1
|
Liang H, Wang Y, Liu F, Duan G, Long J, Jin Y, Chen S, Yang H. The Application of Rat Models in Staphylococcus aureus Infections. Pathogens 2024; 13:434. [PMID: 38921732 PMCID: PMC11206676 DOI: 10.3390/pathogens13060434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a major human pathogen and can cause a wide range of diseases, including pneumonia, osteomyelitis, skin and soft tissue infections (SSTIs), endocarditis, mastitis, bacteremia, and so forth. Rats have been widely used in the field of infectious diseases due to their unique advantages, and the models of S. aureus infections have played a pivotal role in elucidating their pathogenic mechanisms and the effectiveness of therapeutic agents. This review outlined the current application of rat models in S. aureus infections and future prospects for rat models in infectious diseases caused by S. aureus.
Collapse
Affiliation(s)
- Hongyue Liang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China;
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| |
Collapse
|
2
|
Ward SA, Habibi AA, Ashkenazi I, Arshi A, Meftah M, Schwarzkopf R. Innovations in the Isolation and Treatment of Biofilms in Periprosthetic Joint Infection: A Comprehensive Review of Current and Emerging Therapies in Bone and Joint Infection Management. Orthop Clin North Am 2024; 55:171-180. [PMID: 38403364 DOI: 10.1016/j.ocl.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Periprosthetic joint infections (PJIs) are a devastating complication of joint arthroplasty surgeries that are often complicated by biofilm formation. The development of biofilms makes PJI treatment challenging as they create a barrier against antibiotics and host immune responses. This review article provides an overview of the current understanding of biofilm formation, factors that contribute to their production, and the most common organisms involved in this process. This article focuses on the identification of biofilms, as well as current methodologies and emerging therapies in the management of biofilms in PJI.
Collapse
Affiliation(s)
- Spencer A Ward
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Akram A Habibi
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Itay Ashkenazi
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Armin Arshi
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Morteza Meftah
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Ran Schwarzkopf
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA.
| |
Collapse
|
3
|
Ul Haq I, Khan TA, Krukiewicz K. Etiology, pathology, and host-impaired immunity in medical implant-associated infections. J Infect Public Health 2024; 17:189-203. [PMID: 38113816 DOI: 10.1016/j.jiph.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/20/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Host impaired immunity and pathogens adhesion factors are the key elements in analyzing medical implant-associated infections (MIAI). The infection chances are further influenced by surface properties of implants. This review addresses the medical implant-associated pathogens and summarizes the etiology, pathology, and host-impaired immunity in MIAI. Several bacterial and fungal pathogens have been isolated from MIAI; together, they form cross-kingdom species biofilms and support each other in different ways. The adhesion factors initiate the pathogen's adherence on the implant's surface; however, implant-induced impaired immunity promotes the pathogen's colonization and biofilm formation. Depending on the implant's surface properties, immune cell functions get slow or get exaggerated and cause immunity-induced secondary complications resulting in resistant depression and immuno-incompetent fibro-inflammatory zone that compromise implant's performance. Such consequences lead to the unavoidable and straightforward conclusion for the downstream transformation of new ideas, such as the development of multifunctional implant coatings.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland; Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Taj Ali Khan
- Division of Infectious Diseases & Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States; Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan.
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland.
| |
Collapse
|
4
|
|
5
|
Berry KA, Verhoef MTA, Leonard AC, Cox G. Staphylococcus aureus adhesion to the host. Ann N Y Acad Sci 2022; 1515:75-96. [PMID: 35705378 DOI: 10.1111/nyas.14807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus is a pathobiont capable of colonizing and infecting most tissues within the human body, resulting in a multitude of different clinical outcomes. Adhesion of S. aureus to the host is crucial for both host colonization and the establishment of infections. Underlying the pathogen's success is a complex and diverse arsenal of adhesins. In this review, we discuss the different classes of adhesins, including a consideration of the various adhesion sites throughout the body and the clinical outcomes of each infection type. The development of therapeutics targeting the S. aureus host-pathogen interaction is a relatively understudied area. Due to the increasing global threat of antimicrobial resistance, it is crucial that innovative and alternative approaches are considered. Neutralizing virulence factors, through the development of antivirulence agents, could reduce bacterial pathogenicity and the ever-increasing burden of S. aureus infections. This review provides insight into potentially efficacious adhesion-associated targets for the development of novel decolonizing and antivirulence strategies.
Collapse
Affiliation(s)
- Kirsten A Berry
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mackenzie T A Verhoef
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Roux KM, Cobb LH, Seitz MA, Priddy LB. Innovations in osteomyelitis research: A review of animal models. Animal Model Exp Med 2021; 4:59-70. [PMID: 33738438 PMCID: PMC7954837 DOI: 10.1002/ame2.12149] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Infection of bone tissue, or osteomyelitis, has become a growing concern in modern healthcare due in no small part to a rise in antibiotic resistance among bacteria, notably Staphylococcus aureus. The current standard of care involves aggressive, prolonged antibiotic therapy combined with surgical debridement of infected tissues. While this treatment may be sufficient for resolving a portion of cases, recurrences of the infection and associated risks including toxicity with long-term antibiotic usage have been reported. Therefore, there exists a need to produce safer, more efficacious options of treatment for osteomyelitis. In order to test treatment regimens, animal models that closely mimic the clinical condition and allow for accurate evaluation of therapeutics are necessary. Establishing a model that replicates features of osteomyelitis in humans continues to be a challenge to scientists, as there are many variables involved, including choosing an appropriate species and method to establish infection. This review addresses the refinement of animal models of osteomyelitis to reflect the clinical disease and test prospective therapeutics. The aim of this review is to explore studies regarding the use of animals for osteomyelitis therapeutics research and encourage further development of such animal models for the translation of results from the animal experiment to human medicine.
