1
|
Li E, Zhu Q, Pang D, Liu F, Liao S, Zou Y. Analysis of Lactobacillus rhamnosus GG in Mulberry Galacto-Oligosaccharide Medium by Comparative Transcriptomics and Metabolomics. Front Nutr 2022; 9:853271. [PMID: 35369065 PMCID: PMC8973438 DOI: 10.3389/fnut.2022.853271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Lactobacillus rhamnosus GG (LGG) has strong acid resistance and can survive passing through the stomach to colonize the intestines, where it promotes the growth of beneficial bacteria. Prebiotics such as mulberry galacto-oligosaccharide (MGO), mulberry polysaccharide solution (MPS), and galactooligosaccharides (GOS) promote LGG proliferation, and MGO has the greatest effect. After culturing LGG with prebiotics, changes in gene expression were studied at the transcriptomic and metabolomic levels. The results showed that, in the stable 24-h growth period of cultivation, ~63 and 132% more differential genes were found after MPS and MGO were added to the MRS medium, respectively, than after GOS was added, and the numbers of up-regulated genes were about 18 and 66% higher with MPS and MGO, respectively, than GOS. Analysis using the KEGG database revealed that, when LGG was cultured with MGO, 120 genes that were up-regulated as the growth rate increased were mainly enriched in pathways such as membrane transport, amino acid metabolism, and carbohydrate metabolism. The genes gatB and gatC were up-regulated for galactose metabolism, and bglA was up-regulated in the glycolysis/gluconeogenesis pathway. The qRT-RCR results, which were in agreement with the RNA-seq, indicated the genes involved in the proliferation effect of LGG were up-regulated. UDP-glucose may be a key metabolite for MGO to promote LGG proliferation.
Collapse
|
2
|
Robertsson C, Svensäter G, Blum Z, Jakobsson ME, Wickström C. Proteomic response in Streptococcus gordonii DL1 biofilm cells during attachment to salivary MUC5B. J Oral Microbiol 2021; 13:1967636. [PMID: 34447490 PMCID: PMC8386731 DOI: 10.1080/20002297.2021.1967636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Salivary mucin MUC5B seems to promote biodiversity in dental biofilms, and thereby oral health, for example, by inducing synergistic ‘mucolytic’ activities in a variety of microbial species that need to cooperate for the release of nutrients from the complex glycoprotein. Knowledge of how early colonizers interact with host salivary proteins is integral to better understand the maturation of putatively harmful oral biofilms and could provide key insights into biofilm physiology. Methods The early oral colonizer Streptococcus gordonii DL1 was grown planktonically and in biofilm flow cell systems with uncoated, MUC5B or low-density salivary protein (LDP) coated surfaces. Bacterial cell proteins were extracted and analyzed using a quantitative mass spectrometry-based workflow, and differentially expressed proteins were identified. Results and conclusions Overall, the proteomic profiles of S. gordonii DL1 were similar across conditions. Six novel biofilm cell proteins and three planktonic proteins absent in all biofilm cultures were identified. These differences may provide insights into mechanisms for adaptation to biofilm growth in this species. Salivary MUC5B also elicited specific responses in the biofilm cell proteome. These regulations may represent mechanisms by which this mucin could promote colonization of the commensal S. gordonii in oral biofilms.
Collapse
Affiliation(s)
- Carolina Robertsson
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Zoltan Blum
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | | | - Claes Wickström
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
3
|
Ruan H, Yu H, Xu J. The glucose uptake systems in Corynebacterium glutamicum: a review. World J Microbiol Biotechnol 2020; 36:126. [PMID: 32712859 DOI: 10.1007/s11274-020-02898-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/12/2020] [Indexed: 11/29/2022]
Abstract
The phosphoenolpyruvate-dependent glucose phosphotransferase system (PTSGlc) is the major uptake system responsible for transporting glucose, and is involved in glucose translocation and phosphorylation in Corynebacterium glutamicum. For the longest time, the PTSGlc was considered as the only uptake system for glucose. However, some PTS-independent glucose uptake systems (non-PTSGlc) were discovered in recent years, such as the coupling system of inositol permeases and glucokinases (IPGS) and the coupling system of β-glucoside-PTS permease and glucokinases (GPGS). The products (e.g. lysine, phenylalanine and leucine) will be increased because of the increasing intracellular level of phosphoenolpyruvate (PEP), while some by-products (e.g. lactic acid, alanine and acetic acid) will be reduced when this system become the main uptake pathway for glucose. In this review, we survey the uptake systems for glucose in C. glutamicum and their composition. Furthermore, we summarize the latest research of the regulatory mechanisms among these glucose uptake systems. Detailed strategies to manipulate glucose uptake system are addressed based on this knowledge.
