1
|
Gomes AS, Castro BB, Nunes B. First characterization of the ecotoxicity of paraffin particles: assessment of biochemical effects in the marine polychaete Hediste diversicolor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45742-45754. [PMID: 32803587 DOI: 10.1007/s11356-020-10390-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Plastics are a widespread environmental problem, particularly in the form of small particles or fragments (microplastics). With the purpose of gradually replacing the use of plastics in cosmetic products (primary microplastics), the use of paraffin in microspheres has recently been applied. Paraffin waxes are composed by organic molecules usually derived from petroleum, thus assumed to be chemically and biologically inert, having a lower (eco)toxicity and residence time compared with plastic particles. However, the low ecotoxicity of paraffin waxes may be somewhat questionable, because some paraffin constituents can be absorbed and catabolized, thus exerting biological effects. The main objective of this study was to understand the potential toxic effects of paraffin microparticles on key physiological processes of the polychaete Hediste diversicolor. To attain this objective, this work assessed the acute and chronic effects of three densities (5, 20, and 80 mg L-1) of four size ranges of paraffin particles (from 100 to 1200 μm) on this epibenthic organism. Although paraffin wax can be generically considered innocuous, the present study was able to demonstrate a significant inhibition in the activity of acetylcholinesterase in acutely exposed organisms and an increase in the activity of glutathione peroxidase, catalase, and glutathione S-transferase under some specific scenarios.
Collapse
Affiliation(s)
- Ana Sofia Gomes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno B Castro
- Centro de Biologia Molecular e Ambiental (CBMA), Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Nunes B, Simões MI, Navarro JC, Castro BB. First ecotoxicological characterization of paraffin microparticles: a biomarker approach in a marine suspension-feeder, Mytilus sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41946-41960. [PMID: 32705546 DOI: 10.1007/s11356-020-10055-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Microplastics are one of the main environmental pollutants in marine ecosystems, and their presence in seawater is a consequence of the widespread use of plastic materials in modern commodities. This wide usage of plastics includes the employment of microspheres in common personal care products, which end up being ultimately released into the aquatic compartment. Known ecotoxicological effects of microplastics favoured the search for technologically viable and environmentally safer alternatives, such as paraffin wax microparticles, whose ecotoxicological risks have not been entirely characterized. To address this gap, the present study exposed mussels (Mytilus sp.) for 96 h to three densities (5 mg/L, 20 mg/L and 80 mg/L) of four size ranges (100-300 μm, 300-500 μm, 400-850 μm, and 800-1200 μm) of paraffin wax particles. Toxicological endpoints were the activities of four enzymes involved in key cellular processes, including antioxidant defence (catalase (CAT), glutathione reductase (GRed) and glutathione peroxidase (GPx)) and phase II metabolism (glutathione S-transferases (GSTs)), as well as lipid content and fatty acid profiles of the digestive gland. Significant interactions between the presence/absence of food and paraffin particle density were found, as food sometimes worked as a confounding factor in the analysed biomarkers. Despite this uncertainty, some overall patterns emerged. In general, smaller paraffin wax particles (100-300 μm) caused little effects on the activity of the four enzymes tested, whereas larger particles (800-1200 μm) caused significant effects on almost all biomarkers. CAT activity was enhanced in animals exposed to larger paraffin particles, whilst GPx activity was depressed; GRed activity was not affected by the exposure to paraffin particles. The activity of GSTs was enhanced, but only in one tested condition. No effects were observed in terms of the total lipid content and fatty acids of exposed animals. Overall, data obtained in this work suggest that, at densities of paraffin wax particles comparable to the levels found in the environment for microplastic beads, no toxicity is expected to occur in the tested mussel species, by measuring the here-assessed toxicological endpoints.
