1
|
Braun HG, Perera SR, Tremblay YD, Thomassin JL. Antimicrobial resistance in Klebsiella pneumoniae: an overview of common mechanisms and a current Canadian perspective. Can J Microbiol 2024. [PMID: 39213659 DOI: 10.1139/cjm-2024-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Klebsiella pneumoniae is a ubiquitous opportunistic pathogen of the family Enterobacteriaceae. K. pneumoniae is a member of the ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, K. pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), a group of bacteria that cause nosocomial infections and are able to resist killing by commonly relied upon antimicrobial agents. The acquisition of antimicrobial resistance (AMR) genes is increasing among community and clinical isolates of K. pneumoniae, making K. pneumoniae a rising threat to human health. In addition to the increase in AMR, K. pneumoniae is also thought to disseminate AMR genes to other bacterial species. In this review, the known mechanisms of K. pneumoniae AMR will be described and the current state of AMR K. pneumoniae within Canada will be discussed, including the impact of the coronavirus disease-2019 pandemic, current perspectives, and outlook for the future.
Collapse
Affiliation(s)
- Hannah G Braun
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sumudu R Perera
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yannick Dn Tremblay
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jenny-Lee Thomassin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Mutua JM, Njeru JM, Musyoki AM. Extended-spectrum β-lactamase- producing gram-negative bacterial infections in severely ill COVID-19 patients admitted in a national referral hospital, Kenya. Ann Clin Microbiol Antimicrob 2023; 22:91. [PMID: 37838665 PMCID: PMC10576885 DOI: 10.1186/s12941-023-00641-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Bacterial infections in COVID-19 patients, especially those caused by multidrug-resistant gram-negative strains, are associated with increased morbidity, hospital stay and mortality. However, there is limited data on the epidemiology of extended-spectrum β-lactamase (ESBL)-producing bacteria in COVID-19 patients. Here, we assessed the prevalence and the factors associated with ESBL-producing gram-negative bacterial (GNB) infections among severely ill COVID-19 patients admitted in Kenyatta National Hospital (KNH), Kenya. METHODS We adopted a descriptive cross-sectional study design for patients admitted between October 2021 and February 2022, purposively recruiting 120 SARS-CoV- 2 infected participants based on clinical presentation. Demographics and clinical characteristics data were collected using structured questionnaires and case report forms. Clinical samples were collected and analyzed by standard microbiological methods in the KNH Microbiology laboratory and the Centre for Microbiology Research, Kenya Medical Research Institute. RESULTS GNB infections prevalence was 40.8%, majorly caused by ESBL-producers (67.3%) predominated by Klebsiella pneumoniae (45.5%). Generally, 73% of the ESBL producers harboured our target ESBL genes, mainly CTX-M-type (59%, 17/29) in K. pneumoniae (76.9%, 20/26). GNB harbouring TEM-type (83%, 10/12) and SHV-type (100%, 7/7) genes showed ESBLs phenotypes and inhibitor resistance, mainly involving clavulanate, but most of them remained susceptible to tazobactam (60%, 6/10). SHV-type genes carrying ESBL producers showed resistance to both cefotaxime (CTX) and ceftazidime (CAZ) (K. pneumoniae), CAZ (E. coli) or CTX (E. cloacae complex and K. pneumoniae). About 87% (20/23) of isolates encoding CTX-M-type β-lactamases displayed CTX/ceftriaxone (CRO) resistance phenotype. About 42% of isolates with CTX-M-type β-lactamases only hydrolyzed ceftazidime (CAZ). Isolates with OXA-type β-lactamases were resistant to CTX, CAZ, CRO, cefepime and aztreonam. Patients with comorbidities were 10 times more likely to have an ESBL-producing GNB infection (aOR = 9.86, 95%CI 1.30 - 74.63, p = 0.003). CONCLUSION We report a high prevalence of ESBL-GNB infections in severely ill COVID-19 patients, predominantly due to Klebsiella pneumoniae harbouring CTX-M type ESBL genes. The patient's underlying comorbidities increased the risk of ESBL-producing GNB infection. In COVID-19 pandemic, enhanced systematic and continuous surveillance of ESBL-producing GNB, strict adherence to infection control measures and antimicrobial stewardship policies are warranted in the current study setting.
Collapse
Affiliation(s)
- Jeniffer Munyiva Mutua
- Department of Laboratory Medicine, Kenyatta National Hospital, 20723-00202, Nairobi, Kenya.
