1
|
De Castro RE, Giménez MI, Cerletti M, Paggi RA, Costa MI. Proteolysis at the Archaeal Membrane: Advances on the Biological Function and Natural Targets of Membrane-Localized Proteases in Haloferax volcanii. Front Microbiol 2022; 13:940865. [PMID: 35814708 PMCID: PMC9263693 DOI: 10.3389/fmicb.2022.940865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Proteolysis plays a fundamental role in many processes that occur within the cellular membrane including protein quality control, protein export, cell signaling, biogenesis of the cell envelope among others. Archaea are a distinct and physiologically diverse group of prokaryotes found in all kinds of habitats, from the human and plant microbiomes to those with extreme salt concentration, pH and/or temperatures. Thus, these organisms provide an excellent opportunity to extend our current understanding on the biological functions that proteases exert in cell physiology including the adaptation to hostile environments. This revision describes the advances that were made on archaeal membrane proteases with regard to their biological function and potential natural targets focusing on the model haloarchaeon Haloferax volcanii.
Collapse
|
2
|
Sec-Dependent Secretion of Subtilase SptE in Haloarchaea Facilitates Its Proper Folding and Heterocatalytic Processing by Halolysin SptA Extracellularly. Appl Environ Microbiol 2022; 88:e0024622. [PMID: 35348390 DOI: 10.1128/aem.00246-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In response to high-salt conditions, haloarchaea export most secretory proteins through the Tat pathway in folded states; however, it is unclear why some haloarchaeal proteins are still routed to the Sec pathway. SptE is an extracellular subtilase of Natrinema sp. strain J7-2. Here, we found that SptE precursor comprises a Sec signal peptide, an N-terminal propeptide, a catalytic domain, and a long C-terminal extension (CTE) containing seven domains (C1 to C7). SptE is produced extracellularly as a mature form (M180) in strain J7-2 and a proform (ΔS) in the ΔsptA mutant strain, indicating that halolysin SptA mediates the conversion of the secreted proform into M180. The proper folding of ΔS is more efficient in the presence of NaCl than KCl. ΔS requires SptA for cleavage of the N-terminal propeptide and C-terminal C6 and C7 domains to generate M180, accompanied by the appearance of autoprocessing product M120 lacking C5. At lower salinities or elevated temperatures, M180 and M120 could be autoprocessed into M90, which comprises the catalytic and C1 domains and has a higher activity than M180. When produced in Haloferax volcanii, SptE could be secreted as a properly folded proform, but its variant (TSptE) with a Tat signal peptide does not fold properly and suffers from severe proteolysis extracellularly; meanwhile, TSptE is more inclined to aggregate intracellularly than SptE. Systematic domain deletion analysis reveals that the long CTE is an important determinant for secretion of SptE via the Sec rather than Tat pathway to prevent enzyme aggregation before secretion. IMPORTANCE While Tat-dependent haloarchaeal subtilases (halolysins) have been extensively studied, the information about Sec-dependent subtilases of haloarchaea is limited. Our results demonstrate that proper maturation of Sec-dependent subtilase SptE of Natrinema sp. strain J7-2 depends on the action of halolysin SptA from the same strain, yielding multiple hetero- and autocatalytic mature forms. Moreover, we found that the different extra- and intracellular salt types (NaCl versus KCl) of haloarchaea and the long CTE are extrinsic and intrinsic factors crucial for routing SptE to the Sec rather than Tat pathway. This study provides new clues about the secretion and adaptation mechanisms of Sec substrates in haloarchaea.
Collapse
|
3
|
Raut P, Glass JB, Lieberman RL. Archaeal roots of intramembrane aspartyl protease siblings signal peptide peptidase and presenilin. Proteins 2020; 89:232-241. [PMID: 32935885 DOI: 10.1002/prot.26009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/27/2020] [Accepted: 09/13/2020] [Indexed: 12/21/2022]
Abstract
Signal peptides help newly synthesized proteins reach the cell membrane or be secreted. As part of a biological process key to immune response and surveillance in humans, and associated with diseases, for example, Alzheimer, remnant signal peptides and other transmembrane segments are proteolyzed by the intramembrane aspartyl protease (IAP) enzyme family. Here, we identified IAP orthologs throughout the tree of life. In addition to eukaryotes, IAPs are encoded in metabolically diverse archaea from a wide range of environments. We found three distinct clades of archaeal IAPs: (a) Euryarchaeota (eg, halophilic Halobacteriales, methanogenic Methanosarcinales and Methanomicrobiales, marine Poseidoniales, acidophilic Thermoplasmatales, hyperthermophilic Archaeoglobus spp.), (b) DPANN, and (c) Bathyarchaeota, Crenarchaeota, and Asgard. IAPs were also present in bacterial genomes from uncultivated members of Candidate Phylum Radiation, perhaps due to horizontal gene transfer from DPANN archaeal lineages. Sequence analysis of the catalytic motif YD…GXGD (where X is any amino acid) in IAPs from archaea and bacteria reveals WD in Lokiarchaeota and many residue types in the X position. Gene neighborhood analysis in halophilic archaea shows IAP genes near corrinoid transporters (btuCDF genes). In marine Euryarchaeota, a putative BtuF-like domain is found in N-terminus of the IAP gene, suggesting a role for these IAPs in metal ion cofactor or other nutrient scavenging. Interestingly, eukaryotic IAP family members appear to have evolved either from Euryarchaeota or from Asgard archaea. Taken together, our phylogenetic and bioinformatics analysis should prompt experiments to probe the biological roles of IAPs in prokaryotic secretomes.
Collapse
Affiliation(s)
- Priyam Raut
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jennifer B Glass
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.,School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Sinha AK, Dutta A, Chandravanshi M, Kanaujia SP. An insight into bacterial phospholipase C classification and their translocation through Tat and Sec pathways: A data mining study. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
5
|
Ghosh D, Boral D, Vankudoth KR, Ramasamy S. Analysis of haloarchaeal twin-arginine translocase pathway reveals the diversity of the machineries. Heliyon 2019; 5:e01587. [PMID: 31193317 PMCID: PMC6525301 DOI: 10.1016/j.heliyon.2019.e01587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/23/2019] [Accepted: 04/24/2019] [Indexed: 01/10/2023] Open
Abstract
The twin-arginine translocase (Tat) pathway transports folded proteins across the plasma membrane and plays a critical role in protein transport in haloarchaea. Computational analysis and previous experimental evidence suggested that the Tat pathway transports almost the entire secretome in haloarchaea. The TatC, receptor component of this pathway shows greater variation in membrane topology in haloarchaea than in other organisms. The presence of a unique fourteen-transmembrane TatC homolog (TatCt) in haloarchaea, over and above the expected TatC topological variants, indicates a strong correlation between the additional homologs and the large number of substrates transported via the haloarchaeal Tat pathway. Various combinations of TatC homologs with different topologies—TatCo, TatCt, TatCn, and TatCx have been observed in haloarchaea. In this report, on the basis of these combinations we have segregated all haloarchaeal Tat substrates into two groups. The first group consists of substrates that are transported by TatCt alone, whereas the second group consists of substrates that are transported by the other TatC homologs (TatCo, TatCn, and TatCx). The various haloarchaea TatA components also shows the possible segregation towards the substrates. We have also identified the possible homologs for Tat substrate chaperones, which act as a quality-control mechanism for proper protein folding. Further sequence analysis implies that the two TatC domains of TatCt complement each other's functionally. Substrate analysis also revealed subtle differences between the substrates being transported by various homologs: further experimental analysis is therefore required for better understanding of the complexities of the haloarchaeal Tat pathway.
Collapse
Affiliation(s)
- Deepanjan Ghosh
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Debjyoti Boral
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Koteswara Rao Vankudoth
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Sureshkumar Ramasamy
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India
- Corresponding author.
| |
Collapse
|
6
|
Ten-Caten F, Vêncio RZN, Lorenzetti APR, Zaramela LS, Santana AC, Koide T. Internal RNAs overlapping coding sequences can drive the production of alternative proteins in archaea. RNA Biol 2018; 15:1119-1132. [PMID: 30175688 PMCID: PMC6161675 DOI: 10.1080/15476286.2018.1509661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Prokaryotic genomes show a high level of information compaction often with different molecules transcribed from the same locus. Although antisense RNAs have been relatively well studied, RNAs in the same strand, internal RNAs (intraRNAs), are still poorly understood. The question of how common is the translation of overlapping reading frames remains open. We address this question in the model archaeon Halobacterium salinarum. In the present work we used differential RNA-seq (dRNA-seq) in H. salinarum NRC-1 to locate intraRNA signals in subsets of internal transcription start sites (iTSS) and establish the open reading frames associated to them (intraORFs). Using C-terminally flagged proteins, we experimentally observed isoforms accurately predicted by intraRNA translation for kef1, acs3 and orc4 genes. We also recovered from the literature and mass spectrometry databases several instances of protein isoforms consistent with intraRNA translation such as the gas vesicle protein gene gvpC1. We found evidence for intraRNAs in horizontally transferred genes such as the chaperone dnaK and the aerobic respiration related cydA in both H. salinarum and Escherichia coli. Also, intraRNA translation evidence in H. salinarum, E. coli and yeast of a universal elongation factor (aEF-2, fusA and eEF-2) suggests that this is an ancient phenomenon present in all domains of life.
