1
|
Yang Y, Chen J, Zheng Y, Jiang R, Sang Y, Zhang J. The Effects of Mixed Robinia pseudoacacia and Quercus variabilis Plantation on Soil Bacterial Community Structure and Nitrogen-Cycling Gene Abundance in the Southern Taihang Mountain Foothills. Microorganisms 2024; 12:1773. [PMID: 39338448 PMCID: PMC11434179 DOI: 10.3390/microorganisms12091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Mixed forests often increase their stability and species richness in comparison to pure stands. However, a comprehensive understanding of the effects of mixed forests on soil properties, bacterial community diversity, and soil nitrogen cycling remains elusive. This study investigated soil samples from pure Robinia pseudoacacia stands, pure Quercus variabilis stands, and mixed stands of both species in the southern foothills of the Taihang Mountains. Utilizing high-throughput sequencing and real-time fluorescence quantitative PCR, this study analyzed the bacterial community structure and the abundance of nitrogen-cycling functional genes within soils from different stands. The results demonstrated that Proteobacteria, Acidobacteria, and Actinobacteria were the dominant bacterial groups across all three forest soil types. The mixed-forest soil exhibited a higher relative abundance of Firmicutes and Bacteroidetes, while Nitrospirae and Crenarchaeota were most abundant in the pure R. pseudoacacia stand soils. Employing FAPROTAX for predictive bacterial function analysis in various soil layers, this study found that nitrogen-cycling processes such as nitrification and denitrification were most prominent in pure R. pseudoacacia soils. Whether in surface or deeper soil layers, the abundance of AOB amoA, nirS, and nirK genes was typically highest in pure R. pseudoacacia stand soils. In conclusion, the mixed forest of R. pseudoacacia and Q. variabilis can moderate the intensity of nitrification and denitrification processes, consequently reducing soil nitrogen loss.
Collapse
Affiliation(s)
- Yi Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
- Henan Xiaolangdi Forest System National Research Station, Jiyuan 459000, China
| | - Jing Chen
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
- Henan Xiaolangdi Forest System National Research Station, Jiyuan 459000, China
| | - Yiwei Zheng
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
- Henan Xiaolangdi Forest System National Research Station, Jiyuan 459000, China
| | - Rui Jiang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
- Henan Xiaolangdi Forest System National Research Station, Jiyuan 459000, China
| | - Yuqiang Sang
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
- Henan Xiaolangdi Forest System National Research Station, Jiyuan 459000, China
| | - Jinsong Zhang
- Henan Xiaolangdi Forest System National Research Station, Jiyuan 459000, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
2
|
Macey MC. Genome-resolved metagenomics identifies novel active microbes in biogeochemical cycling within methanol-enriched soil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13246. [PMID: 38575138 PMCID: PMC10994693 DOI: 10.1111/1758-2229.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Metagenome assembled genomes (MAGs), generated from sequenced 13C-labelled DNA from 13C-methanol enriched soils, were binned using an ensemble approach. This method produced a significantly larger number of higher-quality MAGs compared to direct binning approaches. These MAGs represent both the primary methanol utilizers and the secondary utilizers labelled via cross-feeding and predation on the labelled methylotrophs, including numerous uncultivated taxa. Analysis of these MAGs enabled the identification of multiple metabolic pathways within these active taxa that have climatic relevance relating to nitrogen, sulfur and trace gas metabolism. This includes denitrification, dissimilatory nitrate reduction to ammonium, ammonia oxidation and metabolism of organic sulfur species. The binning of viral sequence data also yielded extensive viral MAGs, identifying active viral replication by both lytic and lysogenic phages within the methanol-enriched soils. These MAGs represent a valuable resource for characterizing biogeochemical cycling within terrestrial environments.
Collapse
Affiliation(s)
- Michael C. Macey
- AstrobiologyOU, Earth, Environment and Ecosystem SciencesThe Open UniversityMilton KeynesUK
| |
Collapse
|
3
|
Ndour PMS, Bargaz A, Rchiad Z, Pawlett M, Clark IM, Mauchline TH, Harris J, Lyamlouli K. Microbial Catabolic Activity: Methods, Pertinence, and Potential Interest for Improving Microbial Inoculant Efficiency. MICROBIAL ECOLOGY 2023; 86:2211-2230. [PMID: 37280438 DOI: 10.1007/s00248-023-02250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Microbial catabolic activity (MCA) defined as the degrading activity of microorganisms toward various organic compounds for their growth and energy is commonly used to assess soil microbial function potential. For its measure, several methods are available including multi-substrate-induced respiration (MSIR) measurement which allow to estimate functional diversity using selected carbon substrates targeting specific biochemical pathways. In this review, the techniques used to measure soil MCA are described and compared with respect to their accuracy and practical use. Particularly the efficiency of MSIR-based approaches as soil microbial function indicators was discussed by (i) showing their sensitivity to different agricultural practices including tillage, amendments, and cropping systems and (ii) by investigating their relationship with soil enzyme activities and some soil chemical properties (pH, soil organic carbon, cation exchange capacity). We highlighted the potential of these MSIR-based MCA measurements to improve microbial inoculant composition and to determine their potential effects on soil microbial functions. Finally, we have proposed ideas for improving MCA measurement notably through the use of molecular tools and stable isotope probing which can be combined with classic MSIR methods. Graphical abstract describing the interrelation between the different parts and the concepts developed in the review.
Collapse
Affiliation(s)
- Papa Mamadou Sitor Ndour
- College for Sustainable Agriculture and Environmental Sciences, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
- Cranfield Soil and AgriFood Institute, School of Applied Sciences, Cranfield University, Cranfield, MK43 0AL, UK.
| | - Adnane Bargaz
- College for Sustainable Agriculture and Environmental Sciences, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Zineb Rchiad
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mark Pawlett
- Cranfield Soil and AgriFood Institute, School of Applied Sciences, Cranfield University, Cranfield, MK43 0AL, UK
| | - Ian M Clark
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Tim H Mauchline
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Jim Harris
- Cranfield Soil and AgriFood Institute, School of Applied Sciences, Cranfield University, Cranfield, MK43 0AL, UK
| | - Karim Lyamlouli
- College for Sustainable Agriculture and Environmental Sciences, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
4
|
Jensen S, Siljanen HM, Dörsch P. Activity and abundance of methanotrophic bacteria in a northern mountainous gradient of wetlands. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:206-215. [PMID: 36786058 PMCID: PMC10464705 DOI: 10.1111/1758-2229.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 05/06/2023]
Abstract
Methane uptake and diversity of methanotrophic bacteria was investigated across six hydrologically connected wetlands in a mountainous forest landscape upstream of lake Langtjern, southern Norway. From floodplain through shrubs, forest and sedges to a Sphagnum covered site, growing season CH4 production was insufficiently consumed to balance release into the atmosphere. Emission increased by soil moisture ranging 0.6-6.8 mg CH4 m-2 h-1 . Top soils of all sites consumed CH4 including at the lowest 78 ppmv CH4 supplied, thus potentially oxidizing 17-51 nmol CH4 g-1 dw h-1 , with highest Vmax 440 nmol g-1 dw h-1 under Sphagnum and lowest Km 559 nM under hummocked Carex. Nine genera and several less understood type I and type II methanotrophs were detected by the key functional gene pmoA involved in methane oxidation. Microarray signal intensities from all sites revealed Methylococcus, the affiliated Lake Washington cluster, Methylocaldum, a Japanese rice cluster, Methylosinus, Methylocystis and the affiliated Peat264 cluster. Notably enriched by site was a floodplain Methylomonas and a Methylocapsa-affiliated watershed cluster in the Sphagnum site. The climate sensitive water table was shown to be a strong controlling factor highlighting its link with the CH4 cycle in elevated wetlands.
Collapse
Affiliation(s)
- Sigmund Jensen
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Henri M.P. Siljanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Peter Dörsch
- Norwegian University of Life SciencesFaculty for Environmental Sciences and Natural Resource ManagementNorway
| |
Collapse
|
5
|
Sui X, Frey B, Yang L, Liu Y, Zhang R, Ni H, Li MH. Soil Acidobacterial community composition changes sensitively with wetland degradation in northeastern of China. Front Microbiol 2022; 13:1052161. [PMID: 36620014 PMCID: PMC9816132 DOI: 10.3389/fmicb.2022.1052161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Acidobacteria are a major component of the soil bacteria and are conducted for many soil functions, and the soil Acidobacterial structure and diversity are affected by climate changes and human activities. However, soil Acidobacterial structure and diversity in wetland ecosystems are still limited recognized. The current study aimed to study the Acidobacterial community and diversity in relation to soil environmental factors along a typical degradation series from primitive wetland to forest in a representative fresh wetland in northeastern China. In this research, we assessed the soil Acidobacterial community composition, using Illumina MiSeq sequencing along a typical degradation series from primitive wetland to forest in a representative fresh wetland in northeastern China. The soil physico chemical properties changed significantly among the eight degrade stages (p < 0.05). The α diversity index (Shannon and Chao1 index) of soil Acidobacteria changed significantly between different degradation stages (p < 0.05). Principal Coordinates Analysis (PCoA) revealed that the soil acidobacteiral communities obviously separated into wetland group and forest group. The most abundant subgroups of Acidobacteria accounted for 31% (Gp1), 5% (Gp2), 12% (Gp3), 2% (Gp4), 5% (Gp6), and 2% (Gp7) in soils within eight successional series. The compositions of soil Acidobacteria in wetland stages were significantly affected by soil moisture content, soil total nitrogen and available nitrogen contents, while those in forest stages were significantly driven by soil pH, soil organic carbon, total nitrogen, available phosphorus and soil moisture content. Our results indicated that the soil Acidobacterial community was mainly structured by soil physico chemical parameters, and wetland degradation towards forests will greatly influence the soil Acidobacterial structure and thus the wetland functions.
Collapse
Affiliation(s)
- Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
- Snow and Landscape Research WSLSwiss Federal Institute for Forest, , Birmensdorf, Switzerland
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Beat Frey
- Snow and Landscape Research WSLSwiss Federal Institute for Forest, , Birmensdorf, Switzerland
| | - Libin Yang
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Yingnan Liu
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Rongtao Zhang
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Hongwei Ni
- Heilongjiang Academy of Forestry, Harbin, China
| | - Mai-He Li
- Snow and Landscape Research WSLSwiss Federal Institute for Forest, , Birmensdorf, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- School of Life Science, Hebei University, Baoding, China
| |
Collapse
|
6
|
The Necrobiome of Deadwood: The Life after Death. ECOLOGIES 2022. [DOI: 10.3390/ecologies4010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent decades, sustainable forest management has been increasingly recognized, promoting the diffusion of silvicultural practices aimed at considering all components of the forest system. Deadwood is an important component of the forest ecosystem. It plays a fundamental role in providing nutrients and habitats for a wide variety of saprotrophic and heterotrophic organisms and significantly contributes to soil formation and carbon storage. Deadwood is inhabited by a plethora of organisms from various kingdoms that have evolved the ability to utilize decaying organic matter. This community, consisting of both eukaryotic and prokaryotic species, can be defined as “necrobiome”. Through the interactions between its various members, the necrobiome influences the decay rates of deadwood and plays a crucial role in the balance between organic matter decomposition, carbon sequestration, and gas exchanges (e.g., CO2) with the atmosphere. The present work aims to provide an overview of the biodiversity and role of the microbial communities that inhabit deadwood and their possible involvement in greenhouse gas (CO2, N2O, and CH4) emissions.