Collapse
Affiliation(s)
- Haozhe Ruan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China
| | - Haibo Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China
| | - Jianzhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
4
|
Sugar Allocation to Metabolic Pathways is Tightly Regulated and Affects the Virulence of Streptococcus mutans. Genes (Basel) 2016; 8:genes8010011. [PMID: 28036052 PMCID: PMC5295006 DOI: 10.3390/genes8010011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 02/03/2023] Open
Abstract
Bacteria take up and metabolize sugar as a carbohydrate source for survival. Most bacteria can utilize many sugars, including glucose, sucrose, and galactose, as well as amino sugars, such as glucosamine and N-acetylglucosamine. After entering the cytoplasm, the sugars are mainly allocated to the glycolysis pathway (energy production) and to various bacterial component biosynthesis pathways, including the cell wall, nucleic acids and amino acids. Sugars are also utilized to produce several virulence factors, such as capsule and lipoteichoic acid. Glutamine-fructose-6-phosphate aminotransferase (GlmS) and glucosamine-6-phosphate deaminase (NagB) have crucial roles in sugar distribution to the glycolysis pathway and to cell wall biosynthesis. In Streptococcus mutans, a cariogenic pathogen, the expression levels of glmS and nagB are coordinately regulated in response to the presence or absence of amino sugars. In addition, the disruption of this regulation affects the virulence of S. mutans. The expression of nagB and glmS is regulated by NagR in S. mutans, but the precise mechanism underlying glmS regulation is not clear. In Staphylococcus aureus and Bacillus subtilis, the mRNA of glmS has ribozyme activity and undergoes self-degradation at the mRNA level. However, there is no ribozyme activity region on glmS mRNA in S. mutans. In this review article, we summarize the sugar distribution, particularly the coordinated regulation of GlmS and NagB expression, and its relationship with the virulence of S. mutans.
Collapse
|
5
|
Evolution of aromatic β-glucoside utilization by successive mutational steps in Escherichia coli. J Bacteriol 2014; 197:710-6. [PMID: 25448815 DOI: 10.1128/jb.02185-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bglA gene of Escherichia coli encodes phospho-β-glucosidase A capable of hydrolyzing the plant-derived aromatic β-glucoside arbutin. We report that the sequential accumulation of mutations in bglA can confer the ability to hydrolyze the related aromatic β-glucosides esculin and salicin in two steps. In the first step, esculin hydrolysis is achieved through the acquisition of a four-nucleotide insertion within the promoter of the bglA gene, resulting in enhanced steady-state levels of the bglA transcript. In the second step, hydrolysis of salicin is achieved through the acquisition of a point mutation within the bglA structural gene close to the active site without the loss of the original catabolic activity against arbutin. These studies underscore the ability of microorganisms to evolve additional metabolic capabilities by mutational modification of preexisting genetic systems under selection pressure, thereby expanding their repertoire of utilizable substrates.
Collapse
|
6
|
Michlmayr H, Kneifel W. β-Glucosidase activities of lactic acid bacteria: mechanisms, impact on fermented food and human health. FEMS Microbiol Lett 2013; 352:1-10. [PMID: 24330034 DOI: 10.1111/1574-6968.12348] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 11/23/2013] [Indexed: 01/27/2023] Open
Abstract
Through the hydrolysis of plant metabolite glucoconjugates, β-glucosidase activities of lactic acid bacteria (LAB) make a significant contribution to the dietary and sensory attributes of fermented food. Deglucosylation can release attractive flavour compounds from glucosylated precursors and increases the bioavailability of health-promoting plant metabolites as well as that of dietary toxins. This review brings the current literature on LAB β-glucosidases into context by providing an overview of the nutritional implications of LAB β-glucosidase activities. Based on biochemical and genomic information, the mechanisms that are currently considered to be critical for the hydrolysis of β-glucosides by intestinal and food-fermenting LAB will also be reviewed.
Collapse
Affiliation(s)
- Herbert Michlmayr
- Christian Doppler Research Laboratory for Innovative Bran Biorefinery, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | |
Collapse
|
7
|
Yu WL, Jiang YL, Pikis A, Cheng W, Bai XH, Ren YM, Thompson J, Zhou CZ, Chen Y. Structural insights into the substrate specificity of a 6-phospho-β-glucosidase BglA-2 from Streptococcus pneumoniae TIGR4. J Biol Chem 2013; 288:14949-58. [PMID: 23580646 DOI: 10.1074/jbc.m113.454751] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 6-phospho-β-glucosidase BglA-2 (EC 3.2.1.86) from glycoside hydrolase family 1 (GH-1) catalyzes the hydrolysis of β-1,4-linked cellobiose 6-phosphate (cellobiose-6'P) to yield glucose and glucose 6-phosphate. Both reaction products are further metabolized by the energy-generating glycolytic pathway. Here, we present the first crystal structures of the apo and complex forms of BglA-2 with thiocellobiose-6'P (a non-metabolizable analog of cellobiose-6'P) at 2.0 and 2.4 Å resolution, respectively. Similar to other GH-1 enzymes, the overall structure of BglA-2 from Streptococcus pneumoniae adopts a typical (β/α)8 TIM-barrel, with the active site located at the center of the convex surface of the β-barrel. Structural analyses, in combination with enzymatic data obtained from site-directed mutant proteins, suggest that three aromatic residues, Tyr(126), Tyr(303), and Trp(338), at subsite +1 of BglA-2 determine substrate specificity with respect to 1,4-linked 6-phospho-β-glucosides. Moreover, three additional residues, Ser(424), Lys(430), and Tyr(432) of BglA-2, were found to play important roles in the hydrolytic selectivity toward phosphorylated rather than non-phosphorylated compounds. Comparative structural analysis suggests that a tryptophan versus a methionine/alanine residue at subsite -1 may contribute to the catalytic and substrate selectivity with respect to structurally similar 6-phospho-β-galactosidases and 6-phospho-β-glucosidases assigned to the GH-1 family.