Collapse
Affiliation(s)
- Kylie M. Roux
- College of Veterinary MedicineMississippi State UniversityMississippi StateMSUSA
| | - Leah H. Cobb
- Department of Agricultural and Biological EngineeringMississippi State UniversityMississippi StateMSUSA
| | - Marc A. Seitz
- College of Veterinary MedicineMississippi State UniversityMississippi StateMSUSA
| | - Lauren B. Priddy
- Department of Agricultural and Biological EngineeringMississippi State UniversityMississippi StateMSUSA
| |
Collapse
|
7
|
Li P, Gao Z, Tan Z, Xiao J, Wei L, Chen Y. New developments in anti-biofilm intervention towards effective management of orthopedic device related infections (ODRI's). BIOFOULING 2021; 37:1-35. [PMID: 33618584 DOI: 10.1080/08927014.2020.1869725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Orthopedic device related infections (ODRI's) represent a difficult to treat situation owing to their biofilm based nature. Biofilm infections once established are difficult to eradicate even with an aggressive treatment regimen due to their recalcitrance towards antibiotics and immune attack. The involvement of antibiotic resistant pathogens as the etiological agent further worsens the overall clinical picture, pressing on the need to look into alternative treatment strategies. The present review highlightes the microbiological challenges associated with treatment of ODRI's due to biofilm formation on the implant surface. Further, it details the newer anti-infective modalities that work either by preventing biofilm formation and/or through effective disruption of the mature biofilms formed on the medical implant. The study, therefore aims to provide a comprehensive insight into the newer anti-biofilm interventions (non-antibiotic approaches) and a better understanding of their mechanism of action essential for improved management of orthopedic implant infections.
Collapse
Affiliation(s)
- Ping Li
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Zhenwu Gao
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Zhenwei Tan
- Department of Orthopedics, Western Theater Air Force Hospital of PLA, Chengdu, China
| | - Jun Xiao
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Li Wei
- Nursing Department, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| | - Yirui Chen
- Department of Orthopedics, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Kandi V, Vadakedath S. Implant-Associated Infections: A Review of the Safety of Cardiac Implants. Cureus 2020; 12:e12267. [PMID: 33520485 PMCID: PMC7834584 DOI: 10.7759/cureus.12267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac implantations are among the most critical, and life-saving patient management procedures. Most cardiac implantations are performed to correct abnormalities in the conduction and the rhythm of the heart. Because the implants are intended for long-term use ranging from months to years, the failure of an implant is considered a major setback both in the patients as well as surgeons' perspectives. Implant failures can have multifactorial reasons, amongst which infectious causes need to be adequately addressed. This review attempts to evaluate the nature of implants, etiology, predisposing factors, infection control, and preventive strategies for cardiac implant-associated infections.
Collapse
Affiliation(s)
- Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | | |
Collapse
|
9
|
Liu J, Du C, Beaman HT, Monroe MBB. Characterization of Phenolic Acid Antimicrobial and Antioxidant Structure-Property Relationships. Pharmaceutics 2020; 12:E419. [PMID: 32370227 PMCID: PMC7285200 DOI: 10.3390/pharmaceutics12050419] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
Keywords: phenolic acids; antimicrobial; antioxidant.
Collapse
Affiliation(s)
| | | | | | - Mary Beth B. Monroe
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244-1200, USA; (J.L.); (C.D.); (H.T.B.)
| |
Collapse
|
10
|
Bargon R, Bruenke J, Carli A, Fabritius M, Goel R, Goswami K, Graf P, Groff H, Grupp T, Malchau H, Mohaddes M, Novaes de Santana C, Phillips KS, Rohde H, Rolfson O, Rondon A, Schaer T, Sculco P, Svensson K. General Assembly, Research Caveats: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019; 34:S245-S253.e1. [PMID: 30348560 DOI: 10.1016/j.arth.2018.09.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
11
|
Costerton WJ, Montanaro L, Balaban N, Arciola CR. Prospecting Gene Therapy of Implant Infections. Int J Artif Organs 2018; 32:689-95. [DOI: 10.1177/039139880903200919] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Infection still represents one of the most serious and ravaging complications associated with prosthetic devices. Staphylococci and enterococci, the bacteria most frequently responsible for orthopedic postsurgical and implant-related infections, express clinically relevant antibiotic resistance. The emergence of antibiotic-resistant bacteria and the slow progress in identifying new classes of antimicrobial agents have encouraged research into novel therapeutic strategies. The adoption of antisense or “antigene” molecules able to silence or knock-out bacterial genes responsible for their virulence is one possible innovative approach. Peptide nucleic acids (PNAs) are potential drug candidates for gene therapy in infections, by silencing a basic gene of bacterial growth or by tackling the antibiotic resistance or virulence factors of a pathogen. An efficacious contrast to bacterial genes should be set up in the first stages of infection in order to prevent colonization of periprosthesis tissues. Genes encoding bacterial factors for adhesion and colonization (biofilm and/or adhesins) would be the best candidates for gene therapy. But after initial enthusiasm for direct antisense knock-out or silencing of essential or virulence bacterial genes, difficulties have emerged; consequently, new approaches are now being attempted. One of these, interference with the regulating system of virulence factors, such as agr, appears particularly promising.
Collapse
Affiliation(s)
- William J. Costerton
- Center for Genomic Sciences Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania - USA
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna - Italy
- Experimental Pathology Department, University of Bologna, Bologna - Italy
| | - Naomi Balaban
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts - USA
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna - Italy
- Experimental Pathology Department, University of Bologna, Bologna - Italy
| |
Collapse
|
12
|
Darouiche RO. Antimicrobial Coating of Devices for Prevention of Infection: Principles and Protection. Int J Artif Organs 2018; 30:820-7. [DOI: 10.1177/039139880703000912] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Device-associated infections are responsible for about half of nosocomial infections and can cause major medical and economical sequelae. Despite adherence to basic infection control measures, which constitute the mainstay for preventing infection, infections associated with certain devices continue to exist at unacceptably high rates. Potentially-preventive, antimicrobial-utilizing strategies include systemic antibiotic prophylaxis and local administration of antimicrobial agents (antibiotics or antiseptics), which includes antimicrobial irrigation of the surgical field, placement of antimicrobial carriers, antiseptic cleansing of the skin, dipping of surgical implants in antimicrobial solutions, and inserting antimicrobial-coated implants. Since bacterial colonization of the indwelling device is a prelude to infection, prevention of device colonization may lead to a lower rate of clinical infection. Different approaches for antimicrobial coating of devices have been variably successful in preventing device-associated infections. Optimal characteristics of antimicrobial coating can help predict the likelihood and degree of clinical protection against infection. This review addresses the impact of device-related infection, antimicrobial-utilizing approaches for preventing infection, clinical protection afforded by different types of antimicrobial coating, characteristics that predict the ability of antimicrobial coating of devices to prevent clinical infection, and future directions of antimicrobial coating.