Collapse
|
7
|
Dhar K, Panneerselvan L, Venkateswarlu K, Megharaj M. Efficient bioremediation of PAHs-contaminated soils by a methylotrophic enrichment culture. Biodegradation 2022; 33:575-591. [PMID: 35976498 PMCID: PMC9581816 DOI: 10.1007/s10532-022-09996-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/05/2022] [Indexed: 01/13/2023]
Abstract
Bioaugmentation effectively enhances microbial bioremediation of hazardous polycyclic aromatic hydrocarbons (PAHs) from contaminated environments. While screening for pyrene-degrading bacteria from a former manufactured gas plant soil (MGPS), the mixed enrichment culture was found to be more efficient in PAHs biodegradation than the culturable pure strains. Interestingly, analysis of 16S rRNA sequences revealed that the culture was dominated by a previously uncultured member of the family Rhizobiaceae. The culture utilized C1 and other methylotrophic substrates, including dimethylformamide (DMF), which was used as a solvent for supplementing the culture medium with PAHs. In the liquid medium, the culture rapidly degraded phenanthrene, pyrene, and the carcinogenic benzo(a)pyrene (BaP), when provided as the sole carbon source or with DMF as a co-substrate. The efficiency of the culture in the bioremediation of PAHs from the MGPS and a laboratory waste soil (LWS) was evaluated in bench-scale slurry systems. After 28 days, 80% of Σ16 PAHs were efficiently removed from the inoculated MGPS. Notably, the bioaugmentation achieved 90% removal of four-ringed and 60% of highly recalcitrant five- and six-ringed PAHs from the MGPS. Likewise, almost all phenanthrene, pyrene, and 65% BaP were removed from the bioaugmented LWS. This study highlights the application of the methylotrophic enrichment culture dominated by an uncultured bacterium for the efficient bioremediation of PAHs.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Logeshwaran Panneerselvan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia. .,Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
8
|
Bech TB, Stehrer T, Jakobsen R, Badawi N, Schostag MD, Hinsby K, Aamand J, Hellal J. Degradation potential of MCPA, metolachlor and propiconazole in the hyporheic sediments of an agriculturally impacted river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155226. [PMID: 35461929 DOI: 10.1016/j.scitotenv.2022.155226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Hyporheic sediments are influenced by physical, biological, and chemical processes due to the interactions with river water and has been shown to play an important role in the environmental fate of pesticides. Therefore, this study evaluated the bacterial degradation potential of MCPA, metolachlor and propiconazole in hyporheic sediments sampled along a 20 km long stretch of an agriculturally impacted river dominated primarily by water losing conditions. Water physicochemical parameters in the river and nearby groundwater wells were assessed along with pesticide sorption to sediments and bacterial community composition. Degradation and mineralisation batch experiments were set up from six locations (five water losing, one water gaining) using environmentally relevant concentrations of pesticides (10 μg kg-1). Highly variable DT50 values from 11 to 44 days for MCPA, 11-27 days for metolachlor (MTC) and 60-147 days for propiconazole were calculated based on ~140 day studies. Degradation of MTC led to accumulation of the transformation products MOA and MESA in batch experiments. Noteworthy, MESA was detected in the groundwater wells adjacent to the part of the river impacted by losing conditions suggesting that degradation processes in hyporheic sediments may lead to the formation of transformation products (TP) leaching towards groundwater. Further, from propiconazole was identified a persistent transformation product being different from 1,2,4-triazole. Specific calculated DT50 values could not the linked to bacterial diversity. However, generally all sediment samples were characterised by high bacterial diversity, where approximately 80% of the relative sequence abundances were < 1%, which may increase the likelihood of finding contaminant-degrading genes, thereby explaining the general high contaminant-degrading activity. The studied sediments revealed a high potential to degrade pesticides despite only being exposed to low diffuse pollutant concentrations that is similar to calculated DT50 values in agricultural soils.
Collapse
Affiliation(s)
- Tina B Bech
- Geological Survey of Denmark and Greenland, Department of Geochemistry, DK-1350 Copenhagen, Denmark.
| | - Thomas Stehrer
- Proteomics Service Laboratory, Institute of Physiology and Institute of Molecular Genetics, Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Rasmus Jakobsen
- Geological Survey of Denmark and Greenland, Department of Geochemistry, DK-1350 Copenhagen, Denmark
| | - Nora Badawi
- Geological Survey of Denmark and Greenland, Department of Geochemistry, DK-1350 Copenhagen, Denmark
| | - Morten D Schostag
- Technical University of Denmark, Department of Biotechnology and Biomedicine, 2800 Kgs. Lyngby, Denmark
| | - Klaus Hinsby
- Geological Survey of Denmark and Greenland, Department of Hydrology, DK-1350 Copenhagen, Denmark
| | - Jens Aamand
- Geological Survey of Denmark and Greenland, Department of Geochemistry, DK-1350 Copenhagen, Denmark
| | | |
Collapse
|
9
|
Kanukollu S, Remus R, Rücker AM, Buchen-Tschiskale C, Hoffmann M, Kolb S. Methanol utilizers of the rhizosphere and phyllosphere of a common grass and forb host species. ENVIRONMENTAL MICROBIOME 2022; 17:35. [PMID: 35794633 PMCID: PMC9258066 DOI: 10.1186/s40793-022-00428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Managed grasslands are global sources of atmospheric methanol, which is one of the most abundant volatile organic compounds in the atmosphere and promotes oxidative capacity for tropospheric and stratospheric ozone depletion. The phyllosphere is a favoured habitat of plant-colonizing methanol-utilizing bacteria. These bacteria also occur in the rhizosphere, but their relevance for methanol consumption and ecosystem fluxes is unclear. Methanol utilizers of the plant-associated microbiota are key for the mitigation of methanol emission through consumption. However, information about grassland plant microbiota members, their biodiversity and metabolic traits, and thus key actors in the global methanol budget is largely lacking. RESULTS We investigated the methanol utilization and consumption potentials of two common plant species (Festuca arundinacea and Taraxacum officinale) in a temperate grassland. The selected grassland exhibited methanol formation. The detection of 13C derived from 13C-methanol in 16S rRNA of the plant microbiota by stable isotope probing (SIP) revealed distinct methanol utilizer communities in the phyllosphere, roots and rhizosphere but not between plant host species. The phyllosphere was colonized by members of Gamma- and Betaproteobacteria. In the rhizosphere, 13C-labelled Bacteria were affiliated with Deltaproteobacteria, Gemmatimonadates, and Verrucomicrobiae. Less-abundant 13C-labelled Bacteria were affiliated with well-known methylotrophs of Alpha-, Gamma-, and Betaproteobacteria. Additional metagenome analyses of both plants were consistent with the SIP results and revealed Bacteria with methanol dehydrogenases (e.g., MxaF1 and XoxF1-5) of known but also unusual genera (i.e., Methylomirabilis, Methylooceanibacter, Gemmatimonas, Verminephrobacter). 14C-methanol tracing of alive plant material revealed divergent potential methanol consumption rates in both plant species but similarly high rates in the rhizosphere and phyllosphere. CONCLUSIONS Our study revealed the rhizosphere as an overlooked hotspot for methanol consumption in temperate grasslands. We further identified unusual new but potentially relevant methanol utilizers besides well-known methylotrophs in the phyllosphere and rhizosphere. We did not observe a plant host-specific methanol utilizer community. Our results suggest that our approach using quantitative SIP and metagenomics may be useful in future field studies to link gross methanol consumption rates with the rhizosphere and phyllosphere microbiome.
Collapse
Affiliation(s)
- Saranya Kanukollu
- Microbial Biogeochemistry, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Rainer Remus
- Isotope Biogeochemistry and Gas Fluxes, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | | | - Caroline Buchen-Tschiskale
- Isotope Biogeochemistry and Gas Fluxes, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
- Present Address: Johann Heinrich von Thünen-Institut, Institute of Climate-Smart Agriculture, Braunschweig, Germany
| | - Mathias Hoffmann
- Isotope Biogeochemistry and Gas Fluxes, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
10
|
Thandayuthapani D, Chinnappa N, Annavi A, Manickam M. Phylogenetic and sequence profile analysis of Non-Ribosomal Polyketide Synthase-Adenylation (NRPS)domain from Actinobacterium dagang 5. Bioinformation 2021; 17:809-813. [PMID: 35539891 PMCID: PMC9049086 DOI: 10.6026/97320630017809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022] Open
Abstract
This study aims to find out the mapping of bioactive compounds by combinational analysis of regulatory machinery pattern study and metabolomics approach. In which we isolated a highly potent Actinobacterium dagang 5 from Gulf of Manner, which shows broad-spectrum activity against several pathogens. So the isolate was used for overall metabolic profiling studies on crude extract and phylogeny pattern analysis of NRPS A-domain, which is an important gene clusters and plays vital role in production of bioactive metabolites. The result suggests that Actinobacterium dagang 5 has the potential to produce a new type of antibacterial compounds.
Collapse
Affiliation(s)
- Deepika Thandayuthapani
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli-620020, Tamilnadu, India
| | - Nivetha Chinnappa
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli-620020, Tamilnadu, India
| | - Arjunan Annavi
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli-620020, Tamilnadu, India
| | - Muthusevam Manickam
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli-620020, Tamilnadu, India
| |
Collapse
|
11
|
Methane-derived carbon flows into host-virus networks at different trophic levels in soil. Proc Natl Acad Sci U S A 2021; 118:2105124118. [PMID: 34349022 DOI: 10.1073/pnas.2105124118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The concentration of atmospheric methane (CH4) continues to increase with microbial communities controlling soil-atmosphere fluxes. While there is substantial knowledge of the diversity and function of prokaryotes regulating CH4 production and consumption, their active interactions with viruses in soil have not been identified. Metagenomic sequencing of soil microbial communities enables identification of linkages between viruses and hosts. However, this does not determine if these represent current or historical interactions nor whether a virus or host are active. In this study, we identified active interactions between individual host and virus populations in situ by following the transfer of assimilated carbon. Using DNA stable-isotope probing combined with metagenomic analyses, we characterized CH4-fueled microbial networks in acidic and neutral pH soils, specifically primary and secondary utilizers, together with the recent transfer of CH4-derived carbon to viruses. A total of 63% of viral contigs from replicated soil incubations contained homologs of genes present in known methylotrophic bacteria. Genomic sequences of 13C-enriched viruses were represented in over one-third of spacers in CRISPR arrays of multiple closely related Methylocystis populations and revealed differences in their history of viral interaction. Viruses infecting nonmethanotrophic methylotrophs and heterotrophic predatory bacteria were also identified through the analysis of shared homologous genes, demonstrating that carbon is transferred to a diverse range of viruses associated with CH4-fueled microbial food networks.
