW, Geszvain K, Davis RE, Gruffaz C, Meyer JM, Torpey JW, Tebo BM. Pyoverdine synthesis by the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1. Front Microbiol 2014; 5:202. [PMID: 24847318 PMCID: PMC4019867 DOI: 10.3389/fmicb.2014.00202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/16/2014] [Indexed: 11/13/2022] Open
Abstract
When iron-starved, the Mn(II)-oxidizing bacteria Pseudomonas putida strains GB-1 and MnB1 produce pyoverdines (PVDGB-1 and PVDMnB1), siderophores that both influence iron uptake and inhibit manganese(II) oxidation by these strains. To explore the properties and genetics of a PVD that can affect manganese oxidation, LC-MS/MS, and various siderotyping techniques were used to identify the peptides of PVDGB-1 and PVDMnB1 as being (for both PVDs): chromophore-Asp-Lys-OHAsp-Ser-Gly-aThr-Lys-cOHOrn, resembling a structure previously reported for P. putida CFML 90-51, which does not oxidize Mn. All three strains also produced an azotobactin and a sulfonated PVD, each with the peptide sequence above, but with unknown regulatory or metabolic effects. Bioinformatic analysis of the sequenced genome of P. putida GB-1 suggested that a particular non-ribosomal peptide synthetase (NRPS), coded by the operon PputGB1_4083-4086, could produce the peptide backbone of PVDGB-1. To verify this prediction, plasmid integration disruption of PputGB1_4083 was performed and the resulting mutant failed to produce detectable PVD. In silico analysis of the modules in PputGB1_4083-4086 predicted a peptide sequence of Asp-Lys-Asp-Ser-Ala-Thr-Lsy-Orn, which closely matches the peptide determined by MS/MS. To extend these studies to other organisms, various Mn(II)-oxidizing and non-oxidizing isolates of P. putida, P. fluorescens, P. marincola, P. fluorescens-syringae group, P. mendocina-resinovorans group, and P. stutzerii group were screened for PVD synthesis. The PVD producers (12 out of 16 tested strains) were siderotyped and placed into four sets of differing PVD structures, some corresponding to previously characterized PVDs and some to novel PVDs. These results combined with previous studies suggested that the presence of OHAsp or the flexibility of the pyoverdine polypeptide may enable efficient binding of Mn(III).
Collapse
Affiliation(s)
- Dorothy L. Parker
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San DiegoLa Jolla, CA, USA
| | - Sung-Woo Lee
- Division of Environmental and Biomolecular Systems, Oregon Health and Science UniversityBeaverton, OR, USA
| | - Kati Geszvain
- Division of Environmental and Biomolecular Systems, Oregon Health and Science UniversityBeaverton, OR, USA
| | - Richard E. Davis
- Division of Environmental and Biomolecular Systems, Oregon Health and Science UniversityBeaverton, OR, USA
| | - Christelle Gruffaz
- Laboratoire de Génétique Moléculaire, Génomique et Microbiologie, Université de StrasbourgStrasbourg, France
| | - Jean-Marie Meyer
- Laboratoire de Génétique Moléculaire, Génomique et Microbiologie, Université de StrasbourgStrasbourg, France
| | - Justin W. Torpey
- Biomolecular Mass Spectrometry Facility, Department of Chemistry and Biochemistry, University of California San DiegoLa Jolla, CA, USA
| | - Bradley M. Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health and Science UniversityBeaverton, OR, USA
| |
Collapse
|
36
|
Costello A, Reen FJ, O'Gara F, Callaghan M, McClean S. Inhibition of co-colonizing cystic fibrosis-associated pathogens by Pseudomonas aeruginosa and Burkholderia multivorans. MICROBIOLOGY-SGM 2014; 160:1474-1487. [PMID: 24790091 DOI: 10.1099/mic.0.074203-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cystic fibrosis (CF) is a recessive genetic disease characterized by chronic respiratory infections and inflammation causing permanent lung damage. Recurrent infections are caused by Gram-negative antibiotic-resistant bacterial pathogens such as Pseudomonas aeruginosa, Burkholderia cepacia complex (Bcc) and the emerging pathogen genus Pandoraea. In this study, the interactions between co-colonizing CF pathogens were investigated. Both Pandoraea and Bcc elicited potent pro-inflammatory responses that were significantly greater than Ps. aeruginosa. The original aim was to examine whether combinations of pro-inflammatory pathogens would further exacerbate inflammation. In contrast, when these pathogens were colonized in the presence of Ps. aeruginosa the pro-inflammatory response was significantly decreased. Real-time PCR quantification of bacterial DNA from mixed cultures indicated that Ps. aeruginosa significantly inhibited the growth of Burkholderia multivorans, Burkholderia cenocepacia, Pandoraea pulmonicola and Pandoraea apista, which may be a factor in its dominance as a colonizer of CF patients. Ps. aeruginosa cell-free supernatant also suppressed growth of these pathogens, indicating that inhibition was innate rather than a response to the presence of a competitor. Screening of a Ps. aeruginosa mutant library highlighted a role for quorum sensing and pyoverdine biosynthesis genes in the inhibition of B. cenocepacia. Pyoverdine was confirmed to contribute to the inhibition of B. cenocepacia strain J2315. B. multivorans was the only species that could significantly inhibit Ps. aeruginosa growth. B. multivorans also inhibited B. cenocepacia and Pa. apista. In conclusion, both Ps. aeruginosa and B. multivorans are capable of suppressing growth and virulence of co-colonizing CF pathogens.