Collapse
Affiliation(s)
- R. O. Darouiche
- Center for Prostheses Infection and Infectious Disease Section, Michael E. Debakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas - USA
| |
Collapse
|
13
|
Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28:603-61. [PMID: 26016486 PMCID: PMC4451395 DOI: 10.1128/cmr.00134-14] [Citation(s) in RCA: 3053] [Impact Index Per Article: 305.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen that causes a wide range of clinical infections. It is a leading cause of bacteremia and infective endocarditis as well as osteoarticular, skin and soft tissue, pleuropulmonary, and device-related infections. This review comprehensively covers the epidemiology, pathophysiology, clinical manifestations, and management of each of these clinical entities. The past 2 decades have witnessed two clear shifts in the epidemiology of S. aureus infections: first, a growing number of health care-associated infections, particularly seen in infective endocarditis and prosthetic device infections, and second, an epidemic of community-associated skin and soft tissue infections driven by strains with certain virulence factors and resistance to β-lactam antibiotics. In reviewing the literature to support management strategies for these clinical manifestations, we also highlight the paucity of high-quality evidence for many key clinical questions.
Collapse
Affiliation(s)
- Steven Y C Tong
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Joshua S Davis
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Emily Eichenberger
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas L Holland
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Vance G Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
14
|
The use of bone cement for the localized, controlled release of the antibiotics vancomycin, linezolid, or fusidic acid: effect of additives on drug release rates and mechanical strength. Drug Deliv Transl Res 2015; 1:121-31. [PMID: 25788111 DOI: 10.1007/s13346-011-0015-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bone cement containing antibiotics is commonly used to treat orthopedic related infections. However, effective treatment (especially of resistant bacteria, methacillin-resistant Staphylococcus aureus (MRSA)) is compromised by very low levels of drug release so that typically less than 10% of loaded drug is released over a 6-week period. The objective of this study was to investigate the effect of incorporation of water soluble excipients (polyethylene glycol, sodium chloride, or dextran) into antibiotic-loaded cement on mechanical strength and drug release properties. Poly(methyl methylacrylate) cement implants containing various amounts of drug (vancomycin, linezolid or fusidic acid (all MRSA active)) and excipients were cast in the form of beads or films and characterized using differential scanning calorimetry. Mechanical strength as assessed by Young's modulus was determined by thermo-mechanical analysis. Drug release was measured by incubation in phosphate buffered saline with analysis by HPLC methods. The inclusion of sodium chloride up to 20% w/w caused only minor reductions in Young's modulus. Vancomycin and linezolid released very slowly from unmodified bone cement beads (less than 3% released by 4 weeks) whereas fusidic acid released more quickly (approximately 8% released by 4 weeks). The inclusion of sodium chloride or dextran in bone cement resulted in major increases in the release rate of vancomycin, linezolid and fusidic acid. These studies support the inclusion of sodium chloride and dextran in bone cement to increase the release rate of vancomycin, linezolid, or fusidic acid without compromising the mechanical strength of the composite material.
Collapse
|
15
|
Kumar S, Raj S, Kolanthai E, Sood AK, Sampath S, Chatterjee K. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3237-52. [PMID: 25584679 DOI: 10.1021/am5079732] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Toward designing the next generation of resorbable biomaterials for orthopedic applications, we studied poly(ε-caprolactone) (PCL) composites containing graphene. The role, if any, of the functionalization of graphene on mechanical properties, stem cell response, and biofilm formation was systematically evaluated. PCL composites of graphene oxide (GO), reduced GO (RGO), and amine-functionalized GO (AGO) were prepared at different filler contents (1%, 3%, and 5%). Although the addition of the nanoparticles to PCL markedly increased the storage modulus, this increase was largest for GO followed by AGO and RGO. In vitro cell studies revealed that the AGO and GO particles significantly increased human mesenchymal stem cell proliferation. AGO was most effective in augmenting stem cell osteogenesis leading to mineralization. Bacterial studies revealed that interaction with functionalized GO induced bacterial cell death because of membrane damage, which was further accentuated by amine groups in AGO. As a result, AGO composites were best at inhibiting biofilm formation. The synergistic effect of oxygen containing functional groups and amine groups on AGO imparts the optimal combination of improved modulus, favorable stem cell response, and biofilm inhibition in AGO-reinforced composites desired for orthopedic applications. This work elucidates the importance of chemical functionalization of graphene in polymer composites for biomedical applications.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Materials Engineering, ‡Department of Physics, and §Department of Inorganic and Physical Chemistry, Indian Institute of Science , Bangalore 560012 India
| | | | | | | | | | | |
Collapse
|
16
|
Post V, Wahl P, Uçkay I, Ochsner P, Zimmerli W, Corvec S, Loiez C, Richards RG, Moriarty TF. Phenotypic and genotypic characterisation of Staphylococcus aureus causing musculoskeletal infections. Int J Med Microbiol 2014; 304:565-76. [DOI: 10.1016/j.ijmm.2014.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/10/2014] [Accepted: 03/24/2014] [Indexed: 01/09/2023] Open
|
17
|
Reizner W, Hunter J, O’Malley N, Southgate R, Schwarz E, Kates S. A systematic review of animal models for Staphylococcus aureus osteomyelitis. Eur Cell Mater 2014; 27:196-212. [PMID: 24668594 PMCID: PMC4322679 DOI: 10.22203/ecm.v027a15] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Staphylococcus aureus (S. aureus) osteomyelitis is a significant complication for orthopaedic patients undergoing surgery, particularly with fracture fixation and arthroplasty. Given the difficulty in studying S. aureus infections in human subjects, animal models serve an integral role in exploring the pathogenesis of osteomyelitis, and aid in determining the efficacy of prophylactic and therapeutic treatments. Animal models should mimic the clinical scenarios seen in patients as closely as possible to permit the experimental results to be translated to the corresponding clinical care. To help understand existing animal models of S. aureus, we conducted a systematic search of PubMed and Ovid MEDLINE to identify in vivo animal experiments that have investigated the management of S. aureus osteomyelitis in the context of fractures and metallic implants. In this review, experimental studies are categorised by animal species and are further classified by the setting of the infection. Study methods are summarised and the relevant advantages and disadvantages of each species and model are discussed. While no ideal animal model exists, the understanding of a model's strengths and limitations should assist clinicians and researchers to appropriately select an animal model to translate the conclusions to the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | - S.L. Kates
- Address for correspondence: Stephen L. Kates, 601 Elmwood Ave, Box 665, Rochester, NY 14642, USA,
| |
Collapse
|
18
|
|
19
|
Eardley WGP, Watts SA, Clasper JC. Modelling for conflict: the legacy of ballistic research and current extremity in vivo modelling. J ROY ARMY MED CORPS 2013; 159:73-83. [PMID: 23720587 DOI: 10.1136/jramc-2013-000074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Extremity ballistic injury is unique and the literature intended to guide its management is commonly misinterpreted. In order to care for those injured in conflict and conduct appropriate research, clinicians must be able to identify key in vivo studies, understand their weaknesses and desist the propagation of miscited and misunderstood ballistic dogma. This review provides the only inclusive critical overview of key studies of relevance to military extremity injury. In addition, the non-ballistic studies of limb injury, stabilisation and contamination that will form the basis from which future small animal extremity studies are constructed are presented. With an awareness of the legacy of military wound models and an insight into available generic models of extremity injury and contamination, research teams are well placed to optimise future military extremity injury management.