Collapse
Affiliation(s)
- Felipe Ten-Caten
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Ricardo Z N Vêncio
- b Department of Computation and Mathematics, Faculdade de Filosofia , Ciências e Letras de Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| | - Alan Péricles R Lorenzetti
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Livia Soares Zaramela
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Ana Carolina Santana
- c Department of Cell and Molecular Biology and Pathogenic Bioagents , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Tie Koide
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
7
|
Li M, Yin J, Mei S, Wang X, Tang XF, Tang B. Halolysin SptA, a Serine Protease, Contributes to Growth-Phase Transition of Haloarchaeon Natrinema sp. J7-2, and Its Expression Involves Cooperative Action of Multiple Cis-Regulatory Elements. Front Microbiol 2018; 9:1799. [PMID: 30123209 PMCID: PMC6085418 DOI: 10.3389/fmicb.2018.01799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Many haloarchaea produce extracellular subtilisin-like proteases (halolysins) during late log phase; however, the physiological function and regulatory mechanism of growth phase-dependent production of halolysins are unknown. Halolysin SptA, the major extracellular protease of Natrinema sp. J7-2, is capable of intracellular self-activation to affect haloarchaeal growth. Here, we report that deletion of sptA leads to loss of extracellular and intracellular protease activities against azocasein and/or suc-AAPF-pNA, as well as a change in growth-phase transition of the haloarchaeon. Our results suggest that SptA is important for strain J7-2 to enter the stationary and death phases. Deletion and mutational analyses of the 5'-flanking region of sptA revealed two partially overlapping, semi-palindromic sequences upstream of the TATA box act as positive and negative cis-regulatory elements, respectively, to mediate sptA expression in late log phase. Additionally, a negative cis-regulatory element covering WW motif and a distant enhancer contribute to the modulation of sptA expression. Our results demonstrate that SptA functions both extracellularly and intracellularly, and that sptA expression relies on the cooperative action of multiple cis-regulatory elements, allowing SptA to exert its function properly at different growth stages in strain J7-2.
Collapse
Affiliation(s)
- Moran Li
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sha Mei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuhong Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| |
Collapse
|
8
|
Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 2018. [DOI: 10.1093/femsre/fuy009] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Ana Plemenitaš
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 1, SI-1000 Ljubljana, Slovenia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
9
|
Adhikari R, Singh D, Chandravanshi M, Dutta A, Kanaujia SP. UgpB, a periplasmic component of the UgpABCE ATP-binding cassette transporter, predominantly follows the Sec translocation pathway. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
10
|
Abstract
Twin-arginine protein translocation systems (Tat) translocate fully folded and co-factor-containing proteins across biological membranes. In this review, we focus on the Tat pathway of Gram-positive bacteria. The minimal Tat pathway is composed of two components, namely a TatA and TatC pair, which are often complemented with additional TatA-like proteins. We provide overviews of our current understanding of Tat pathway composition and mechanistic aspects related to Tat-dependent cargo protein translocation. This includes Tat pathway flexibility, requirements for the correct folding and incorporation of co-factors in cargo proteins and the functions of known cargo proteins. Tat pathways of several Gram-positive bacteria are discussed in detail, with emphasis on the Tat pathway of Bacillus subtilis. We discuss both shared and unique features of the different Gram-positive bacterial Tat pathways. Lastly, we highlight topics for future research on Tat, including the development of this protein transport pathway for the biotechnological secretion of high-value proteins and its potential applicability as an antimicrobial drug target in pathogens.
Collapse
Affiliation(s)
- Vivianne J Goosens
- MRC Centre for Molecular Bacteriology and Infection, Section of Microbiology, Imperial College London, London, SW7 2AZ, UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700, RB, Groningen, The Netherlands.
| |
Collapse
|
11
|
Kumari S, Chaurasia AK. In silico analysis and experimental validation of lipoprotein and novel Tat signal peptides processing in Anabaena sp. PCC7120. J Microbiol 2015; 53:837-46. [PMID: 26626354 DOI: 10.1007/s12275-015-5281-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
Abstract
Signal peptide (SP) plays a pivotal role in protein translocation. Lipoprotein- and twin arginine translocase (Tat) dependent signal peptides were studied in All3087, a homolog of competence protein of Synechocystis PCC6803 and in two putative alkaline phosphatases (ALPs, Alr2234 and Alr4976), respectively. In silico analysis of All3087 is shown to possess the characteristics feature of competence proteins such as helix-hairpin-helix, N and C-terminal HKD endonuclease domain, calcium binding domain and N-terminal lipoprotein signal peptide. The SP recognition-cleavage site in All3087 was predicted (AIA-AC) using SignalP while further in-depth analysis using Pred-Lipo and WebLogo analysis for consensus sequence showed it as IAA-C. Activities of putative ALPs were confirmed by heterologous overexpression, activity assessment and zymogram analysis. ALP activity in Anabaena remains cell bound in log-phase, but during late log/stationary phase, an enhanced ALP activity was detected in extracellular milieu. The enhancement of ALP activity during stationary phase was not only due to inorganic phosphate limitation but also contributed by the presence of novel bipartite Tat-SP. The Tat signal transported the folded active ALPs to the membrane, followed by anchoring into the membrane and successive cleavage enabling transportation of the ALPs to the extracellular milieu, because of bipartite architecture and processing of transit Tat-SP.
Collapse
Affiliation(s)
- Sonika Kumari
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | | |
Collapse
|
12
|
Yan S, Wu G. Large-scale evolutionary analyses on SecB subunits of bacterial sec system. PLoS One 2015; 10:e0120417. [PMID: 25775430 PMCID: PMC4361572 DOI: 10.1371/journal.pone.0120417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023] Open
Abstract
Protein secretion systems are extremely important in bacteria because they are involved in many fundamental cellular processes. Of the various secretion systems, the Sec system is composed of seven different subunits in bacteria, and subunit SecB brings secreted preproteins to subunit SecA, which with SecYEG and SecDF forms a complex for the translocation of secreted preproteins through the inner membrane. Because of the wide existence of Sec system across bacteria, eukaryota, and archaea, each subunit of the Sec system has a complicated evolutionary relationship. Until very recently, 5,162 SecB sequences have been documented in UniProtKB, however no phylogenetic study has been conducted on a large sampling of SecBs from bacterial Sec secretion system, and no statistical study has been conducted on such size of SecBs in order to exhaustively investigate their variances of pairwise p-distance along taxonomic lineage from kingdom to phylum, to class, to order, to family, to genus and to organism. To fill in these knowledge gaps, 3,813 bacterial SecB sequences with full taxonomic lineage from kingdom to organism covering 4 phyla, 11 classes, 41 orders, 82 families, 269 genera, and 3,744 organisms were studied. Phylogenetic analysis revealed how the SecBs evolved without compromising their function with examples of 3-D structure comparison of two SecBs from Proteobacteria, and possible factors that affected the SecB evolution were considered. The average pairwise p-distances showed that the variance varied greatly in each taxonomic group. Finally, the variance was further partitioned into inter- and intra-clan variances, which could correspond to vertical and horizontal gene transfers, with relevance for Achromobacter, Brevundimonas, Ochrobactrum, and Pseudoxanthomonas.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Guang Wu
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
- * E-mail:
| |
Collapse
|
13
|
Du X, Li M, Tang W, Zhang Y, Zhang L, Wang J, Li T, Tang B, Tang XF. Secretion of Tat-dependent halolysin SptA capable of autocatalytic activation and its relation to haloarchaeal growth. Mol Microbiol 2015; 96:548-65. [DOI: 10.1111/mmi.12955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Du
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Moran Li
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Wei Tang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Yaoxin Zhang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Li Zhang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Jian Wang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Tingting Li
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation; Wuhan China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation; Wuhan China
| |
Collapse
|
14
|
Signal peptide of cellulase. Appl Microbiol Biotechnol 2014; 98:5329-62. [DOI: 10.1007/s00253-014-5742-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 12/24/2022]
|
15
|
Feng J, Wang J, Zhang Y, Du X, Xu Z, Wu Y, Tang W, Li M, Tang B, Tang XF. Proteomic analysis of the secretome of haloarchaeon Natrinema sp. J7-2. J Proteome Res 2014; 13:1248-58. [PMID: 24512091 DOI: 10.1021/pr400728x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although in silico predictions have revealed that haloarchaea can be distinguished from other organisms in that the Tat pathway is used more extensively than the Sec pathway for haloarchaeal protein secretion, only a few haloarchaeal-secreted proteins have been experimentally confirmed. Here, the culture supernatant and membrane fraction of the haloarchaeon Natrinema sp. J7-2 grown at 23% salt concentration were subjected to RPLC-ESI-MS/MS analysis. In total, 46 predicted Tat substrates, 14 predicted Sec substrates, and 3 class III signal peptide-bearing proteins were detected. Approximately 65% of the detected Tat substrates contain lipoboxes, emphasizing the role of the Tat pathway in haloarchaeal lipoprotein secretion. Most of the detected Tat substrates are extracellular substrate (solute)-binding proteins and redox proteins. Despite the small number of Sec substrates, two of them, a cell surface glycoprotein and a putative lipoprotein carrier protein, were identified to be high-abundance secreted proteins. While limited proteins were detected in the culture supernatant, most of the secreted proteins were found in the membrane fraction. The anchoring of secreted proteins to the cell surface via a lipobox or a PGF-CTERM seems to be an adaptation strategy of haloarchaea to handle the harsh extracellular environment. Additionally, ∼15% of the integral membrane proteins (IMPs) detected in the membrane fraction possess putative Sec signal peptides or signal anchors, implying that the Sec pathway is important for membrane insertion of IMPs. This is the first report to describe the experimental secretome of haloarchaea and provide new information for better understanding of haloarchaeal protein secretion patterns.