Collapse
Affiliation(s)
- Wei-Li Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui 230027, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zeng L, Choi SC, Danko CG, Siepel A, Stanhope MJ, Burne RA. Gene regulation by CcpA and catabolite repression explored by RNA-Seq in Streptococcus mutans. PLoS One 2013; 8:e60465. [PMID: 23555977 PMCID: PMC3610829 DOI: 10.1371/journal.pone.0060465] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/25/2013] [Indexed: 12/20/2022] Open
Abstract
A bacterial transcriptome of the primary etiological agent of human dental caries, Streptococcus mutans, is described here using deep RNA sequencing. Differential expression profiles of the transcriptome in the context of carbohydrate source, and of the presence or absence of the catabolite control protein CcpA, revealed good agreement with previously-published DNA microarrays. In addition, RNA-seq considerably expanded the repertoire of DNA sequences that showed statistically-significant changes in expression as a function of the presence of CcpA and growth carbohydrate. Novel mRNAs and small RNAs were identified, some of which were differentially expressed in conditions tested in this study, suggesting that the function of the S. mutans CcpA protein and the influence of carbohydrate sources has a more substantial impact on gene regulation than previously appreciated. Likewise, the data reveal that the mechanisms underlying prioritization of carbohydrate utilization are more diverse than what is currently understood. Collectively, this study demonstrates the validity of RNA-seq as a potentially more-powerful alternative to DNA microarrays in studying gene regulation in S. mutans because of the capacity of this approach to yield a more precise landscape of transcriptomic changes in response to specific mutations and growth conditions.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Sang Chul Choi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Charles G. Danko
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Adam Siepel
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Michael J. Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
9
|
Hodoniczky J, Morris CA, Rae AL. Oral and intestinal digestion of oligosaccharides as potential sweeteners: A systematic evaluation. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.12.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Bidossi A, Mulas L, Decorosi F, Colomba L, Ricci S, Pozzi G, Deutscher J, Viti C, Oggioni MR. A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae. PLoS One 2012; 7:e33320. [PMID: 22428019 PMCID: PMC3302838 DOI: 10.1371/journal.pone.0033320] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/10/2012] [Indexed: 01/02/2023] Open
Abstract
The aerotolerant anaerobe Streptococcus pneumoniae is part of the normal nasopharyngeal microbiota of humans and one of the most important invasive pathogens. A genomic survey allowed establishing the occurrence of twenty-one phosphotransferase systems, seven carbohydrate uptake ABC transporters, one sodium:solute symporter and a permease, underlining an exceptionally high capacity for uptake of carbohydrate substrates. Despite high genomic variability, combined phenotypic and genomic analysis of twenty sequenced strains did assign the substrate specificity only to two uptake systems. Systematic analysis of mutants for most carbohydrate transporters enabled us to assign a phenotype and substrate specificity to twenty-three transport systems. For five putative transporters for galactose, pentoses, ribonucleosides and sulphated glycans activity was inferred, but not experimentally confirmed and only one transport system remains with an unknown substrate and lack of any functional annotation. Using a metabolic approach, 80% of the thirty-two fermentable carbon substrates were assigned to the corresponding transporter. The complexity and robustness of sugar uptake is underlined by the finding that many transporters have multiple substrates, and many sugars are transported by more than one system. The present work permits to draw a functional map of the complete arsenal of carbohydrate utilisation proteins of pneumococci, allows re-annotation of genomic data and might serve as a reference for related species. These data provide tools for specific investigation of the roles of the different carbon substrates on pneumococcal physiology in the host during carriage and invasive infection.