Collapse
Affiliation(s)
- William G P Eardley
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, ICT Centre, Institute of Research and Development, Birmingham, UK.
| | | | | |
Collapse
|
20
|
Polakowska K, Lis MW, Helbin WM, Dubin G, Dubin A, Niedziolka JW, Miedzobrodzki J, Wladyka B. The virulence of Staphylococcus aureus correlates with strain genotype in a chicken embryo model but not a nematode model. Microbes Infect 2012; 14:1352-62. [DOI: 10.1016/j.micinf.2012.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 02/06/2023]
|
21
|
Horst SA, Hoerr V, Beineke A, Kreis C, Tuchscherr L, Kalinka J, Lehne S, Schleicher I, Köhler G, Fuchs T, Raschke MJ, Rohde M, Peters G, Faber C, Löffler B, Medina E. A novel mouse model of Staphylococcus aureus chronic osteomyelitis that closely mimics the human infection: an integrated view of disease pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1206-14. [PMID: 22902429 DOI: 10.1016/j.ajpath.2012.07.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/24/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022]
Abstract
Osteomyelitis is a serious bone infection typically caused by Staphylococcus aureus. The pathogenesis of osteomyelitis remains poorly understood, mainly for lack of experimental models that closely mimic human disease. We describe a novel murine model of metastatic chronic osteomyelitis initiated after intravenous inoculation of S. aureus microorganisms. The bacteria entered bones through the bloodstream and, after an acute phase with progressive growth (first 2 weeks after infection), they remained at constant numbers for up to 56 days (chronic phase). Clinical signs of illness and systemic inflammation were apparent only during the acute phase. Bone destruction and remodeling processes were readily detectable by magnetic resonance and X-ray imaging 3 weeks after infection, and high levels of bone deformation were observed during the chronic phase. Histological examination of infected bones demonstrated suppurative inflammation with foci of intense bacterial multiplication and necrosis during acute infection and osteoclastic resorption accompanied by new woven bone formation during chronic infection. Transmission electron microscopy revealed S. aureus microorganisms forming microcolonies within the nonmineralized collagen matrix or located intracellularly within neutrophils. In summary, our mouse model of staphylococcal hematogenous osteomyelitis precisely reproduces most features of the human disease. Although the extent of lesions in the chronic phase was subject to variation, this model is ideal for testing and monitoring novel treatment modalities via noninvasive imaging.
Collapse
Affiliation(s)
- Sarah A Horst
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nune C, Xu W, Misra RDK. The impact of grafted modification of silicone surfaces with quantum‐sized materials on protein adsorption and bacterial adhesion. J Biomed Mater Res A 2012; 100:3197-204. [DOI: 10.1002/jbm.a.34260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 11/07/2022]
Affiliation(s)
- C. Nune
- Biomaterials and Biomedical Engineering Research Laboratory, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, Louisiana 70504
| | - W. Xu
- Chemistry Department, University of Louisiana at Lafayette, Louisiana 70504
| | - R. D. K. Misra
- Biomaterials and Biomedical Engineering Research Laboratory, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, Louisiana 70504
| |
Collapse
|
23
|
[Inhibition of Staphylococcus epidermidis adhesion on titanium surface with bioactive water-soluble copolymers bearing sulfonate, phosphate or carboxylate functions]. ACTA ACUST UNITED AC 2012; 60:84-90. [PMID: 22406062 DOI: 10.1016/j.patbio.2010.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 07/01/2010] [Indexed: 11/21/2022]
Abstract
Implanted prostheses are sometimes subject to bacterial infections, which can threat their benefit rule on a long-term basis. Various methods are studied to fight against these infections. Among them, the grafting of bioactive polymers onto the prosthesis surface shows up as a promising way to the problem of infections. This work presents the influence of various water-soluble bioactive polymers on the inhibition of the Staphylococcus epidermidis adhesion on the titanium samples surfaces initially preadsorbed with various proteins. Whatever the studied protein is, it is shown that the bioactive polymer containing sulfonate functions generates an inhibition of the adhesion of Staphylococcus epidermidis. For a plasma preadsorption, the inhibition rate rises up to 68% when the concentration of sulfonate function is 2.5μmol/L. Titanium surfaces grafted with the bioactive polymer were also tested. We find an inhibitive activity of the adhesion close to that of the previous case. These preliminary results can point up a clinical interest in the fight against the medical devices infection, because they highlight a clear local effect of S. epidermidis adhesion inhibition. Copolymers containing other functional groups (phosphate or carboxylate) were dissolved in a bacterial suspension to monitor the influence of the composition on the adhesion inhibition. Their inhibition rates are not significantly lower than those of pNaSS homopolymers, as much as the sulfonate function proportion remains higher than 50%. Thus, the sulfonate function is the main responsible for the inhibition of the S. epidermidis adhesion.
Collapse
|
24
|
Oguz E, Ekinci S, Eroglu M, Bilgic S, Koca K, Durusu M, Kaldirim U, Sadir S, Yurttas Y, Cakmak G, Kilic A, Purtuloglu T, Ozyurek S, Cekli Y, Ozkan H, Sehirlioglu A. Evaluation and Comparison of the Effects of Hyperbaric Oxygen and Ozonized Oxygen as Adjuvant Treatments in an Experimental Osteomyelitis Model. J Surg Res 2011; 171:e61-8. [DOI: 10.1016/j.jss.2011.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 04/30/2011] [Accepted: 04/26/2011] [Indexed: 12/21/2022]
|
25
|
Abstract
Staphylococci, in particular Staphylococcus aureus, are the predominant cause of bone infections worldwide. These infections are painful, debilitating and with the rise in antibiotic-resistant forms, increasingly difficult to treat. The growth in the number of prosthetic joint replacement procedures also provides new opportunities for these infections to take hold. Comprehending the mechanisms by which staphylococci interact with and damage bone is critical to the development of new approaches to meet this challenge. This review summarises current understanding of the mechanisms by which staphylococci infect and damage bone. We address the role of the inflammatory response to staphylococcal infection in disrupting the homeostatic balance of bone matrix deposition and resorption and thereby mediating bone destruction. A number of virulence factors that have been shown to contribute to bone infection and pathology are discussed, however no single factor has been defined as being specific to bone infections. Although traditionally considered an extracellular pathogen, there is increasing evidence that staphylococci are able to invade host cells, and that an intracellular lifestyle may facilitate long-term persistence in bone tissue, enabling evasion of antimicrobials and host immune responses. ‘Small colony variant’ strains, with mutations disabling the electron transport pathway appear particularly adept at invading and persisting within host cells, and exhibit enhanced antimicrobial resistance, and may represent a further complication in the treatment and management of staphylococcal bone disease.