Collapse
Affiliation(s)
- Jie Feng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University , Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
New approaches indicate constant viral diversity despite shifts in assemblage structure in an Australian hypersaline lake. Appl Environ Microbiol 2013; 79:6755-64. [PMID: 23995931 DOI: 10.1128/aem.01946-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is widely stated that viruses represent the most significant source of biodiversity on Earth, yet characterizing the diversity of viral assemblages in natural systems remains difficult. Viral diversity studies are challenging because viruses lack universally present, phylogenetically informative genes. Here, we developed an approach to estimate viral diversity using a series of functional and novel conserved genes. This approach provides direct estimates of viral assemblage diversity while retaining resolution at the level of individual viral populations in a natural system. We characterized viral assemblages in eight samples from hypersaline Lake Tyrrell (LT), Victoria, Australia, using 39,636 viral contigs. We defined viral operational taxonomic units (OTUs) in two ways. First, we used genes with three different functional predictions that were abundantly represented in the data set. Second, we clustered proteins of unknown function based on sequence similarity, and we chose genes represented by three clusters with numerous members to define OTUs. In combination, diversity metrics indicated between 412 and 735 sampled populations, and the number of populations remained relatively constant across samples. We determined the relative representation of each viral OTU in each sample and found that viral assemblage structures correlate with salinity and solution chemistry. LT viral assemblages were near-replicates from the same site sampled a few days apart but differed significantly on other spatial and temporal scales. The OTU definition approach proposed here paves the way for metagenomics-based analyses of viral assemblages using ecological models previously applied to bacteria and archaea.
Collapse
|
17
|
Rubiano-Labrador C, Bland C, Miotello G, Guérin P, Pible O, Baena S, Armengaud J. Proteogenomic insights into salt tolerance by a halotolerant alpha-proteobacterium isolated from an Andean saline spring. J Proteomics 2013; 97:36-47. [PMID: 23727365 DOI: 10.1016/j.jprot.2013.05.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 04/30/2013] [Accepted: 05/16/2013] [Indexed: 01/18/2023]
Abstract
UNLABELLED Tistlia consotensis is a halotolerant Rhodospirillaceae that was isolated from a saline spring located in the Colombian Andes with a salt concentration close to seawater (4.5%w/vol). We cultivated this microorganism in three NaCl concentrations, i.e. optimal (0.5%), without (0.0%) and high (4.0%) salt concentration, and analyzed its cellular proteome. For assigning tandem mass spectrometry data, we first sequenced its genome and constructed a six reading frame ORF database from the draft sequence. We annotated only the genes whose products (872) were detected. We compared the quantitative proteome data sets recorded for the three different growth conditions. At low salinity general stress proteins (chaperons, proteases and proteins associated with oxidative stress protection), were detected in higher amounts, probably linked to difficulties for proper protein folding and metabolism. Proteogenomics and comparative genomics pointed at the CrgA transcriptional regulator as a key-factor for the proteome remodeling upon low osmolarity. In hyper-osmotic condition, T. consotensis produced in larger amounts proteins involved in the sensing of changes in salt concentration, as well as a wide panel of transport systems for the transport of organic compatible solutes such as glutamate. We have described here a straightforward procedure in making a new environmental isolate quickly amenable to proteomics. BIOLOGICAL SIGNIFICANCE The bacterium Tistlia consotensis was isolated from a saline spring in the Colombian Andes and represents an interesting environmental model to be compared with extremophiles or other moderate organisms. To explore the halotolerance molecular mechanisms of the bacterium T. consotensis, we developed an innovative proteogenomic strategy consisting of i) genome sequencing, ii) quick annotation of the genes whose products were detected by mass spectrometry, and iii) comparative proteomics of cells grown in three salt conditions. We highlighted in this manuscript how efficient such an approach can be compared to time-consuming genome annotation when pointing at the key proteins of a given biological question. We documented a large number of proteins found produced in greater amounts when cells are cultivated in either hypo-osmotic or hyper-osmotic conditions. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Carolina Rubiano-Labrador
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá D.C., Colombia; Colombian Center for Genomics and Bioinformatics of Extreme Environments, GeBiX, Colombia
| | - Céline Bland
- CEA, DSV, iBEB, SBTN, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | - Guylaine Miotello
- CEA, DSV, iBEB, SBTN, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | - Philippe Guérin
- CEA, DSV, iBEB, SBTN, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | - Olivier Pible
- CEA, DSV, iBEB, SBTN, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | - Sandra Baena
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá D.C., Colombia; Colombian Center for Genomics and Bioinformatics of Extreme Environments, GeBiX, Colombia
| | - Jean Armengaud
- CEA, DSV, iBEB, SBTN, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France.
| |
Collapse
|
18
|
Ramasamy S, Abrol R, Suloway CJ, Clemons WM. The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twin-arginine translocation. Structure 2013; 21:777-88. [PMID: 23583035 PMCID: PMC3653977 DOI: 10.1016/j.str.2013.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/14/2013] [Accepted: 03/07/2013] [Indexed: 11/23/2022]
Abstract
In bacteria, two signal-sequence-dependent secretion pathways translocate proteins across the cytoplasmic membrane. Although the mechanism of the ubiquitous general secretory pathway is becoming well understood, that of the twin-arginine translocation pathway, responsible for translocation of folded proteins across the bilayer, is more mysterious. TatC, the largest and most conserved of three integral membrane components, provides the initial binding site of the signal sequence prior to pore assembly. Here, we present two crystal structures of TatC from the thermophilic bacteria Aquifex aeolicus at 4.0 Å and 6.8 Å resolution. The membrane architecture of TatC includes a glove-shaped structure with a lipid-exposed pocket predicted by molecular dynamics to distort the membrane. Correlating the biochemical literature to these results suggests that the signal sequence binds in this pocket, leading to structural changes that facilitate higher order assemblies.
