1
|
Negi R, Sharma B, Kumar S, Chaubey KK, Kaur T, Devi R, Yadav A, Kour D, Yadav AN. Plant endophytes: unveiling hidden applications toward agro-environment sustainability. Folia Microbiol (Praha) 2024; 69:181-206. [PMID: 37747637 DOI: 10.1007/s12223-023-01092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Endophytic microbes are plant-associated microorganisms that reside in the interior tissue of plants without causing damage to the host plant. Endophytic microbes can boost the availability of nutrient for plant by using a variety of mechanisms such as fixing nitrogen, solubilizing phosphorus, potassium, and zinc, and producing siderophores, ammonia, hydrogen cyanide, and phytohormones that help plant for growth and protection against various abiotic and biotic stresses. The microbial endophytes have attained the mechanism of producing various hydrolytic enzymes such as cellulase, pectinase, xylanase, amylase, gelatinase, and bioactive compounds for plant growth promotion and protection. The efficient plant growth promoting endophytic microbes could be used as an alternative of chemical fertilizers for agro-environmental sustainability. Endophytic microbes belong to different phyla including Euryarchaeota, Ascomycota, Basidiomycota, Mucoromycota, Firmicutes, Proteobacteria, and Actinobacteria. The most pre-dominant group of bacteria belongs to Proteobacteria including α-, β-, γ-, and δ-Proteobacteria. The least diversity of the endophytic microbes have been revealed from Bacteroidetes, Deinococcus-Thermus, and Acidobacteria. Among reported genera, Achromobacter, Burkholderia, Bacillus, Enterobacter, Herbaspirillum, Pseudomonas, Pantoea, Rhizobium, and Streptomyces were dominant in most host plants. The present review deals with plant endophytic diversity, mechanisms of plant growth promotion, protection, and their role for agro-environmental sustainability. In the future, application of endophytic microbes have potential role in enhancement of crop productivity and maintaining the soil health in sustainable manner.
Collapse
Affiliation(s)
- Rajeshwari Negi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India
| | - Tanvir Kaur
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Rubee Devi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Ashok Yadav
- Department of Botany, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
| |
Collapse
|
2
|
Yang Y, Xu Z, Yang L, Hu MY, Jiang GY, Chen J, Yang YC, Tian Y. Ochrobactrum chromiisoli sp. nov., Isolated from Chromium-Contaminated Soil. Curr Microbiol 2023; 81:50. [PMID: 38150064 DOI: 10.1007/s00284-023-03562-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
A Gram-stain-negative, non-spore-forming, flagellated, motile, aerobic, rod-shaped bacteria strain, designated YY2XT, was isolated from chromium-contaminated soil. Phylogenetic analysis based on 16S rRNA gene, recA gene, and whole genome indicated that the strain represented a new member of the genus Ochrobactrum, family Brucellaceae, class Alphaproteobacteria. The phylogenetic trees based on 16 s rRNA gene, revealed that Falsochrobactrum ovis DSM26720T (96.7%), Ochrobactrum gallinifaecis DSM15295T (96.2%), and Pseudochrobactrum asaccharolyticum DSM25619T (96.2%) are the most closely related phylogenetic neighbors of strain YY2XT. The draft genome of YY2XT was approximately 4,650,646 bp in size with a G + C content of 53.0 mol%. Average nucleotide identity and digital DNA-DNA hybridization values among strain YY2XT and the selected Brucellaceae species were 71.4-83.1% and 13.5-42.7%, which are below the recommended cut-off values for species delineation. Growth of strain YY2XT occurred within pH 5-10 (optimum, pH 7-8), 4 ℃-42 °C (optimum, 30 °C), and NaCl concentrations of 0.0-6.0% (optimum, 1.0%). Major quinone system was ubiquinone 10, the major fatty acids were C16:0, C18:1ω7c, and C16:1ω7c and the major polyamines were spermidine and putrescine. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, and four undefined lipids. On the basis of the phenotypic, genotypic and chemotaxonomic traits, strain YY2XT was considered to represent a novel species of the genus Ochrobactrum, for which the name Ochrobactrum chromiisoli sp. nov. is proposed. The type strain is YY2XT (= CCTCC AB 2023035T = JCM 36000T).