- Department of Medical Laboratory Sciences, Kenyatta University, 43844-00100, Nairobi, Kenya.
| | - John Mwaniki Njeru
- Centre for Microbiology Research, Kenya Medical Research Institute, 19464-00200, Nairobi, Kenya
| | - Abednego Moki Musyoki
- Department of Medical Laboratory Sciences, Kenyatta University, 43844-00100, Nairobi, Kenya
| |
Collapse
|
3
|
Zaatout N, Al-Mustapha AI, Bouaziz A, Ouchene R, Heikinheimo A. Prevalence of AmpC, ESBL, and colistin resistance genes in Enterobacterales isolated from ready-to-eat food in Algeria. Braz J Microbiol 2023; 54:2205-2218. [PMID: 37526891 PMCID: PMC10484844 DOI: 10.1007/s42770-023-01082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023] Open
Abstract
Antimicrobial resistance among bacteria present in ready-to-eat foods is an emerging concern. Hence, this study investigated the presence of extended-spectrum and AmpC β-lactamases (ESBL/AmpC)-producing Enterobacterales (ESBL-E) and the dissemination of mcr-1 in ESBL-E from ready-to-eat food samples (RTE) in Algeria. RTE food samples (n = 204) were aseptically collected and selectively cultured using MacConkey agar. The isolates were screened for ESBL production using the DDST test, confirmed ESBL-E isolates were identified using different conventional methods and MALDI-TOF MS, antibiotic susceptibility was determined using the disc diffusion and broth microdilution assay, ESBL-E isolates were analyzed for colistin and ESBL/AmpC encoding genes by PCR, and food samples were analyzed by univariate and multiple logistic regression. Overall, 48 (17.4%) of the 276 Enterobacterales were confirmed as ESBL producers, with a high prevalence in soups (40%), salads (25%), and cream-filled pastries (23.8%). Antibiotic susceptibility testing revealed that all the ESBL-E isolates were found multi-drug resistant. PCR revealed that blaTEM, blaCTX-M, blaCMY-2, blaOXA-1, and blaSHV were the most frequently detected. blaCTX-M-9 and blaCTX-M-1 were the predominant CTX-M types. Furthermore, four isolates were positive for mcr-1; three of them harbored the colistin resistance gene and ESBL/AmpC genes (2 E. cloacae and 1 S. enterica). To the best of our knowledge, this is the first report that detects the presence of the mcr-1 gene in ESBL-E strains isolated from RTE foods in Algeria. These findings suggest an urgent need for strict policies that prevent the spread and transmission of ESBL-E in food.
Collapse
Affiliation(s)
- Nawel Zaatout
- Faculty of Natural and Life Sciences, University of Batna 2, 05000, Batna, Algeria.
| | - Ahmad I Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, State, Oyo, Nigeria
- Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Services, Ilorin, Nigeria
| | - Amira Bouaziz
- Faculty of Natural and Life Sciences, University of Batna 2, 05000, Batna, Algeria
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Batna, Algeria
| | - Rima Ouchene
- Laboratory of Applied Microbiology, Faculty of Nature and Life Sciences, University of Bejaia, 06000, Bejaia, Algeria
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
4
|
Godman B, Egwuenu A, Wesangula E, Schellack N, Kalungia AC, Tiroyakgosi C, Kgatlwane J, Mwita JC, Patrick O, Niba LL, Amu AA, Oguntade RT, Alabi ME, Ncube NBQ, Sefah IA, Acolatse J, Incoom R, Guantai AN, Oluka M, Opanga S, Chikowe I, Khuluza F, Chiumia FK, Jana CE, Kalemeera F, Hango E, Fadare J, Ogunleye OO, Ebruke BE, Meyer JC, Massele A, Malande OO, Kibuule D, Kapona O, Zaranyika T, Bwakura-Dangarembizi M, Kujinga T, Saleem Z, Kurdi A, Shahwan M, Jairoun AA, Wale J, Brink AJ. Tackling antimicrobial resistance across sub-Saharan Africa: current challenges and implications for the future. Expert Opin Drug Saf 2022; 21:1089-1111. [PMID: 35876080 DOI: 10.1080/14740338.2022.2106368] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is a concern as this increases morbidity, mortality, and costs, with sub-Saharan Africa having the highest rates globally. Concerns with rising AMR have resulted in international, Pan-African, and country activities including the development of national action plans (NAPs). However, there is variable implementation across Africa with key challenges persisting. AREAS COVERED Consequently, there is an urgent need to document current NAP activities and challenges across sub-Saharan Africa to provide future guidance. This builds on a narrative review of the literature. EXPERT OPINION All surveyed sub-Saharan African countries have developed their NAPs; however, there is variable implementation. Countries including Botswana and Namibia are yet to officially launch their NAPs with Eswatini only recently launching its NAP. Cameroon is further ahead with its NAP than these countries; though there are concerns with implementation. South Africa appears to have made the greatest strides with implementing its NAP including regular monitoring of activities and instigation of antimicrobial stewardship programs. Key challenges remain across Africa. These include available personnel, expertise, capacity, and resources to undertake agreed NAP activities including active surveillance, lack of focal points to drive NAPs, and competing demands and priorities including among donors. These challenges are being addressed, with further co-ordinated efforts needed to reduce AMR.