Collapse
Affiliation(s)
| | - Ravinder Abrol
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christian J.M. Suloway
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
19
|
Functional characterization of Edwardsiella tarda twin-arginine translocation system and its potential use as biological containment in live attenuated vaccine of marine fish. Appl Microbiol Biotechnol 2012; 97:3545-57. [DOI: 10.1007/s00253-012-4462-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/07/2012] [Accepted: 09/20/2012] [Indexed: 11/25/2022]
|
20
|
Feng J, Liu B, Zhang Z, Ren Y, Li Y, Gan F, Huang Y, Chen X, Shen P, Wang L, Tang B, Tang XF. The complete genome sequence of Natrinema sp. J7-2, a haloarchaeon capable of growth on synthetic media without amino acid supplements. PLoS One 2012; 7:e41621. [PMID: 22911826 PMCID: PMC3402447 DOI: 10.1371/journal.pone.0041621] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Natrinema sp. J7-2 is an extreme haloarchaeon capable of growing on synthetic media without amino acid supplements. Here we report the complete genome sequence of Natrinema sp. J7-2 which is composed of a 3,697,626-bp chromosome and a 95,989-bp plasmid pJ7-I. This is the first complete genome sequence of a member of the genus Natrinema. We demonstrate that Natrinema sp. J7-2 can use gluconate, glycerol, or acetate as the sole carbon source and that its genome encodes complete metabolic pathways for assimilating these substrates. The biosynthetic pathways for all 20 amino acids have been reconstructed, and we discuss a possible evolutionary relationship between the haloarchaeal arginine synthetic pathway and the bacterial lysine synthetic pathway. The genome harbors the genes for assimilation of ammonium and nitrite, but not nitrate, and has a denitrification pathway to reduce nitrite to N2O. Comparative genomic analysis suggests that most sequenced haloarchaea employ the TrkAH system, rather than the Kdp system, to actively uptake potassium. The genomic analysis also reveals that one of the three CRISPR loci in the Natrinema sp. J7-2 chromosome is located in an integrative genetic element and is probably propagated via horizontal gene transfer (HGT). Finally, our phylogenetic analysis of haloarchaeal genomes provides clues about evolutionary relationships of haloarchaea.
Collapse
Affiliation(s)
- Jie Feng
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Ziqian Zhang
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yan Ren
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Yang Li
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Fei Gan
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yuping Huang
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xiangdong Chen
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ping Shen
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Bing Tang
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
- * E-mail: (BT); (X-FT)
| | - Xiao-Feng Tang
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
- * E-mail: (BT); (X-FT)
| |
Collapse
|
21
|
Cai L, Zhao D, Hou J, Wu J, Cai S, Dassarma P, Xiang H. Cellular and organellar membrane-associated proteins in haloarchaea: Perspectives on the physiological significance and biotechnological applications. SCIENCE CHINA-LIFE SCIENCES 2012; 55:404-14. [DOI: 10.1007/s11427-012-4321-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 04/15/2012] [Indexed: 11/24/2022]
|
22
|
Palmer T, Berks BC. The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 2012; 10:483-96. [PMID: 22683878 DOI: 10.1038/nrmicro2814] [Citation(s) in RCA: 359] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The twin-arginine translocation (Tat) protein export system is present in the cytoplasmic membranes of most bacteria and archaea and has the highly unusual property of transporting fully folded proteins. The system must therefore provide a transmembrane pathway that is large enough to allow the passage of structured macromolecular substrates of different sizes but that maintains the impermeability of the membrane to ions. In the Gram-negative bacterium Escherichia coli, this complex task can be achieved by using only three small membrane proteins: TatA, TatB and TatC. In this Review, we summarize recent advances in our understanding of how this remarkable machine operates.
Collapse
Affiliation(s)
- Tracy Palmer
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | |
Collapse
|
23
|
Nuñez PA, Soria M, Farber MD. The twin-arginine translocation pathway in α-proteobacteria is functionally preserved irrespective of genomic and regulatory divergence. PLoS One 2012; 7:e33605. [PMID: 22438962 PMCID: PMC3305326 DOI: 10.1371/journal.pone.0033605] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/13/2012] [Indexed: 11/19/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway exports fully folded proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Although much progress has been made in unraveling the molecular mechanism and biochemical characterization of the Tat system, little is known concerning its functionality and biological role to confer adaptive skills, symbiosis or pathogenesis in the α-proteobacteria class. A comparative genomic analysis in the α-proteobacteria class confirmed the presence of tatA, tatB, and tatC genes in almost all genomes, but significant variations in gene synteny and rearrangements were found in the order Rickettsiales with respect to the typically described operon organization. Transcription of tat genes was confirmed for Anaplasma marginale str. St. Maries and Brucella abortus 2308, two α-proteobacteria with full and partial intracellular lifestyles, respectively. The tat genes of A. marginale are scattered throughout the genome, in contrast to the more generalized operon organization. Particularly, tatA showed an approximately 20-fold increase in mRNA levels relative to tatB and tatC. We showed Tat functionality in B. abortus 2308 for the first time, and confirmed conservation of functionality in A. marginale. We present the first experimental description of the Tat system in the Anaplasmataceae and Brucellaceae families. In particular, in A. marginale Tat functionality is conserved despite operon splitting as a consequence of genome rearrangements. Further studies will be required to understand how the proper stoichiometry of the Tat protein complex and its biological role are achieved. In addition, the predicted substrates might be the evidence of role of the Tat translocation system in the transition process from a free-living to a parasitic lifestyle in these α-proteobacteria.
Collapse
Affiliation(s)
- Pablo A. Nuñez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA), Buenos Aires, Argentina
| | - Marcelo Soria
- Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, INBA-CONICET, Buenos Aires, Argentina
| | - Marisa D. Farber
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
24
|
van der Ploeg R, Mäder U, Homuth G, Schaffer M, Denham EL, Monteferrante CG, Miethke M, Marahiel MA, Harwood CR, Winter T, Hecker M, Antelmann H, van Dijl JM. Environmental salinity determines the specificity and need for Tat-dependent secretion of the YwbN protein in Bacillus subtilis. PLoS One 2011; 6:e18140. [PMID: 21479178 PMCID: PMC3068169 DOI: 10.1371/journal.pone.0018140] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/24/2011] [Indexed: 11/25/2022] Open
Abstract
Twin-arginine protein translocation (Tat) pathways are required for transport of folded proteins across bacterial, archaeal and chloroplast membranes. Recent studies indicate that Tat has evolved into a mainstream pathway for protein secretion in certain halophilic archaea, which thrive in highly saline environments. Here, we investigated the effects of environmental salinity on Tat-dependent protein secretion by the Gram-positive soil bacterium Bacillus subtilis, which encounters widely differing salt concentrations in its natural habitats. The results show that environmental salinity determines the specificity and need for Tat-dependent secretion of the Dyp-type peroxidase YwbN in B. subtilis. Under high salinity growth conditions, at least three Tat translocase subunits, namely TatAd, TatAy and TatCy, are involved in the secretion of YwbN. Yet, a significant level of Tat-independent YwbN secretion is also observed under these conditions. When B. subtilis is grown in medium with 1% NaCl or without NaCl, the secretion of YwbN depends strictly on the previously described “minimal Tat translocase” consisting of the TatAy and TatCy subunits. Notably, in medium without NaCl, both tatAyCy and ywbN mutants display significantly reduced exponential growth rates and severe cell lysis. This is due to a critical role of secreted YwbN in the acquisition of iron under these conditions. Taken together, our findings show that environmental conditions, such as salinity, can determine the specificity and need for the secretion of a bacterial Tat substrate.
Collapse
Affiliation(s)
- René van der Ploeg
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, Department for Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department for Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Marc Schaffer
- Interfaculty Institute for Genetics and Functional Genomics, Department for Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Emma L. Denham
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Carmine G. Monteferrante
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Marcus Miethke
- Department of Chemistry/Biochemistry, Philipps-University Marburg, Marburg, Germany
| | - Mohamed A. Marahiel
- Department of Chemistry/Biochemistry, Philipps-University Marburg, Marburg, Germany
| | - Colin R. Harwood
- Centre for Bacterial Cell Biology, Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Theresa Winter
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
| | - Haike Antelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Mutational and bioinformatic analysis of haloarchaeal lipobox-containing proteins. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20886060 PMCID: PMC2945643 DOI: 10.1155/2010/410975] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/04/2010] [Accepted: 07/12/2010] [Indexed: 11/18/2022]
Abstract
A conserved lipid-modified cysteine found in a protein motif commonly referred to as a lipobox mediates the membrane anchoring of a subset of proteins transported across the bacterial cytoplasmic membrane via the Sec pathway. Sequenced haloarchaeal genomes encode many putative lipoproteins and recent studies have confirmed the importance of the conserved lipobox cysteine for signal peptide processing of three lipobox-containing proteins in the model archaeon Haloferax volcanii. We have extended these in vivo analyses to additional Hfx. volcanii substrates, supporting our previous in silico predictions and confirming the diversity of predicted Hfx. volcanii lipoproteins. Moreover, using extensive comparative secretome analyses, we identified genes encodining putative lipoproteins across a wide range of archaeal species. While our in silico analyses, supported by in vivo data, indicate that most haloarchaeal lipoproteins are Tat substrates, these analyses also predict that many crenarchaeal species lack lipoproteins altogether and that other archaea, such as nonhalophilic euryarchaeal species, transport lipoproteins via the Sec pathway. To facilitate the identification of genes that encode potential haloarchaeal Tat-lipoproteins, we have developed TatLipo, a bioinformatic tool designed to detect lipoboxes in haloarchaeal Tat signal peptides. Our results provide a strong foundation for future studies aimed at identifying components of the archaeal lipoprotein biogenesis pathway.