Collapse
Affiliation(s)
- Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM - Laboratório Associado), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Maria Inês Simões
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Juan Carlos Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Bruno Branco Castro
- Centre of Molecular and Environmental Biology (CBMA) & Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| |
Collapse
|
3
|
Bachmann M, Hepp J, Zech M, Bulang M, Zeyner A. Application of natural wax markers in equine nutrition studies – current state, limitations and perspectives. Livest Sci 2018. [DOI: 10.1016/j.livsci.2017.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Khan AHA, Ayaz M, Arshad M, Yousaf S, Khan MA, Anees M, Sultan A, Nawaz I, Iqbal M. Biogeochemical Cycle, Occurrence and Biological Treatments of Polycyclic Aromatic Hydrocarbons (PAHs). IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE 2018. [DOI: 10.1007/s40995-017-0393-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
|
6
|
Reisberg EE, Hildebrandt U, Riederer M, Hentschel U. Distinct phyllosphere bacterial communities on Arabidopsis wax mutant leaves. PLoS One 2013; 8:e78613. [PMID: 24223831 PMCID: PMC3818481 DOI: 10.1371/journal.pone.0078613] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/13/2013] [Indexed: 02/01/2023] Open
Abstract
The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of four Arabidopsis thaliana eceriferum mutants (cer1, cer6, cer9, cer16) and their respective wild type (Landsberg erecta) were subjected to an outdoor growth period and analysed towards this purpose. The chemical distinctness of the mutant wax phenotypes was confirmed by gas chromatographic measurements. Next generation amplicon pyrosequencing of the bacterial communities showed distinct community patterns. This observation was supported by denaturing gradient gel electrophoresis experiments. Microbial community analyses revealed bacterial phylotypes that were ubiquitously present on all plant lines (termed “core” community) while others were positively or negatively affected by the wax mutant phenotype (termed “plant line-specific“ community). We conclude from this study that plant cuticular wax composition can affect the community composition of phyllosphere bacteria.
Collapse
Affiliation(s)
- Eva E. Reisberg
- University of Würzburg, Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, Würzburg, Germany
| | - Ulrich Hildebrandt
- University of Würzburg, Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, Würzburg, Germany
| | - Markus Riederer
- University of Würzburg, Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, Würzburg, Germany
| | - Ute Hentschel
- University of Würzburg, Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, Würzburg, Germany
- * E-mail:
| |
Collapse
|
7
|
JONES JG. THE ORIGIN AND DISTRIBUTION OF HYDROCARBONS IN AN UPLAND MOORLAND SOIL AND UNDERLYING SHALE. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1365-2389.1970.tb01182.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Li D, Sirakova T, Rogers L, Ettinger WF, Kolattukudy PE. Regulation of constitutively expressed and induced cutinase genes by different zinc finger transcription factors in Fusarium solani f. sp. pisi (Nectria haematococca). J Biol Chem 2002; 277:7905-12. [PMID: 11756444 DOI: 10.1074/jbc.m108799200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cutin monomers, generated by the low levels of constitutively expressed cutinase, induce high levels of cutinase that can help pathogenic fungi to penetrate into the host through the cuticle whose major structural polymer is cutin. We cloned three highly homologous cutinase genes, cut1, cut2, and cut3, from Fusarium solani f. pisi (Nectria haematococca). Amino acid sequence deduced from the nucleotide sequence of cut1 and cut2/3 matched with that of the peptides from cutinase 1 and cutinase 2, respectively, isolated from F. solani pisi grown on cutin as the sole carbon source. Induction of beta-glucuronidase gene fused to the promoters of the cutinases integrated into F. solani pisi genome indicates that cut2 is constitutively expressed and induced under starvation, whereas cut1 is highly induced by cutin monomers. A palindrome binding protein (PBP) previously cloned binds only to palindrome 1 of cut1 promoter but not palindrome 1 of cut2/3 which contains two base substitutions. PBP is thought to interfere with the binding of CTF1 alpha, the transcription factor involved in induction, to cut1 promoter and thus keep cut1 gene repressed until induced by cutin monomers. Because PBP cannot bind palindrome 1 of cut2, this gene is not repressed. CTF1 alpha does not transactivate cut2 promoter. A new Cys(6)Zn(2) motif-containing transcription factor, CTF1 beta, that binds palindrome 2 was cloned and sequenced. In yeast, CTF1 beta transactivates cut2 promoter but not cut1 promoter unless its palindrome 1 is mutated, unlike CTF1 alpha which transactivates cut1. Thus, CTF1 beta is involved in the constitutive expression of cut2 that causes production of low levels of cutin monomers that strongly induce cut1 using CTF1 alpha as the transcription factor.