Collapse
Affiliation(s)
- Anne Costello
- Centre of Microbial Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Old Blessington Road, Tallaght, Dublin 24, Ireland
| | - F Jerry Reen
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Fergal O'Gara
- Curtin University, School of Biomedical Sciences, Perth, WA 6845, Australia.,BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Old Blessington Road, Tallaght, Dublin 24, Ireland
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Old Blessington Road, Tallaght, Dublin 24, Ireland
| |
Collapse
|
37
|
Genes required for and effects of alginate overproduction induced by growth of Pseudomonas aeruginosa on Pseudomonas isolation agar supplemented with ammonium metavanadate. J Bacteriol 2013; 195:4020-36. [PMID: 23794622 DOI: 10.1128/jb.00534-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can adapt to changing environments and can secrete an exopolysaccharide known as alginate as a protection response, resulting in a colony morphology and phenotype referred to as mucoid. However, how P. aeruginosa senses its environment and activates alginate overproduction is not fully understood. Previously, we showed that Pseudomonas isolation agar supplemented with ammonium metavanadate (PIAAMV) induces P. aeruginosa to overproduce alginate. Vanadate is a phosphate mimic and causes protein misfolding by disruption of disulfide bonds. Here we used PIAAMV to characterize the pathways involved in inducible alginate production and tested the global effects of P. aeruginosa growth on PIAAMV by a mutant library screen, by transcriptomics, and in a murine acute virulence model. The PA14 nonredundant mutant library was screened on PIAAMV to identify new genes that are required for the inducible alginate stress response. A functionally diverse set of genes encoding products involved in cell envelope biogenesis, peptidoglycan remodeling, uptake of phosphate and iron, phenazine biosynthesis, and other processes were identified as positive regulators of the mucoid phenotype on PIAAMV. Transcriptome analysis of P. aeruginosa cultures growing in the presence of vanadate showed differential expression of genes involved in virulence, envelope biogenesis, and cell stress pathways. In this study, it was observed that growth on PIAAMV attenuates P. aeruginosa in a mouse pneumonia model. Induction of alginate overproduction occurs as a stress response to protect P. aeruginosa, but it may be possible to modulate and inhibit these pathways based on the new genes identified in this study.
Collapse
|
38
|
Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress. J Bacteriol 2013; 195:3299-308. [PMID: 23687271 DOI: 10.1128/jb.00167-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pseudomonas aeruginosa PAO1 has two differentially expressed methionine sulfoxide reductase genes: msrA (PA5018) and msrB (PA2827). The msrA gene is expressed constitutively at a high level throughout all growth phases, whereas msrB expression is highly induced by oxidative stress, such as sodium hypochlorite (NaOCl) treatment. Inactivation of either msrA or msrB or both genes (msrA msrB mutant) rendered the mutants less resistant than the parental PAO1 strain to oxidants such as NaOCl and H2O2. Unexpectedly, msr mutants have disparate resistance patterns when exposed to paraquat, a superoxide generator. The msrA mutant had a higher paraquat resistance level than the msrB mutant, which had a lower paraquat resistance level than the PAO1 strain. The expression levels of msrA showed an inverse correlation with the paraquat resistance level, and this atypical paraquat resistance pattern was not observed with msrB. Virulence testing using a Drosophila melanogaster model revealed that the msrA, msrB, and, to a greater extent, msrA msrB double mutants had an attenuated virulence phenotype. The data indicate that msrA and msrB are essential genes for oxidative stress protection and bacterial virulence. The pattern of expression and mutant phenotypes of P. aeruginosa msrA and msrB differ from previously characterized msr genes from other bacteria. Thus, as highly conserved genes, the msrA and msrB have diverse expression patterns and physiological roles that depend on the environmental niche where the bacteria thrive.