Collapse
|
26
|
Calo D, Eichler J. Crossing the membrane in Archaea, the third domain of life. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:885-91. [PMID: 20347718 DOI: 10.1016/j.bbamem.2010.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/16/2022]
Abstract
Many of the recent advancements in the field of protein translocation, particularly from the structural perspective, have relied on Archaea. For instance, the solved structures of the translocon from the methanoarchaeon Methanocaldococcus jannaschii of the ribosomal large subunit from the haloarchaeon Haloarcula marismortui and of components of the SRP pathway from several archaeal species have provided novel insight into various aspects of the translocation event. Given the major contribution that Archaea have made to our understanding of how proteins enter and traverse membranes, it is surprising that relatively little is known of protein translocation in Archaea in comparison to the well-defined translocation pathways of Eukarya and Bacteria. What is known, however, points to archaeal translocation as comprising a mosaic of eukaryal and bacterial traits together with aspects of the process seemingly unique to this, the third domain of life. Here, current understanding of archaeal protein translocation is considered. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Doron Calo
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
| | | |
Collapse
|
27
|
TAT-pathway-dependent lipoproteins as a niche-based adaptation in prokaryotes. J Mol Evol 2010; 70:359-70. [PMID: 20333370 DOI: 10.1007/s00239-010-9334-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
Bacterial lipoproteins, characterized by the N-terminal N-acyl S-diacylglyceryl Cysteine, are key membrane proteins in bacterial homeostasis. It is generally thought that during the modification lipoprotein precursors are translocated via the Sec-machinery in an unfolded state. The recent discovery of twin-arginine translocation (TAT) machinery, meant for exporting folded-proteins, and the presence of TAT-type signal sequences in co-factor-containing (hence already folded) lipoproteins, prompted us to investigate its role and significance in lipoprotein biosynthesis. We systematically analyzed 696 prokaryotic genomes using an algorithm based on DOLOP and TatP rules to predict TAT-pathway-dependent lipoprotein substrates. Occurrence of the deduced TAT-pathway-dependent lipoprotein substrates in relation to genome size, presence or absence of TAT machinery, and extent of its usage for lipoprotein export and habitat types revealed that unlike the host-obligates, the free-living prokaryotes in complex hostile environments (e.g., soil) depend more on TAT-exported lipoproteins. Functional classification of the predicted TAT-dependent lipoproteins revealed enrichment in hydrolases and oxido-reductases, which are fast-folding and co-factor-containing proteins. The role of the TAT pathway in the export of folded-lipoproteins and in niche-specific adaptation for survival has important implications not only in lipoprotein biosynthesis, but also for protein and metabolic engineering applications.
Collapse
|
28
|
Yuan J, Zweers JC, van Dijl JM, Dalbey RE. Protein transport across and into cell membranes in bacteria and archaea. Cell Mol Life Sci 2010; 67:179-99. [PMID: 19823765 PMCID: PMC11115550 DOI: 10.1007/s00018-009-0160-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/13/2009] [Accepted: 09/21/2009] [Indexed: 12/21/2022]
Abstract
In the three domains of life, the Sec, YidC/Oxa1, and Tat translocases play important roles in protein translocation across membranes and membrane protein insertion. While extensive studies have been performed on the endoplasmic reticular and Escherichia coli systems, far fewer studies have been done on archaea, other Gram-negative bacteria, and Gram-positive bacteria. Interestingly, work carried out to date has shown that there are differences in the protein transport systems in terms of the number of translocase components and, in some cases, the translocation mechanisms and energy sources that drive translocation. In this review, we will describe the different systems employed to translocate and insert proteins across or into the cytoplasmic membrane of archaea and bacteria.
Collapse
Affiliation(s)
- Jijun Yuan
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210 USA
| | - Jessica C. Zweers
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 30001, 9700 RB Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 30001, 9700 RB Groningen, The Netherlands
| | - Ross E. Dalbey
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
29
|
Kwan DC, Thomas JR, Bolhuis A. Bioenergetic requirements of a Tat-dependent substrate in the halophilic archaeon Haloarcula hispanica. FEBS J 2008; 275:6159-67. [PMID: 19016855 DOI: 10.1111/j.1742-4658.2008.06740.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Twin-arginine translocase (Tat) is involved in the translocation of fully folded proteins in a process that is driven by the proton motive force. In most prokaryotes, the Tat system transports only a small proportion of secretory proteins, and Tat substrates are often cofactor-containing proteins that require folding before translocation. A notable exception is found in halophilic archaea (haloarchaea), which are predicted to secrete the majority of their proteins through the Tat pathway. In this study, we have analysed the translocation of a secretory protein (AmyH) from the haloarchaeon Haloarcula hispanica. Using both in vivo and in vitro translocation assays, we demonstrate that AmyH transport is Tat-dependent, and, surprisingly, that its secretion does not depend on the proton motive force but requires the sodium motive force instead.
Collapse
Affiliation(s)
- Daniel C Kwan
- Department of Pharmacy and Pharmacology, University of Bath, UK
| | | | | |
Collapse
|
30
|
De Castro RE, Ruiz DM, Giménez MI, Silveyra MX, Paggi RA, Maupin-Furlow JA. Gene cloning and heterologous synthesis of a haloalkaliphilic extracellular protease of Natrialba magadii (Nep). Extremophiles 2008; 12:677-87. [PMID: 18553052 DOI: 10.1007/s00792-008-0174-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 05/19/2008] [Indexed: 11/28/2022]
Abstract
The gene encoding the protease Nep secreted by the haloalkaliphilic archaeon Natrialba magadii was cloned and sequenced. Upstream of the nep gene, a region related to haloarchaeal TATA-box and BRE-like consensus sequences was identified. The nep-encoded polypeptide had a molecular mass of 56.4 kDa, a pI of 3.77 and included a 121-amino acid propeptide not present in the mature Nep. A Tat motif (GRRSVL) was also identified at residues 10-15 suggesting it is a substrate of the Tat pathway. The primary sequence of Nep was closely related to serine proteases of the subtilisin family from archaea and bacteria (50-85% similarity). The nep gene was expressed in Escherichia coli and Haloferax volcanii resulting in production of active Nep protease. In contrast to the recombinant E. coli strains in which Nep activity was only detected in cell lysate, high levels of Nep protein and activity were detected in the culture medium of stationary phase recombinant Hfx. volcanii strains. The Hfx. volcanii synthesized protease was active in high salt, high pH and high DMSO. This study provides the first molecular characterization of a halolysin-like protease from alkaliphilic haloarchaea and is the first description of a recombinant system that facilitates high-level secretion of a haloarchaeal protease.
Collapse
Affiliation(s)
- Rosana E De Castro
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales Universidad Nacional de Mar del Plata, Funes 3250 4 degrees Nivel, Mar del Plata 7600, Argentina.
| | | | | | | | | | | |
Collapse
|
31
|
Genomics and functional genomics with haloarchaea. Arch Microbiol 2008; 190:197-215. [PMID: 18493745 DOI: 10.1007/s00203-008-0376-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/08/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
Abstract
The first haloarchaeal genome was published in 2000 and today five genome sequences are available. Transcriptome and proteome analyses have been established for two and three haloarchaeal species, respectively, and more than 20 studies using these functional genomic approaches have been published in the last two years. These studies gave global overviews of metabolic regulation (aerobic and anaerobic respiration, phototrophy, carbon source usage), stress response (UV, X-rays, transition metals, osmotic and temperature stress), cell cycle-dependent transcript level regulation, and transcript half-lives. The only translatome analysis available for any prokaryotic species revealed that 10 and 20% of all transcripts are translationally regulated in Haloferax volcanii and Halobacterium salinarum, respectively. Very effective methods for the construction of in frame deletion mutants have been established recently for haloarchaea and are intensively used to unravel the biological roles of genes in this group. Bioinformatic analyses include both cross-genome comparisons as well as integration of genomic data with experimental results. The first systems biology approaches have been performed that used experimental data to construct predictive models of gene expression and metabolism, respectively. In this contribution the current status of genomics, functional genomics, and molecular genetics of haloarchaea is summarized and selected examples are discussed.