Collapse
Affiliation(s)
- Brian Godman
- Department of Pharmacoepidemiology, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Public Health Pharmacy and Management, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Abiodun Egwuenu
- AMR Programme, Nigeria Centre for Disease Control, Jabi, Abuja, Nigeria
| | - Evelyn Wesangula
- Patient and Health Workers Safety Division, AMR Focal Point, Ministry of Health, Nairobi, Kenya
| | - Natalie Schellack
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | | | - Joyce Kgatlwane
- Department of Pharmacy, University of Botswana, Gaborone, Botswana
| | - Julius C Mwita
- Department of Internal Medicine, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Okwen Patrick
- Effective Basic Services (eBASE) Africa, Bamenda, Cameroon, Africa
- Faculty of Health and Medical Sciences, Adelaide University, Adelaide, Australia
| | - Loveline Lum Niba
- Effective Basic Services (eBASE) Africa, Bamenda, Cameroon, Africa
- Department of Public Health, University of Bamenda, Bambili, Cameroon
| | - Adefolarin A Amu
- Pharmacy Department, Eswatini Medical Christian University, Mbabane, Eswatini
| | | | - Mobolaji Eniola Alabi
- School of Pharmaceutical Sciences, College of Health Sciences, University of Kwazulu-natal (UKZN), Durban, South Africa
| | - Nondumiso B Q Ncube
- School of Public Health, University of the Western Cape, Cape Town, South Africa
| | - Israel Abebrese Sefah
- Department of Pharmacy Practice, School of Pharmacy, University of Health and Allied Sciences, Volta Region, Ghana
| | - Joseph Acolatse
- Pharmacy Directorate, Cape Coast Teaching Hospital (CCTH), Cape Coast, Ghana
| | - Robert Incoom
- Pharmacy Directorate, Cape Coast Teaching Hospital (CCTH), Cape Coast, Ghana
| | - Anastasia Nkatha Guantai
- Department of Pharmacology & Pharmacognosy, School of Pharmacy, University of Nairobi, Nairobi, Kenya
| | - Margaret Oluka
- Department of Pharmacology & Pharmacognosy, School of Pharmacy, University of Nairobi, Nairobi, Kenya
| | - Sylvia Opanga
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy, University of Nairobi, Nairobi, Kenya
| | - Ibrahim Chikowe
- Pharmacy Department, Kamuzu University of Health Sciences (KUHeS) (formerly College of Medicine), Blantyre, Malawi
| | - Felix Khuluza
- Pharmacy Department, Kamuzu University of Health Sciences (KUHeS) (formerly College of Medicine), Blantyre, Malawi
| | - Francis K Chiumia
- Pharmacy Department, Kamuzu University of Health Sciences (KUHeS) (formerly College of Medicine), Blantyre, Malawi
| | - Collins Edward Jana
- Division of Biochemistry, Biomedical Sciences Department, Kamuzu University of Health Sciences (KUHeS) (formerly College of Medicine), Blantyre, Malawi
| | - Francis Kalemeera
- Department of Pharmacy Practice and Policy, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| | - Ester Hango
- Department of Pharmacy Practice and Policy, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| | - Joseph Fadare
- Department of Pharmacology and Therapeutics, Ekiti State University, Ado-Ekiti, Nigeria
- Department of Medicine, Ekiti State University Teaching Hospital, Ado-Ekiti, Nigeria
| | - Olayinka O Ogunleye
- Department of Pharmacology, Therapeutics and Toxicology, Lagos State University College of Medicine, Ikeja, Lagos, Nigeria
- Department of Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | - Bernard E Ebruke
- International Foundation Against Infectious Disease in Nigeria (IFAIN), Abuja, Nigeria
| | - Johanna C Meyer
- Department of Public Health Pharmacy and Management, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Amos Massele
- Department of Clinical Pharmacology and Therapeutics, Hurbert Kairuki Memorial University, Dar Es Salaam, Tanzania
| | - Oliver Ombeva Malande
- Department of Public Health Pharmacy and Management, Sefako Makgatho Health Sciences University, Pretoria, South Africa
- Department of Child Health and Paediatrics, Egerton University, Nakuru, Kenya
- East Africa Centre for Vaccines and Immunization (ECAVI), Kampala, Uganda
| | - Dan Kibuule
- Department of Pharmacology & Therapeutics, Busitema University, Mbale, Tororo, Uganda
| | | | - Trust Zaranyika
- Department Of Medicine, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Mutsa Bwakura-Dangarembizi