Collapse
Affiliation(s)
- John A Wright
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK
| | | |
Collapse
|
26
|
Fong IW. New perspectives of infections in cardiovascular disease. Curr Cardiol Rev 2009; 5:87-104. [PMID: 20436849 PMCID: PMC2805819 DOI: 10.2174/157340309788166679] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 09/27/2008] [Accepted: 09/27/2008] [Indexed: 12/02/2022] Open
Abstract
Infections have been recognized as significant causes of cardiac diseases for many decades. Various microorganisms have been implicated in the etiology of these diseases involving all classes of microbial agents. All components of the heart structure can be affected by infectious agents, i.e. pericardium, myocardium, endocardium, valves, autonomic nervous system, and some evidence of coronary arteries. A new breed of infections have evolved over the past three decades involving cardiac implants and this group of cardiac infectious complications will likely continue to increase in the future, as more mechanical devices are implanted in the growing ageing population. This article will review the progress made in the past decade on understanding the pathobiology of these infectious complications of the heart, through advances in genomics and proteomics, as well as potential novel approach for therapy.An up-to-date, state-of-the-art review and controversies will be outlined for the following conditions: (i) perimyocarditis; (ii) infective endocarditis; (iii) cardiac device infections; (iv) coronary artery disease and potential role of infections.
Collapse
Affiliation(s)
- Ignatius W Fong
- University of Toronto, Division of Infectious Diseases, St. Michaels’ Hospital, 4CC 179 Cardinal Carter Wing, 30 Bond St., Toronto, Ontario, M5B 1W8, Canada
| |
Collapse
|
27
|
NOBLE WILLIAMC, LLOYD DAVIDH. Pathogenesis and management of wound infections in domestic animals. Vet Dermatol 2008; 8:243-248. [DOI: 10.1111/j.1365-3164.1997.tb00270.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- WILLIAM C. NOBLE
- Department of Microbial Diseases, St John's Institute of Dermatology, United Medical and Dental Schools, University of London, London SE1 7EH, UK
| | - DAVID H. LLOYD
- *Department of Small Animal Medicine and Surgery, The Royal Veterinary College (University of London), Hawkshead Campus, North Mymms, Herts AL9 7TA, UK
| |
Collapse
|
28
|
Montanaro L, Campoccia D, Arciola CR. Advancements in molecular epidemiology of implant infections and future perspectives. Biomaterials 2007; 28:5155-68. [PMID: 17764738 DOI: 10.1016/j.biomaterials.2007.08.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 08/02/2007] [Indexed: 11/17/2022]
Abstract
Implant infection remains the major and often irreducible complication in clinical use of biomaterials, demanding new therapeutic and preventive strategies. Etio-pathogenesis of biomaterials-related infections is being more and more studied, and various virulence bacterial factors have progressively been identified, but little is still known about the weight of the distinct molecules in the context of specific peri-implant infection sites. Molecular epidemiology has become recently integrated into the research on implant infections. What distinguishes molecular epidemiology from the simple molecular biology is that the use of molecular techniques is applied to the study of the distribution and prevalence of virulence and resistance genes in collections of bacterial clinical isolates from implant infections. Here, the authors comment on the range of molecular techniques available, reviewing the various applications of molecular epidemiology to the study of implant infections and providing some experimental examples related to the field of orthopaedic implant infections. They highlight the new opportunities arising from molecular epidemiology of designing measures useful to prevent and treat implant infections. The knowledge of the relative weight of virulence factors and of their regulatory mechanisms at molecular level can open the way to new strategies also including gene therapies aimed at silencing or knocking out crucial genes responsible for the aggressive tools (adhesins, biofilm production, antibiotic resistance) of the aetiological agents of implant-related infections.
Collapse
Affiliation(s)
- Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | | | | |
Collapse
|
29
|
Chen X, Tsukayama DT, Kidder LS, Bourgeault CA, Schmidt AH, Lew WD. Characterization of a chronic infection in an internally-stabilized segmental defect in the rat femur. J Orthop Res 2005; 23:816-23. [PMID: 16022995 DOI: 10.1016/j.orthres.2005.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 09/07/2004] [Accepted: 01/28/2005] [Indexed: 02/04/2023]
Abstract
The aim of this study was to characterize a new model of chronic osteomyelitis with clinically relevant features. A segmental defect of critical size was surgically created in the rat femur, stabilized with a polyacetyl plate and Kirschner wires, and contaminated with bacteria. The animals were allowed to recover while the contamination progressed to a chronic infection. At a later point in time, the defect was surgically débrided without removing the implant. Further treatments of interest, such as antibiotic therapy or application of an osteogenic agent, could be introduced at this time. To implement this model, an initial experiment was performed to determine the bacterial inoculum and time from contamination that would reliably result in an infected defect without causing excessive bone damage by the time débridement surgery was performed. The number of recovered bacteria, degree of radiographic bony lysis, and torsional stiffness of the defect fixation were measured in 192 rats as a function of 4 inocula of Staphylococcus aureus (10(3), 10(4), 10(5) or 10(6) CFUs) and 4 times from contamination (1, 2, 3 or 4 weeks). A 10(4) CFU inoculum over 2 weeks was found to consistently create an infection without severe lysis and loss of fixation stability. Based on these values, a second experiment was performed in 96 rats to characterize the débrided defect over time (2, 4, 8 and 12 weeks after débridement), with and without 4 weeks of the antibiotic ceftriaxone, in terms of the same outcome variables. Infection was persistent in all animals in spite of débridement and antibiotic therapy. Antibiotic therapy did not reduce the degree of bony lysis. Compared with animals not given antibiotic, bacterial counts significantly decreased during the period of antibiotic therapy, but then rebounded to significantly higher levels at 12 weeks. This model allows us to perform further studies on differing regimens of antibiotic therapy and their relationship to surgical débridement, and on the efficacy of osteogenic agents in the presence of infection.