Collapse
|
12
|
do Carmo Linhares D, Saia FT, Duarte RTD, Nakayama CR, de Melo IS, Pellizari VH. Methanotrophic Community Detected by DNA-SIP at Bertioga's Mangrove Area, Southeast Brazil. MICROBIAL ECOLOGY 2021; 81:954-964. [PMID: 33392629 DOI: 10.1007/s00248-020-01659-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Methanotrophic bacteria can use methane as sole carbon and energy source. Its importance in the environment is related to the mitigation of methane emissions from soil and water to the atmosphere. Brazilian mangroves are highly productive, have potential to methane production, and it is inferred that methanotrophic community is of great importance for this ecosystem. The scope of this study was to investigate the functional and taxonomic diversity of methanotrophic bacteria present in the anthropogenic impacted sediments from Bertioga´s mangrove (SP, Brazil). Sediment sample was cultivated with methane and the microbiota actively involved in methane oxidation was identified by DNA-based stable isotope probing (DNA-SIP) using methane as a labeled substrate. After 4 days (96 h) of incubation and consumption of 0.7 mmol of methane, the most active microorganisms were related to methanotrophs Methylomonas and Methylobacter as well as to methylotrophic Methylotenera, indicating a possible association of these bacterial groups within a methane-derived food chain in the Bertioga mangrove. The abundance of genera Methylomonas, able to couple methane oxidation to nitrate reduction, may indicate that under low dissolved oxygen tensions, some aerobic methanotrophs could shift to intraerobic methane oxidation to avoid oxygen starvation.
Collapse
Affiliation(s)
- Débora do Carmo Linhares
- Laboratory of Industrial Biotechnology, Institute for Technological Research of São Paulo, 05508-901, São Paulo, SP, Brazil.
- Department of Biological Oceanography, Oceanographic Institute, University of Sao Paulo, Praça do Oceanográfico, 191, 05508-120, Butantã, São Paulo-SP, Brazil.
| | - Flávia Talarico Saia
- Institute of Marine Sciences, Federal University of São Paulo, Av. Dr. Carvalho de Mendonça, 144, Encruzilhada, Santos, SP, 11070-102, Brazil
| | - Rubens Tadeu Delgado Duarte
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Cristina Rossi Nakayama
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | | | - Vivian Helena Pellizari
- Department of Biological Oceanography, Oceanographic Institute, University of Sao Paulo, Praça do Oceanográfico, 191, 05508-120, Butantã, São Paulo-SP, Brazil
| |
Collapse
|
13
|
Sun Y, Yin M, Zheng D, Wang T, Zhao X, Luo C, Li J, Liu Y, Xu S, Deng S, Wang X, Zhang D. Different acetonitrile degraders and degrading genes between anaerobic ammonium oxidation and sequencing batch reactor as revealed by stable isotope probing and magnetic-nanoparticle mediated isolation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143588. [PMID: 33218816 DOI: 10.1016/j.scitotenv.2020.143588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Microbial degraders play crucial roles in wastewater treatment processes, but their use is limited as most microbes are yet unculturable. Stable isotope probing (SIP) is a cultivation-independent technique identifying functional-yet-uncultivable microbes in ambient environment, but is unsatisfactory for substrates with low assimilation rate owing to the low isotope incorporation into DNA. In this study, we used acetonitrile as the target low-assimilation chemical in many wastewater treatment plants and attempted to identify the active acetonitrile degraders in the activated sludge, via DNA-SIP and magnetic-nanoparticle mediated isolation (MMI) which is another cultivation-independent approach without the requirement of substrate labeling. The two approaches identified different active acetonitrile degraders in a 3-day short-term anaerobic ammonium oxidation (ANAMMOX). MMI enriched significantly more acetonitrile-degraders than SIP, showing the advantages in identifying the active degraders for low-assimilation substrates. Sequencing batch reactor (SBR, 30-day degradation) helped in more incorporation of 15N-labeled acetonitrile into the active degraders, thus the same acetonitrile-degraders and acetonitrile-degrading genes were identified by SIP and MMI. Different acetonitrile degraders between ANAMMOX and SBR were attributed to the distinct hydrological conditions. Our study for the first time explored the succession of acetonitrile-degraders in wastewater and identified the active acetonitrile-degraders which could be further enriched for enhancing acetonitrile degradation performance. These findings provide new insights into the acetonitrile metabolic process in wastewater treatment plants and offer suggestive conclusions for selecting appropriate treatment strategy in wastewater management.
Collapse
Affiliation(s)
- Yujiao Sun
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Meng Yin
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Danyang Zheng
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Tiandai Wang
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Xiaohui Zhao
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jibing Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yueqiao Liu
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Shangwei Xu
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou 215163, China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.
| |
Collapse
|
14
|
Wang Y, Li T, Li C, Song F. Differences in Microbial Community and Metabolites in Litter Layer of Plantation and Original Korean Pine Forests in North Temperate Zone. Microorganisms 2020; 8:microorganisms8122023. [PMID: 33348766 PMCID: PMC7765820 DOI: 10.3390/microorganisms8122023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022] Open
Abstract
In order to explore the relationship between microbial diversity and metabolites in the litter layer of northern temperate forests, the microbial community structure and metabolite species in the litter layer of an original Korean pine forest and Korean pine plantation of northern temperate climate were determined on the basis of high-throughput sequencing and metabonomic techniques. The results showed that there were 698 bacterial genera and 363 fungal genera in the litter samples in the original Korean pine forest. Linear discriminant effect size (LEfSe) analysis showed that there were 35 indicator bacterial species and 19 indicator fungal species. In the litter samples of the Korean pine plantation, there were 622 bacterial genera and 343 fungal genera. Additionally, LEfSe analysis showed that there were 18 indicator bacterial species and 5 indicator fungal species. The litter of the two forest types contained 285 kinds of organic compounds, among which 16 different metabolites were screened, including 6 kinds of organic acids, 5 kinds of amino acids, 2 kinds of sugars, 2 kinds of sugar alcohols, and 1 kind of lipid. Latescibacteria, Rokubacteria, and Olpidiomycota are unique to the original Korean pine forest. They can catalyze the degradation rate of litter and decompose cellulose and chitin, respectively. Subgroup 6 was abundant in the lower litter layer. Subgroup 6 can grow with carbon compounds as substrate. It was clear that the microbial diversity of the litter layer in the original Korean pine forest was higher than that of the Korean pine plantation. Moreover, whether original forest or plantation forest, the lower-litter layer microbial diversity was higher than that in the middle-litter layer. CCA showed that the main metabolites were related to Chitinophagaceae_uncultured were saccharopine. The main metabolites associated with Mortierella and Polyscytalum were myo-inositol. At the same time, analysis of the difference between the litter layer of the original Korean pine forest and the Korean pine plantation also provides a theoretical basis for their participation in the element cycles of forest ecosystems.
Collapse
Affiliation(s)
- Yue Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (Y.W.); (T.L.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization, College of Life Science, Heilongjiang University, Harbin 150080, China
| | - Ting Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (Y.W.); (T.L.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization, College of Life Science, Heilongjiang University, Harbin 150080, China
| | - Chongwei Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (Y.W.); (T.L.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization, College of Life Science, Heilongjiang University, Harbin 150080, China
- Correspondence: (C.L.); (F.S.)
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (Y.W.); (T.L.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization, College of Life Science, Heilongjiang University, Harbin 150080, China
- Correspondence: (C.L.); (F.S.)
| |
Collapse
|
15
|
Cai Y, Zhou X, Shi L, Jia Z. Atmospheric Methane Oxidizers Are Dominated by Upland Soil Cluster Alpha in 20 Forest Soils of China. MICROBIAL ECOLOGY 2020; 80:859-871. [PMID: 32803363 DOI: 10.1007/s00248-020-01570-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/03/2020] [Indexed: 05/25/2023]
Abstract
Upland soil clusters alpha and gamma (USCα and USCγ) are considered a major biological sink of atmospheric methane and are often detected in forest and grassland soils. These clusters are phylogenetically classified using the particulate methane monooxygenase gene pmoA because of the difficulty of cultivation. Recent studies have established a direct link of pmoA genes to 16S rRNA genes based on their isolated strain or draft genomes. However, whether the results of pmoA-based assays could be largely represented by 16S rRNA gene sequencing in upland soils remains unclear. In this study, we collected 20 forest soils across China and compared methane-oxidizing bacterial (MOB) communities by high-throughput sequencing of 16S rRNA and pmoA genes using different primer sets. The results showed that 16S rRNA gene sequencing and the semi-nested polymerase chain reaction (PCR) of the pmoA gene (A189/A682r nested with a mixture of mb661 and A650) consistently revealed the dominance of USCα (accounting for more than 50% of the total MOB) in 12 forest soils. A189f/A682r successfully amplified pmoA genes (mainly RA14 of USCα) in only three forest soils. A189f/mb661 could amplify USCα (mainly JR1) in several forest soils but showed a strong preferential amplification of Methylocystis and many other type I MOB groups. A189f/A650 almost exclusively amplified USCα (mainly JR1) and largely discriminated against Methylocystis and most of the other MOB groups. The semi-nested PCR approach weakened the bias of A189f/mb661 and A189f/A650 for JR1 and balanced the coverage of all USCα members. The canonical correspondence analysis indicated that soil NH4+-N and pH were the main environmental factors affecting the MOB community of Chinese forest soils. The RA14 of the USCα group prefers to live in soils with low pH, low temperature, low elevation, high precipitation, and rich in nitrogen. JR1's preferences for temperature and elevation were opposite to RA14. Our study suggests that combining the deep sequencing of 16S rRNA and pmoA genes to characterize MOB in forest soils is the best choice.
Collapse
Affiliation(s)
- Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China
| | - Xue Zhou
- College of agricultural science and engineering, Hohai University, Nanjing, 210098, Jiangsu Province, China
| | - Limei Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
16
|
Farhan Ul Haque M, Xu HJ, Murrell JC, Crombie A. Facultative methanotrophs - diversity, genetics, molecular ecology and biotechnological potential: a mini-review. MICROBIOLOGY (READING, ENGLAND) 2020; 166:894-908. [PMID: 33085587 PMCID: PMC7660913 DOI: 10.1099/mic.0.000977] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Methane-oxidizing bacteria (methanotrophs) play a vital role in reducing atmospheric methane emissions, and hence mitigating their potent global warming effects. A significant proportion of the methane released is thermogenic natural gas, containing associated short-chain alkanes as well as methane. It was one hundred years following the description of methanotrophs that facultative strains were discovered and validly described. These can use some multi-carbon compounds in addition to methane, often small organic acids, such as acetate, or ethanol, although Methylocella strains can also use short-chain alkanes, presumably deriving a competitive advantage from this metabolic versatility. Here, we review the diversity and molecular ecology of facultative methanotrophs. We discuss the genetic potential of the known strains and outline the consequent benefits they may obtain. Finally, we review the biotechnological promise of these fascinating microbes.