Collapse
|
32
|
Indicators from archaeal secretomes. Microbiol Res 2008; 165:1-10. [PMID: 18407482 DOI: 10.1016/j.micres.2008.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/14/2008] [Accepted: 03/01/2008] [Indexed: 11/21/2022]
Abstract
Just as in the Eukarya and the Bacteria, members of the Archaea need to export proteins beyond the cell membrane. This would be required to fulfill a variety of essential functions such as nutrient acquisition and biotransformations, maintenance of extracellular structures and more. Apart from the Eukarya and the Bacteria however, members of the Archaea share a number of unique characteristics. Does this uniqueness extend to the protein secretion system? It was the objective of this study to answer this question. To overcome the limited experimental information on secreted proteins in Archaea, this study was carried out by subjecting the available archaeal genomes, which represent halophiles, thermophiles, and extreme thermophiles, to bioinformatics analysis. Specifically, to examine the properties of the secretomes of the Archaea using the ExProt program. A total of 24 genomes were analyzed. Secretomes were found to fall in the range of 6% of total ORFs (Methanopyrus kandleri) to 19% (Halobacterium sp. NRC-1). Methanosarcina acetivorans has the highest fraction of lipoproteins (at 89) and the lowest (at 1) were members of the Thermoplasma, Pyrobaculum aerophilum, and Nanoarchaeum equitans. Based on the Tat consensus sequence, contribution of these secreted proteins to the secretomes were negligible, making up 8 proteins out of a total of 7105 predicted exported proteins. Amino acid composition, an attribute of signal peptides not used as a selection criteria by ExProt, of predicted archaeal signal peptides show that in the haloarchaea secretomes, the frequency of the amino acid Lys is much lower than that seen in bacterial signal peptides, but is compensated for by a higher frequency of Arg. It also showed that higher frequencies for Thr, Val, and Gly contribute to the hydrophobic character in haloarchaeal signal peptides, unlike bacterial signal peptides in which the hydrophobic character is dominated by Leu and Ile.
Collapse
|
33
|
Giménez MI, Dilks K, Pohlschröder M. Haloferax volcanii twin-arginine translocation substates include secreted soluble, C-terminally anchored and lipoproteins. Mol Microbiol 2007; 66:1597-606. [DOI: 10.1111/j.1365-2958.2007.06034.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Sargent F. Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. Microbiology (Reading) 2007; 153:633-651. [PMID: 17322183 DOI: 10.1099/mic.0.2006/004762-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prokaryotic cytoplasmic membrane not only maintains cell integrity and forms a barrier between the cell and its outside environment, but is also the location for essential biochemical processes. Microbial model systems provide excellent bases for the study of fundamental problems in membrane biology including signal transduction, chemotaxis, solute transport and, as will be the topic of this review, energy metabolism. Bacterial respiration requires a diverse array of complex, multi-subunit, cofactor-containing redox enzymes, many of which are embedded within, or located on the extracellular side of, the membrane. The biosynthesis of these enzymes therefore requires carefully controlled expression, assembly, targeting and transport processes. Here, focusing on the molybdenum-containing respiratory enzymes central to anaerobic respiration in Escherichia coli, recent descriptions of a chaperone-mediated 'proofreading' system involved in coordinating assembly and export of complex extracellular enzymes will be discussed. The paradigm proofreading chaperones are members of a large group of proteins known as the TorD family, and recent research in this area highlights common principles that underpin biosynthesis of both exported and non-exported respiratory enzymes.
Collapse
Affiliation(s)
- Frank Sargent
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
35
|
Shi W, Tang XF, Huang Y, Gan F, Tang B, Shen P. An extracellular halophilic protease SptA from a halophilic archaeon Natrinema sp. J7: gene cloning, expression and characterization. Extremophiles 2006; 10:599-606. [PMID: 16896523 DOI: 10.1007/s00792-006-0003-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
A gene encoding an extracellular protease, sptA, was cloned from the halophilic archaeon Natrinema sp. J7. It encoded a polypeptide of 565 amino acids containing a putative 49-amino acid signal peptide, a 103-amino acid propeptide, as well as a mature region and C-terminal extension, with a high proportion of acidic amino acid residues. The sptA gene was expressed in Haloferax volcanii WFD11, and the recombinant enzyme could be secreted into the medium as an active mature form. The N-terminal amino acid sequencing and MALDI-TOF mass spectrometry analysis of the purified SptA protease indicated that the 152-amino acid prepropeptide was cleaved and the C-terminal extension was not processed after secretion. The SptA protease was optimally active at 50 degrees C in 2.5 M NaCl at pH 8.0. The NaCl removed enzyme retained 20% of its activity, and 60% of the activity could be restored by reintroducing 2.5 M NaCl into the NaCl removed enzyme. When the twin-arginine motif in the signal peptide of SptA protease was replaced with a twin-lysine motif, the enzyme was not exported from Hfx. volcanii WFD11, suggesting that the SptA protease was a Tat-dependent substrate.
Collapse
Affiliation(s)
- Wanliang Shi
- College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Fine A, Irihimovitch V, Dahan I, Konrad Z, Eichler J. Cloning, expression, and purification of functional Sec11a and Sec11b, type I signal peptidases of the archaeon Haloferax volcanii. J Bacteriol 2006; 188:1911-9. [PMID: 16484202 PMCID: PMC1426568 DOI: 10.1128/jb.188.5.1911-1919.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Across evolution, type I signal peptidases are responsible for the cleavage of secretory signal peptides from proteins following their translocation across membranes. In Archaea, type I signal peptidases combine domain-specific features with traits found in either their eukaryal or bacterial counterparts. Eukaryal and bacterial type I signal peptidases differ in terms of catalytic mechanism, pharmacological profile, and oligomeric status. In this study, genes encoding Sec11a and Sec11b, two type I signal peptidases of the halophilic archaeon Haloferax volcanii, were cloned. Although both genes are expressed in cells grown in rich medium, gene deletion approaches suggest that Sec11b, but not Sec11a, is essential. For purification purposes, tagged versions of the protein products of both genes were expressed in transformed Haloferax volcanii, with Sec11a and Sec11b being fused to a cellulose-binding domain capable of interaction with cellulose in hypersaline surroundings. By employing an in vitro signal peptidase assay designed for use with high salt concentrations such as those encountered by halophilic archaea such as Haloferax volcanii, the signal peptide-cleaving activities of both isolated membranes and purified Sec11a and Sec11b were addressed. The results show that the two enzymes differentially cleave the assay substrate, raising the possibility that the Sec11a and Sec11b serve distinct physiological functions.
Collapse
Affiliation(s)
- Amir Fine
- Dept. of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel
| | | | | | | | | |
Collapse
|
37
|
Snyder A, Vasil AI, Zajdowicz SL, Wilson ZR, Vasil ML. Role of the Pseudomonas aeruginosa PlcH Tat signal peptide in protein secretion, transcription, and cross-species Tat secretion system compatibility. J Bacteriol 2006; 188:1762-74. [PMID: 16484187 PMCID: PMC1426547 DOI: 10.1128/jb.188.5.1762-1774.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The secretion of PlcH and its homolog PlcN of Pseudomonas aeruginosa through the inner membrane depends upon a functional twin arginine translocase (Tat) system and a Tat signal sequence. Conserved twin arginine (Arg) residues within the Tat signal sequence consensus motif (S/TRRxFLK) are considered essential for the secretion of Tat substrates, but some exceptions (e.g., Lys and Arg) to the twin Arg residues in this motif have been noted. The roles of all three Arg residues within the PlcH RRRTFLK consensus motif were examined. Data are presented which indicate that Arg-9 and Arg-10 are essential for PlcH secretion across the inner membrane, but the mutation of Arg-8 (e.g., to Ala or Ser) had no observable effect on the localization of PlcH. In the signal sequence of PlcH and in all of its homologs in other bacteria, there are basic amino acid residues (Arg, Lys, and Gln) immediately adjacent to the signal peptidase cleavage site (Ala-X-Ala) that are not seen in Sec-dependent signal sequences. The mutation of these basic residues to Ala caused slightly decreased levels of extracellular PlcH, but normal localization was still observed. Deletion of the entire Tat signal sequence of PlcH not only resulted in the absence of detectable extracellular PlcH activity and protein but also caused a substantial decrease in the detectable level of plcH mRNA. Finally, data are presented which indicate that P. aeruginosa PlcH exhibits cross-species compatibility with the Escherichia coli Tat secretion machinery, but only when the E. coli Tat machinery is expressed in a P. aeruginosa host.
Collapse
Affiliation(s)
- Aleksandra Snyder
- Department of Microbiology, Fitzsimons Mail Stop 8333, P.O. Box 6511, 12800 East 19th Ave., Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
38
|
DasSarma S, Berquist BR, Coker JA, DasSarma P, Müller JA. Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1. SALINE SYSTEMS 2006; 2:3. [PMID: 16542428 PMCID: PMC1447603 DOI: 10.1186/1746-1448-2-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 03/16/2006] [Indexed: 11/21/2022]
Abstract
Halobacteriumsp. NRC-1 is an extremely halophilic archaeon that is easily cultured and genetically tractable. Since its genome sequence was completed in 2000, a combination of genetic, transcriptomic, proteomic, and bioinformatic approaches have provided insights into both its extremophilic lifestyle as well as fundamental cellular processes common to all life forms. Here, we review post-genomic research on this archaeon, including investigations of DNA replication and repair systems, phototrophic, anaerobic, and other physiological capabilities, acidity of the proteome for function at high salinity, and role of lateral gene transfer in its evolution.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - Brian R Berquist
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - James A Coker
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - Priya DasSarma
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - Jochen A Müller
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| |
Collapse
|
39
|
Kim HJ, Joo WA, Cho CW, Kim CW. Halophile aldehyde dehydrogenase from Halobacterium salinarum. J Proteome Res 2006; 5:192-5. [PMID: 16396511 DOI: 10.1021/pr050258u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Halobacterium salinarum is a member of the halophilic archaea. In the present study, H. salinarum was cultured at various NaCl concentrations (3.5, 4.3, and 6.0 M NaCl), and its proteome was determined and identificated via proteomics technique. We detected 14 proteins which were significantly down-regulated in 3.5 M and/or 6 M NaCl. Among the identified protein spots, aldehyde dehydrogenase (ALDH) was selected for evaluation with regard to its potential applications in industry. The most effective metabolism function exhibited by ALDH is the oxidation of aldehydes to carboxylic acids. The ALDH gene from H. salinarum (1.5 kb fragment) was amplified by PCR and cloned into the E. coli strain, BL21 (DE3), with the pGEX-KG vector. We subsequently analyzed the enzyme activity of the recombinant ALDH (54 kDa) at a variety of salt concentrations. The purified recombinant ALDH from H. salinarum exhibited the most pronounced activity at 1 M NaCl. Therefore, the ALDH from H.salinarum is a halophilic enzyme, and may prove useful for applications in hypersaline environments.
Collapse
Affiliation(s)
- Hyo-Jeong Kim
- School of Life Sciences and Biotechnology, Korea University, Sungbuk-ku, Seoul, Korea
| | | | | | | |
Collapse
|
40
|
Dilks K, Giménez MI, Pohlschröder M. Genetic and biochemical analysis of the twin-arginine translocation pathway in halophilic archaea. J Bacteriol 2005; 187:8104-13. [PMID: 16291683 PMCID: PMC1291277 DOI: 10.1128/jb.187.23.8104-8113.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway is present in a wide variety of prokaryotes and is capable of exporting partially or fully folded proteins from the cytoplasm. Although diverse classes of proteins are transported via the Tat pathway, in most organisms it facilitates the secretion of a relatively small number of substrates compared to the Sec pathway. However, computational evidence suggests that haloarchaea route nearly all secreted proteins to the Tat pathway. We have expanded previous computational analyses of the haloarchaeal Tat pathway and initiated in vivo characterization of the Tat machinery in a model haloarchaeon, Haloferax volcanii. Consistent with the predicted usage of the this pathway in the haloarchaea, we determined that three of the four identified tat genes in Haloferax volcanii are essential for viability when grown aerobically in complex medium. This represents the first report of an organism that requires the Tat pathway for viability when grown under such conditions. Deletion of the nonessential gene had no effect on the secretion of a verified substrate of the Tat pathway. The two TatA paralogs TatAo and TatAt were detected in both the membrane and cytoplasm and could be copurified from the latter fraction. Using size exclusion chromatography to further characterize cytoplasmic and membrane TatA proteins, we find these proteins present in high-molecular-weight complexes in both cellular fractions.
Collapse
Affiliation(s)
- Kieran Dilks
- Department of Biology, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | |
Collapse
|
41
|
Sun C, Li Y, Mei S, Lu Q, Zhou L, Xiang H. A single gene directs both production and immunity of halocin C8 in a haloarchaeal strain AS7092. Mol Microbiol 2005; 57:537-49. [PMID: 15978083 DOI: 10.1111/j.1365-2958.2005.04705.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halocin C8 (HalC8) is an extremely stable and hydrophobic microhalocin with 76 amino acids, and has a wide inhibitory spectrum against the haloarchaea. It is derived from the C-terminus of a 283-amino-acid prepro-protein (ProC8), which was demonstrated by molecular cloning of the halC8 gene, and verified by the N-terminal amino acid sequencing as well as MALDI-TOF-MS analysis of the purified HalC8. The production of this halocin is controlled through both transcription regulation and protein processing: the halC8 transcripts and HalC8 activity rapidly increased to maximal levels upon transition from exponential to stationary phase. However, while halC8 transcripts remained abundant, the HalC8 processing was inhibited during stationary phase. Remarkably, agar-diffusion test revealed the unprocessed ProC8 and its 207-amino-acid N-terminal peptide (HalI), with or without the putative Tat signal sequence, were capable to block the halocin activity of HalC8 in vitro. In addition, heterologous expression of HalI in Haloarcula hispanica rendered this sensitive strain remarkable resistance to HalC8, indicating that HalI encodes the immunity property of the producer. In accordance with this immunity function, HalI and ProC8 were both found localized on the cellular membrane. Protein interaction assay revealed that HalI likely sequestrated the HalC8 activity by specific binding. To our knowledge, this is the first report on halocin immunity, and our results that a single gene encodes both peptide antibiotic and immunity protein also provide a novel immune mechanism for peptide antibiotics.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaeal Proteins/biosynthesis
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/pharmacology
- Base Sequence
- Cell Membrane/chemistry
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- Drug Resistance, Microbial
- Genes, Archaeal
- Haloarcula/genetics
- Haloarcula/metabolism
- Molecular Sequence Data
- Protein Binding
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- RNA, Archaeal/analysis
- RNA, Messenger/analysis
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- Chaomin Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
42
|
Woodson JD, Reynolds AA, Escalante-Semerena JC. ABC transporter for corrinoids in Halobacterium sp. strain NRC-1. J Bacteriol 2005; 187:5901-9. [PMID: 16109931 PMCID: PMC1196138 DOI: 10.1128/jb.187.17.5901-5909.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report evidence for the existence of a putative ABC transporter for corrinoid utilization in the extremely halophilic archaeon Halobacterium sp. strain NRC-1. Results from genetic and nutritional analyses of Halobacterium showed that mutants with lesions in open reading frames (ORFs) Vng1370G, Vng1371Gm, and Vng1369G required a 10(5)-fold higher concentration of cobalamin for growth than the wild-type or parent strain. The data support the conclusion that these ORFs encode orthologs of the bacterial cobalamin ABC transporter permease (btuC; Vng1370G), ATPase (btuD; Vng1371Gm), and substrate-binding protein (btuF; Vng1369G) components. Mutations in the Vng1370G, Vng1371Gm, and Vng1369G genes were epistatic, consistent with the hypothesis that their products work together to accomplish the same function. Extracts of btuF mutant strains grown in the presence of cobalamin did not contain any cobalamin molecules detectable by a sensitive bioassay, whereas btuCD mutant strain extracts did. The data are consistent with the hypothesis that the BtuF protein is exported to the extracellular side of the cell membrane, where it can bind cobalamin in the absence of BtuC and BtuD. Our data also provide evidence for the regulation of corrinoid transport and biosynthesis. Halobacterium synthesized cobalamin in a chemically defined medium lacking corrinoid precursors. To the best of our knowledge, this is the first genetic analysis of an archaeal corrinoid transport system.
Collapse
Affiliation(s)
- Jesse D Woodson
- Department of Bacteriology, University of Wisconsin, 144A Enzyme Institute, 1710 University Avenue, Madison, WI 53726-4087, USA
| | | | | |
Collapse
|
43
|
Falb M, Pfeiffer F, Palm P, Rodewald K, Hickmann V, Tittor J, Oesterhelt D. Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res 2005; 15:1336-43. [PMID: 16169924 PMCID: PMC1240075 DOI: 10.1101/gr.3952905] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Natronomonas pharaonis is an extremely haloalkaliphilic archaeon that was isolated from salt-saturated lakes of pH 11. We sequenced its 2.6-Mb GC-rich chromosome and two plasmids (131 and 23 kb). Genome analysis suggests that it is adapted to cope with severe ammonia and heavy metal deficiencies that arise at high pH values. A high degree of nutritional self-sufficiency was predicted and confirmed by growth in a minimal medium containing leucine but no other amino acids or vitamins. Genes for a complex III analog of the respiratory chain could not be identified in the N. pharaonis genome, but respiration and oxidative phosphorylation were experimentally proven. These studies identified protons as coupling ion between respiratory chain and ATP synthase, in contrast to other alkaliphiles using sodium instead. Secretome analysis predicts many extracellular proteins with alkaline-resistant lipid anchors, which are predominantly exported through the twin-arginine pathway. In addition, a variety of glycosylated cell surface proteins probably form a protective complex cell envelope. N. pharaonis is fully equipped with archaeal signal transduction and motility genes. Several receptors/transducers signaling to the flagellar motor display novel domain architectures. Clusters of signal transduction genes are rearranged in haloarchaeal genomes, whereas those involved in information processing or energy metabolism show a highly conserved gene order.
Collapse
Affiliation(s)
- Michaela Falb
- Max-Planck-Institute of Biochemistry, Department of Membrane Biochemistry, D-82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas these and other posttranslational protein modifications have been well characterized in Eucarya and Bacteria, posttranslational modification in Archaea has received far less attention. Although archaeal proteins can undergo posttranslational modifications reminiscent of what their eucaryal and bacterial counterparts experience, examination of archaeal posttranslational modification often reveals aspects not previously observed in the other two domains of life. In some cases, posttranslational modification allows a protein to survive the extreme conditions often encountered by Archaea. The various posttranslational modifications experienced by archaeal proteins, the molecular steps leading to these modifications, and the role played by posttranslational modification in Archaea form the focus of this review.
Collapse
Affiliation(s)
- Jerry Eichler
- Dept. of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel.
| | | |
Collapse
|
45
|
Berks BC, Palmer T, Sargent F. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr Opin Microbiol 2005; 8:174-81. [PMID: 15802249 DOI: 10.1016/j.mib.2005.02.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Tat (twin-arginine translocation) protein export system is found in the cytoplasmic membrane of most prokaryotes and is dedicated to the transport of folded proteins. The Tat system is now known to be essential for many bacterial processes including energy metabolism, cell wall biosynthesis, the nitrogen-fixing symbiosis and bacterial pathogenesis. Recent studies demonstrate that substrate-specific accessory proteins prevent improperly assembled substrates from interacting with the Tat transporter. During the transport cycle itself substrate proteins bind to a receptor complex in the membrane which then recruits a protein-translocating channel to carry out the transport reaction.
Collapse
Affiliation(s)
- Ben C Berks
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
46
|
Hutcheon GW, Vasisht N, Bolhuis A. Characterisation of a highly stable alpha-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 2005; 9:487-95. [PMID: 16075161 DOI: 10.1007/s00792-005-0471-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
Intracellular and extracellular proteins from halophilic archaea face very saline conditions and must be able to maintain stability and functionality at nearly saturated salt concentrations. Haloarchaeal proteins contain specific adaptations to prevent aggregation and loss of activity in such conditions, but these adaptations usually result in a lack of stability in the absence of salt. Here, we present the characterisation of a secreted alpha-amylase (AmyH) from the halophilic archaeon Haloarcula hispanica. AmyH was shown to be very halophilic but, unusually for a halophilic protein, it retained activity in the absence of salt. Intrinsic fluorescence measurements and activity assays showed that AmyH was very stable in high-salt buffer and even maintained stability upon the addition of urea. Urea-induced denaturation was only achieved in the absence of NaCl, demonstrating clearly that the stability of the protein was salt-dependent. Sequencing of the amyH gene showed an amino acid composition typical of halophilic proteins and, moreover, the presence of a signal peptide containing diagnostic features characteristic of export via the Twin-arginine translocase (Tat). Analysis of the export of AmyH showed that it was translocated post-translationally, most likely in a folded and active conformation, confirming that AmyH is a substrate of the Tat pathway.
Collapse
Affiliation(s)
- George W Hutcheon
- Department of Biological Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | | | | |
Collapse
|
47
|
Tat-dependent protein targeting in prokaryotes and chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:135-47. [PMID: 15546663 DOI: 10.1016/j.bbamcr.2004.03.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 03/30/2004] [Accepted: 03/31/2004] [Indexed: 10/26/2022]
Abstract
The twin-arginine translocation (Tat) system operates in the chloroplast thylakoid and the plasma membranes of a wide range of bacteria. It recognizes substrates bearing cleavable signal peptides in which a twin-arginine motif almost invariably plays a key role in recognition by the translocation machinery. These signal peptides are surprisingly similar to those used to specify transport by Sec-type systems, but the Tat pathway differs in fundamental respects from Sec-type and other protein translocases. Its key attribute is its ability to translocate large, fully folded (even oligomeric) proteins across tightly sealed membranes. To date, three key tat genes have been characterised and the first details of the Tat system are beginning to emerge. In this article we review the salient features of Tat systems, with an emphasis on the targeting signals involved, the substrate specificities of Tat systems, our current knowledge of Tat complex structures and the known mechanistic features. Although the article is focused primarily on bacterial systems, we incorporate relevant aspects of plant thylakoid Tat work and we discuss how the plant and bacterial systems may differ in some respects.
Collapse
|
48
|
Abstract
Over the past three decades, transport of proteins across cellular membranes has been studied extensively in various model systems. One of the major transport routes, the so-called Sec pathway, is conserved in all domains of life. Very little is known about this pathway in the third domain of life, archaea. The core components of the archaeal, bacterial and eucaryal Sec machinery are similar, although the archaeal components appear more closely related to their eucaryal counterparts. Interestingly, the accessory factors of the translocation machinery are similar to bacterial components, which indicates a unique hybrid nature of the archaeal translocase complex. The mechanism of protein translocation in archaea is completely unknown. Based on genomic sequencing data, the most likely system for archaeal protein translocation is similar to the eucaryal co-translational translocation pathway for protein import into the endoplasmic reticulum, in which a protein is pushed across the translocation channel by the ribosome. However, other models can also be envisaged, such as a bacterial-like system in which a protein is translocated post-translationally with the aid of a motor protein analogous to the bacterial ATPase SecA. This review discusses the different models. Furthermore, an overview is given of some of the other components that may be involved in the protein translocation process, such as those required for protein targeting, folding and post-translational modification.
Collapse
Affiliation(s)
- Albert Bolhuis
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
49
|
De Buck E, Lebeau I, Maes L, Geukens N, Meyen E, Van Mellaert L, Anné J, Lammertyn E. A putative twin-arginine translocation pathway in Legionella pneumophila. Biochem Biophys Res Commun 2004; 317:654-61. [PMID: 15063808 DOI: 10.1016/j.bbrc.2004.03.091] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Indexed: 10/26/2022]
Abstract
Legionella pneumophila is a facultative intracellular human pathogen causing Legionnaires' disease, a severe form of pneumonia. Because of the importance of secretion pathways in virulence, we were interested in the possible presence of the twin-arginine translocation (Tat) pathway in L. pneumophila. This secretion pathway is used to transport folded proteins, characterized by two arginines in their signal peptide, across the cytoplasmic membrane. We describe here the presence of a putative Tat pathway in L. pneumophila. Three genes encoding Escherichia coli TatA, TatB, and TatC homologues were identified. The tatA and tatB genes were shown to constitute an operon while tatC is monocistronic. RT-PCR analysis revealed expression of the tat genes during both exponential and stationary growth as well as during intracellular growth in Acanthamoeba castellanii. A search for the conserved twin-arginine motif in predicted signal peptides resulted in a list of putative Tat substrates.
Collapse
Affiliation(s)
- Emmy De Buck
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Pohlschröder M, Dilks K, Hand NJ, Wesley Rose R. Translocation of proteins across archaeal cytoplasmic membranes. FEMS Microbiol Rev 2004; 28:3-24. [PMID: 14975527 DOI: 10.1016/j.femsre.2003.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 07/03/2003] [Accepted: 07/09/2003] [Indexed: 11/20/2022] Open
Abstract
All cells need to transport proteins across hydrophobic membranes. Several mechanisms have evolved to facilitate this transport, including: (i) the universally-conserved Sec system, which transports proteins in an unfolded conformation and is thought to be the major translocation pathway in most organisms and (ii) the Tat system, which transports proteins that have already obtained some degree of tertiary structure. Here, we present the current understanding of these processes in the domain Archaea, and how they compare to the corresponding pathways in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Mechthild Pohlschröder
- Department of Biology, University of Pennsylvania, 415 University Avenue, 201 Leidy Labs, Philadelphia, PA 19104-6018, USA.
| | | | | | | |
Collapse
|