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zhe Xu
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Li Yang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Meng-Yao Hu
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Guang-Yang Jiang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jia Chen
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yi-Chen Yang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
3
|
Asghar I, Ahmed M, Farooq MA, Ishtiaq M, Arshad M, Akram M, Umair A, Alrefaei AF, Jat Baloch MY, Naeem A. Characterizing indigenous plant growth promoting bacteria and their synergistic effects with organic and chemical fertilizers on wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2023; 14:1232271. [PMID: 37727857 PMCID: PMC10505817 DOI: 10.3389/fpls.2023.1232271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 09/21/2023]
Abstract
The excessive use of chemical fertilizers is deteriorating both the environment and soil, making it a big challenge faced by sustainable agriculture. To assist the efforts for the solution of this burning issue, nine different potential native strains of plant growth-promoting bacteria (PGPB) namely, SA-1(Bacillus subtilis), SA-5 (Stenotrophomonas humi),SA-7(Azospirillum brasilense), BH-1(Azospirillum oryzae), BH-7(Azotobacter armeniacus), BH-8(Rhizobium pusense), BA-3(Azospirillum zeae), BA-6(Rhizobium pusense), and BA-7(Pseudomonas fragi) were isolated that were characterized morphologically, biochemically and molecularly on the basis of 16S rRNA sequencing. Furthermore, the capability of indigenous PGPB in wheat (Triticum aestivum, Chakwal-50) under control, DAP+FYM, SA-1,5,7, BH-1,7,8, BA-3,6,7, DAP+ FYM + SA-1,5,7, DAP+FYM+ BH-1,7,8 and DAP+FYM+ BA-3,6,7 treatments was assessed in a randomized complete block design (RCBD). The results of the study showed that there was a significant increase in plant growth, nutrients, quality parameters, crop yield, and soil nutrients at three depths under SA-1,5,7, BH-1,7,8, and BA-3,6,7 in combination with DAP+FYM. Out of all these treatments, DAP+ FYM + BA-3,6,7 was found to be the most efficient for wheat growth having the highest 1000-grain weight of 55.1 g. The highest values for plant height, no. of grains/spike, spike length, shoot length, root length, shoot dry weight, root dry weight, 1000 grain weight, biological yield, and economic yield were found to be 90.7 cm, 87.7 cm, 7.20 cm, 53.5 cm, 33.5 cm, 4.87 g, 1.32 g, 55.1 g, 8209 kg/h, and 4572 kg/h, respectively, in the DAP+FYM+BA treatment. The DAP+FYM+BA treatment had the highest values of TN (1.68 µg/mL), P (0.38%), and K (1.33%). Likewise, the value of mean protein (10.5%), carbohydrate (75%), lipid (2.5%), and available P (4.68 ppm) was also highest in the DAP+FYM+BA combination. C:P was found to be significantly highest (20.7) in BA alone but was significantly lowest (11.9) in DAP+FYM+BA. Hence, the integration of strains BA-3, BA-5, and BA-7 in fertilizers can be regarded as the most suitable choice for agricultural growth in the sub-mountainous lower region of AJK. This could serve as the best choice for sustainable wheat growth and improved soil fertility with lesser impacts on the environment.