Collapse
Affiliation(s)
- Daoxin Li
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
9
|
Liu ZM, Kolattukudy PE. Identification of a gene product induced by hard-surface contact of Colletotrichum gloeosporioides conidia as a ubiquitin-conjugating enzyme by yeast complementation. J Bacteriol 1998; 180:3592-7. [PMID: 9658002 PMCID: PMC107327 DOI: 10.1128/jb.180.14.3592-3597.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The germinating conidia of many phytopathogenic fungi on hosts must differentiate into an infection structure called the appressorium in order to penetrate their hosts. Chemical signals, such as the host's surface wax or fruit ripening hormone, ethylene, trigger germination and appressorium formation of the avocado pathogen Colletotrichum gloeosporioides only after the conidia are in contact with a hard surface. What role this contact plays is unknown. Here, we describe isolation of genes expressed during the early stage of hard-surface treatment by a differential-display method and report characterization of one of these cloned genes, chip1 (Colletotrichum hard-surface induced protein 1 gene), which encodes a ubiquitin-conjugating enzyme. RNA blots clearly showed that it is induced by hard-surface contact and that ethylene treatment enhanced this induction. The predicted open reading frame (ubc1Cg) would encode a 16.2-kDa ubiquitin-conjugating enzyme, which shows 82% identity to the Saccharomyces cerevisiae UBC4-UBC5 E2 enzyme, comprising a major part of total ubiquitin-conjugating activity in stressed yeast cells. UBC1Cg can complement the proteolysis deficiency of the S. cerevisiae ubc4 ubc5 mutant, indicating that ubiquitin-dependent protein degradation is involved in conidial germination and appressorial differentiation.
Collapse
Affiliation(s)
- Z M Liu
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
10
|
Napolitano R, Juárez MP. Entomopathogenous fungi degrade epicuticular hydrocarbons of Triatoma infestans. Arch Biochem Biophys 1997; 344:208-14. [PMID: 9244399 DOI: 10.1006/abbi.1997.0163] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Studies were undertaken to analyze the ability of entomopathogenous fungi to degrade insect hydrocarbons. Strains of Beauveria bassiana and Metarhizium anisopliae pathogenic to the blood-sucking bug Triatoma infestans were grown on hydrocarbon and non-hydrocarbon insect lipid extracts and on synthetic hydrocarbon-enriched media as the sole carbon source. Entomopathogenous fungi were shown to utilize hydrocarbons as the only carbon source for their growth. Insect-derived hydrocarbons served more efficiently as metabolic fuel rather than synthetic compounds of similar structure. [3H]n-Pentacosane, [11,12-3H]3,11-dimethylnonacosane, and [14C]n-hexadecane were catabolized into different amounts of polar lipids, free fatty acids, and acylglycerols. In experiments using the branched alkane, labeled hydrocarbons of different chain length than the precursor were also synthesized. Evidence of complete catabolism was obtained by a significant release of 14CO2 from [1-14C]n-hexadecane. 14CO2 production might be used as a simple method to compare hydrocarbon utilization by fungal strains. These data demonstrate that entomopathogenous fungi are able to transform a variety of hydrocarbon structures into different lipid products, part of which may be subsequently utilized for energy production and for the biosynthesis of cellular components. These data are the first evidence of hydrocarbon catabolism and synthesis in entomopathogenous fungi.