Collapse
|
39
|
Schalk IJ, Guillon L. Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 2012; 15:1661-73. [PMID: 23126435 DOI: 10.1111/1462-2920.12013] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/17/2012] [Accepted: 09/26/2012] [Indexed: 02/03/2023]
Abstract
Pyoverdines are siderophores produced by fluorescent Pseudomonads to acquire iron. At least 60 different pyoverdines produced by diverse strains have been chemically characterized. They all consist of a dihydroquinoline-type chromophore linked to a peptide. These peptides are of various lengths and the sequences are strain specific. Pyoverdine biosynthesis in Pseudomonas aeruginosa and fluorescent Pseudomonads is a complex process involving at least 12 different proteins, starting in the cytoplasm and ending in the periplasm. The cellular localization of pyoverdine precursors was recently shown to be consistent with their biosynthetic enzymes. In the cytoplasm, pyoverdine appears to be assembled at the inner membrane and particularly at the old cell pole of the bacterium. Mature pyoverdine is uniformly distributed throughout the periplasm, like the periplasmic enzyme PvdQ. Secretion of pyoverdine involves a recently identified ATP-dependent efflux pump, PvdRT-OpmQ. This efflux system does not only secrete newly synthesized pyoverdine but also pyoverdine that already transported iron into the bacterial periplasm and any pyoverdine-metal complex other than ferri-pyoverdine present in the periplasm. This review considers how these new insights into pyoverdine biosynthesis and secretion contribute to our understanding of the role of pyoverdine in iron and metal homeostasis in fluorescent Pseudomonads.
Collapse
Affiliation(s)
- Isabelle J Schalk
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413 Illkirch, Strasbourg, France.
| | | |
Collapse
|
40
|
Rajkumar M, Sandhya S, Prasad MNV, Freitas H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 2012; 30:1562-74. [PMID: 22580219 DOI: 10.1016/j.biotechadv.2012.04.011] [Citation(s) in RCA: 428] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 02/08/2023]
Abstract
"Phytoremediation" know-how to do-how is rapidly expanding and is being commercialized by harnessing the phyto-microbial diversity. This technology employs biodiversity to remove/contain pollutants from the air, soil and water. In recent years, there has been a considerable knowledge explosion in understanding plant-microbes-heavy metals interactions. Novel applications of plant-associated microbes have opened up promising areas of research in the field of phytoremediation technology. Various metabolites (e.g., 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophores, organic acids, etc.) produced by plant-associated microbes (e.g., plant growth promoting bacteria, mycorrhizae) have been proposed to be involved in many biogeochemical processes operating in the rhizosphere. The salient functions include nutrient acquisition, cell elongation, metal detoxification and alleviation of biotic/abiotic stress in plants. Rhizosphere microbes accelerate metal mobility, or immobilization. Plants and associated microbes release inorganic and organic compounds possessing acidifying, chelating and/or reductive power. These functions are implicated to play an essential role in plant metal uptake. Overall the plant-associated beneficial microbes enhance the efficiency of phytoremediation process directly by altering the metal accumulation in plant tissues and indirectly by promoting the shoot and root biomass production. The present work aims to provide a comprehensive review of some of the promising processes mediated by plant-associated microbes and to illustrate how such processes influence heavy metal uptake through various biogeochemical processes including translocation, transformation, chelation, immobilization, solubilization, precipitation, volatilization and complexation of heavy metals ultimately facilitating phytoremediation.