Collapse
Affiliation(s)
- Israr Asghar
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Maqsood Ahmed
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science and Technology (MUST), Bhimber, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Akram
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Vehari, Pakistan
| | - Adnan Umair
- Department of Agriculture, Research wing, Soil and Water Testing Laboratory, Sialkot, Pakistan
| | | | | | - Aamna Naeem
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
4
|
Wang G, Chen M, Jiang L, Zhang Y. Nitenpyram biodegradation by a novel nitenpyram-degrading bacterium, Ochrobactrum sp. strain DF-1, and its novel degradation pathway. Front Microbiol 2023; 14:1209322. [PMID: 37520376 PMCID: PMC10373928 DOI: 10.3389/fmicb.2023.1209322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Nitenpyram is a neonicotinoid insecticide that is commonly found in the environment. However, its biodegradation by pure cultures of bacteria has not been widely investigated and the catabolic pathway (s) for nitenpyram metabolism remain elusive. In this study, the aerobic strain DF-1, isolated from a wastewater-treatment pool contaminated with nitenpyram. The strain was designated an Ochrobactrum sp. utilizing a combination of traditional methods and molecular ones. Strain DF-1 can use nitenpyram as a sole carbon or nitrogen source for growth. In liquid medium, 100 mg·L-1 nitenpyram was metabolized to undetectable levels within 10 days. Four metabolites were found by gas chromatography-mass spectrometry (GC-MS) analyses during nitenpyram degradation. According to the aforementioned data, a partial metabolic pathway of nitenpyram was proposed of strain DF-1. Inoculation of strain DF-1 promoted nitenpyram (10 mg·kg-1) degradation in either sterile or non-sterile soil. To our knowledge, this is the first characterization of nitenpyram degradation by a specific bacterium and likely to be exploited for the remediation of nitenpyram-contaminated sites.
Collapse
Affiliation(s)
- Guangli Wang
- Anhui Province Key Laboratory of Pollution Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Mengqing Chen
- Anhui Province Key Laboratory of Pollution Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Li Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yunfang Zhang
- Anhui Province Key Laboratory of Pollution Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
5
|
Mahreen N, Yasmin S, Asif M, Yahya M, Ejaz K, Mehboob-ur-Rahman, Yousaf S, Amin I, Zulfiqar S, Imran A, Khaliq S, Arif M. Mitigation of water scarcity with sustained growth of Rice by plant growth promoting bacteria. FRONTIERS IN PLANT SCIENCE 2023; 14:1081537. [PMID: 36755700 PMCID: PMC9900138 DOI: 10.3389/fpls.2023.1081537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/02/2023] [Indexed: 11/03/2023]
Abstract
Climate change augments the risk to food security by inducing drought stress and a drastic decline in global rice production. Plant growth-promoting bacteria (PGPB) have been known to improve plant growth under drought stress. Here in the present study, we isolated, identified, and well-characterized eight drought-tolerant bacteria from the rice rhizosphere that are tolerant to 20% PEG-8000. These strains exhibited multiple plant growth-promoting traits, i.e., 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, exopolysaccharide production, phosphate (P)-solubilizing activity (51-356 µg ml-1), indole-3 acetic acid (IAA) production (14.3-46.2 µg ml-1), and production of organic acids (72-178 µg ml-1). Inoculation of bacterial consortium (Bacillus subtilis NM-2, Brucella haematophilum NM-4, and Bacillus cereus NM-6) significantly improved seedling growth and vigor index (1009.2-1100) as compared to non-inoculated stressed plants (630-957). Through rhizoscanning, efficiency of the consortium was validated by improved root parameters such as root length (17%), diameter, and surface area (18%) of all tested genotypes as compared with respective non-inoculated stressed treatments. Furthermore, the response of consortium inoculation on three rice genotypes was positively correlated with improved plant growth and drought stress ameliorating traits by the accumulation of osmoprotectant, i.e., proline (85.8%-122%), relative water content (51%), membrane stability index (64%), and production of antioxidant enzymes to reduce oxidative damage by reactive oxygen species. A decrease in temperature and improved chlorophyll content of inoculated plants were found using infrared thermal imaging and soil plant analyzer development (SPAD), respectively. The key supporting role of inoculation toward stress responses was validated using robust techniques like infrared thermal imaging and an infrared gas analyzer. Furthermore, principal component analysis depicts the contribution of inoculation on stress responses and yield of tested rice genotypes under water stress. The integration of drought-tolerant rice genotype (NIBGE-DT02) and potential bacterial strains, i.e., NM-2, NM-4, and NM-6, can serve as an effective bioinoculant to cope with water scarcity under current alarming issues related to food security in fluctuating climate.