Collapse
Affiliation(s)
- R Napolitano
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata, Argentina
| | | |
Collapse
|
11
|
Guo W, González-Candelas L, Kolattukudy PE. Cloning of a novel constitutively expressed pectate lyase gene pelB from Fusarium solani f. sp. pisi (Nectria haematococca, mating type VI) and characterization of the gene product expressed in Pichia pastoris. J Bacteriol 1995; 177:7070-7. [PMID: 8522511 PMCID: PMC177583 DOI: 10.1128/jb.177.24.7070-7077.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Since plant-pathogenic fungi must penetrate through pectinaceous layers of the host cell wall, pectin-degrading enzymes are thought to be important for pathogenesis. Antibodies prepared against a pectin-inducible pectate lyase (pectate lyase A [PLA]) produced by a phytopathogenic fungus, Fusarium solani f. sp. pisi (Nectria haematococca, mating type VI), was previously found to protect the host from infection. The gene (pelA) and its cDNA were cloned and sequenced. Here we report the isolation of a new pectate lyase gene, pelB, from a genomic library of F. solani f. sp. pisi with the pelA cDNA as the probe. A 2.6-kb DNA fragment containing pelB and its flanking regions was sequenced. The coding region of pelB was amplified by reverse transcription-mediated PCR, using total RNA isolated from F. solani pisi culture grown in the presence of glucose as the sole carbon source. The predicted open reading frame of pelB would encode a 25.6-kDa protein of 244 amino acids which has 65% amino acid sequence identity with PLA from F. solani f. sp. pisi but no significant homology with other pectinolytic enzymes. The first 16 amino acid residues at the N terminus appeared to be a signal peptide. The pelB cDNA was expressed in Pichia pastoris, yielding a pectate lyase B (PLB) which was found to be a glycoprotein of 29 kDa. PLB was purified to homogeneity by using a two-step procedure involving ammonium sulfate precipitation followed by Superdex G75 gel filtration chromatography. Purified PLB showed optimal lyase activity at pH 10.0. A rapid drop in the viscosity of the substrate and Mono Q anion-exchange chromatography of the products generated by the lyase showed that PLB cleaved polygalacturonate chains in an endo fashion. Western blotting (immunoblotting) with antibodies raised against PLA showed that PLB and PLA are immunologically related to each other. The 5' flanking regions of both pelA and pelB were translationally fused to the beta-glucuronidase gene and introduced into F. solani f. sp. pisi, and beta-glucuronidase activities of the transformants were measured. Expression of the marker gene by the transformants showed that pelA expression is induced by pectin and repressed by glucose, whereas expression of pelB is constitutive and is not subject to glucose repression. Reverse transcription-mediated PCR showed that both pelA and pelB are expressed when F. solani f. sp. pisi infects pea epicotyl.