Collapse
Affiliation(s)
| | - Hui-Juan Xu
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andrew Crombie
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
17
|
Jawaharraj K, Shrestha N, Chilkoor G, Vemuri B, Gadhamshetty V. Electricity from methanol using indigenous methylotrophs from hydraulic fracturing flowback water. Bioelectrochemistry 2020; 135:107549. [DOI: 10.1016/j.bioelechem.2020.107549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 11/26/2022]
|
18
|
He D, Zhang L, Dumont MG, He JS, Ren L, Chu H. The response of methanotrophs to additions of either ammonium, nitrate or urea in alpine swamp meadow soil as revealed by stable isotope probing. FEMS Microbiol Ecol 2020; 95:5498294. [PMID: 31125053 DOI: 10.1093/femsec/fiz077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
Different forms of nitrogen (N) are deposited on the Qinghai-Tibetan plateau (QTP), while their differential effects on soil methanotrophs and their activity remain elusive. We constructed microcosms amended with different N fertilizers (ammonia, nitrate and urea) using the soils sampled from a swamp meadow on the QTP. The responses of active methanotrophs to different forms of nitrogen were determined by stable isotope probing with 5% 13C-methane. At the early stage of incubation, all N fertilizers, especially urea, suppressed methane oxidation compared with the control. The methane oxidation rate increased during the incubation, suggesting an adaptation and stimulation of some methanotrophs to elevated methane. At the onset of the incubation, the type II methanotrophs Methylocystis were most abundant, but decreased during the incubation and were replaced by the type Ia methanotrophs Methylomonas. Ammonia and urea had similar effects on the methanotroph communities, both characterized by an elevation in the proportion of Methylobacter and more diverse methanotroph communities. Nitrate had less effect on the methanotroph community. Our results uncovered the active methanotrophs responding to different nitrogen forms, and suggested that urea-N might have large effects on methanotroph diversity and activity in swamp meadow soils on the QTP.
Collapse
Affiliation(s)
- Dan He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China.,Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Liyan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Marc G Dumont
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jin-Sheng He
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.,State Key Laboratory of Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Lijuan Ren
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China
| |
Collapse
|
19
|
Kong Y, Kuzyakov Y, Ruan Y, Zhang J, Wang T, Wang M, Guo S, Shen Q, Ling N. DNA Stable-Isotope Probing Delineates Carbon Flows from Rice Residues into Soil Microbial Communities Depending on Fertilization. Appl Environ Microbiol 2020; 86:e02151-19. [PMID: 31953339 PMCID: PMC7082572 DOI: 10.1128/aem.02151-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/12/2020] [Indexed: 11/20/2022] Open
Abstract
Decomposition of crop residues in soil is mediated by microorganisms whose activities vary with fertilization. The complexity of active microorganisms and their interactions utilizing residues is impossible to disentangle without isotope applications. Thus, 13C-labeled rice residues were employed, and DNA stable-isotope probing (DNA-SIP) combined with high-throughput sequencing was applied to identify microbes active in assimilating residue carbon (C). Manure addition strongly modified microbial community compositions involved in the C flow from rice residues. Relative abundances of the bacterial genus Lysobacter and fungal genus Syncephalis were increased, but abundances of the bacterial genus Streptomyces and fungal genus Trichoderma were decreased in soils receiving mineral fertilizers plus manure (NPKM) compared to levels in soils receiving only mineral fertilizers (NPK). Microbes involved in the flow of residue C formed a more complex network in NPKM than in NPK soils because of the necessity to decompose more diverse organic compounds. The fungal species (Jugulospora rotula and Emericellopsis terricola in NPK and NPKM soils, respectively) were identified as keystone species in the network and may significantly contribute to residue C decomposition. Most of the fungal genera in NPKM soils, especially Chaetomium, Staphylotrichum, Penicillium, and Aspergillus, responded faster to residue addition than those in NPK soils. This is connected with the changes in the composition of the rice residue during degradation and with fungal adaptation (abundance and activity) to continuous manure input. Our findings provide fundamental information about the roles of key microbial groups in residue decomposition and offer important cues on manipulating the soil microbiome for residue utilization and C sequestration in soil.IMPORTANCE Identifying and understanding the active microbial communities and interactions involved in plant residue utilization are key questions to elucidate the transformation of soil organic matter (SOM) in agricultural ecosystems. Microbial community composition responds strongly to management, but little is known about specific microbial groups involved in plant residue utilization and, consequently, microbial functions under different methods of fertilization. We combined DNA stable-isotope (13C) probing and high-throughput sequencing to identify active fungal and bacterial groups degrading residues in soils after 3 years of mineral fertilization with and without manure. Manuring changed the active microbial composition and complexified microbial interactions involved in residue C flow. Most fungal genera, especially Chaetomium, Staphylotrichum, Penicillium, and Aspergillus, responded to residue addition faster in soils that historically had received manure. We generated a valuable library of microorganisms involved in plant residue utilization for future targeted research to exploit specific functions of microbial groups in organic matter utilization and C sequestration.
Collapse
Affiliation(s)
- Yali Kong
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany
- Agro-Technology Institute, RUDN University, Moscow, Russia
| | - Yang Ruan
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Junwei Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Tingting Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
He R, Su Y, Leewis MC, Chu YX, Wang J, Ma RC, Wu D, Zhan LT, Herriott IC, Leigh MB. Low O 2 level enhances CH 4-derived carbon flow into microbial communities in landfill cover soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113676. [PMID: 31818614 DOI: 10.1016/j.envpol.2019.113676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/07/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
CH4 oxidation in landfill cover soils plays a significant role in mitigating CH4 release to the atmosphere. Oxygen availability and the presence of co-contaminants are potentially important factors affecting CH4 oxidation rate and the fate of CH4-derived carbon. In this study, microbial populations that oxidize CH4 and the subsequent conversion of CH4-derived carbon into CO2, soil organic C and biomass C were investigated in landfill cover soils at two O2 tensions, i.e., O2 concentrations of 21% ("sufficient") and 2.5% ("limited") with and without toluene. CH4-derived carbon was primarily converted into CO2 and soil organic C in the landfill cover soils, accounting for more than 80% of CH4 oxidized. Under the O2-sufficient condition, 52.9%-59.6% of CH4-derived carbon was converted into CO2 (CECO2-C), and 29.1%-39.3% was converted into soil organic C (CEorganic-C). A higher CEorganic-C and lower CECO2-C occurred in the O2-limited environment, relative to the O2-sufficient condition. With the addition of toluene, the carbon conversion efficiency of CH4 into biomass C and organic C increased slightly, especially in the O2-limited environment. A more complex microbial network was involved in CH4 assimilation in the O2-limited environment than under the O2-sufficient condition. DNA-based stable isotope probing of the community with 13CH4 revealed that Methylocaldum and Methylosarcina had a higher relative growth rate than other type I methanotrophs in the landfill cover soils, especially at the low O2 concentration, while Methylosinus was more abundant in the treatment with both the high O2 concentration and toluene. These results indicated that O2-limited environments could prompt more CH4-derived carbon to be deposited into soils in the form of biomass C and organic C, thereby enhancing the contribution of CH4-derived carbon to soil community biomass and functionality of landfill cover soils (i.e. reduction of CO2 emission).
Collapse
Affiliation(s)
- Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Yao Su
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China; Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mary-Cathrine Leewis
- Institute of Arctic Biology, University of Alaska Fairbanks, Alaska, 99775, USA; US Geological Survey, Menlo Park, CA, 94025, USA
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ruo-Chan Ma
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Donglei Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liang-Tong Zhan
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | | | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, Alaska, 99775, USA
| |
Collapse
|
21
|
Farhan Ul Haque M, Crombie AT, Murrell JC. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps. MICROBIOME 2019; 7:134. [PMID: 31585550 PMCID: PMC6778391 DOI: 10.1186/s40168-019-0741-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Natural gas seeps contribute to global climate change by releasing substantial amounts of the potent greenhouse gas methane and other climate-active gases including ethane and propane to the atmosphere. However, methanotrophs, bacteria capable of utilising methane as the sole source of carbon and energy, play a significant role in reducing the emissions of methane from many environments. Methylocella-like facultative methanotrophs are a unique group of bacteria that grow on other components of natural gas (i.e. ethane and propane) in addition to methane but a little is known about the distribution and activity of Methylocella in the environment. The purposes of this study were to identify bacteria involved in cycling methane emitted from natural gas seeps and, most importantly, to investigate if Methylocella-like facultative methanotrophs were active utilisers of natural gas at seep sites. RESULTS The community structure of active methane-consuming bacteria in samples from natural gas seeps from Andreiasu Everlasting Fire (Romania) and Pipe Creek (NY, USA) was investigated by DNA stable isotope probing (DNA-SIP) using 13C-labelled methane. The 16S rRNA gene sequences retrieved from DNA-SIP experiments revealed that of various active methanotrophs, Methylocella was the only active methanotrophic genus common to both natural gas seep environments. We also isolated novel facultative methanotrophs, Methylocella sp. PC1 and PC4 from Pipe Creek, able to utilise methane, ethane, propane and various non-gaseous multicarbon compounds. Functional and comparative genomics of these new isolates revealed genomic and physiological divergence from already known methanotrophs, in particular, the absence of mxa genes encoding calcium-containing methanol dehydrogenase. Methylocella sp. PC1 and PC4 had only the soluble methane monooxygenase (sMMO) and lanthanide-dependent methanol dehydrogenase (XoxF). These are the first Alphaproteobacteria methanotrophs discovered with this reduced functional redundancy for C-1 metabolism (i.e. sMMO only and XoxF only). CONCLUSIONS Here, we provide evidence, using culture-dependent and culture-independent methods, that Methylocella are abundant and active at terrestrial natural gas seeps, suggesting that they play a significant role in the biogeochemical cycling of these gaseous alkanes. This might also be significant for the design of biotechnological strategies for controlling natural gas emissions, which are increasing globally due to unconventional exploitation of oil and gas.
Collapse
Affiliation(s)
- Muhammad Farhan Ul Haque
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| | - Andrew T Crombie
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
22
|
Houghton KM, Carere CR, Stott MB, McDonald IR. Thermophilic methanotrophs: in hot pursuit. FEMS Microbiol Ecol 2019; 95:5543213. [DOI: 10.1093/femsec/fiz125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
ABSTRACTMethane is a potent greenhouse gas responsible for 20–30% of global climate change effects. The global methane budget is ∼500–600 Tg y−1, with the majority of methane produced via microbial processes, including anthropogenic-mediated sources such as ruminant animals, rice fields, sewage treatment facilities and landfills. It is estimated that microbially mediated methane oxidation (methanotrophy) consumes >50% of global methane flux each year. Methanotrophy research has primarily focused on mesophilic methanotrophic representatives and cooler environments such as freshwater, wetlands or marine habitats from which they are sourced. Nevertheless, geothermal emissions of geological methane, produced from magma and lithosphere degassing micro-seepages, mud volcanoes and other geological sources, contribute an estimated 33–75 Tg y−1 to the global methane budget. The aim of this review is to summarise current literature pertaining to the activity of thermophilic and thermotolerant methanotrophs, both proteobacterial (Methylocaldum, Methylococcus, Methylothermus) and verrucomicrobial (Methylacidiphilum). We assert, on the basis of recently reported molecular and geochemical data, that geothermal ecosystems host hitherto unidentified species capable of methane oxidation at higher temperatures.