Collapse
Affiliation(s)
- Xinqian Chen
- Orthopaedic Biomechanics Laboratory, Midwest Orthopaedic Research Foundation and Minneapolis Medical Research Foundation, 914 South 8th Street, MC860C, Minneapolis, MN 55404, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Grundmeier M, Hussain M, Becker P, Heilmann C, Peters G, Sinha B. Truncation of fibronectin-binding proteins in Staphylococcus aureus strain Newman leads to deficient adherence and host cell invasion due to loss of the cell wall anchor function. Infect Immun 2004; 72:7155-63. [PMID: 15557640 PMCID: PMC529102 DOI: 10.1128/iai.72.12.7155-7163.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus fibronectin-binding proteins (FnBPs) play a critical role in S. aureus pathogenesis. FnBPs mediate adhesion to fibronectin and invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, by fibronectin bridging to the host cell fibronectin receptor integrin (alpha(5))beta(1). Strain Newman is a laboratory strain frequently used for genetic, functional, and in vivo studies. However, despite pronounced production of FnBPs, strain Newman is only weakly adherent to immobilized Fn and weakly invasive. We examined whether these effects are due to a structural difference of FnBPs. Here, we show that both fnbA(Newman) and fnbB(Newman) contain a centrally located point mutation resulting in a stop codon. This leads to a truncation of both FnBPs at the end of the C domain at identical positions. Most likely, the stop codon occurred first in fnbB(Newman) and was subsequently transferred to fnbA(Newman) by replacement of the entire region encompassing the C, D, and W domains with the respective sequence of fnbB(Newman). Using heterologous expression in Staphylococcus carnosus, we found that truncated FnBPs were completely secreted into the culture medium and not anchored to the cell wall, since they lack the sortase motif (LPETG). Consequently, this led to a loss of FnBP-dependent functions, such as strong adhesion to immobilized fibronectin, binding of fibrinogen, and host cell invasion. This mutation may explain some of the earlier reported conflicting data with strain Newman. Thus, care should be taken when drawing negative conclusions about the role of FnBPs as a virulence factor in a given model.
Collapse
Affiliation(s)
- Matthias Grundmeier
- Institute of Medical Microbiology, University of Münster, Domagkstrasse 10, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Carlson GA, Dragoo JL, Samimi B, Bruckner DA, Bernard GW, Hedrick M, Benhaim P. Bacteriostatic properties of biomatrices against common orthopaedic pathogens. Biochem Biophys Res Commun 2004; 321:472-8. [PMID: 15358200 DOI: 10.1016/j.bbrc.2004.06.165] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Indexed: 11/26/2022]
Abstract
Tissue-engineered grafts for tissue regeneration include either mature or progenitor cells seeded onto biomatrices that provide shape and support for developing tissue. Popular biomaterials used in orthopaedic surgery include collagen type I, hyaluronic acid, hydroxyapatite, and polylactic polyglycolic acid (PLGA). Biomatrices with bacteriostatic properties may be beneficial in promoting tissue-engineered graft survival in patients susceptible to infection. We evaluated the bacteriostatic effects of these biomaterials on the growth of the four most common orthopaedic bacterial pathogens: Staphylococcus aureus, Staphylococcus epidermidis, beta-hemolytic Streptococcus, and Pseudomonas aeruginosa. Hyaluronic acid demonstrated the largest bacteriostatic effect on these pathogens by inhibiting bacterial growth by an average of 76.8% (p = 0.0005). Hydroxyapatite and collagen inhibited growth on average by 49.7% (p = 0.011) and 37.5% (p = 0.102), respectively. PLGA exhibited the least bacteriostasis with an average inhibition of 9.8% (NS) and actually accelerated the growth of beta-hemolytic Streptococcus and P. aeruginosa.
Collapse
Affiliation(s)
- Grace A Carlson
- Laboratory for Regenerative Bioengineering and Repair, Departments of Surgery and Orthopaedic Surgery, UCLA School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Bauer SM, Santschi EM, Fialkowski J, Clayton MK, Proctor RA. Quantification of Staphylococcus aureus Adhesion to Equine Bone Surfaces Passivated with Plasmalytetm and Hyperimmune Plasma. Vet Surg 2004; 33:376-81. [PMID: 15230841 DOI: 10.1111/j.1532-950x.2004.04054.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To quantify the adhesion of Staphylococcus aureus to 4 equine bone surfaces passivated in a balanced polyionic solution (Plasmalyte) or hyperimmune equine plasma (Polymune plasma). STUDY DESIGN In vitro comparative study. SAMPLE POPULATION Third metacarpal bone (MC3) surface explants from 9 equine cadavers. METHODS Approximately 1 cm(2) sections of periosteum were removed from MC3 and stapled to sterile stainless steel screens. Three bone surface explants were cut using a surgical saw to present 1 cm(2) surfaces of subperiosteal bone, cut cortical bone, or endosteum. Duplicate explants of each surface were immersed for 1 hour in Plasmalyte or hyperimmune equine plasma. Each explant was then placed in a well of a 6-well sterile tissue culture plate with the surface of interest exposed. Each surface was inoculated with approximately 100 colony-forming units of S. aureus in 10 microL of Mueller Hinton broth and incubated for 6 hours at 37 degrees C. After gentle rinsing to remove non-adherent bacteria, samples were sonicated for 5 minutes at 60 kHz to loosen adhered bacteria. The number of adherent bacteria was determined by serial dilutions and incubation of the sonicate. Scanning electron microscopy (SEM) was performed on samples identically treated from an additional horse to confirm bacterial removal by sonication from all surfaces and support quantitative culture results. RESULTS Less S. aureus adhered to periosteum than to cortical bone, cut cortical bone, and endosteal surfaces, which were all similar. Exposure of all surfaces to hyperimmune plasma reduced S. aureus adherence compared with Plasmalyte exposure; SEM supported these conclusions. CONCLUSION Less bacteria adhere to periosteum than other bone surfaces. Hyperimmune plasma reduces bacterial adhesion to all bone tissue surfaces. CLINICAL RELEVANCE Understanding the factors that affect bacterial adhesion to bone will facilitate development of improved intraoperative lavage solutions to reduce the morbidity and mortality associated with postoperative infection.