Collapse
Affiliation(s)
- M Rajkumar
- National Environmental Engineering Research Institute (NEERI), CSIR Complex, Taramani, Chennai 600113, India.
| | | | | | | |
Collapse
|
41
|
Damron FH, Goldberg JB. Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa. Mol Microbiol 2012; 84:595-607. [PMID: 22497280 DOI: 10.1111/j.1365-2958.2012.08049.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is a significant opportunistic pathogen associated with skin and soft tissue infections, nosocomial pneumonia and sepsis. In addition, it can chronically colonize the lungs of cystic fibrosis (CF) patients. Overproduction of the exopolysaccharide called alginate provides P. aeruginosa with a selective advantage and facilitates survival in the CF lung. The in vitro phenotype of alginate overproduction observed on solid culture media is referred to as mucoid. Expression of the alginate machinery and biosynthetic enzymes are controlled by the extracytoplasmic sigma factor, σ(22) (AlgU/T). The key negative regulator of both σ(22) activity and the mucoid phenotype is the cognate anti-sigma factor MucA. MucA sequesters σ(22) to the inner membrane inhibiting the sigma factor's transcriptional activity. The well-studied mechanism for transition to the mucoid phenotype is mutation of mucA, leading to loss of MucA function and therefore activation of σ(22) . Recently, regulated intramembrane proteolysis (RIP) has been recognized as a mechanism whereby proteolysis of the anti-sigma factor MucA leads to active σ(22) allowing P. aeruginosa to respond to environmental stress conditions by overproduction of alginate. The goal of this review is to illuminate the pathways leading to RIP that have been identified and proposed.
Collapse
Affiliation(s)
- F Heath Damron
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | | |
Collapse
|
42
|
Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GLA, Albrecht-Gary AM. Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Trans 2012; 41:2820-34. [PMID: 22261733 DOI: 10.1039/c1dt11804h] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen, synthesizing two major siderophores, pyoverdine (Pvd) and pyochelin (Pch), to cover its needs in iron(III). If the high affinity and specificity of Pvd toward iron(III) (pFe = 27.0) was well described in the literature, the physicochemical and coordination properties of Pch toward biologically relevant metals (Fe(III), Cu(II) or Zn(II)) have been only scarcely investigated. We report a thorough physico-chemical investigation of Pch (potentiometry, spectrophotometries, ESI/MS) that highlighted its moderate but significantly higher affinity for Fe(3+) (pFe = 16.0 at p[H] 7.4) than reported previously. We also demonstrated that Pch strongly chelates divalent metals such as Zn(II) (pZn = 11.8 at p[H] 7.4) and Cu(II) (pCu = 14.9 at p[H] 7.4) and forms predominantly 1 : 2 (M(2+)/Pch) complexes. Kinetic studies revealed that the formation of the ferric Pch complexes proceeds through a Eigen-Wilkins dissociative ligand interchange mechanism involving two protonated species of Pch and the Fe(OH)(2+) species of Fe(III). Our physico-chemical parameters supports the previous biochemical studies which proposed that siderophores are not only devoted to iron(III) shuttling but most likely display other specific biological role in the subtle metals homeostasis in microorganisms. This work also represents a step toward deciphering the role of siderophores throughout evolution.
Collapse
Affiliation(s)
- Jérémy Brandel
- Laboratoire de Physico-Chimie Bioinorganique, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, ECPM, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The shewanellae are ubiquitous in aquatic and sedimentary systems that are chemically stratified on a permanent or seasonal basis. In addition to their ability to utilize a diverse array of terminal electron acceptors, the microorganisms have evolved both common and unique responding mechanisms to cope with various stresses. This paper focuses on the response and adaptive mechanism of the shewanellae, largely based on transcriptional data.
Collapse
|
44
|
Schalk IJ, Hannauer M, Braud A. New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 2011; 13:2844-54. [PMID: 21883800 DOI: 10.1111/j.1462-2920.2011.02556.x] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Siderophores are chelators with extremely strong affinity for ferric iron and are best known for their capacity to feed microorganisms with this metal. Despite their preference for iron, they can also chelate numerous other metals with variable affinities. There is also increasing evidence that metals other than iron can activate the production of siderophores by bacteria, thereby implicating siderophores in the homeostasis of metals other than iron and especially heavy metal tolerance. This article considers this new concept that siderophores play a role in protecting bacteria against metal toxicity and discusses the possible contribution of these chelators to the transport of biological relevant metals in addition to iron.