Collapse
Affiliation(s)
- Karen M Houghton
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Science, University of Waikato, Knighton Rd, Hamilton 3240, New Zealand
| | - Carlo R Carere
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- Department of Chemical and Process Engineering, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| | - Matthew B Stott
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| | - Ian R McDonald
- School of Science, University of Waikato, Knighton Rd, Hamilton 3240, New Zealand
| |
Collapse
|
23
|
Abstract
Stable isotope probing (SIP) provides researchers a culture-independent method to retrieve nucleic acids from active microbial populations performing a specific metabolic activity in complex ecosystems. In recent years, the use of the SIP method in microbial ecology studies has been accelerated. This is partly due to the advances in sequencing and bioinformatics tools, which enable fast and reliable analysis of DNA and RNA from the SIP experiments. One of these sequencing tools, metagenomics, has contributed significantly to the body of knowledge by providing data not only on taxonomy but also on the key functional genes in specific metabolic pathways and their relative abundances. In this chapter, we provide a general background on the application of the SIP-metagenomics approach in microbial ecology and a workflow for the analysis of metagenomic datasets using the most up-to-date bioinformatics tools.
Collapse
Affiliation(s)
- Eileen Kröber
- Microbial Biogeochemistry, RA Landscape Functioning, ZALF Leibniz Centre for Landscape Research, Müncheberg, Germany
| | - Özge Eyice
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
24
|
Xia F, Wang JG, Zhu T, Zou B, Rhee SK, Quan ZX. Ubiquity and Diversity of Complete Ammonia Oxidizers (Comammox). Appl Environ Microbiol 2018; 84:e01390-18. [PMID: 30315079 PMCID: PMC6275355 DOI: 10.1128/aem.01390-18] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022] Open
Abstract
The discovery of complete ammonia oxidizers (comammox) refutes the century-old paradigm that nitrification requires the activity of two types of microbes. Determining the distribution and abundance of comammox in various environments is important for revealing the ecology of microbial nitrification within the global nitrogen cycle. In this study, the ubiquity and diversity of comammox were analyzed for samples from different types of environments, including soil, sediment, sludge, and water. The results of a two-step PCR using highly degenerate primers (THDP-PCR) and quantitative real-time PCR (qPCR) supported the relatively high abundance of comammox in nearly half of all samples tested, sometimes even outnumbering canonical ammonia-oxidizing bacteria (AOB). In addition, a relatively high proportion of comammox in tap and coastal water samples was confirmed via analysis of metagenomic data sets in public databases. The diversity of comammox was estimated by comammox-specific partial nested PCR amplification of the ammonia monooxygenase subunit A (amoA) gene, and phylogenetic analysis of comammox AmoA clearly showed a split of clade A into clades A.1 and A.2, with the proportions of clades A.1, A.2, and B differing among the various environmental samples. Moreover, compared to the amoA genes of AOB and ammonia-oxidizing archaea (AOA), the comammox amoA gene exhibited higher diversity indices. The ubiquitous distribution and high diversity of comammox indicate that they are likely overlooked contributors to nitrification in various ecosystems.IMPORTANCE The discovery of complete ammonia oxidizers (comammox), which oxidize ammonia to nitrate via nitrite, refutes the century-old paradigm that nitrification requires the activity of two types of microbes and redefines a key process in the biogeochemical nitrogen cycle. Understanding the functional relationships between comammox and other nitrifiers is important for ecological studies on the nitrogen cycle. Therefore, the diversity and contribution of comammox should be considered during ecological analyses of nitrifying microorganisms. In this study, a ubiquitous and highly diverse distribution of comammox was observed in various environmental samples, similar to the distribution of canonical ammonia-oxidizing bacteria. The proportion of comammox was relatively high in coastal water and sediment samples, whereas it was nearly undetectable in open-ocean samples. The ubiquitous distribution and high diversity of comammox indicate that these microorganisms might be important contributors to nitrification.
Collapse
Affiliation(s)
- Fei Xia
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jian-Gong Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Zhu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Zou
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhe-Xue Quan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Genomic characterization of methylotrophy of Oharaeibacter diazotrophicus strain SM30T. J Biosci Bioeng 2018; 126:667-675. [DOI: 10.1016/j.jbiosc.2018.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022]
|
26
|
Meng H, Zhou Z, Wu R, Wang Y, Gu JD. Diazotrophic microbial community and abundance in acidic subtropical natural and re-vegetated forest soils revealed by high-throughput sequencing of nifH gene. Appl Microbiol Biotechnol 2018; 103:995-1005. [PMID: 30474727 DOI: 10.1007/s00253-018-9466-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/17/2018] [Accepted: 10/09/2018] [Indexed: 01/09/2023]
Abstract
Biological nitrogen fixation (BNF) is an important natural biochemical process converting the inert dinitrogen gas (N2) in the atmosphere to ammonia (NH3) in the N cycle. In this study, the nifH gene was chosen to detect the diazotrophic microorganisms with high-throughput sequencing from five acidic forest soils, including three natural forests and two re-vegetated forests. Soil samples were taken in two seasons (summer and winter) at two depth layers (surface and lower depths). A dataset of 179,600 reads obtained from 20 samples were analyzed to provide the microbial community structure, diversity, abundance, and relationship with physiochemical parameters. Both archaea and bacteria were detected in these samples and diazotrophic bacteria were the dominant members contributing to the biological dinitrogen fixation in the acidic forest soils. Cyanobacteria, Firmicutes, Proteobacteria, Spirocheates, and Verrucomicrobia were observed, especially the Proteobacteria as the most abundant phylum. The core genera were Bradyrhizobium and Methylobacterium from α-Proteobacteia, and Desulfovibrio from δ-Proteobacteia in the phylum of Proteobacteia of these samples. The diversity indices and the gene abundances of all samples were higher in the surface layer than the lower layer. Diversity was apparently higher in re-vegetated forests than the natural forests. Significant positive correlation to the organic matter and nitrogen-related parameters was observed, but there was no significant seasonal variation on the community structure and diversity in these samples between the summer and winter. The application of high-throughput sequencing method provides a better understanding and more comprehensive information of diazotrophs in acidic forest soils than conventional and PCR-based ones.
Collapse
Affiliation(s)
- Han Meng
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Zhichao Zhou
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Ruonan Wu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Yongfeng Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, People's Republic of China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
27
|
Han D, Dedysh SN, Liesack W. Unusual Genomic Traits Suggest Methylocystis bryophila S285 to Be Well Adapted for Life in Peatlands. Genome Biol Evol 2018; 10:623-628. [PMID: 29390143 PMCID: PMC5808792 DOI: 10.1093/gbe/evy025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 01/21/2023] Open
Abstract
The genus Methylocystis belongs to the class Alphaproteobacteria, the family Methylocystaceae, and encompasses aerobic methanotrophic bacteria with the serine pathway of carbon assimilation. All Methylocystis species are able to fix dinitrogen and several members of this genus are also capable of using acetate or ethanol in the absence of methane, which explains their wide distribution in various habitats. One additional trait that enables their survival in the environment is possession of two methane-oxidizing isozymes, the conventional particulate methane monooxygenase (pMMO) with low-affinity to substrate (pMMO1) and the high-affinity enzyme (pMMO2). Here, we report the finished genome sequence of Methylocystis bryophila S285, a pMMO2-possessing methanotroph from a Sphagnum-dominated wetland, and compare it to the genome of Methylocystis sp. strain SC2, which is the first methanotroph with confirmed high-affinity methane oxidation potential. The complete genome of Methylocystis bryophila S285 consists of a 4.53 Mb chromosome and one plasmid, 175 kb in size. The genome encodes two types of particulate MMO (pMMO1 and pMMO2), soluble MMO and, in addition, contains a pxmABC-like gene cluster similar to that present in some gammaproteobacterial methanotrophs. The full set of genes related to the serine pathway, the tricarboxylic acid cycle as well as the ethylmalonyl-CoA pathway is present. In contrast to most described methanotrophs including Methylocystis sp. strain SC2, two different types of nitrogenases, that is, molybdenum–iron and vanadium–iron types, are encoded in the genome of strain S285. This unique combination of genome-based traits makes Methylocystis bryophila well adapted to the fluctuation of carbon and nitrogen sources in wetlands.
Collapse
Affiliation(s)
- Dongfei Han
- Research Group Methanotrophic Bacteria and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Werner Liesack
- Research Group Methanotrophic Bacteria and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Corresponding author: E-mail: .
| |
Collapse
|
28
|
Zhou F, Cui J, Zhou J, Yang J, Li Y, Leng Q, Wang Y, He D, Song L, Gao M, Zeng J, Chan A. Increasing atmospheric deposition nitrogen and ammonium reduced microbial activity and changed the bacterial community composition of red paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:776-784. [PMID: 29602116 DOI: 10.1016/j.scitotenv.2018.03.217] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha-1 when its ratio of NH4+/NO3--N (RN) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha-1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and RN (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha-1) had similar reduced effects on microbial activity. Furthermore, both ADN flux and RN significantly reduced soil bacterial alpha diversity (p<0.05) and altered bacterial community structure (e.g., the relative abundances of genera Dyella and Rhodoblastus affiliated to Proteobacteria increased). Redundancy analysis demonstrated that ADN flux and RN were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil.
Collapse
Affiliation(s)
- Fengwu Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Centre of Atmospheric Environment Research, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jian Cui
- Centre of Atmospheric Environment Research, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Jing Zhou
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - John Yang
- Department of Agriculture and Environmental Science, Lincoln University of Missouri, Jefferson City, MO 65201, USA
| | - Yong Li
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qiangmei Leng
- Centre of Atmospheric Environment Research, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yangqing Wang
- Centre of Atmospheric Environment Research, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Dongyi He
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Centre of Atmospheric Environment Research, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Liyan Song
- Centre of Atmospheric Environment Research, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Min Gao
- Centre of Atmospheric Environment Research, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jun Zeng
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Andy Chan
- Division of Environment, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih 43500, Malaysia
| |
Collapse
|
29
|
Hakobyan A, Liesack W, Glatter T. Crude-MS Strategy for in-Depth Proteome Analysis of the Methane-Oxidizing Methylocystis sp. strain SC2. J Proteome Res 2018; 17:3086-3103. [DOI: 10.1021/acs.jproteome.8b00216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Werner Liesack
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
| | | |
Collapse
|
30
|
Farhan Ul Haque M, Crombie AT, Ensminger SA, Baciu C, Murrell JC. Facultative methanotrophs are abundant at terrestrial natural gas seeps. MICROBIOME 2018; 6:118. [PMID: 29954460 PMCID: PMC6022506 DOI: 10.1186/s40168-018-0500-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/13/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Natural gas contains methane and the gaseous alkanes ethane, propane and butane, which collectively influence atmospheric chemistry and cause global warming. Methane-oxidising bacteria, methanotrophs, are crucial in mitigating emissions of methane as they oxidise most of the methane produced in soils and the subsurface before it reaches the atmosphere. Methanotrophs are usually obligate, i.e. grow only on methane and not on longer chain alkanes. Bacteria that grow on the other gaseous alkanes in natural gas such as propane have also been characterised, but they do not grow on methane. Recently, it was shown that the facultative methanotroph Methylocella silvestris grew on ethane and propane, other components of natural gas, in addition to methane. Therefore, we hypothesised that Methylocella may be prevalent at natural gas seeps and might play a major role in consuming all components of this potent greenhouse gas mixture before it is released to the atmosphere. RESULTS Environments known to be exposed to biogenic methane emissions or thermogenic natural gas seeps were surveyed for methanotrophs. 16S rRNA gene amplicon sequencing revealed that Methylocella were the most abundant methanotrophs in natural gas seep environments. New Methylocella-specific molecular tools targeting mmoX (encoding the soluble methane monooxygenase) by PCR and Illumina amplicon sequencing were designed and used to investigate various sites. Functional gene-based assays confirmed that Methylocella were present in all of the natural gas seep sites tested here. This might be due to its ability to use methane and other short chain alkane components of natural gas. We also observed the abundance of Methylocella in other environments exposed to biogenic methane, suggesting that Methylocella has been overlooked in the past as previous ecological studies of methanotrophs often used pmoA (encoding the alpha subunit of particulate methane monooxygenase) as a marker gene. CONCLUSION New biomolecular tools designed in this study have expanded our ability to detect, and our knowledge of the environmental distribution of Methylocella, a unique facultative methanotroph. This study has revealed that Methylocella are particularly abundant at natural gas seeps and may play a significant role in biogeochemical cycling of gaseous hydrocarbons.