Collapse
Affiliation(s)
- W Guo
- Neurobiotechnology Center, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
12
|
Hwang CS, Kolattukudy PE. Isolation and characterization of genes expressed uniquely during appressorium formation by Colletotrichum gloeosporioides conidia induced by the host surface wax. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:282-94. [PMID: 7770033 DOI: 10.1007/bf00293196] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Appressorium formation in germinating Colletotrichum gloeosporioides is induced by the surface wax of the host, the avocado fruit. To elucidate the mechanism by which differentiation of appressorium formation is induced, the fungal genes specifically activated by this host signal were sought. From a cDNA library of the transcripts present in appressorium-forming conidia, the clones representing nongerminating conidia were removed by hybridization with cDNAs synthesized from the nongerminating conidia. From this subtracted library, clones that hybridized with cDNA for transcripts from appressorium-forming conidia and not with cDNA for transcripts from germinating conidia were selected. Three such clones were isolated and sequenced. The genes for these three transcripts were also cloned and sequenced. Northern blot analysis showed that transcripts that hybridized with these three clones were expressed in the conidium only during the process of appressorium formation induced by avocado surface wax, and that these transcripts were not detectable when appressorium formation was prevented even in the presence of avocado wax. Nucleotide sequences of the clones revealed that one clone, cap3, contained an open reading frame (ORF) that would code for a 26-amino acid, cysteine-rich peptide with significant homology to Neurospora crassa copper metallothionein. Another clone, cap5, contained an ORF that would code for a 27-amino acid cysteine-rich peptide with less homology to metallothioneins. Cu2+ and Cd2+ also induced the expression of these genes at lower levels. The histochemical analysis of transformants containing the cap5 promoter fused to the beta-glucuronidase (GUS) gene showed that the cap5 gene promoter caused GUS expression exclusively during appressorium formation and most of the gus activity was in the appressorium. The cap22 clone contained an ORF coding for a 227-amino acid polypeptide of 22 kDa, which did not show significant homology to any known proteins. Recombinant CAP22 protein was produced using a pET-19b expression system in Escherichia coli, purified, and used to prepare rabbit antibodies. Western blot analysis of proteins from the appressorium-forming conidia revealed a major cross-reacting protein at 43 kDa and a minor band at 68 kDa, indicating that the potential glycosylation sites found in the primary translation product were probably glycosylated. Results of immunogold localization showed that CAP22 protein was located on the wall of the appressorium.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- DNA, Complementary
- DNA, Fungal/chemistry
- DNA, Fungal/isolation & purification
- DNA, Fungal/metabolism
- Fungal Proteins/biosynthesis
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Fungi/genetics
- Fungi/pathogenicity
- Fungi/physiology
- Genes, Fungal
- Genomic Library
- Glucuronidase/biosynthesis
- Introns
- Metallothionein/genetics
- Mice
- Microscopy, Immunoelectron
- Molecular Sequence Data
- Neurospora crassa/genetics
- Open Reading Frames
- Promoter Regions, Genetic
- RNA, Fungal/isolation & purification
- Recombinant Proteins/biosynthesis
- Sequence Homology, Amino Acid
- TATA Box
- Vegetables/microbiology
- Waxes
- Xenopus
Collapse
Affiliation(s)
- C S Hwang
- Ohio State Neurobiotechnology Center, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
13
|
González-Candelas L, Kolattukudy PE. Isolation and analysis of a novel inducible pectate lyase gene from the phytopathogenic fungus Fusarium solani f. sp. pisi (Nectria haematococca, mating population VI). J Bacteriol 1992; 174:6343-9. [PMID: 1400187 PMCID: PMC207579 DOI: 10.1128/jb.174.20.6343-6349.1992] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A pectate lyase produced by Fusarium solani f. sp. pisi (Nectria haematococca, mating population VI) was previously shown to be essential for host infection (M. S. Crawford and P. E. Kolattukudy, Arch. Biochem. Biophys. 258:196-205, 1987). Pectate lyase genes have not been cloned from any phytopathogenic fungi. A gene, designated pelA, encoding an inducible pectate lyase was isolated from F. solani f. sp. pisi. A probe was synthesized by polymerase chain reaction with oligonucleotide primers based on the known amino acid sequences of two regions of the mature protein and first-strand cDNA as template. Both cDNA and the gene were isolated and sequenced. That the cloned cDNA represents the previously purified pectate lyase is shown by the complete match of the sequences of the N-terminal 38 amino acid residues and the 20 amino acid residues of an internal peptide with the sequence deduced from the cDNA sequence. This lyase sequence shows little homology to those of other pectolytic enzymes. The pelA gene shows standard characteristics with respect to promoter, intron, and polyadenylation sequences. As determined by primer extension and nuclease S1 analysis of the origin of the transcription, there are multiple initiation sites clustered in a region of 12 nucleotides located about 55 bp upstream of the start codon. Northern (RNA) blot analysis showed a single band of mRNA at about 1 kb. The pelA gene mRNA was detected only when F. solani f. sp. pisi was grown with pectin, and there was no detectable transcript accumulation when the fungus was grown with glucose as the sole carbon source. When both carbon sources were present, the pelA gene was transcribed only after glucose was completely depleted, indicating carbon catabolite repression. Moreover, the levels of transcription decreased rapidly prior to maximal enzyme accumulation, suggesting a mechanism of self catabolite repression.