- Department of Paediatrics and Child Health, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | | | - Zikria Saleem
- Department of Pharmacy Practice, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Amanj Kurdi
- Department of Pharmacoepidemiology, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Department of Public Health Pharmacy and Management, Sefako Makgatho Health Sciences University, Pretoria, South Africa
- Department of Pharmacology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- College of Pharmacy and Health Science, Ajman University, Ajman, United Arab Emirates
| | | | - Janney Wale
- Independent consumer advocate, Brunswick, Australia
| | - Adrian J Brink
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Cape Town, South Africa
| |
Collapse
|
7
|
Muraya A, Kyany’a C, Kiyaga S, Smith HJ, Kibet C, Martin MJ, Kimani J, Musila L. Antimicrobial Resistance and Virulence Characteristics of Klebsiella pneumoniae Isolates in Kenya by Whole-Genome Sequencing. Pathogens 2022; 11:545. [PMID: 35631066 PMCID: PMC9144577 DOI: 10.3390/pathogens11050545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is a globally significant opportunistic pathogen causing healthcare-associated and community-acquired infections. This study examined the epidemiology and the distribution of resistance and virulence genes in clinical K. pneumoniae strains in Kenya. A total of 89 K. pneumoniae isolates were collected over six years from five counties in Kenya and were analyzed using whole-genome sequencing and bioinformatics. These isolates were obtained from community-acquired (62/89) and healthcare-associated infections (21/89), and from the hospital environment (6/89). Genetic analysis revealed the presence of blaNDM-1 and blaOXA-181 carbapenemase genes and the armA and rmtF genes known to confer pan-aminoglycoside resistance. The most abundant extended-spectrum beta-lactamase genes identified were blaCTX-M-15 (36/89), blaTEM (35/89), and blaOXA (18/89). In addition, one isolate had a mobile colistin resistance gene (mcr-8). Fluoroquinolone resistance-conferring mutations in gyrA and parC genes were also observed. The most notable virulence factors were those associated with hyper-virulence (rmpA/A2 and magA), yersiniabactin (ybt), salmochelin (iro), and aerobactin (iuc and iutA). A total of 38 distinct sequence types were identified, including known global lineages ST14, ST15, ST147, and ST307, and a regional clone ST17 implicated in regional outbreaks. In addition, this study genetically characterized two potential hypervirulent isolates and two community-acquired ST147 high-risk clones that contained carbapenemase genes, yersiniabactin, and other multidrug resistance genes. These results demonstrate that the resistome and virulome of Kenyan clinical and hospital environmental K. pneumoniae isolates are diverse. The reservoir of high-risk clones capable of spreading resistance, and virulence factors have the potential to cause unmanageable infection outbreaks with high morbidity and mortality.
Collapse
Affiliation(s)
- Angela Muraya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya; (A.M.); (C.K.); (J.K.)
| | - Cecilia Kyany’a
- United States Army Medical Research Directorate-Africa, Village Market, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (H.J.S.)
- Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Shahiid Kiyaga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda;
| | - Hunter J. Smith
- United States Army Medical Research Directorate-Africa, Village Market, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (H.J.S.)
| | - Caleb Kibet
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya; (A.M.); (C.K.); (J.K.)
- International Center for Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
| | - Melissa J. Martin
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Josephine Kimani
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya; (A.M.); (C.K.); (J.K.)
| | - Lillian Musila
- United States Army Medical Research Directorate-Africa, Village Market, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (H.J.S.)
- Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| |
Collapse
|