Collapse
Affiliation(s)
- Naima Mahreen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Sumera Yasmin
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Mahreen Yahya
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Khansa Ejaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Mehboob-ur-Rahman
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Sumaira Yousaf
- Nuclear Institute for Agriculture and Biology (NIAB) College, Pakistan Institute for Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Sana Zulfiqar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Asma Imran
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Muhammad Arif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute for Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| |
Collapse
|
6
|
Hu M, Zhang F, Li G, Ruan H, Li X, Zhong L, Chen G, Rui Y. Falsochrobactrum tianjinense sp. nov., a New Petroleum-Degrading Bacteria Isolated from Oily Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11833. [PMID: 36142106 PMCID: PMC9517009 DOI: 10.3390/ijerph191811833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The microbial remediation technology had great potential and attracted attention to total petroleum hydrocarbon pollution (TPH) remediation, but its efficiency is limited by its application in the field. In this study, a new TPH-degrading strain, TDYN1, was isolated from contaminated oil soil in Dagang Oilfield in Tianjin, China, and identified as Falsochrobactrum sp. by 16S rRNA sequence analysis. The physiological characterization of the isolate was observed. The orthogonal experiment was carried out for the optimum degradation conditions to improve its biodegradation efficiency. The strain was the gram-stain-negative, short rod-shaped, non-spore-forming, designated Falsochrobactrum tianjinense sp. nov (strain TDYN1); it had 3.51 Mb, and the DNA G + C content of the strain was 56.0%. The degradation rate of TDYN1 was 69.95% after 7 days of culture in optimal degradation conditions (temperature = 30 °C, pH = 8, salinity = 10 g L-1, petroleum concentration = 1 g L-1, and the inoculation dose of strain TDYN1 = 6%) and also reached more than 30% under other relatively extreme conditions. It suggested that the TDYN1 has great potential for TPH remediation in the soils of North China.
Collapse
Affiliation(s)
- Mengjie Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Feifan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Gaoyuan Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Haihua Ruan
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinhao Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Lei Zhong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yichao Rui
- Rodale Institute, Kutztown, PA 19530, USA
| |
Collapse
|
7
|
Screening and Biocontrol Potential of Rhizobacteria Native to Gangetic Plains and Hilly Regions to Induce Systemic Resistance and Promote Plant Growth in Chilli against Bacterial Wilt Disease. PLANTS 2021; 10:plants10102125. [PMID: 34685934 PMCID: PMC8541367 DOI: 10.3390/plants10102125] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) is a microbial population found in the rhizosphere of plants that can stimulate plant development and restrict the growth of plant diseases directly or indirectly. In this study, 90 rhizospheric soil samples from five agro climatic zones of chilli (Capsicum annuum L.) were collected and rhizobacteria were isolated, screened and characterized at morphological, biochemical and molecular levels. In total, 38% of rhizobacteria exhibited the antagonistic capacity to suppress Ralstonia solanacearum growth and showed PGPR activities such as indole acetic acid production by 67.64% from total screened rhizobacteria isolates, phosphorus solubilization by 79.41%, ammonia by 67.75%, HCN by 58.82% and siderophore by 55.88%. We performed a principal component analysis depicting correlation and significance among plant growth-promoting activities, growth parameters of chilli and rhizobacterial strains. Plant inoculation studies indicated a significant increase in growth parameters and PDS1 strain showed maximum 71.11% biocontrol efficiency against wilt disease. The best five rhizobacterial isolates demonstrating both plant growth-promotion traits and biocontrol potential were characterized and identified as PDS1—Pseudomonas fluorescens (MN368159), BDS1—Bacillus subtilis (MN395039), UK4—Bacillus cereus (MT491099), UK2—Bacillus amyloliquefaciens (MT491100) and KA9—Bacillus subtilis (MT491101). These rhizobacteria have the potential natural elicitors to be used as biopesticides and biofertilizers to improve crop health while warding off soil-borne pathogens. The chilli cv. Pusa Jwala treated with Bacillus subtilis KA9 and Pseudomonas fluorescens PDS1 showed enhancement in the defensive enzymes PO, PPO, SOD and PAL activities in chilli leaf and root tissues, which collectively contributed to induced resistance in chilli plants against Ralstonia solanacearum. The induction of these defense enzymes was found higher in leave tissues (PO—4.87-fold, PP0—9.30-fold, SOD—9.49-fold and PAL—1.04-fold, respectively) in comparison to roots tissue at 48 h after pathogen inoculation. The findings support the view that plant growth-promoting rhizobacteria boost defense-related enzymes and limit pathogen growth in chilli plants, respectively, hence managing the chilli bacterial wilt.