Collapse
|
14
|
Bajar A, Podila GK, Kolattukudy PE. Identification of a fungal cutinase promoter that is inducible by a plant signal via a phosphorylated trans-acting factor. Proc Natl Acad Sci U S A 1991; 88:8208-12. [PMID: 1896470 PMCID: PMC52476 DOI: 10.1073/pnas.88.18.8208] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Plant cutin monomers trigger, and glucose suppresses, the expression of the cutinase gene of pathogenic fungi. To identify the cutinase promoter region responsible for induction by the unique plant components, a promoter analysis was done with transformants. Plasmids were constructed that contained (i) the 5' flanking region of the cutinase gene or its deletion mutants from Fusarium solani pisi fused with a chloramphenicol acetyltransferase (CAT) reporter gene and (ii) a constitutive promoter fused with a hygromycin phosphotransferase gene. Hygromycin-resistant transformants of F. solani pisi generated by electroporation were assayed for CAT activity inducible by cutin hydrolysate and for glucose repression of this induction. CAT was induced in a glucose-repressible manner when fused with a 360-base-pair (bp), or longer, segment of the 5' flanking region of the cutinase gene, and deletion of the next 135 bp abolished this induction. Gel retardation assays showed that a protein(s) in nuclear extract from the fungus bound to the 5' flanking region of cutinase gene, and this binding was also abolished when the same 135-bp segment was deleted. These results show that the -225 to -360 segment of the cutinase gene contains a cis-acting regulatory element that binds trans-acting factor(s) in the nuclei. Treatment of the nuclear extract with immobilized phosphatase abolished binding to the promoter, suggesting that binding required a phosphorylated form of the protein. With isolated nuclei, phosphorylation of a protein occurred only in the presence of both cutin monomer and the fungal protein factor. The presence of protein kinase inhibitor H7 during the preincubation of nuclei with the monomer and protein factor inhibited cutinase gene transcription. These results suggest that cutin monomer causes phosphorylation of a transcription factor that binds to the -225 to -360 segment of the cutinase gene and enhances transcription of this gene.
Collapse
Affiliation(s)
- A Bajar
- Ohio State Biotechnology Center, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
15
|
Growth of Acinetobacter sp. strain HO1-N on n-hexadecanol: physiological and ultrastructural characteristics. J Bacteriol 1985; 162:162-9. [PMID: 2984172 PMCID: PMC218969 DOI: 10.1128/jb.162.1.162-169.1985] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The growth of Acinetobacter sp. strain HO1-N on hexadecanol results in the formation of intracytoplasmic membranes and intracellular rectangular inclusions containing one of the end products of hexadecanol metabolism, hexadecyl palmitate. The intracellular inclusions were purified and characterized as "wax ester inclusions" consisting of 85.6% hexadecyl palmitate, 4.8% hexadecanol, and 9.6% phospholipid, with a phospholipid-to-protein ratio of 0.42 mumol of lipid phosphate per mg of inclusion protein. The cellular lipids consisted of 69.8% hexadecyl palmitate, 22.8% phospholipid, 1.9% triglyceride, 4.7% mono- and diglyceride, 0.1% free fatty acid, and 0.8% hexadecanol, as compared with 98% hexadecyl palmitate and 1.9% triglyceride, which comprised the extracellular lipids. Cell-associated hexadecanol represented 0.05% of the exogenously supplied hexadecanol, with hexadecyl palmitate accounting for 14.7% of the total cellular dry weight. Acinetobacter sp. strain HO1-N possesses a mechanism for the intracellular packaging of hexadecyl palmitate in wax ester inclusions, which differ in structure and chemical composition from "hydrocarbon inclusions" isolated from hexadecane-grown cells.