Collapse
Affiliation(s)
- Alessandro Bidossi
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Laura Mulas
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Francesca Decorosi
- Sezione Microbiologia, Dip. Biotecnologie Agrarie, Università degli Studi di Firenze, Firenze, Italy
| | - Leonarda Colomba
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Susanna Ricci
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Gianni Pozzi
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
- UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Carlo Viti
- Sezione Microbiologia, Dip. Biotecnologie Agrarie, Università degli Studi di Firenze, Firenze, Italy
| | - Marco Rinaldo Oggioni
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
- UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail:
| |
Collapse
|
11
|
Tanaka Y, Teramoto H, Inui M, Yukawa H. Translation efficiency of antiterminator proteins is a determinant for the difference in glucose repression of two β-glucoside phosphotransferase system gene clusters in Corynebacterium glutamicum R. J Bacteriol 2011; 193:349-57. [PMID: 21075922 PMCID: PMC3019825 DOI: 10.1128/jb.01123-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 10/28/2010] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum R has two β-glucoside phosphoenolpyruvate, carbohydrate phosphotransferase systems (PTS) encoded by bglF and bglF2 located in the respective clusters, bglF-bglA-bglG and bglF2-bglA2-bglG2. Previously, we reported that whereas β-glucoside-dependent induction of bglF is strongly repressed by glucose, glucose repression of bglF2 is very weak. Here, we reveal the mechanism behind the different effects of glucose on the two bgl genes. Deletion of the ribonucleic antiterminator sequence and transcriptional terminator located upstream of the translation initiation codon of bglF markedly relieved the glucose repression of a bglF-lacZ fusion, indicating that glucose affects the antitermination mechanism that is responsible for the β-glucoside-dependent induction of the bglF cluster. The glucose repression of bglF mRNA was also relieved by introducing a multicopy plasmid carrying the bglG gene encoding an antiterminator of the bglF cluster. Moreover, replacement of the GUG translation initiation codon of bglG with AUG was effective in relieving the glucose repression of bglF and bglG. Inversely, expression of bglF2 and bglG2 was subject to strict glucose repression in a mutant strain in which the AUG translation initiation codon of bglG2 encoding antiterminator of the bglF2 cluster was replaced with GUG. These results suggest that the translation initiation efficiency of the antiterminator proteins, at least in part, determines whether the target genes are subject to glucose repression. We also found that bglF expression was induced by glucose in the BglG-overexpressing strains, which may be explained by the ability of BglF to transport glucose.
Collapse
Affiliation(s)
- Yuya Tanaka
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Haruhiko Teramoto
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| |
Collapse
|
12
|
Wen ZT, Nguyen AH, Bitoun JP, Abranches J, Baker HV, Burne RA. Transcriptome analysis of LuxS-deficient Streptococcus mutans grown in biofilms. Mol Oral Microbiol 2010; 26:2-18. [PMID: 21214869 DOI: 10.1111/j.2041-1014.2010.00581.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We previously reported that LuxS in Streptococcus mutans is involved in stress tolerance and biofilm formation. In this study, flowcells and confocal laser scanning microscopy were used to further examine the effects of LuxS-deficiency on biofilm formation. Similar to the wild-type strain (UA159), a strain deficient in LuxS (TW26D) bound efficiently to the flowcells and formed microcolonies 4 h after inoculation. Unlike UA159, which accumulated and formed compact, evenly distributed biofilms after 28 h, TW26D showed only loose, sporadic, thin biofilms. DNA microarray analysis revealed alterations in transcription of more than 60 genes in TW26D biofilms by at least 1.5-fold (P < 0.001). Among the upregulated genes were those for sugar-specific enzymes II of the phosphotransferase (PTS) system and the atp operon, which codes for the proton-pumping F-ATPase. Of the downregulated genes, several encode proteins with putative functions in DNA repair. Mutation of selected genes caused severe defects in the ability of the mutants to tolerate low pH and oxidative stress. These results provide additional proof that LuxS-deficiency causes global alterations in the expression of genes central to biofilm formation and virulence of S. mutans, including those involved in energy metabolism, DNA repair and stress tolerance.
Collapse
Affiliation(s)
- Z T Wen
- Department of Oral and Craniofacial Biology and Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA, USA.
| | | | | | | | | | | |
Collapse
|
13
|
The Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and cell wall metabolism. Infect Immun 2010; 78:2209-20. [PMID: 20231406 DOI: 10.1128/iai.01167-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria can detect, transmit, and react to signals from the outside world by using two-component systems (TCS) and serine-threonine kinases and phosphatases. Streptococcus mutans contains one serine-threonine kinase, encoded by pknB. A gene encoding a serine-threonine phosphatase, pppL, is located upstream of pknB. In this study, the phenotypes of pknB and pppL single mutants and a pknB pppL double mutant were characterized. All mutants exhibited a reduction in genetic transformability and biofilm formation, showed abnormal cell shapes, grew slower than the wild-type strain in several complex media, and exhibited reduced acid tolerance. The mutants had reduced cariogenic capacity but no significant defects in colonization in a rat caries model. Whole-genome transcriptome analysis revealed that a pknB mutant showed reduced expression of genes involved in bacteriocin production and genetic competence. Among the genes that were differentially regulated in the pknB mutant, several were likely to be involved in cell wall metabolism. One such gene, SMU.2146c, and two genes encoding bacteriocins were shown to also be downregulated in a vicK mutant, which encodes a sensor kinase involved in the response to oxidative stress. Collectively, the results lead us to speculate that PknB may modulate the activity of the two-component signal transduction systems VicKR and ComDE. Real-time reverse transcriptase PCR (RT-PCR) showed that genes downregulated in the pknB mutant were upregulated in the pppL mutant, indicating that PppL serves to counteract PknB.