Collapse
Affiliation(s)
- Sandra M Bauer
- School of Veterinary Medicine, the Department of Statistics, and the College of Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
33
|
McElroy MC, Cain DJ, Tyrrell C, Foster TJ, Haslett C. Increased virulence of a fibronectin-binding protein mutant of Staphylococcus aureus in a rat model of pneumonia. Infect Immun 2002; 70:3865-73. [PMID: 12065530 PMCID: PMC128079 DOI: 10.1128/iai.70.7.3865-3873.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fibronectin-binding proteins mediate Staphylococcus aureus internalization into nonphagocytic cells in vitro. We have investigated whether fibronectin-binding proteins are virulence factors in the pathogenesis of pneumonia by using S. aureus strain 8325-4 and isogenic mutants in which fibronectin-binding proteins were either deleted (DU5883) or overexpressed [DU5883(pFnBPA4)]. We first demonstrated that fibronectin-binding proteins mediate S. aureus internalization into alveolar epithelial cells in vitro and that S. aureus internalization into alveolar epithelial cells requires actin rearrangement and protein kinase activity. Second, we established a rat model of S. aureus-induced pneumonia and measured lung injury and bacterial survival at 24 and 96 h postinoculation. S. aureus growth and the extent of lung injury were both increased in rats inoculated with the deletion mutant (DU5883) in comparison with rats inoculated with the wild-type (8325-4) and the fibronectin-binding protein-overexpressing strain DU5883(pFnBPA4) at 24 h postinfection. Morphological evaluation of infected lungs at the light and electron microscopic levels demonstrated that S. aureus was present within neutrophils from both 8325-4- and DU5883-inoculated lungs. Our data suggest that fibronectin-binding protein-mediated internalization into alveolar epithelial cells is not a virulence mechanism in a rat model of pneumonia. Instead, our data suggest that fibronectin-binding proteins decrease the virulence of S. aureus in pneumonia.
Collapse
Affiliation(s)
- Mary C McElroy
- Rayne Laboratory, Respiratory Medicine, University of Edinburgh, Scotland. Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | | | | | | | | |
Collapse
|
34
|
Bjerketorp J, Nilsson M, Ljungh Å, Flock JI, Jacobsson K, Frykberg L. A novel von Willebrand factor binding protein expressed by Staphylococcus aureus. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2037-2044. [PMID: 12101292 DOI: 10.1099/00221287-148-7-2037] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When a shotgun phage-display library of Staphylococcus aureus Newman was affinity selected (panned) against recombinant von Willebrand factor (vWf), a novel von Willebrand factor binding protein (vWbp) was found. Experimental data indicate that the interaction between vWbp and vWf is very specific and mediated by a region of 26 aa residues in the C-terminal part of vWbp. vWbp has an N-terminal secretory signal sequence but no cell wall anchoring motif, suggesting a soluble extracellular location. Mature vWbp could be purified from the culture supernatant and the identity of the protein was confirmed by N-terminal sequencing. vWbp migrates with an apparent molecular mass of 66 kDa and the deduced protein consists of 482 aa. The gene encoding vWbp, named vwb, was present in all S. aureus strains investigated.
Collapse
Affiliation(s)
- Joakim Bjerketorp
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-75007 Uppsala, Sweden1
| | - Martin Nilsson
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-75007 Uppsala, Sweden1
| | - Åsa Ljungh
- Department of Infectious Diseases and Medical Microbiology, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden2
| | - Jan-Ingmar Flock
- Department of Microbiology, Pathology and Immunology, Huddinge University Hospital, Karolinska Institutet, SE-14186 Huddinge, Sweden3
| | - Karin Jacobsson
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-75007 Uppsala, Sweden1
| | - Lars Frykberg
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-75007 Uppsala, Sweden1
| |
Collapse
|
35
|
Van Belkum A, Kools-Sijmons M, Verbrugh H. Attachment of Staphylococcus aureus to eukaryotic cells and experimental pitfalls in staphylococcal adherence assays: a critical appraisal. J Microbiol Methods 2002; 48:19-42. [PMID: 11733080 DOI: 10.1016/s0167-7012(01)00342-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus is a bacterial species with pathogenic potential to both humans and animals. The primary natural niche is said to be the human vestibulum nasi from where bacterial cells may spread to the environment or additional anatomical sites such as the perineum or the hands, where residence is usually transient. Apparently, S. aureus is capable of a precise and balanced interaction with specific types of eukaryotic nasal cells. Although a wide variety of important bacterial ligands and possible eukaryote receptors have been described, the precise mechanisms leading to persistent bacterial colonization and, even more importantly, associated infection have not yet been elucidated in detail. This may be a consequence of the fact that most of the adherence factors have been studied individually in simplified in vitro systems, not taking the complexity of multi-factorial in vivo cell-cell interactions into account. An overall scheme of the initial and sequential interactions leading to S. aureus colonization of eukaryotic cell surfaces has not yet emerged. This review concisely describes the current state of affairs in the multi-disciplinary field of staphylococcal adherence research. Specific emphasis is placed upon the pros and cons of the various artificial, mostly in vitro models employed to study the interaction between bacterial and human or animal cells.
Collapse
Affiliation(s)
- Alex Van Belkum
- Deptartment Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam (EMCR), Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
36
|
Darouiche RO. Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis 2001; 33:1567-72. [PMID: 11577378 DOI: 10.1086/323130] [Citation(s) in RCA: 432] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2001] [Revised: 06/15/2001] [Indexed: 01/17/2023] Open
Abstract
Medical devices are responsible for a large portion of nosocomial infections, particularly in critically ill patients. Device-associated infections can cause major medical and economic sequelae. Bacterial colonization of the indwelling device can be a prelude to both infection and malfunction of the device. The pathogenesis of device-associated infection centers around the multifaceted interaction among the bacteria, the device, and the host. Bacterial factors are probably the most important in pathogenesis of infection, whereas device factors are the most amenable to modification with the objective of preventing infection. Some, but not all, of the studied bacterial receptors satisfy the proposed "adherence/infection" version of Koch's postulates. Traditional surface-modifying preventive approaches have largely focused on antimicrobial coating of devices and resulted in variable clinical success in preventing device-associated infections. The potential protective role of newer innovative approaches, such as biofilm modification and bacterial interference, ought to be further investigated.