Collapse
|
16
|
Saturated and Unsaturated Wax Esters Produced byAcinetobactersp. HO1-N Grown on C16-C20n-Alkanes. J AM OIL CHEM SOC 1982. [DOI: 10.1007/bf02678715] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
|
18
|
Lin T, Kolattukudy P. Isolation and characterization of a cuticular polyester (cutin) hydrolyzing enzyme from phytopathogenic fungi. ACTA ACUST UNITED AC 1980. [DOI: 10.1016/0048-4059(80)90002-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Modrzakowski MC, Makula RA, Finnerty WR. Metabolism of the alkane analogue n-dioctyl ether by Acinetobacter species. J Bacteriol 1977; 131:92-7. [PMID: 873894 PMCID: PMC235395 DOI: 10.1128/jb.131.1.92-97.1977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Metabolism of n-dioctyl ether by Acinetobacter species HO1-N resulted in formation of 8-n-octoxy-1-octanoic acid and 2-n-octoxy-1-acetic acid. The 16-carbon ether acid was incorporated into the cellular lipids, whereas the 10-carbon ether acid accumulated in the growth medium. Qualitative and quantitative characteristics of the cellular phospholipids were similar to hexadecane-grown cells. The growth of Acinetobacter on dioctyl ether occurred at the expense of six-carbon atoms of dioctyl ether.
Collapse
|
20
|
Kolattukudy PE, Brown L. Fate of naturally occurring epoxy acids: a soluble epoxide hydrase, which catalyzes cis hydration, from Fusarium solani pisi. Arch Biochem Biophys 1975; 166:599-607. [PMID: 235241 DOI: 10.1016/0003-9861(75)90425-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Patrick MA, Dugan PR. Influence of hydrocarbons and derivatives on the polar lipid fatty acids of an Acinetobacter isolate. J Bacteriol 1974; 119:76-81. [PMID: 4407014 PMCID: PMC245575 DOI: 10.1128/jb.119.1.76-81.1974] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The effects of hydrocarbons and hydrocarbon derivatives as growth substrates on the polar lipid fractions of an Acinetobacter isolate were studied. Tetradecane, hexadecane, and octadecane resulted in the incorporation of substantial quantities of equivalent-chain-length fatty acids into cellular lipids. Cells cultured on nonane, the only odd-numbered alkane tested, contained both odd- and even-chain fatty acids. The n-alkane dotriacontane (32 carbons), 1-chlorohexadecane, 1-chlorododecane, 1-chlorodecane, and 1-phenyldodecane yielded significant amounts of odd-chain fatty acids. A subterminal oxidative pathway is believed to account for these results. Cells grown on long-chain alcohols exhibited fatty acid profiles nearly identical to those of cells grown on the corresponding alkanes.
Collapse
|
22
|
|
23
|
Purdy RE, Kolattukudy PE. Depolymerization of a hydroxy fatty acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani f. pisi: isolation and some properties of the enzyme. Arch Biochem Biophys 1973; 159:61-9. [PMID: 4784475 DOI: 10.1016/0003-9861(73)90429-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Kolattukudy PE, Walton TJ. The biochemistry of plant cuticular lipids. PROGRESS IN THE CHEMISTRY OF FATS AND OTHER LIPIDS 1973; 13:119-75. [PMID: 4602868 DOI: 10.1016/0079-6832(73)90006-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
|
26
|
|
27
|
|
28
|
|
29
|
Jones JG. The determination of microbial hydrocarbon metabolism in natural environments. ARCHIV FUR MIKROBIOLOGIE 1969; 67:397-407. [PMID: 5379991 DOI: 10.1007/bf00412585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|