Collapse
Affiliation(s)
- Isabelle J Schalk
- UMR7242, University of Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413 Illkirch, Strasbourg, France.
| | | | | |
Collapse
|
45
|
Damron FH, Davis MR, Withers TR, Ernst RK, Goldberg JB, Yu G, Yu HD. Vanadate and triclosan synergistically induce alginate production by Pseudomonas aeruginosa strain PAO1. Mol Microbiol 2011; 81:554-70. [PMID: 21631603 DOI: 10.1111/j.1365-2958.2011.07715.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alginate overproduction by P. aeruginosa strains, also known as mucoidy, is associated with chronic lung infections in cystic fibrosis (CF). It is not clear how alginate induction occurs in the wild-type (wt) mucA strains. When grown on Pseudomonas isolation agar (PIA), P. aeruginosa strains PAO1 and PA14 are non-mucoid, producing minimal amounts of alginate. Here we report the addition of ammonium metavanadate (AMV), a phosphatase inhibitor, to PIA (PIA-AMV) induced mucoidy in both these laboratory strains and early lung colonizing non-mucoid isolates with a wt mucA. This phenotypic switch was reversible depending on the availability of vanadate salts and triclosan, a component of PIA. Alginate induction in PAO1 on PIA-AMV was correlated with increased proteolytic degradation of MucA, and required envelope proteases AlgW or MucP, and a two-component phosphate regulator, PhoP. Other changes included the addition of palmitate to lipid A, a phenotype also observed in chronic CF isolates. Proteomic analysis revealed the upregulation of stress chaperones, which was confirmed by increased expression of the chaperone/protease MucD. Altogether, these findings suggest a model of alginate induction and the PIA-AMV medium may be suitable for examining early lung colonization phenotypes in CF before the selection of the mucA mutants.
Collapse
Affiliation(s)
- F Heath Damron
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755-9320, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Bellenger JP, Wichard T, Xu Y, Kraepiel AML. Essential metals for nitrogen fixation in a free-living N₂-fixing bacterium: chelation, homeostasis and high use efficiency. Environ Microbiol 2011; 13:1395-411. [PMID: 21392197 DOI: 10.1111/j.1462-2920.2011.02440.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biological nitrogen fixation, the main source of new nitrogen to the Earth's ecosystems, is catalysed by the enzyme nitrogenase. There are three nitrogenase isoenzymes: the Mo-nitrogenase, the V-nitrogenase and the Fe-only nitrogenase. All three types require iron, and two of them also require Mo or V. Metal bioavailability has been shown to limit nitrogen fixation in natural and managed ecosystems. Here, we report the results of a study on the metal (Mo, V, Fe) requirements of Azotobacter vinelandii, a common model soil diazotroph. In the growth medium of A. vinelandii, metals are bound to strong complexing agents (metallophores) excreted by the bacterium. The uptake rates of the metallophore complexes are regulated to meet the bacterial metal requirement for diazotrophy. Under metal-replete conditions Mo, but not V or Fe, is stored intracellularly. Under conditions of metal limitation, intracellular metals are used with remarkable efficiency, with essentially all the cellular Mo and V allocated to the nitrogenase enzymes. While the Mo-nitrogenase, which is the most efficient, is used preferentially, all three nitrogenases contribute to N₂ fixation in the same culture under metal limitation. We conclude that A. vinelandii is well adapted to fix nitrogen in metal-limited soil environments.
Collapse
Affiliation(s)
- J-P Bellenger
- Department of Geosciences, PEI, Guyot Hall, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
47
|
Vinckx T, Wei Q, Matthijs S, Noben JP, Daniels R, Cornelis P. A proteome analysis of the response of a Pseudomonas aeruginosa oxyR mutant to iron limitation. Biometals 2011; 24:523-32. [PMID: 21207115 DOI: 10.1007/s10534-010-9403-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/22/2010] [Indexed: 11/30/2022]
Abstract
In Pseudomonas aeruginosa the response to oxidative stress is orchestrated by the LysR regulator OxyR by activation of the transcription of two catalase genes (katA and katB), of the alkyl-hydroxyperoxidases ahpCF and ahpB. Next to the expected high sensitivity to oxidative stress generated by reactive oxygen species (ROS: H(2)O(2), O(2)(-)), the oxyR mutant shows a defective growth under conditions of iron limitation (Vinckx et al. 2008). Although production and uptake of the siderophore pyoverdine is not affected by the absence of oxyR, the mutant is unable to satisfy its need for iron when grown under iron limiting conditions. In order to get a better insight into the effects caused by iron limitation on the physiological response of the oxyR mutant we decided to compare the proteomes of the wild type and the mutant grown in the iron-poor casamino acids medium (CAA), in CAA plus H(2)O(2), and in CAA plus the strong iron chelator ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (EDDHA). Especially in the presence of hydrogen peroxide the oxyR cells increase the production of stress proteins (Dps and IbpA). The superoxide dismutase SodM is produced in higher amounts in the oxyR mutant grown in CAA plus H(2)O(2). The PchB protein, a isochorismate-pyruvate lyase involved in the siderophore pyochelin biosynthesis is not detectable in the extracts from the oxyR mutant grown in the presence of hydrogen peroxide. When cells were grown in the presence of EDDHA, we observed a reduction of the ferric uptake regulator (Fur), and an increase in the two subunits of the succinyl-CoA synthetase and the fumarase FumC1.