Collapse
|
14
|
Francl AL, Thongaram T, Miller MJ. The PTS transporters of Lactobacillus gasseri ATCC 33323. BMC Microbiol 2010; 10:77. [PMID: 20226062 PMCID: PMC2848229 DOI: 10.1186/1471-2180-10-77] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 03/12/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lactobacilli can utilize a variety of carbohydrates which reflects the nutrient availability in their respective environments. A common lactobacilli in the human gastrointestinal tract, Lactobacillus gasseri, was selected for further study. The currently available annotation of the L. gasseri ATCC 33323 genome describes numerous putative genes involved in carbohydrate utilization, yet the specific functions of many of these genes remain unknown. RESULTS An enzyme I (EI) knockout strain revealed that a functional phosphotransferase transporter system (PTS) is required to ferment at least 15 carbohydrates. Analysis of the L. gasseri ATCC 33323 genome identified fifteen complete (containing all of the necessary subunits) PTS transporters. Transcript expression profiles in response to various carbohydrates (glucose, mannose, fructose, sucrose and cellobiose) were analyzed for the fifteen complete PTS transporters in L. gasseri. PTS 20 was induced 27 fold in the presence of sucrose and PTS 15 was induced 139 fold in the presence of cellobiose. No PTS transporter was induced by glucose, fructose or mannose. Insertional inactivation of PTS 15 and PTS 20 significantly impaired growth on cellobiose and sucrose, respectively. As predicted by bioinformatics, insertional inactivation of PTS 21 confirmed its role in mannose utilization. CONCLUSIONS The experiments revealed the extensive contribution of PTS transporters to carbohydrate utilization by L. gasseri ATCC 33323 and the general inadequacy of the annotated sugar specificity of lactobacilli PTS transporters.
Collapse
Affiliation(s)
- Alyssa L Francl
- Department of Food Science and Human Nutrition, University of Illinois, 905 S, Goodwin Ave, Urbana, IL, USA
| | | | | |
Collapse
|
15
|
Tanaka Y, Teramoto H, Inui M, Yukawa H. Identification of a second β-glucoside phosphoenolpyruvate : carbohydrate phosphotransferase system in Corynebacterium glutamicum R. Microbiology (Reading) 2009; 155:3652-3660. [DOI: 10.1099/mic.0.029496-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phosphoenolpyruvate : carbohydrate phosphotransferase system (PTS) catalyses carbohydrate transport by coupling it to phosphorylation. Previously, we reported a Corynebacterium glutamicum R β-glucoside PTS encoded by bglF. Here we report that C. glutamicum R contains an additional β-glucoside PTS gene, bglF2, organized in a cluster with a putative phospho-β-glucosidase gene, bglA2, and a putative antiterminator, bglG2. While single gene disruption strains of either bglF or bglF2 were able to utilize salicin or arbutin as sole carbon sources, a double disruption strain exhibited defects in utilization of both carbon sources. Expression of both bglF and bglF2 was induced in the presence of either salicin or arbutin, although disruption of bglG2 affected only bglF2 expression. Moreover, in the presence of either salicin or arbutin, glucose completely repressed the expression of bglF but only slightly repressed that of bglF2. We conclude that BglF and BglF2 have a redundant role in β-glucoside transport even though the catabolite repression control of their encoding genes is different. We also show that expression of both bglF and bglF2 requires the general PTS.
Collapse
Affiliation(s)
- Yuya Tanaka
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Haruhiko Teramoto
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| |
Collapse
|
16
|
Ajdić D, Pham VTT. Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays. J Bacteriol 2007; 189:5049-59. [PMID: 17496079 PMCID: PMC1951856 DOI: 10.1128/jb.00338-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transport of carbohydrates by Streptococcus mutans is accomplished by the phosphoenolpyruvate-phosphotransferase system (PTS) and ATP-binding cassette (ABC) transporters. To undertake a global transcriptional analysis of all S. mutans sugar transporters simultaneously, we used a whole-genome expression microarray. Global transcription profiles of S. mutans UA159 were determined for several monosaccharides (glucose, fructose, galactose, and mannose), disaccharides (sucrose, lactose, maltose, and trehalose), a beta-glucoside (cellobiose), oligosaccharides (raffinose, stachyose, and maltotriose), and a sugar alcohol (mannitol). The results revealed that PTSs were responsible for transport of monosaccharides, disaccharides, beta-glucosides, and sugar alcohol. Six PTSs were transcribed only if a specific sugar was present in the growth medium; thus, they were regulated at the transcriptional level. These included transporters for fructose, lactose, cellobiose, and trehalose and two transporters for mannitol. Three PTSs were repressed under all conditions tested. Interestingly, five PTSs were always highly expressed regardless of the sugar source used, presumably suggesting their availability for immediate uptake of most common dietary sugars (glucose, fructose, maltose, and sucrose). The ABC transporters were found to be specific for oligosaccharides, raffinose, stachyose, and isomaltosaccharides. Compared to the PTSs, the ABC transporters showed higher transcription under several tested conditions, suggesting that they might be transporting multiple substrates.
Collapse
Affiliation(s)
- Dragana Ajdić
- University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, 940 S. L. Young Blvd., Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
17
|
Webb AJ, Homer KA, Hosie AHF. A phosphoenolpyruvate-dependent phosphotransferase system is the principal maltose transporter in Streptococcus mutans. J Bacteriol 2007; 189:3322-7. [PMID: 17277067 PMCID: PMC1855833 DOI: 10.1128/jb.01633-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that a phosphoenolpyruvate-dependent phosphotransferase system, MalT, is the principal maltose transporter for Streptococcus mutans. MalT also contributes to maltotriose uptake. Since maltose and maltodextrins are products of starch degradation found in saliva, the ability to take up and ferment these carbohydrates may contribute to dental caries.