Collapse
Affiliation(s)
- Muhammad Farhan Ul Haque
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew T Crombie
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | - Calin Baciu
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
31
|
Tláskal V, Zrustová P, Vrška T, Baldrian P. Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol Ecol 2018; 93:4604780. [PMID: 29126113 DOI: 10.1093/femsec/fix157] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023] Open
Abstract
Dead wood represents an important pool of organic matter in forests and is one of the sources of soil formation. It has been shown to harbour diverse communities of bacteria, but their roles in this habitat are still poorly understood. Here, we describe the bacterial communities in the dead wood of Abies alba, Picea abies and Fagus sylvatica in a temperate natural forest in Central Europe. An analysis of environmental factors showed that decomposing time along with pH and water content was the strongest drivers of community composition. Bacterial biomass positively correlated with N content and increased with decomposition along with the concurrent decrease in the fungal/bacterial biomass ratio. Rhizobiales and Acidobacteriales were abundant bacterial orders throughout the whole decay process, but many bacterial taxa were specific either for young (<15 years) or old dead wood. During early decomposition, bacterial genera able to fix N2 and to use simple C1 compounds (e.g. Yersinia and Methylomonas) were frequent, while wood in advanced decay was rich in taxa typical of forest soils (e.g. Bradyrhizobium and Rhodoplanes). Although the bacterial contribution to dead wood turnover remains unclear, the community composition appears to reflect the changing conditions of the substrate and suggests broad metabolic capacities of its members.
Collapse
Affiliation(s)
- Vojtech Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídenská 1083, 14220 Praha 4, Czech Republic
| | - Petra Zrustová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídenská 1083, 14220 Praha 4, Czech Republic
| | - Tomáš Vrška
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Lidická 25/27, Brno 60200, Czech Republic
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídenská 1083, 14220 Praha 4, Czech Republic
| |
Collapse
|
32
|
Zainun MY, Simarani K. Metagenomics profiling for assessing microbial diversity in both active and closed landfills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:269-278. [PMID: 29117585 DOI: 10.1016/j.scitotenv.2017.10.266] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
The municipal landfill is an example of human-made environment that harbours some complex diversity of microorganism communities. To evaluate this complexity, the structures of bacterial communities in active (operational) and closed (non-operational) landfills in Malaysia were analysed with culture independent metagenomics approaches. Several points of soil samples were collected from 0 to 20cm depth and were subjected to physicochemical test, such as temperature, pH, and moisture content. In addition, the heavy metal contamination was determined by using ICPMS. The bacterial enumeration was examined on nutrient agar (NA) plates aerobically at 30°C. The soil DNA was extracted, purified and amplified prior to sequence the 16S rRNA gene for statistical and bioinformatics analyses. As a result, the average of bacteria for the closed landfill was higher compared to that for the active landfill at 9.16×107 and 1.50×107, respectively. The higher bacterial OTUs sequenced was also recorded in closed landfills compared to active landfill i.e. 6625 and 4552 OTUs respectively. The data from both landfills showed that the predominant phyla belonged to Proteobacteria (55.7%). On average, Bacteroidetes was the second highest phylum followed by Firmicutes for the active landfill. While the phyla for communities in closed landfill were dominated by phyla from Acidobacteria and Actinobacteria. There was also Euryarchaeota (Archaea) which became a minor phylum that was detected in active landfill, but almost completely absent in closed landfill. As such, the composition of bacterial communities suggests some variances between the bacterial communities found in active and closed landfills. Thus, this study offers new clues pertaining to bacterial diversity pattern between the varied types of landfills studied.
Collapse
Affiliation(s)
- Mohamad Yusof Zainun
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khanom Simarani
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre of Research in Waste Management, Institute of Research Management & Monitoring, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
33
|
Jiang B, Jin N, Xing Y, Su Y, Zhang D. Unraveling uncultivable pesticide degraders via stable isotope probing (SIP). Crit Rev Biotechnol 2018; 38:1025-1048. [DOI: 10.1080/07388551.2018.1427697] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Naifu Jin
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
- School of Environment, Tsinghua University, Beijing, PR China
| |
Collapse
|
34
|
Kanissery RG, Welsh A, Gomez A, Connor L, Sims GK. Identification of metolachlor mineralizing bacteria in aerobic and anaerobic soils using DNA-stable isotope probing. Biodegradation 2017; 29:117-128. [PMID: 29285669 DOI: 10.1007/s10532-017-9817-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
Abstract
The influence of soil environmental factors such as aeration on the ecology of microorganisms involved in the mineralization and degradation of the popular soil-applied pre-emergent herbicide, metolachlor is unknown. To address this knowledge gap, we utilized DNA-based stable isotope probing (SIP) where soil microcosms were incubated aerobically or anaerobically and received herbicide treatments with unlabeled metolachlor or 13C-metolachlor. Mineralization of metolachlor was confirmed as noted from the evolution of 14CO2 from 14C-metolachlor-treated microcosms and clearly demonstrated the efficient utilization of the herbicide as a carbon source. Terminal restriction fragment length polymorphisms (T-RFLP) bacterial community profiling performed on soil DNA extracts indicated that fragment 307 bp from aerobic soil and 212 bp from anaerobic soil were detected only in the herbicide-treated (both unlabeled metolachlor and 13C-metolachlor) soils when compared to the untreated control microcosms. T-RFLP profiles from the ultracentrifugation fractions illustrated that these individual fragments experienced an increase in relative abundance at a higher buoyant density (BD) in the labeled fractions when compared to the unlabeled herbicide amendment fractions. The shift in BD of individual T-RFLP fragments in the density-resolved fractions suggested the incorporation of 13C from labeled herbicide into the bacterial DNA and enabled the identification of organisms responsible for metolachlor uptake from the soil. Subsequent cloning and 16S rRNA gene sequencing of the 13C-enriched fractions implicated the role of organisms closely related to Bacillus spp. in aerobic mineralization and members of Acidobacteria phylum in anaerobic mineralization of metolachlor in soil.
Collapse
Affiliation(s)
- Ramdas G Kanissery
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA. .,Southwest Florida Research & Education Center, University of Florida, 2685 SR 29 North, Immokalee, FL, 34142, USA.
| | - Allana Welsh
- Agricen Sciences, 801 Highway 377S, Pilot Point, TX, 76258, USA
| | - Andres Gomez
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA.,University of Minnesota, 495D AnSc/VetMed, 1988 Fitch Avenue, St. Paul, MN, 55108, USA
| | - Lynn Connor
- USDA Global Change and Photosynthesis Unit, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Gerald K Sims
- Department of Entomology, Plant Pathology and Weed Sciences, New Mexico State University, Skeen Hall, Room N141, 945 College Avenue, Las Cruces, NM, 88003, USA
| |
Collapse
|
35
|
Morawe M, Hoeke H, Wissenbach DK, Lentendu G, Wubet T, Kröber E, Kolb S. Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil. Front Microbiol 2017; 8:1361. [PMID: 28790984 PMCID: PMC5523551 DOI: 10.3389/fmicb.2017.01361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/05/2017] [Indexed: 02/03/2023] Open
Abstract
Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [13C1]-methanol was supplemented) and combined substrate conditions ([12C1]-methanol and alternative multi-carbon [13Cu]-substrates were simultaneously supplemented) to (i) identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany), (ii) assess their substrate range in the soil environment, and (iii) evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose), and a lignin-derived aromatic compound (vanillic acid). An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae (Bacteria) that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae-affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria, we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to exclude or prove methylotrophy of these fungi.
Collapse
Affiliation(s)
- Mareen Morawe
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany
| | - Henrike Hoeke
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental ResearchLeipzig, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of LeipzigLeipzig, Germany
| | - Dirk K Wissenbach
- Institute of Forensic Medicine, University Hospital JenaJena, Germany
| | - Guillaume Lentendu
- Department of Ecology, University of KaiserslauternKaiserslautern, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, Helmholtz Centre for Environmental ResearchLeipzig, Germany
| | - Eileen Kröber
- Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| | - Steffen Kolb
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany.,Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| |
Collapse
|
36
|
Yu Z, Chistoserdova L. Communal metabolism of methane and the rare Earth element switch. J Bacteriol 2017; 199:e00328-17. [PMID: 28630125 PMCID: PMC5648859 DOI: 10.1128/jb.00328-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metabolism of methane is an important part of biogeochemical cycling of carbon. Methane is also a major contributor to climate change. A specialized group of microbes that consume methane, the methanotrophs, represent a natural filter preventing an even faster accumulation of methane in the atmosphere. Methanotrophy can proceed via both anaerobic and aerobic modes. The anaerobic methanotrophs, represented by both archaea and bacteria, all appear to be engaged in syntrophic interdependencies with other species, to overcome the energetic barriers of methane metabolism in the absence of oxygen. In contrast, aerobic methanotrophy can be carried out by pure cultures of bacteria. Nevertheless, a concept of communal function in aerobic methane oxidation has been gaining momentum, based on data from natural cooccurrence of specific functional guilds, and based on results from laboratory manipulations. The mechanistic details are still sparse on how and why the methanotrophs share their carbon with other species, and whether and what they gain in return. In this minireview we highlight recent studies that led to this new concept of community function in aerobic methane oxidation. We first describe the stable isotope probing experiments employing heavy carbon-labeled methane, tracing methane carbon consumption. We then follow up with analysis of data from microcosm community dynamics. We further discuss the role of a synthetic community approach in unraveling the principles of carbon flow and species cooperation in methane consumption. Finally, we touch on the role of lanthanides, which are rare Earth elements, previously thought to be biologically inert, in bacterial metabolism of methane.