Collapse
Affiliation(s)
- Tiffany Vinckx
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. BIORESOURCE TECHNOLOGY 2010; 101:8599-8605. [PMID: 20637605 DOI: 10.1016/j.biortech.2010.06.085] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 06/08/2010] [Accepted: 06/19/2010] [Indexed: 05/29/2023]
Abstract
Heavy metal bioremediation by a multi-metal resistant endophytic bacteria L14 (EB L14) isolated from the cadmium hyperaccumulator Solanum nigrum L. was characterized for its potential application in metal treatment. 16S rDNA analysis revealed that this endophyte belonged to Bacillus sp. The hormesis of EB L14 were observed in presence of divalent heavy metals (Cu (II), Cd (II) and Pb (II)) at a relatively lower concentration (10mg/L). Such hormesis was the side effect of abnormal activities increases of ATPase which was planned to provide energy to help EB L14 reduce the toxicity of heavy metals by exporting the cations. Within 24h incubation, EB L14 could specifically uptake 75.78%, 80.48%, 21.25% of Cd (II), Pb (II) and Cu (II) under the initial concentration of 10mg/L. However, nearly no chromium uptake was observed. The mechanism study indicated that its remediation efficiencies may be greatly promoted through inhibiting the activities of ATPase. The excellent adaptation abilities and promising remediation efficiencies strongly indicated the superiority of this endophyte in heavy metal bioremediation at low concentrations, which could be useful for developing efficient metal removal system.
Collapse
Affiliation(s)
- Hanjun Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Braud A, Geoffroy V, Hoegy F, Mislin GLA, Schalk IJ. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:419-25. [PMID: 23766115 DOI: 10.1111/j.1758-2229.2009.00126.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In order to get access to iron, Pseudomonas aeruginosa strain PAO1 produces two major siderophores pyoverdine (PVD) and pyochelin (PCH). Both siderophores are able to chelate many other metals in addition to iron. However, despite this property, only iron is transported efficiently into the bacteria by the PVD and PCH uptake pathways. Growth studies with P. aeruginosa strains showed a lower sensitivity to toxic metals for the siderophore-producing strain than for the mutants unable to produce siderophores. Moreover, addition of PVD or PCH to the growth medium of a siderophore-deficient strain considerably reduced the toxicity of toxic metals present at concentrations of 100 µM in iron-limited and iron-supplemented growth conditions. Measurement by Inductively Coupled Plasma-Atomic Emission Spectrometry of the concentration of metals present in bacteria incubated with metals in the presence or absence of PVD or PCH indicated that both siderophores were able to sequester metals from the extracellular medium of the bacteria, decreasing metal diffusion into the bacteria. Pyoverdine was able to sequester Al(3+) , Co(2+) , Cu(2+) , Eu(3+) , Ni(2+) , Pb(2+) , Tb(3+) and Zn(2+) from the extracellular medium, and PCH, Al(3+) , Co(2+) , Cu(2+) , Ni(2+) , Pb(2+) and Zn(2+) . Moreover, the presence of 100 µM Cu(2+) and Ni(2+) increased PVD production by 290% and 380%, respectively, in a medium supplemented with iron. All these data suggest that PVD and PCH may contribute to P. aeruginosa resistance to heavy metals.
Collapse
Affiliation(s)
- Armelle Braud
- Métaux et Microorganismes: Chimie, Biologie et Applications. FRE3211, CNRS-Université de Strasbourg, ESBS, Blvd Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | | | | | | | | |
Collapse
|
50
|
Cornelis P. Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 2010; 86:1637-45. [DOI: 10.1007/s00253-010-2550-2] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/07/2010] [Accepted: 03/07/2010] [Indexed: 12/21/2022]
|