Collapse
Affiliation(s)
- Alexander J Webb
- Microbiology, King's College London Dental Institute, Floor 28, Guy's Tower, King's College London, Guy's Campus, London SE1 9RT, United Kingdom
| | | | | |
Collapse
|
18
|
Cote CK, Honeyman AL. Transcriptional analysis of the bglP gene from Streptococcus mutans. BMC Microbiol 2006; 6:37. [PMID: 16630357 PMCID: PMC1489936 DOI: 10.1186/1471-2180-6-37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/21/2006] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND An open reading frame encoding a putative antiterminator protein, LicT, was identified in the genomic sequence of Streptococcus mutans. A potential ribonucleic antitermination (RAT) site to which the LicT protein would potentially bind has been identified immediately adjacent to this open reading frame. The licT gene and RAT site are both located 5' to a beta-glucoside PTS regulon previously described in S. mutans that is responsible for esculin utilization in the presence of glucose. It was hypothesized that antitermination is the regulatory mechanism that is responsible for the control of the bglP gene expression, which encodes an esculin-specific PTS enzyme II. RESULTS To localize the promoter activity associated with the bglP locus, a series of transcriptional lacZ gene fusions was formed on a reporter shuttle vector using various DNA fragments from the bglP promoter region. Subsequent beta-galactosidase assays in S. mutans localized the bglP promoter region and identified putative -35 and -10 promoter elements. Primer extension analysis identified the bglP transcriptional start site. In addition, a terminated bglP transcript formed by transcriptional termination was identified via transcript mapping experiments. CONCLUSION The physical location of these genetic elements, the RAT site and the promoter regions, and the identification of a short terminated mRNA support the hypothesis that antitermination regulates the bglP transcript.
Collapse
Affiliation(s)
- Christopher K Cote
- Department of Medical Microbiology and Immunology, University of South Florida, College of Medicine, Tampa, Florida 33612, USA
- Bacteriology Division, USAMRIID, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Allen L Honeyman
- Department of Medical Microbiology and Immunology, University of South Florida, College of Medicine, Tampa, Florida 33612, USA
- Department of Biomedical Sciences, Texas A&M University System Health Science Center, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, Texas 75246, USA
| |
Collapse
|
19
|
Old LA, Lowes S, Russell RRB. Genomic variation in Streptococcus mutans: deletions affecting the multiple pathways of β-glucoside metabolism. ACTA ACUST UNITED AC 2006; 21:21-7. [PMID: 16390337 DOI: 10.1111/j.1399-302x.2005.00246.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genome of Streptococcus mutans UA159 contains two phospho-beta-glucosidase genes, bglA and celA, which occur in operon-like arrangements along with genes for components of phosphotransferase transport systems and a third phospho-beta-glucosidase encoded by the arb gene, which does not have its own associated transport system but relies on uptake by the bgl or cel systems. Targeted inactivation of each of the phospho-beta-glucosidase genes revealed that bglA is involved in aesculin hydrolysis, celA is essential for utilisation of cellobiose, amygdalin, gentobiose and salicin, and arb is required for utilisation of arbutin. Inactivation of genes for the phosphotransferase systems revealed an overlap of specificity for transport of beta-glucosides and also indicated that further, unidentified transport systems exist. The cel and arb genes are subject to catabolite repression by glucose, but the regM gene is not essential for catabolite repression. Screening a collection of isolates of S. mutans revealed strains with deletions affecting the msm, bgl and/or cel operons. The phenotypes of these strains could largely be explained on the basis of the results obtained from the knockout mutants of S. mutans UA159 but also indicated the existence of other pathways apparently absent from UA159. The extensive genetic and phenotypic variation found in beta-glucoside metabolism indicates that there may be extensive heterogeneity in the species.
Collapse
Affiliation(s)
- L A Old
- Oral Biology, School of Dental Sciences, University of Newcastle, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
20
|
Shah DSH, Russell RRB. A novel glucan-binding protein with lipase activity from the oral pathogen Streptococcus mutans. MICROBIOLOGY-SGM 2004; 150:1947-1956. [PMID: 15184580 DOI: 10.1099/mic.0.26955-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus mutans produces extracellular glucosyltransferases (GTFs) that synthesize glucans from sucrose. These glucans are important in determining the permeability properties and adhesiveness of dental plaque. GTFs and the GbpA glucan-binding protein are characterized by a binding domain containing a series of 33-amino-acid repeats, called 'A' repeats. The S. mutans genome sequence was searched for ORFs containing 'A' repeats, and one novel gene, gbpD, which appears to be unique to the mutans group of streptococci, was identified. The GbpD sequence revealed the presence of three 'A' repeats, in the middle of the protein, and a novel glucan-binding assay showed that GbpD binds to dextran with a K(D) of 2-3 nM. Construction of truncated derivatives of GbpD confirmed that the 'A' repeat region was essential for binding. Furthermore, a gbpD knockout mutant was modified in the extent of aggregation induced by polymers derived from sucrose. The N-terminus of GbpD has a signal sequence, followed by a region with no homologues in the public databases, while the C-terminus has homology to the alpha/beta hydrolase family (including lipases and carboxylesterases). GbpD contains the two regions typical of these enzymes: a GxSxG active site 'lipase box' and an 'oxyanion hole'. GbpD released free fatty acids (FFAs) from a range of triglycerides in the presence of calcium, indicating a lipase activity. The glucan binding/lipase bifunctionality suggested the natural substrate for the enzyme may be a surface macromolecule consisting of carbohydrate linked to lipid. The gbpD mutant was less hydrophobic than wild-type and pure recombinant GbpD reduced the hydrophobicity of S. mutans and another plaque bacterium, Streptococcus sanguinis. GbpD bound to and released FFA from lipoteichoic acid (LTA) of S. sanguinis, but had no effect on LTA from S. mutans. These results raise the intriguing possibility that GbpD may be involved in direct interspecies competition within the plaque biofilm.
Collapse
Affiliation(s)
- Deepan S H Shah
- School of Dental Sciences, University of Newcastle, Newcastle upon Tyne NE2 4BW, UK
| | - Roy R B Russell
- School of Dental Sciences, University of Newcastle, Newcastle upon Tyne NE2 4BW, UK
| |
Collapse
|
21
|
Kiliç AO, Tao L, Zhang Y, Lei Y, Khammanivong A, Herzberg MC. Involvement of Streptococcus gordonii beta-glucoside metabolism systems in adhesion, biofilm formation, and in vivo gene expression. J Bacteriol 2004; 186:4246-53. [PMID: 15205427 PMCID: PMC421613 DOI: 10.1128/jb.186.13.4246-4253.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus gordonii genes involved in beta-glucoside metabolism are induced in vivo on infected heart valves during experimental endocarditis and in vitro during biofilm formation on saliva-coated hydroxyapatite (sHA). To determine the roles of beta-glucoside metabolism systems in biofilm formation, the loci of these induced genes were analyzed. To confirm the function of genes in each locus, strains were constructed with gene inactivation, deletion, and/or reporter gene fusions. Four novel systems responsible for beta-glucoside metabolism were identified, including three phosphoenolpyruvate-dependent phosphotransferase systems (PTS) and a binding protein-dependent sugar uptake system for metabolizing multiple sugars, including beta-glucosides. Utilization of arbutin and esculin, aryl-beta-glucosides, was defective in some mutants. Esculin and oligochitosaccharides induced genes in one of the three beta-glucoside metabolism PTS and in four other genetic loci. Mutation of genes in any of the four systems affected in vitro adhesion to sHA, biofilm formation on plastic surfaces, and/or growth rate in liquid medium. Therefore, genes associated with beta-glucoside metabolism may regulate S. gordonii in vitro adhesion, biofilm formation, growth, and in vivo colonization.
Collapse
Affiliation(s)
- Ali O Kiliç
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
22
|
Kotrba P, Inui M, Yukawa H. A single V317A or V317M substitution in Enzyme II of a newly identified beta-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1569-1580. [PMID: 12777497 DOI: 10.1099/mic.0.26053-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A catabolic system involved in the utilization of beta-glucosides in Corynebacterium glutamicum R and its spontaneous mutant variants allowing uptake of cellobiose were investigated. The system comprises a beta-glucoside-specific Enzyme IIBCA component (gene bglF) of the phosphotransferase system (PTS), a phospho-beta-glucosidase (bglA) and an antiterminator protein (bglG) from the BglG/SacY family of transcription regulators. The results suggest that transcription antitermination is involved in control of induction and carbon catabolite repression of bgl genes, which presumably form an operon. Functional analysis of the bglF and bglA products revealed that they are simultaneously required for uptake, phosphorylation and breakdown of methyl beta-glucoside, salicin and arbutin. Although cellobiose is not normally a substrate for BglF permease and is not utilized by C. glutamicum R, cellobiose-utilizing mutants can be obtained. The mutation responsible was mapped to the bgl locus and sequenced, and point mutations were found in codon 317 of bglF. These led to substitutions V317A and/or V317M near the putative PTS active-site H313 in the membrane-spanning IIC domain of BglF and allowed BglF to act on cellobiose. Such results strengthen the evidence that the IIC domains can be regarded as selectivity filters of the PTS.
Collapse
Affiliation(s)
- Pavel Kotrba
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizu, Soraku, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizu, Soraku, Kyoto 619-0292, Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizu, Soraku, Kyoto 619-0292, Japan
| |
Collapse
|
23
|
Cote CK, Honeyman AL. The LicT protein acts as both a positive and a negative regulator of loci within the bgl regulon of Streptococcus mutans. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1333-1340. [PMID: 12724394 DOI: 10.1099/mic.0.26067-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An open reading frame (ORF) that would encode a putative antiterminator protein (LicT) of the BglG family was identified in the genomic DNA sequence of Streptococcus mutans. A DNA sequence that would encode a potential ribonucleic antiterminator (RAT) site in the mRNA at which the putative antitermination protein LicT would bind was located immediately downstream from this ORF. These putative antitermination components are upstream of a glucose-independent beta-glucoside-utilization system that is responsible for aesculin utilization by S. mutans NG8 in the presence of glucose. It was hypothesized that these putative regulatory components were an important mechanism that was involved with the controlled expression of the S. mutans bglP locus. A strain of S. mutans containing a licT : : Omega-Kan2 insertional mutation was created. This strain could not hydrolyse aesculin in the presence of glucose. The transcriptional activity associated with other genes from the bgl regulon was determined in the licT : : Omega-Kan2 genetic background using lacZ transcriptional fusions and beta-galactosidase assays to determine the effect of LicT on these loci. The LicT protein had no significant effect on the expression of the bglC promoter, a regulator of the bglA locus. However, it is essential for the optimal expression of bglP. These data correlate with the phenotype observed on aesculin plates for the S. mutans wild-type strain NG8 and the licT : : Omega-Kan2 strain. Thus, the glucose-independent beta-glucoside-specific phosphotransferase system (PTS) regulon in S. mutans relies on LicT for BglP expression and, in turn, aesculin transport in the presence of glucose. Interestingly, LicT also seems to negatively regulate the expression of the bglA promoter region. In addition, the presence of the S. mutans licT gene has been shown to be able to activate a cryptic beta-glucoside-specific operon found in Escherichia coli.
Collapse
Affiliation(s)
- Christopher K Cote
- University of South Florida College of Medicine, Department of Medical Microbiology and Immunology, Tampa, FL 33612, USA
| | - Allen L Honeyman
- University of South Florida College of Medicine, Department of Medical Microbiology and Immunology, Tampa, FL 33612, USA
| |
Collapse
|
24
|
Cote CK, Honeyman AL. The transcriptional regulation of the Streptococcus mutans bgl regulon. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:1-8. [PMID: 11860549 DOI: 10.1046/j.0902-0055.2001.00087.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A beta-glucoside utilization regulon recently isolated from Streptococcus mutans has been shown to contain genes involved in beta-glucoside hydrolysis and a putative regulator. The bglP gene encodes a beta-glucoside-specific enzyme II (EII) component of the phosphoenolpyruvate-dependent phosphotransferase system, the bglC gene encodes a putative transcriptional regulator, and the bglA gene encodes a putative phospho-beta-glucosidase. To investigate the transcriptional activity of these genes, the putative promoter regions of the bglP, bglC and bglA genes were fused with the E. coli lacZ reporter gene. The resultant reporter plasmids were used to monitor the transcriptional activity of these loci in S. mutans. The results illustrate that these genes are not repressed by glucose in the presence of an inducing beta-glucoside, esculin, to the levels of expression observed in the absence of esculin. Therefore, these loci are not subject to catabolite repression by glucose to noninduced levels of expression. The bglC gene product was determined to be a positive transcriptional regulator of the bglA gene but does not regulate the expression of the bglP gene. Thus, regulation of these loci requires different and multiple control mechanisms.
Collapse
Affiliation(s)
- C K Cote
- Department of Medical Microbiology and Immunology, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | | |
Collapse
|
25
|
Wen ZT, Burne RA. Analysis of cis- and trans-acting factors involved in regulation of the Streptococcus mutans fructanase gene (fruA). J Bacteriol 2002; 184:126-33. [PMID: 11741852 PMCID: PMC134753 DOI: 10.1128/jb.184.1.126-133.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2001] [Accepted: 09/28/2001] [Indexed: 11/20/2022] Open
Abstract
There are two primary levels of control of the expression of the fructanase gene (fruA) of Streptococcus mutans: induction by levan, inulin, or sucrose and repression in the presence of glucose and other readily metabolized sugars. The goals of this study were to assess the functionality of putative cis-acting regulatory elements and to begin to identify the trans-acting factors involved in induction and catabolite repression of fruA. The fruA promoter and its derivatives generated by deletions and/or site-directed mutagenesis were fused to a promoterless chloramphenicol acetyltransferase (CAT) gene as a reporter, and strains carrying the transcriptional fusions were then analyzed for CAT activities in response to growth on various carbon sources. A dyadic sequence, ATGACA(TC)TGTCAT, located at -72 to -59 relative to the transcription initiation site was shown to be essential for expression of fruA. Inactivation of the genes that encode fructose-specific enzymes II resulted in elevated expression from the fruA promoter, suggesting negative regulation of fruA expression by the fructose phosphotransferase system. Mutagenesis of a terminator-like structure located in the 165-base 5' untranslated region of the fruA mRNA or insertional inactivation of antiterminator genes revealed that antitermination was not a mechanism controlling induction or repression of fruA, although the untranslated leader mRNA may play a role in optimal expression of fructanase. Deletion or mutation of a consensus catabolite response element alleviated glucose repression of fruA, but interestingly, inactivation of the ccpA gene had no discernible effect on catabolite repression of fruA. Accumulating data suggest that expression of fruA is regulated by a mechanism that has several unique features that distinguish it from archetypical polysaccharide catabolic operons of other gram-positive bacteria.
Collapse
Affiliation(s)
- Zezhang T Wen
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|