Collapse
Affiliation(s)
- Zheng Yu
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195
| | - Ludmila Chistoserdova
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195
| |
Collapse
|
37
|
Wang JG, Xia F, Zeleke J, Zou B, Rhee SK, Quan ZX. An improved protocol with a highly degenerate primer targeting copper-containing membrane-bound monooxygenase genes for community analysis of methane- and ammonia-oxidizing bacteria. FEMS Microbiol Ecol 2016; 93:fiw244. [PMID: 27940646 DOI: 10.1093/femsec/fiw244] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/18/2016] [Accepted: 12/03/2016] [Indexed: 11/14/2022] Open
Abstract
The copper-containing membrane-bound monooxygenase (CuMMO) family comprises key enzymes for methane or ammonia oxidation: particulate methane monooxygenase (PMMO) and ammonia monooxygenase (AMO). To comprehensively amplify CuMMO genes, a two-step PCR strategy was developed using a newly designed tagged highly degenerate primer (THDP; degeneracy = 4608). Designated THDP-PCR, the technique consists of primary CuMMO gene-specific PCR followed by secondary PCR with a tag as a single primer. No significant bias in THDP-PCR amplification was found using various combinations of template mixtures of pmoA and amoA genes, which encode key subunits of the pMMO and AMO enzymes, respectively, from different microbes. THDP-PCR was successfully applied to nine different environmental samples and revealed relatively high contents of complete ammonia oxidation (Comammox)-related bacteria and a novel group of the CuMMO family. The levels of freshwater cluster methanotrophs obtained by THDP-PCR were much higher than those obtained by conventional methanotroph-specific PCR. The THDP-PCR strategy developed in this study can be extended to other functional gene-based community analyses, particularly when the target gene sequences lack regions of high consensus for primer design.
Collapse
Affiliation(s)
- Jian-Gong Wang
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Fei Xia
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jemaneh Zeleke
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Zou
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, Korea
| | - Zhe-Xue Quan
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Rissanen AJ, Ojala A, Dernjatin M, Jaakkola J, Tiirola M. Methylophaga and Hyphomicrobium can be used as target genera in monitoring saline water methanol-utilizing denitrification. ACTA ACUST UNITED AC 2016; 43:1647-1657. [DOI: 10.1007/s10295-016-1839-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/23/2016] [Indexed: 11/28/2022]
Abstract
Abstract
Which bacterial taxonomic groups can be used in monitoring saline water methanol-utilizing denitrification and whether nitrate is transformed into N2 in the process are unclear. Therefore, methylotrophic bacterial communities of two efficiently functioning (nitrate/nitrite reduction was 63–96 %) tropical and cool seawater reactors at a public aquarium were investigated with clone library analysis and 454 pyrosequencing of the 16S rRNA genes. Transformation of nitrate into N2 was confirmed using 15N labeling in incubation of carrier material from the tropical reactor. Combining the data with previous study results, Methylophaga and Hyphomicrobium were determined to be suitable target genera for monitoring the function of saline water methanol-fed denitrification systems. However, monitoring was not possible at the single species level. Interestingly, potential nitrate-reducing methylotrophs within Filomicrobium and closely related Fil I and Fil II clusters were detected in the reactors suggesting that they also contributed to methylotrophic denitrification in the saline environment.
Collapse
Affiliation(s)
- Antti J Rissanen
- grid.6986.1 0000000093279856 Department of Chemistry and Bioengineering Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland
- grid.9681.6 0000000110137965 Department of Biological and Environmental Science University of Jyväskylä P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Anne Ojala
- grid.7737.4 0000000404102071 Department of Environmental Sciences University of Helsinki P.O. Box 65 FI-00014 Helsinki Finland
- grid.7737.4 0000000404102071 Department of Forest Sciences University of Helsinki P.O. Box 27 FI-00014 Helsinki Finland
| | | | - Jouni Jaakkola
- SEA LIFE, Helsinki Tivolitie 10 FI-00510 Helsinki Finland
| | - Marja Tiirola
- grid.9681.6 0000000110137965 Department of Biological and Environmental Science University of Jyväskylä P.O. Box 35 FI-40014 Jyväskylä Finland
| |
Collapse
|
39
|
Butterfield CN, Li Z, Andeer PF, Spaulding S, Thomas BC, Singh A, Hettich RL, Suttle KB, Probst AJ, Tringe SG, Northen T, Pan C, Banfield JF. Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone. PeerJ 2016; 4:e2687. [PMID: 27843720 PMCID: PMC5103831 DOI: 10.7717/peerj.2687] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/14/2016] [Indexed: 01/03/2023] Open
Abstract
Annually, half of all plant-derived carbon is added to soil where it is microbially respired to CO2. However, understanding of the microbiology of this process is limited because most culture-independent methods cannot link metabolic processes to the organisms present, and this link to causative agents is necessary to predict the results of perturbations on the system. We collected soil samples at two sub-root depths (10–20 cm and 30–40 cm) before and after a rainfall-driven nutrient perturbation event in a Northern California grassland that experiences a Mediterranean climate. From ten samples, we reconstructed 198 metagenome-assembled genomes that represent all major phylotypes. We also quantified 6,835 proteins and 175 metabolites and showed that after the rain event the concentrations of many sugars and amino acids approach zero at the base of the soil profile. Unexpectedly, the genomes of novel members of the Gemmatimonadetes and Candidate Phylum Rokubacteria phyla encode pathways for methylotrophy. We infer that these abundant organisms contribute substantially to carbon turnover in the soil, given that methylotrophy proteins were among the most abundant proteins in the proteome. Previously undescribed Bathyarchaeota and Thermoplasmatales archaea are abundant in deeper soil horizons and are inferred to contribute appreciably to aromatic amino acid degradation. Many of the other bacteria appear to breakdown other components of plant biomass, as evidenced by the prevalence of various sugar and amino acid transporters and corresponding hydrolyzing machinery in the proteome. Overall, our work provides organism-resolved insight into the spatial distribution of bacteria and archaea whose activities combine to degrade plant-derived organics, limiting the transport of methanol, amino acids and sugars into underlying weathered rock. The new insights into the soil carbon cycle during an intense period of carbon turnover, including biogeochemical roles to previously little known soil microbes, were made possible via the combination of metagenomics, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Cristina N Butterfield
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | - Zhou Li
- Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge , TN , Unites States
| | - Peter F Andeer
- Lawrence Berkeley National Laboratory , Berkeley , CA , United States
| | - Susan Spaulding
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | - Brian C Thomas
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | - Andrea Singh
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge , TN , Unites States
| | - Kenwyn B Suttle
- Department of Ecology and Evolutionary Biology, University of California , Santa Cruz , CA , United States
| | - Alexander J Probst
- Department of Earth and Planetary Sciences, University of California , Berkeley , CA , United States
| | | | - Trent Northen
- Lawrence Berkeley National Laboratory , Berkeley , CA , United States
| | - Chongle Pan
- Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge , TN , Unites States
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, United States; Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
40
|
Cho KC, Fuller ME, Hatzinger PB, Chu KH. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1098-1106. [PMID: 27387802 DOI: 10.1016/j.scitotenv.2016.06.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a nitroamine explosive, is commonly detected in groundwater at military testing and training sites. The objective of this study was to characterize the microbial community capable of using nitrogen derived from the RDX or RDX intermediates during in situ bioremediation. Active groundwater microorganisms capable of utilizing nitro-, ring- or fully-labeled (15)N-RDX as a nitrogen source were identified using stable isotope probing (SIP) in groundwater microcosms prepared from two wells in an aquifer previously amended with cheese whey to promote RDX biodegradation. A total of fifteen 16S rRNA gene sequences, clustered in Clostridia, β-Proteobacteria, and Spirochaetes, were derived from the (15)N-labeled DNA fractions, suggesting the presence of metabolically active bacteria capable of using RDX and/or RDX intermediates as a nitrogen source. None of the derived sequences matched RDX-degrading cultures commonly studied in the laboratory, but some of these genera have previously been linked to RDX degradation in site groundwater via (13)C-SIP. When additional cheese whey was added to the groundwater samples, 28 sequences grouped into Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria were identified. The data suggest that numerous bacteria are capable of incorporating N from ring- and nitro-groups in RDX during anaerobic bioremediation, and that some genera may be involved in both C and N incorporation from RDX.
Collapse
Affiliation(s)
- Kun-Ching Cho
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | | | | | - Kung-Hui Chu
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
41
|
Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments. Int J Mol Sci 2016; 17:E1205. [PMID: 27483244 PMCID: PMC5000603 DOI: 10.3390/ijms17081205] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/20/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022] Open
Abstract
Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the "secondary compound hypothesis" and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes.
Collapse
Affiliation(s)
- Lucie Musilova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Jakub Ridl
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| | - Marketa Polivkova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Tomas Macek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| |
Collapse
|
42
|
Deng Y, Cui X, Dumont MG. Identification of active aerobic methanotrophs in plateau wetlands using DNA stable isotope probing. FEMS Microbiol Lett 2016; 363:fnw168. [PMID: 27369086 DOI: 10.1093/femsle/fnw168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 01/21/2023] Open
Abstract
Sedge-dominated wetlands on the Qinghai-Tibetan Plateau are methane emission centers. Methanotrophs at these sites play a role in reducing methane emissions, but relatively little is known about the composition of active methanotrophs in these wetlands. Here, we used DNA stable isotope probing to identify the key active aerobic methanotrophs in three sedge-dominated wetlands on the plateau. We found that Methylocystis species were active in two peatlands, Hongyuan and Dangxiong. Methylobacter species were found to be active only in Dangxiong peat. Hongyuan peat had the highest methane oxidation rate, and cross-feeding of carbon from methanotrophs to methylotrophic Hyphomicrobium species was observed. Owing to a low methane oxidation rate during the incubation, the labeling of methanotrophs in Maduo wetland samples was not detected. Our results indicate that there are large differences in the activity of methanotrophs in the wetlands of this region.
Collapse
Affiliation(s)
- Yongcui Deng
- School of Geography Science Nanjing Normal University, Nanjing 210023, China Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Xiaoyong Cui
- College of Life Sciences University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Marc G Dumont
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| |
Collapse
|
43
|
Genomic features of uncultured methylotrophs in activated-sludge microbiomes grown under different enrichment procedures. Sci Rep 2016; 6:26650. [PMID: 27221669 PMCID: PMC4879533 DOI: 10.1038/srep26650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 05/06/2016] [Indexed: 11/21/2022] Open
Abstract
Methylotrophs are organisms that are able to grow on C1 compounds as carbon and energy sources. They play important roles in the global carbon cycle and contribute largely to industrial wastewater treatment. To identify and characterize methylotrophs that are involved in methanol degradation in wastewater-treatment plants, methanol-fed activated-sludge (MAS) microbiomes were subjected to phylogenetic and metagenomic analyses, and genomic features of dominant methylotrophs in MAS were compared with those preferentially grown in laboratory enrichment cultures (LECs). These analyses consistently indicate that Hyphomicrobium plays important roles in MAS, while Methylophilus occurred predominantly in LECs. Comparative analyses of bin genomes reconstructed for the Hyphomicrobium and Methylophilus methylotrophs suggest that they have different C1-assimilation pathways. In addition, function-module analyses suggest that their cell-surface structures are different. Comparison of the MAS bin genome with genomes of closely related Hyphomicrobium isolates suggests that genes unnecessary in MAS (for instance, genes for anaerobic respiration) have been lost from the genome of the dominant methylotroph. We suggest that genomic features and coded functions in the MAS bin genome provide us with insights into how this methylotroph adapts to activated-sludge ecosystems.
Collapse
|
44
|
Wu C, Zhou Y, Sun Q, Fu L, Xi H, Yu Y, Yu R. Appling hydrolysis acidification-anoxic-oxic process in the treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2016; 309:185-191. [PMID: 26894292 DOI: 10.1016/j.jhazmat.2016.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/29/2015] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Abstract
A hydrolysis acidification (HA)-anoxic-oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500 m(3) h(-1)) was operated with the same parameters. The results showed that the BOD5/COD of the wastewater increased from 0.30 to 0.43 by HA. The effluent COD was 54.4 mg L(-1) for bench scale reactor and 60.9 mg L(-1) for PCWWTP when the influent COD was about 480 mg L(-1) on optimized conditions. The organics measured by gas chromatography-mass spectrometry (GC-MS) reduced obviously and the total concentration of the 5 organics (1,3-dioxolane, 2-pentanone, ethylbenzene, 2-chloromethyl-1,3-dioxolane and indene) detected in the effluent was only 0.24 mg L(-1). There was no obvious toxicity of the effluent. However, low acute toxicity of the effluent could be detected by the luminescent bacteria assay, indicating the advanced treatment is needed. The clone library profiling analysis showed that the dominant bacteria in the system were Acidobacteria, Proteobacteria and Bacteriodetes. HA-A/O process is suitable for the petrochemical wastewater treatment.
Collapse
Affiliation(s)
- Changyong Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China.
| | - Qingliang Sun
- School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liya Fu
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongbo Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Ruozhen Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
45
|
Wei XM, He R, Chen M, Su Y, Ma RC. Conversion of methane-derived carbon and microbial community in enrichment cultures in response to O2 availability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7517-7528. [PMID: 26728286 DOI: 10.1007/s11356-015-6017-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Methanotrophs not only play an important role in mitigating CH4 emissions from the environment, but also provide a large quantity of CH4-derived carbon to their habitats. In this study, the distribution of CH4-derived carbon and microbial community was investigated in a consortium enriched at three O2 tensions, i.e., the initial O2 concentrations of 2.5 % (LO-2), 5 % (LO-1), and 21 % (v/v) (HO). The results showed that compared with the O2-limiting environments (2.5 and 5 %), more CH4-derived carbon was converted into CO2 and biomass under the O2 sufficient condition (21 %). Besides biomass and CO2, a high conversion efficiency of CH4-derived carbon to dissolved organic carbon was detected in the cultures, especially in LO-2. Quantitative PCR and Miseq sequencing both showed that the abundance of methanotroph increased with the increasing O2 concentrations. Type II methanotroph Methylocystis dominated in the enrichment cultures, accounting for 54.8, 48.1, and 36.9 % of the total bacterial 16S rRNA gene sequencing reads in HO, LO-1, and LO-2, respectively. Methylotrophs, mainly including Methylophilus, Methylovorus, Hyphomicrobium, and Methylobacillus, were also abundant in the cultures. Compared with the O2 sufficient condition (21 %), higher microbial biodiversity (i.e., higher Simpson and lower Shannon indexes) was detected in LO-2 enriched at the initial O2 concentration of 2.5 %. These findings indicated that compared with the O2 sufficient condition, more CH4-derived carbon was exuded into the environments and promoted the growth of non-methanotrophic microbes in O2-limiting environments.
Collapse
Affiliation(s)
- Xiao-Meng Wei
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ruo He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Min Chen
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yao Su
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ruo-Chan Ma
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
46
|
Sun L, Chen J, Wei X, Guo W, Lin M, Yu X. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process. Can J Microbiol 2016; 62:411-21. [PMID: 27021584 DOI: 10.1139/cjm-2015-0194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.
Collapse
Affiliation(s)
- Lianpeng Sun
- a School of Environmental Science and Engineering, Sun Yat-sen University, No. 135 Xingang Road West, Guangzhou, Guangdong 510275, People's Republic of China.,b Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, Guangdong 510275, People's Republic of China
| | - Jianfan Chen
- a School of Environmental Science and Engineering, Sun Yat-sen University, No. 135 Xingang Road West, Guangzhou, Guangdong 510275, People's Republic of China
| | - Xiange Wei
- a School of Environmental Science and Engineering, Sun Yat-sen University, No. 135 Xingang Road West, Guangzhou, Guangdong 510275, People's Republic of China
| | - Wuzhen Guo
- c Foshan Water Group, No. 16 Tongji Road West, Foshan, Guangdong 528000, People's Republic of China
| | - Meishan Lin
- c Foshan Water Group, No. 16 Tongji Road West, Foshan, Guangdong 528000, People's Republic of China
| | - Xiaoyu Yu
- a School of Environmental Science and Engineering, Sun Yat-sen University, No. 135 Xingang Road West, Guangzhou, Guangdong 510275, People's Republic of China
| |
Collapse
|
47
|
Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M. Complete nitrification by Nitrospira bacteria. Nature 2015; 528:504-9. [PMID: 26610024 PMCID: PMC5152751 DOI: 10.1038/nature16461] [Citation(s) in RCA: 1170] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/19/2015] [Indexed: 11/11/2022]
Abstract
Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation, which are concomitantly activated during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira-contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities.
Collapse
Affiliation(s)
- Holger Daims
- Department of Microbiology and Ecosystem Science, Division of
Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna,
Austria
| | - Elena V. Lebedeva
- Winogradsky Institute of Microbiology, Research Center of
Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071
Moscow, Russia
| | - Petra Pjevac
- Department of Microbiology and Ecosystem Science, Division of
Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna,
Austria
| | - Ping Han
- Department of Microbiology and Ecosystem Science, Division of
Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna,
Austria
| | - Craig Herbold
- Department of Microbiology and Ecosystem Science, Division of
Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna,
Austria
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and
Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research - UFZ, Department of
Proteomics, Permoserstr. 15, 04318 Leipzig, Germany
| | - Marton Palatinszky
- Department of Microbiology and Ecosystem Science, Division of
Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna,
Austria
| | - Julia Vierheilig
- Department of Microbiology and Ecosystem Science, Division of
Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna,
Austria
| | - Alexandr Bulaev
- Winogradsky Institute of Microbiology, Research Center of
Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071
Moscow, Russia
| | - Rasmus H. Kirkegaard
- Center for Microbial Communities, Department of Chemistry and
Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research - UFZ, Department of
Proteomics, Permoserstr. 15, 04318 Leipzig, Germany
- Helmholtz-Centre for Environmental Research - UFZ, Department of
Metabolomics, Permoserstr. 15, 04318 Leipzig, Germany
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of
Computational Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna,
Austria
| | - Bernd Bendinger
- DVGW-Forschungsstelle TUHH, Hamburg University of Technology, 21073
Hamburg, Germany
| | - Per H. Nielsen
- Center for Microbial Communities, Department of Chemistry and
Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Division of
Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna,
Austria
| |
Collapse
|
48
|
Cho KC, Lee DG, Fuller ME, Hatzinger PB, Condee CW, Chu KH. Application of (13)C and (15)N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions. JOURNAL OF HAZARDOUS MATERIALS 2015; 297:42-51. [PMID: 25935409 DOI: 10.1016/j.jhazmat.2015.04.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/26/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
This study identified microorganisms capable of using the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or its metabolites as carbon and/or nitrogen sources under different electron-accepting conditions using (13)C and (15)N stable isotope probing (SIP). Mesocosms were constructed using groundwater and aquifer solids from an RDX-contaminated aquifer. The mesocosms received succinate as a carbon source and one of four electron acceptors (nitrate, manganese(IV), iron(III), or sulfate) or no additional electron acceptor (to stimulate methanogenesis). When RDX degradation was observed, subsamples from each mesocosm were removed and amended with (13)C3- or ring-(15)N3-, nitro-(15)N3-, or fully-labeled (15)N6-RDX, followed by additional incubation and isolation of labeled nucleic acids. A total of fifteen 16S rRNA sequences, clustering in α- and γ-Proteobacteria, Clostridia, and Actinobacteria, were detected in the (13)C-DNA fractions. A total of twenty seven sequences were derived from different (15)N-DNA fractions, with the sequences clustered in α- and γ-Proteobacteria, and Clostridia. Interestingly, sequences identified as Desulfosporosinus sp. (in the Clostridia) were not only observed to incorporate the labeled (13)C or (15)N from labeled RDX, but also were detected under each of the different electron-accepting conditions. The data suggest that (13)C- and (15)N-SIP can be used to characterize microbial communities involved in RDX biodegradation, and that the dominant pathway of RDX biodegradation may differ under different electron-accepting conditions.
Collapse
Affiliation(s)
- Kun-Ching Cho
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Do Gyun Lee
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | | | | | | | - Kung-Hui Chu
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
49
|
Eyice Ö, Schäfer H. Culture-dependent and culture-independent methods reveal diverse methylotrophic communities in terrestrial environments. Arch Microbiol 2015; 198:17-26. [DOI: 10.1007/s00203-015-1160-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/27/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
|
50
|
Dedysh SN, Didriksen A, Danilova OV, Belova SE, Liebner S, Svenning MM. Methylocapsa palsarum sp. nov., a methanotroph isolated from a subArctic discontinuous permafrost ecosystem. Int J Syst Evol Microbiol 2015; 65:3618-3624. [DOI: 10.1099/ijsem.0.000465] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic methanotrophic bacterium was isolated from a collapsed palsa soil in northern Norway and designated strain NE2T. Cells of this strain were Gram-stain-negative, non-motile, non-pigmented, slightly curved thick rods that multiplied by normal cell division. The cells possessed a particulate methane monooxygenase enzyme (pMMO) and utilized methane and methanol. Strain NE2T grew in a wide pH range of 4.1–8.0 (optimum pH 5.2–6.5) at temperatures between 6 and 32 °C (optimum 18–25 °C), and was capable of atmospheric nitrogen fixation under reduced oxygen tension. The major cellular fatty acids were C18 : 1ω7c, C16 : 0 and C16 : 1ω7c, and the DNA G+C content was 61.7 mol%. The isolate belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and was most closely related to the facultative methanotroph Methylocapsa aurea KYGT (98.3 % 16S rRNA gene sequence similarity and 84 % PmoA sequence identity). However, strain NE2T differed from Methylocapsa aurea KYGT by cell morphology, the absence of pigmentation, inability to grow on acetate, broader pH growth range, and higher tolerance to NaCl. Therefore, strain NE2T represents a novel species of the genus Methylocapsa, for which we propose the name Methylocapsa palsarum sp. nov. The type strain is NE2T ( = LMG 28715T = VKM B-2945T).
Collapse
Affiliation(s)
- Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Alena Didriksen
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, 9037 Tromsø, Norway
| | - Olga V. Danilova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Svetlana E. Belova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section 4.5 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Mette M. Svenning
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, 9037 Tromsø, Norway
| |
Collapse
|