Collapse
|
8
|
Zia R, Nawaz MS, Yousaf S, Amin I, Hakim S, Mirza MS, Imran A. Seed inoculation of desert-plant growth-promoting rhizobacteria induce biochemical alterations and develop resistance against water stress in wheat. PHYSIOLOGIA PLANTARUM 2021; 172:990-1006. [PMID: 33547812 DOI: 10.1111/ppl.13362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 05/11/2023]
Abstract
Water shortage limits agricultural productivity, so strategies to get higher yields in dry agricultural systems is vital to circumvent the effect of climate change and land-shortage. The plant rhizosphere harbors beneficial bacteria able to confer biotic/abiotic tolerance along with a positive impact on plant growth. Herein, three bacterial strains, Proteus mirabilis R2, Pseudomonas balearica RF-2 and Cronobacter sakazakii RF-4 (accessions: LS975374, LS975373, LS975370, respectively) isolated from native desert-weeds were investigated for their response to improve wheat growth under drought stress. The bacteria showed drought tolerance up to 20% polyethylene glycol (PEG; -0.6 MPa), and salt (65-97 g l-1 ), 1-aminocyclopropane-1-carboxylate (ACC)-deaminase activity, P/Zn/K-solubilization, calcite degradation, IAA, and siderophore production. The plant growth-promoting rhizobacteria (PGPR) were evaluated on wheat under water stress. The P. balearica strain RF-2 primed seeds showed a maximum promptness index and germination index under PEG-stress, that is, 68% and 100%, respectively. Inoculation significantly improved plant growth, leaf area, and biomass under water stress. P. mirabilis R2 inoculated plant leaves showed the highest water contents as compared to the plants inoculated with other strains. C. sakazakii RF-4 inoculated plants showed minimum cell injury, electrolyte leakage, and maximum cell membrane stability at PEG stress. After 13 days exposure to drought, C. sakazakii RF-4 treated plants showed an overall higher expression of cytosolic ascorbate peroxidase (cAPX) and ribulose-bisphosphate carboxylase (rbcL) genes. The activity of stress-induced catalase and polyphenol oxidase was reduced, while that of peroxidase and superoxide dismutase increased after inoculation but the response was temporal. Taken together, this data explains that different PGPR (especially C. sakazakii RF-4) modulate differential responses in wheat that eventually leads towards drought tolerance, hence, it has the potential to enhance crop production in arid regions.
Collapse
Affiliation(s)
- Rabisa Zia
- National Institute for Biotechnology and Genetic Engineering (NIBGE) P.O. Box 577 Jhang Road, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Shoib Nawaz
- National Institute for Biotechnology and Genetic Engineering (NIBGE) P.O. Box 577 Jhang Road, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sumaira Yousaf
- Nuclear Institute of Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE) P.O. Box 577 Jhang Road, Faisalabad, Pakistan
| | - Sughra Hakim
- National Institute for Biotechnology and Genetic Engineering (NIBGE) P.O. Box 577 Jhang Road, Faisalabad, Pakistan
| | - Muhammad Sajjad Mirza
- National Institute for Biotechnology and Genetic Engineering (NIBGE) P.O. Box 577 Jhang Road, Faisalabad, Pakistan
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE) P.O. Box 577 Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
9
|
Hakim S, Naqqash T, Nawaz MS, