1
|
Zhou C, Pawline MB, Pironti A, Morales SM, Perault AI, Ulrich RJ, Podkowik M, Lejeune A, DuMont A, Stubbe FX, Korman A, Jones DR, Schluter J, Richardson AR, Fey PD, Drlica K, Cadwell K, Torres VJ, Shopsin B. Microbiota and metabolic adaptation shape Staphylococcus aureus virulence and antimicrobial resistance during intestinal colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593044. [PMID: 38766195 PMCID: PMC11100824 DOI: 10.1101/2024.05.11.593044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Depletion of microbiota increases susceptibility to gastrointestinal colonization and subsequent infection by opportunistic pathogens such as methicillin-resistant Staphylococcus aureus (MRSA). How the absence of gut microbiota impacts the evolution of MRSA is unknown. The present report used germ-free mice to investigate the evolutionary dynamics of MRSA in the absence of gut microbiota. Through genomic analyses and competition assays, we found that MRSA adapts to the microbiota-free gut through sequential genetic mutations and structural changes that enhance fitness. Initially, these adaptations increase carbohydrate transport; subsequently, evolutionary pathways largely diverge to enhance either arginine metabolism or cell wall biosynthesis. Increased fitness in arginine pathway mutants depended on arginine catabolic genes, especially nos and arcC, which promote microaerobic respiration and ATP generation, respectively. Thus, arginine adaptation likely improves redox balance and energy production in the oxygen-limited gut environment. Findings were supported by human gut metagenomic analyses, which suggest the influence of arginine metabolism on colonization. Surprisingly, these adaptive genetic changes often reduced MRSA's antimicrobial resistance and virulence. Furthermore, resistance mutation, typically associated with decreased virulence, also reduced colonization fitness, indicating evolutionary trade-offs among these traits. The presence of normal microbiota inhibited these adaptations, preserving MRSA's wild-type characteristics that effectively balance virulence, resistance, and colonization fitness. The results highlight the protective role of gut microbiota in preserving a balance of key MRSA traits for long-term ecological success in commensal populations, underscoring the potential consequences on MRSA's survival and fitness during and after host hospitalization and antimicrobial treatment.
Collapse
Affiliation(s)
- Chunyi Zhou
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Miranda B. Pawline
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
- Microbial Computational Genomic Core Lab, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sabrina M. Morales
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Andrew I. Perault
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Robert J. Ulrich
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY 10016, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alannah Lejeune
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ashley DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Aryeh Korman
- Metabolomics Core Resource Laboratory, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Drew R. Jones
- Metabolomics Core Resource Laboratory, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonas Schluter
- Institute for Systems Genetics, Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony R. Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07102, USA
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07102, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine, New York, NY 10016, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY 10016, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
2
|
Onishi-Sakamoto S, Fujii T, Watanabe K, Makida R, Iyori K, Toyoda Y, Tochio T, Nishifuji K. Erythritol alters phosphotransferase gene expression and inhibits the in vitro growth of Staphylococcus coagulans isolated from canines with pyoderma. Front Vet Sci 2024; 10:1272595. [PMID: 38239752 PMCID: PMC10794667 DOI: 10.3389/fvets.2023.1272595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Staphylococcus coagulans (SC) belongs to a group of coagulase-positive staphylococci occasionally isolated from the skin lesions of dogs with pyoderma. We recently revealed that erythritol, a sugar alcohol, inhibited the growth of SC strain JCM7470. This study investigated the molecular mechanisms involved in this growth inhibition of JCM7470 by erythritol, and determine whether erythritol inhibits the growth of SC isolated from the skin of dogs with pyoderma. Comprehensive analysis of the gene expression of JCM7470 in the presence of erythritol revealed that erythritol upregulated the expression of glcB and ptsG genes, both of which encode phosphotransferase system (PTS) glucoside- and glucose-specific permease C, B, and A domains (EIICBA), respectively, associated with sugar uptake. Moreover, erythritol suppressed in vitro growth of all 27 SC strains isolated from the skin lesions of canine pyoderma, including 13 mecA gene-positive and 14 mecA gene-negative strains. Finally, the growth inhibition of the SC clinical isolates by erythritol was restored by the addition of glucose. In summary, we revealed that erythritol promotes PTS gene expression and suppresses the in vitro growth of SC clinical isolates from dogs with pyoderma. Restoration of the erythritol-induced growth inhibition by glucose suggested that glucose starvation may contribute to the growth inhibition of SC.
Collapse
Affiliation(s)
- Saki Onishi-Sakamoto
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Japan
| | - Keito Watanabe
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Reina Makida
- Research and Development Center, B Food Science Co., Ltd., Chita, Japan
| | - Keita Iyori
- Dermatological and Laboratory Service for Animals, Vet Derm Tokyo, Fujisawa, Japan
| | - Yoichi Toyoda
- Dermatological and Laboratory Service for Animals, Vet Derm Tokyo, Fujisawa, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Japan
| | - Koji Nishifuji
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
3
|
Guan P, Chang Y, Li S, Wang X, Dong Z, Zhou W, Zheng Q, Huang Z, Suo B. Transcriptome analysis reveals the molecular mechanism of cinnamaldehyde against Bacillus cereus spores in ready-to-eat beef. Food Res Int 2023; 163:112185. [PMID: 36596126 DOI: 10.1016/j.foodres.2022.112185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate the antibacterial effect and mechanism of cinnamaldehyde on Bacillus cereus spores in ready-to-eat beef. The colour difference and texture of the ready-to-eat beef supplemented with cinnamaldehyde did not differ greatly from the colour and texture of the blank beef. However, cinnamaldehyde has an effective antibacterial effect on the total number of bacterial colonies and B. cereus spores in ready-to-eat beef. Transmission electron microscopy (TEM) analysis revealed that the cell membrane of B. cereus was disrupted by cinnamaldehyde, leading to leakage of intracellular components. Transcriptome sequencing (RNA-seq) indicated that the B. cereus spore resistance regulation system (sigB, sigW, rsbW, rsbV, yfkM and yflT) and phosphoenolpyruvate phosphotransferase system (PTS) (ptsH, ptsI and ptsG) respond positively to cinnamaldehyde in an adverse environment. Intracellular disorders due to damage to the cell membrane involve some transporters (copA, opuBA and opuD) and some oxidative stress systems (ywrO, scdA and katE) in the regulation of the body. However, downregulation of K+ transport channels (kdpD and kdpB), osmotic pressure regulation (opuE) and some oxidative stress (norR and srrA)-related genes may accelerate spore apoptosis. In addition, cinnamaldehyde also effectively inhibits the spore germination-related genes (smc, mreB and gerE). This study provides new insights into the molecular mechanism of the antibacterial effect of cinnamaldehyde on B. cereus spores in ready-to-eat beef.
Collapse
Affiliation(s)
- Peng Guan
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yuting Chang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Sen Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaojie Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Zijie Dong
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Weitao Zhou
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qi Zheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhongmin Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Biao Suo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
4
|
Shulami S, Zehavi A, Belakhov V, Salama R, Lansky S, Baasov T, Shoham G, Shoham Y. Cross-utilization of β-galactosides and cellobiose in Geobacillus stearothermophilus. J Biol Chem 2020; 295:10766-10780. [PMID: 32493770 DOI: 10.1074/jbc.ra120.014029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Indexed: 11/06/2022] Open
Abstract
Strains of the Gram-positive, thermophilic bacterium Geobacillus stearothermophilus possess elaborate systems for the utilization of hemicellulolytic polysaccharides, including xylan, arabinan, and galactan. These systems have been studied extensively in strains T-1 and T-6, representing microbial models for the utilization of soil polysaccharides, and many of their components have been characterized both biochemically and structurally. Here, we characterized routes by which G. stearothermophilus utilizes mono- and disaccharides such as galactose, cellobiose, lactose, and galactosyl-glycerol. The G. stearothermophilus genome encodes a phosphoenolpyruvate carbohydrate phosphotransferase system (PTS) for cellobiose. We found that the cellobiose-PTS system is induced by cellobiose and characterized the corresponding GH1 6-phospho-β-glucosidase, Cel1A. The bacterium also possesses two transport systems for galactose, a galactose-PTS system and an ABC galactose transporter. The ABC galactose transport system is regulated by a three-component sensing system. We observed that both systems, the sensor and the transporter, utilize galactose-binding proteins that also bind glucose with the same affinity. We hypothesize that this allows the cell to control the flux of galactose into the cell in the presence of glucose. Unexpectedly, we discovered that G. stearothermophilus T-1 can also utilize lactose and galactosyl-glycerol via the cellobiose-PTS system together with a bifunctional 6-phospho-β-gal/glucosidase, Gan1D. Growth curves of strain T-1 growing in the presence of cellobiose, with either lactose or galactosyl-glycerol, revealed initially logarithmic growth on cellobiose and then linear growth supported by the additional sugars. We conclude that Gan1D allows the cell to utilize residual galactose-containing disaccharides, taking advantage of the promiscuity of the cellobiose-PTS system.
Collapse
Affiliation(s)
- Smadar Shulami
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Arie Zehavi
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Valery Belakhov
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Timor Baasov
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Yang Y, Padilla A, de Guillen K, Mammri L, Gracy J, Declerck N, Déméné H. Structural Insights into of the Allosteric Activation of the LicT Antiterminator by PTS-Mediated Phosphorylation. Structure 2020; 28:244-251.e3. [DOI: 10.1016/j.str.2019.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/05/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
|
6
|
Garnett JP, Braun D, McCarthy AJ, Farrant MR, Baker EH, Lindsay JA, Baines DL. Fructose transport-deficient Staphylococcus aureus reveals important role of epithelial glucose transporters in limiting sugar-driven bacterial growth in airway surface liquid. Cell Mol Life Sci 2014; 71:4665-73. [PMID: 24810961 PMCID: PMC4232747 DOI: 10.1007/s00018-014-1635-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/11/2014] [Accepted: 04/28/2014] [Indexed: 02/05/2023]
Abstract
Hyperglycaemia as a result of diabetes mellitus or acute illness is associated with increased susceptibility to respiratory infection with Staphylococcus aureus. Hyperglycaemia increases the concentration of glucose in airway surface liquid (ASL) and promotes the growth of S. aureus in vitro and in vivo. Whether elevation of other sugars in the blood, such as fructose, also results in increased concentrations in ASL is unknown and whether sugars in ASL are directly utilised by S. aureus for growth has not been investigated. We obtained mutant S. aureus JE2 strains with transposon disrupted sugar transport genes. NE768(fruA) exhibited restricted growth in 10 mM fructose. In H441 airway epithelial-bacterial co-culture, elevation of basolateral sugar concentration (5-20 mM) increased the apical growth of JE2. However, sugar-induced growth of NE768(fruA) was significantly less when basolateral fructose rather than glucose was elevated. This is the first experimental evidence to show that S. aureus directly utilises sugars present in the ASL for growth. Interestingly, JE2 growth was promoted less by glucose than fructose. Net transepithelial flux of D-glucose was lower than D-fructose. However, uptake of D-glucose was higher than D-fructose across both apical and basolateral membranes consistent with the presence of GLUT1/10 in the airway epithelium. Therefore, we propose that the preferential uptake of glucose (compared to fructose) limits its accumulation in ASL. Pre-treatment with metformin increased transepithelial resistance and reduced the sugar-dependent growth of S. aureus. Thus, epithelial paracellular permeability and glucose transport mechanisms are vital to maintain low glucose concentration in ASL and limit bacterial nutrient sources as a defence against infection.
Collapse
Affiliation(s)
- James P. Garnett
- Institute for Infection and Immunity, St George’s, University of London, Tooting, London, SW17 0RE UK
| | - Daniela Braun
- Institute for Infection and Immunity, St George’s, University of London, Tooting, London, SW17 0RE UK
| | - Alex J. McCarthy
- Institute for Infection and Immunity, St George’s, University of London, Tooting, London, SW17 0RE UK
| | - Matthew R. Farrant
- Institute for Infection and Immunity, St George’s, University of London, Tooting, London, SW17 0RE UK
| | - Emma H. Baker
- Institute for Infection and Immunity, St George’s, University of London, Tooting, London, SW17 0RE UK
| | - Jodi A. Lindsay
- Institute for Infection and Immunity, St George’s, University of London, Tooting, London, SW17 0RE UK
| | - Deborah L. Baines
- Institute for Infection and Immunity, St George’s, University of London, Tooting, London, SW17 0RE UK
| |
Collapse
|
7
|
Hondorp ER, Hou SC, Hause LL, Gera K, Lee CE, McIver KS. PTS phosphorylation of Mga modulates regulon expression and virulence in the group A streptococcus. Mol Microbiol 2013; 88:1176-93. [PMID: 23651410 DOI: 10.1111/mmi.12250] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
The ability of a bacterial pathogen to monitor available carbon sources in host tissues provides a clear fitness advantage. In the group A streptococcus (GAS), the virulence regulator Mga contains homology to phosphotransferase system (PTS) regulatory domains (PRDs) found in sugar operon regulators. Here we show that Mga was phosphorylated in vitro by the PTS components EI/HPr at conserved PRD histidines. A ΔptsI (EI-deficient) GAS mutant exhibited decreased Mga activity. However, PTS-mediated phosphorylation inhibited Mga-dependent transcription of emm in vitro. Using alanine (unphosphorylated) and aspartate (phosphomimetic) mutations of PRD histidines, we establish that a doubly phosphorylated PRD1 phosphomimetic (D/DMga4) is completely inactive in vivo, shutting down expression of the Mga regulon. Although D/DMga4 is still able to bind DNA in vitro, homo-multimerization of Mga is disrupted and the protein is unable to activate transcription. PTS-mediated regulation of Mga activity appears to be important for pathogenesis, as bacteria expressing either non-phosphorylated (A/A) or phosphomimetic (D/D) PRD1 Mga mutants were attenuated in a model of GAS invasive skin disease. Thus, PTS-mediated phosphorylation of Mga may allow the bacteria to modulate virulence gene expression in response to carbohydrate status. Furthermore, PRD-containing virulence regulators (PCVRs) appear to be widespread in Gram-positive pathogens.
Collapse
Affiliation(s)
- Elise R Hondorp
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
8
|
Bohn C, Rigoulay C, Chabelskaya S, Sharma CM, Marchais A, Skorski P, Borezée-Durant E, Barbet R, Jacquet E, Jacq A, Gautheret D, Felden B, Vogel J, Bouloc P. Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nucleic Acids Res 2010; 38:6620-36. [PMID: 20511587 PMCID: PMC2965222 DOI: 10.1093/nar/gkq462] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Using an experimental approach, we investigated the RNome of the pathogen Staphylococcus aureus to identify 30 small RNAs (sRNAs) including 14 that are newly confirmed. Among the latter, 10 are encoded in intergenic regions, three are generated by premature transcription termination associated with riboswitch activities, and one is expressed from the complementary strand of a transposase gene. The expression of four sRNAs increases during the transition from exponential to stationary phase. We focused our study on RsaE, an sRNA that is highly conserved in the bacillales order and is deleterious when over-expressed. We show that RsaE interacts in vitro with the 5' region of opp3A mRNA, encoding an ABC transporter component, to prevent formation of the ribosomal initiation complex. A previous report showed that RsaE targets opp3B which is co-transcribed with opp3A. Thus, our results identify an unusual case of riboregulation where the same sRNA controls an operon mRNA by targeting two of its cistrons. A combination of biocomputational and transcriptional analyses revealed a remarkably coordinated RsaE-dependent downregulation of numerous metabolic enzymes involved in the citrate cycle and the folate-dependent one-carbon metabolism. As we observed that RsaE accumulates transiently in late exponential growth, we propose that RsaE functions to ensure a coordinate downregulation of the central metabolism when carbon sources become scarce.
Collapse
Affiliation(s)
- Chantal Bohn
- Institut de Génétique et Microbiologie, CNRS/UMR 8621, IFR115, Centre scientifique d'Orsay, Université Paris-Sud, bâtiment 400, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Geissmann T, Chevalier C, Cros MJ, Boisset S, Fechter P, Noirot C, Schrenzel J, François P, Vandenesch F, Gaspin C, Romby P. A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res 2010; 37:7239-57. [PMID: 19786493 PMCID: PMC2790875 DOI: 10.1093/nar/gkp668] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bioinformatic analysis of the intergenic regions of Staphylococcus aureus predicted multiple regulatory regions. From this analysis, we characterized 11 novel noncoding RNAs (RsaA-K) that are expressed in several S. aureus strains under different experimental conditions. Many of them accumulate in the late-exponential phase of growth. All ncRNAs are stable and their expression is Hfq-independent. The transcription of several of them is regulated by the alternative sigma B factor (RsaA, D and F) while the expression of RsaE is agrA-dependent. Six of these ncRNAs are specific to S. aureus, four are conserved in other Staphylococci, and RsaE is also present in Bacillaceae. Transcriptomic and proteomic analysis indicated that RsaE regulates the synthesis of proteins involved in various metabolic pathways. Phylogenetic analysis combined with RNA structure probing, searches for RsaE-mRNA base pairing, and toeprinting assays indicate that a conserved and unpaired UCCC sequence motif of RsaE binds to target mRNAs and prevents the formation of the ribosomal initiation complex. This study unexpectedly shows that most of the novel ncRNAs carry the conserved C-rich motif, suggesting that they are members of a class of ncRNAs that target mRNAs by a shared mechanism.
Collapse
Affiliation(s)
- Thomas Geissmann
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, F-67084 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Modulation of transcription antitermination in the bgl operon of Escherichia coli by the PTS. Proc Natl Acad Sci U S A 2009; 106:13523-8. [PMID: 19633194 DOI: 10.1073/pnas.0902559106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BglG, which regulates expression of the beta-glucoside utilization (bgl) operon in Escherichia coli, represents a family of RNA-binding transcriptional antiterminators that positively regulate transcription of sugar utilization genes in Gram-negative and Gram-positive organisms. BglG is negatively regulated by the beta-glucoside phosphotransferase, BglF, by means of phosphorylation and physical association, and it is positively regulated by the general phosphoenolpyruvate phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr. We studied the positive regulation of BglG both in vitro and in vivo. Here, we show that although EI and HPr are essential for BglG activity, this mode of activation does not require phosphorylation of BglG by HPr, as opposed to the phosphorylation-mediated activation of many BglG-like antiterminators in Gram-positive organisms. The effect of EI and HPr on BglG is not mediated by BglF. Nevertheless, the release of BglG from BglF, which is stimulated by the extracellular sugar in a sugar uptake-independent manner, is a prerequisite for BglG activation. Taken together, the results indicate that activation of BglG is a 2-stage process: a sugar-stimulated release from the membrane-bound sugar sensor followed by a phosphorylation-independent stimulatory effect exerted by the general PTS proteins.
Collapse
|
11
|
Jahreis K, Pimentel-Schmitt EF, Brückner R, Titgemeyer F. Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev 2008; 32:891-907. [PMID: 18647176 DOI: 10.1111/j.1574-6976.2008.00125.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glucose is the classical carbon source that is used to investigate the transport, metabolism, and regulation of nutrients in bacteria. Many physiological phenomena like nutrient limitation, stress responses, production of antibiotics, and differentiation are inextricably linked to nutrition. Over the years glucose transport systems have been characterized at the molecular level in more than 20 bacterial species. This review aims to provide an overview of glucose uptake systems found in the eubacterial kingdom. In addition, it will highlight the diverse and sophisticated regulatory features of glucose transport systems.
Collapse
Affiliation(s)
- Knut Jahreis
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | | | | | | |
Collapse
|
12
|
Monderer-Rothkoff G, Amster-Choder O. Genetic dissection of the divergent activities of the multifunctional membrane sensor BglF. J Bacteriol 2007; 189:8601-15. [PMID: 17905978 PMCID: PMC2168942 DOI: 10.1128/jb.01220-07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BglF catalyzes beta-glucoside phosphotransfer across the cytoplasmic membrane in Escherichia coli. In addition, BglF acts as a sugar sensor that controls expression of beta-glucoside utilization genes by reversibly phosphorylating the transcriptional antiterminator BglG. Thus, BglF can exist in two opposed states: a nonstimulated state that inactivates BglG by phosphorylation and a sugar-stimulated state that activates BglG by dephosphorylation and phosphorylates the incoming sugar. Sugar phosphorylation and BglG (de)phosphorylation are both catalyzed by the same residue, Cys24. To investigate the coordination and the structural requirements of the opposing activities of BglF, we conducted a genetic screen that led to the isolation of mutations that shift the balance toward BglG phosphorylation. We show that some of the mutants that are impaired in dephosphorylation of BglG retained the ability to catalyze the concurrent activity of sugar phosphotransfer. These mutations map to two regions in the BglF membrane domain that, based on their predicted topology, were suggested to be implicated in activity. Using in vivo cross-linking, we show that a glycine in the membrane domain, whose substitution impaired the ability of BglF to dephosphorylate BglG, is spatially close to the active-site cysteine located in a hydrophilic domain. This residue is part of a newly identified motif conserved among beta-glucoside permeases associated with RNA-binding transcriptional antiterminators. The phenotype of the BglF mutants could be suppressed by BglG mutants that were isolated by a second genetic screen. In summary, we identified distinct sites in BglF that are involved in regulating phosphate flow via the common active-site residue in response to environmental cues.
Collapse
Affiliation(s)
- Galya Monderer-Rothkoff
- Department of Molecular Biology, The Hebrew University Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
13
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1015] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
14
|
Tangney M, Mitchell WJ. Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824. Appl Microbiol Biotechnol 2006; 74:398-405. [PMID: 17096120 DOI: 10.1007/s00253-006-0679-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/11/2006] [Accepted: 09/13/2006] [Indexed: 11/24/2022]
Abstract
The transport of glucose by the solventogenic anaerobe Clostridium acetobutylicum was investigated. Glucose phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) activity was detected in extracts prepared from cultures grown on glucose and extract fractionation revealed that both soluble and membrane components are required for activity. Glucose PTS activity was inhibited by the analogue methyl alpha-glucoside, indicating that the PTS enzyme II belongs to the glucose-glucoside (Glc) family of proteins. Consistent with this conclusion, labelled methyl alpha-glucoside was phosphorylated by PEP in cell-free extracts and this activity was inhibited by glucose. A single gene encoding a putative enzyme II of the glucose family, which we have designated glcG, was identified from the C. acetobutylicum ATCC 824 genome sequence. In common with certain other low-GC gram-positive bacteria, including Bacillus subtilis, the C. acetobutylicum glcG gene appears to be associated with a BglG-type regulator mechanism, as it is preceded by a transcription terminator that is partially overlapped by a typical ribonucleic antiterminator (RAT) sequence, and is downstream of an open reading frame that appears to encode a transcription antiterminator protein. This is the first report of a glucose transport mechanism in this industrially important organism.
Collapse
Affiliation(s)
- Martin Tangney
- School of Life Sciences, Merchiston Campus, Napier University, Edinburgh EH10 5DT, UK.
| | | |
Collapse
|
15
|
Schilling O, Herzberg C, Hertrich T, Vörsmann H, Jessen D, Hübner S, Titgemeyer F, Stülke J. Keeping signals straight in transcription regulation: specificity determinants for the interaction of a family of conserved bacterial RNA-protein couples. Nucleic Acids Res 2006; 34:6102-15. [PMID: 17074746 PMCID: PMC1635312 DOI: 10.1093/nar/gkl733] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regulatory systems often evolve by duplication of ancestral systems and subsequent specialization of the components of the novel signal transduction systems. In the Gram-positive soil bacterium Bacillus subtilis, four homologous antitermination systems control the expression of genes involved in the metabolism of glucose, sucrose and β-glucosides. Each of these systems is made up of a sensory sugar permease that does also act as phosphotransferase, an antitermination protein, and a RNA switch that is composed of two mutually exclusive structures, a RNA antiterminator (RAT) and a transcriptional terminator. We have studied the contributions of sugar specificity of the permeases, carbon catabolite repression, and protein–RAT recognition for the straightness of the signalling chains. We found that the β-glucoside permease BglP does also have a minor activity in glucose transport. However, this activity is irrelevant under physiological conditions since carbon catabolite repression in the presence of glucose prevents the synthesis of the β-glucoside permease. Reporter gene studies, in vitro RNA–protein interaction analyzes and northern blot transcript analyzes revealed that the interactions between the antiterminator proteins and their RNA targets are the major factor contributing to regulatory specificity. Both structural features in the RATs and individual bases are important specificity determinants. Our study revealed that the specificity of protein–RNA interactions, substrate specificity of the permeases as well as the general mechanism of carbon catabolite repression together allow to keep the signalling chains straight and to avoid excessive cross-talk between the systems.
Collapse
Affiliation(s)
| | | | - Tina Hertrich
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | | | | | | | - Fritz Titgemeyer
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | - Jörg Stülke
- To whom correspondence should be addressed. Tel: +49 551 393781; Fax: +49 551 393808;
| |
Collapse
|
16
|
|
17
|
Schilling O, Langbein I, Müller M, Schmalisch MH, Stülke J. A protein-dependent riboswitch controlling ptsGHI operon expression in Bacillus subtilis: RNA structure rather than sequence provides interaction specificity. Nucleic Acids Res 2004; 32:2853-64. [PMID: 15155854 PMCID: PMC419612 DOI: 10.1093/nar/gkh611] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Gram-positive soil bacterium Bacillus subtilis transports glucose by the phosphotransferase system. The genes for this system are encoded in the ptsGHI operon. The expression of this operon is controlled at the level of transcript elongation by a protein-dependent riboswitch. In the absence of glucose a transcriptional terminator prevents elongation into the structural genes. In the presence of glucose, the GlcT protein is activated and binds and stabilizes an alternative RNA structure that overlaps the terminator and prevents termination. In this work, we have studied the structural and sequence requirements for the two mutually exclusive RNA structures, the terminator and the RNA antiterminator (the RAT sequence). In both cases, the structure seems to be more important than the actual sequence. The number of paired and unpaired bases in the RAT sequence is essential for recognition by the antiterminator protein GlcT. In contrast, mutations of individual bases are well tolerated as long as the general structure of the RAT is not impaired. The introduction of one additional base in the RAT changed its structure and resulted in complete loss of interaction with GlcT. In contrast, this mutant RAT was efficiently recognized by a different B.subtilis antitermination protein, LicT.
Collapse
Affiliation(s)
- Oliver Schilling
- Abteilung für Allgemeine Mikrobiologie, Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
18
|
Knobloch JKM, Nedelmann M, Kiel K, Bartscht K, Horstkotte MA, Dobinsky S, Rohde H, Mack D. Establishment of an arbitrary PCR for rapid identification of Tn917 insertion sites in Staphylococcus epidermidis: characterization of biofilm-negative and nonmucoid mutants. Appl Environ Microbiol 2004; 69:5812-8. [PMID: 14532029 PMCID: PMC201197 DOI: 10.1128/aem.69.10.5812-5818.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposon mutagenesis with the Enterococcus faecalis transposon Tn917 is a genetic approach frequently used to identify genes related with specific phenotypes in gram-positive bacteria. We established an arbitrary PCR for the rapid and easy identification of Tn917 insertion sites in Staphylococcus epidermidis with six independent, well-characterized biofilm-negative Tn917 transposon mutants, which were clustered in the icaADBC gene locus or harbor Tn917 in the regulatory gene rsbU. For all six of these mutants, short chromosomal DNA fragments flanking both transposon ends could be amplified. All fragments were sufficient to correctly identify the Tn917 insertion sites in the published S. epidermidis genomes. By using this technique, the Tn917 insertion sites of three not-yet-characterized biofilm-negative or nonmucoid mutants were identified. In the biofilm-negative and nonmucoid mutant M12, Tn917 is inserted into a gene homologous to the regulatory gene purR of Bacillus subtilis and Staphylococcus aureus. The Tn917 insertions of the nonmucoid but biofilm-positive mutants M16 and M20 are located in genes homologous to components of the phosphoenolpyruvate-sugar phosphotransferase system (PTS) of B. subtilis, S. aureus, and Staphylococcus carnosus, indicating an influence of the PTS on the mucoid phenotype in S. epidermidis.
Collapse
Affiliation(s)
- Johannes K-M Knobloch
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wen ZT, Burne RA. Analysis of cis- and trans-acting factors involved in regulation of the Streptococcus mutans fructanase gene (fruA). J Bacteriol 2002; 184:126-33. [PMID: 11741852 PMCID: PMC134753 DOI: 10.1128/jb.184.1.126-133.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2001] [Accepted: 09/28/2001] [Indexed: 11/20/2022] Open
Abstract
There are two primary levels of control of the expression of the fructanase gene (fruA) of Streptococcus mutans: induction by levan, inulin, or sucrose and repression in the presence of glucose and other readily metabolized sugars. The goals of this study were to assess the functionality of putative cis-acting regulatory elements and to begin to identify the trans-acting factors involved in induction and catabolite repression of fruA. The fruA promoter and its derivatives generated by deletions and/or site-directed mutagenesis were fused to a promoterless chloramphenicol acetyltransferase (CAT) gene as a reporter, and strains carrying the transcriptional fusions were then analyzed for CAT activities in response to growth on various carbon sources. A dyadic sequence, ATGACA(TC)TGTCAT, located at -72 to -59 relative to the transcription initiation site was shown to be essential for expression of fruA. Inactivation of the genes that encode fructose-specific enzymes II resulted in elevated expression from the fruA promoter, suggesting negative regulation of fruA expression by the fructose phosphotransferase system. Mutagenesis of a terminator-like structure located in the 165-base 5' untranslated region of the fruA mRNA or insertional inactivation of antiterminator genes revealed that antitermination was not a mechanism controlling induction or repression of fruA, although the untranslated leader mRNA may play a role in optimal expression of fructanase. Deletion or mutation of a consensus catabolite response element alleviated glucose repression of fruA, but interestingly, inactivation of the ccpA gene had no discernible effect on catabolite repression of fruA. Accumulating data suggest that expression of fruA is regulated by a mechanism that has several unique features that distinguish it from archetypical polysaccharide catabolic operons of other gram-positive bacteria.
Collapse
Affiliation(s)
- Zezhang T Wen
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
20
|
Abstract
We have compiled a comprehensive list of the articles published in the year 2000 that describe work employing commercial optical biosensors. Selected reviews of interest for the general biosensor user are highlighted. Emerging applications in areas of drug discovery, clinical support, food and environment monitoring, and cell membrane biology are emphasized. In addition, the experimental design and data processing steps necessary to achieve high-quality biosensor data are described and examples of well-performed kinetic analysis are provided.
Collapse
Affiliation(s)
- R L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
21
|
Tortosa P, Declerck N, Dutartre H, Lindner C, Deutscher J, Le Coq D. Sites of positive and negative regulation in the Bacillus subtilis antiterminators LicT and SacY. Mol Microbiol 2001; 41:1381-93. [PMID: 11580842 DOI: 10.1046/j.1365-2958.2001.02608.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis homologous transcriptional antiterminators LicT and SacY control the inducible expression of genes involved in aryl beta-glucoside and sucrose utilization respectively. Their RNA-binding activity is carried by the N-terminal domain (CAT), and is regulated by two similar C-terminal domains (PRD1 and PRD2), which are the targets of phosphorylation reactions catalysed by the phosphoenolpyruvate: sugar phosphotransferase system (PTS). In the absence of the corresponding inducer, LicT is inactivated by BglP, the PTS permease (EII) specific for aryl beta-glucosides, and SacY by SacX, a negative regulator homologous to the EII specific for sucrose. LicT, but not SacY, is also subject to a positive control by the general PTS components EI and HPr, which are thought to phosphorylate LicT in the absence of carbon catabolite repression. Construction of SacY/LicT hybrids and mutational analysis enabled the location of the sites of this positive regulation at the two phosphorylatable His207 and His269 within LicT-PRD2, and suggested that the presence of negative charges at these sites is sufficient for LicT activation in vivo. The BglP-mediated inhibition process was found to essentially involve His100 of LicT-PRD1, with His159 of the same domain playing a minor role in this regulation. In vitro experiments indicated that His100 could be phosphorylated directly by the general PTS proteins, this phosphorylation being stimulated by phosphorylated BglP. We confirmed that, similarly, the corresponding conserved His99 residue in SacY is the major site of the negative control exerted by SacX on SacY activity. Thus, for both antiterminators, the EII-mediated inhibition process seems to rely primarily on the presence of a negative charge at the first conserved histidine of the PRD1.
Collapse
Affiliation(s)
- P Tortosa
- Laboratoire de Génétique des Microorganismes, INRA, CNRS-URA1925, Thiverval-Grignon, France
| | | | | | | | | | | |
Collapse
|
22
|
van Tilbeurgh H, Le Coq D, Declerck N. Crystal structure of an activated form of the PTS regulation domain from the LicT transcriptional antiterminator. EMBO J 2001; 20:3789-99. [PMID: 11447120 PMCID: PMC125546 DOI: 10.1093/emboj/20.14.3789] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transcriptional antiterminator protein LicT regulates the expression of Bacillus subtilis operons involved in beta-glucoside metabolism. It belongs to a newly characterized family of bacterial regulators whose activity is controlled by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). LicT contains an N-terminal RNA-binding domain (56 residues), and a PTS regulation domain (PRD, 221 residues) that is phosphorylated on conserved histidines in response to substrate availability. Replacement of both His207 and His269 with a negatively charged residue (aspartic acid) led to a highly active LicT variant that no longer responds to either induction or catabolite repression signals from the PTS. In contrast to wild type, the activated mutant form of the LicT regulatory domain crystallized easily and provided the first structure of a PRD, determined at 1.55 A resolution. The structure is a homodimer, each monomer containing two analogous alpha-helical domains. The phosphorylation sites are totally buried at the dimer interface and hence inaccessible to phosphorylating partners. The structure suggests important tertiary and quaternary rearrangements upon LicT activation, which could be communicated from the protein C-terminal end up to the RNA-binding domain.
Collapse
Affiliation(s)
- Herman van Tilbeurgh
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 du CNRS, Université d’Aix-Marseille, I et II, ESIL-GBMA, 163 Avenue de Luminy Case 925, 13288 Marseille Cedex 9 and Laboratoire de Génétique des Microorganismes, INRA-CNRS, URA1925, 78850 Thiverval-Grignon, France Present address: Centre de Biochimie Structurale, UMR 9955 du CNRS, Université de Montpellier I, INSERM U414, 29 rue de Navacelles, 34090 Montpellier, France Corresponding author e-mail:
| | - Dominique Le Coq
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 du CNRS, Université d’Aix-Marseille, I et II, ESIL-GBMA, 163 Avenue de Luminy Case 925, 13288 Marseille Cedex 9 and Laboratoire de Génétique des Microorganismes, INRA-CNRS, URA1925, 78850 Thiverval-Grignon, France Present address: Centre de Biochimie Structurale, UMR 9955 du CNRS, Université de Montpellier I, INSERM U414, 29 rue de Navacelles, 34090 Montpellier, France Corresponding author e-mail:
| | - Nathalie Declerck
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 du CNRS, Université d’Aix-Marseille, I et II, ESIL-GBMA, 163 Avenue de Luminy Case 925, 13288 Marseille Cedex 9 and Laboratoire de Génétique des Microorganismes, INRA-CNRS, URA1925, 78850 Thiverval-Grignon, France Present address: Centre de Biochimie Structurale, UMR 9955 du CNRS, Université de Montpellier I, INSERM U414, 29 rue de Navacelles, 34090 Montpellier, France Corresponding author e-mail:
| |
Collapse
|
23
|
Kotrba P, Inui M, Yukawa H. Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80308-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|