Collapse
Affiliation(s)
- R O Darouiche
- Infectious Disease Section and Center for Prostheses Infection, Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Francois P, Letourneur D, Lew DP, Jozefonwicz J, Vaudaux P. Inhibition by heparin and derivatized dextrans of Staphylococcus epidermidis adhesion to in vitro fibronectin-coated or explanted polymer surfaces. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2000; 10:1207-21. [PMID: 10673017 DOI: 10.1163/156856299x00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of Staphylococcus aureus to recognize several extracellular matrix or plasma proteins (e.g., fibrinogen, fibronectin, and collagen) promotes bacterial attachment to artificial surfaces. Whereas most S. aureus clinical isolates elaborate a wide repertoire of bacterial surface receptors' called adhesins, exhibiting specific binding of individual host proteins, S. epidermidis is lacking most of such protein adhesins. To document the interactions between S. epidermidis and various surface-adsorbed proteins, we first compared promotion of bacterial attachment by seven purified human proteins immobilized onto poly(methyl methacrylate) (PMMA) coverslips. Only two of them, namely fibronectin and fibrinogen, exhibited adhesion-promoting activities. In the presence of native heparin or two functionalized dextrans (CMDBS for Carboxy Methyl, Benzylamide sulfonate/sulfate), a dose-dependent inhibition of S. epidermidis adhesion to fibronectin-coated, but not to fibrinogen-coated surfaces was observed. The inhibitory effects of each CMDBS were much stronger than that of native heparin. In contrast, a control highly negatively charged, dextran exclusively substituted with carboxy methyl groups exerted no inhibition on S. epidermidis adhesion. To evaluate how CMDBS could interfere with S. epidermidis attachment to coverslips coated in vivo with extracellular matrix components, we also tested PMMA surfaces retrieved from tissue cages subcutaneously implanted in guinea pigs. Each CMDBS, but not heparin, strongly inhibited S. epidermidis adhesion to explanted coverslips, even in the presence of tissue cage fluid. In conclusion, fibronectin plays an important role in promoting S. epidermidis attachment to implanted biomaterials. Furthermore, S. epidermidis adhesion to fibronectin-coated or implanted biomaterials can be efficiently blocked in vitro by CMDBS.
Collapse
Affiliation(s)
- P Francois
- Department of Medicine, University Hospital, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
38
|
Francois P, Schrenzel J, Stoerman-Chopard C, Favre H, Herrmann M, Foster TJ, Lew DP, Vaudaux P. Identification of plasma proteins adsorbed on hemodialysis tubing that promote Staphylococcus aureus adhesion. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2000; 135:32-42. [PMID: 10638692 DOI: 10.1016/s0022-2143(00)70018-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Risk factors for Staphylococcus aureus infections in patients undergoing hemodialysis include underlying disease, material-induced host defects, and the presence of vascular access catheters. To determine the specific contribution of various potentially adsorbed plasma components in promoting S aureus adhesion to shunt tubing during chronic hemodialysis, we quantified their respective amounts by Western immunoblotting and densitometry and estimated their individual adhesion-promoting activities with specific adhesion-modified bacterial mutants. Fibrinogen, which was the only component consistently present in tubing protein extracts from all patients, was adsorbed in significantly higher amounts on predialyzer than on postdialyzer tubing segments. In contrast, fibronectin and von Willebrand factor were irregularly present in patients' tubing, whereas vitronectin or thrombospondin remained undetectable in all samples. The contribution of fibrinogen in promoting S aureus attachment to hemodialysis tubing was demonstrated by (1) the significantly lower adhesion of a cIfA mutant of strain Newman compared with its parent; (2) the increased attachment of strain 8325-4 after complementation with the cloned cIfA gene on the multicopy plasmid pCF4; and (3) the general tendency for strains Newman and 8325-4(pCF4) to express higher attachment on predialyzer compared with postdialyzer tubing segments in relationship with the higher content of fibrinogen on the former material. However, the specific S aureus attachment-promoting activity of both prefilter and postfilter tubing-adsorbed fibrinogen were much lower than that of the native in vitro-adsorbed protein and may reflect masking or inactivation of the in vivo-adsorbed protein by unknown mechanisms.
Collapse
Affiliation(s)
- P Francois
- Department of Medicine, University Hospital, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hudson MC, Ramp WK, Frankenburg KP. Staphylococcus aureus adhesion to bone matrix and bone-associated biomaterials. FEMS Microbiol Lett 1999; 173:279-84. [PMID: 10227156 DOI: 10.1111/j.1574-6968.1999.tb13514.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus is a frequent cause of orthopedic infections in humans. The bacterium expresses several adhesins that facilitate bacterial binding to the bone matrix and to bone implant biomaterials coated with host plasma constituents. The relevant S. aureus adhesins are termed microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) and specific MSCRAMMs are involved in bone and joint infections.
Collapse
Affiliation(s)
- M C Hudson
- Department of Biology, University of North Carolina at Charlotte 28223, USA.
| | | | | |
Collapse
|
40
|
Darouiche RO, Farmer J, Chaput C, Mansouri M, Saleh G, Landon GC. Anti-infective efficacy of antiseptic-coated intramedullary nails. J Bone Joint Surg Am 1998; 80:1336-40. [PMID: 9759819 DOI: 10.2106/00004623-199809000-00013] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The coating of medical devices with antimicrobial agents has recently emerged as a potentially effective method for the prevention of device-related infections. We examined the anti-infective efficacy of intramedullary nails coated with an antiseptic combination of chlorhexidine and chloroxylenol in a rabbit model of device-related infection after fixation of an open tibial fracture. The rabbits were randomized to receive 2.8-by-100-millimeter stainless-steel tibial intramedullary nails that either were uncoated or were coated with antiseptic. After administration of anesthesia and preoperative antibiotic prophylaxis, a tibial fracture was created and then reduced with insertion of the intramedullary nail. A bacterial inoculum of 10(6) colony-forming units of Staphylococcus aureus was injected into the intramedullary canal, and the wound was sutured. Radiographs of the tibiae were made postoperatively, and the rabbits were monitored daily. They were killed at six weeks, or earlier if there was dehiscence of the wound, the fracture became grossly unstable, or the rabbit failed to thrive. The use of the antiseptic-coated nails was associated with a significantly lower rate of device-related osteomyelitis (two of twenty-two; 9 per cent) than the use of the uncoated nails (thirteen of twenty-one; 62 per cent) (p = 0.0003). The radiographic and histopathological findings were generally similar in the two groups of rabbits. Antiseptic agents were not detected in serum. The results suggest that antiseptic-coated fracture-fixation devices provide significant local protection against Staphylococcus aureus, which is the most common cause of infections related to orthopaedic devices.
Collapse
Affiliation(s)
- R O Darouiche
- Department of Medicine, Baylor College of Medicine and Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|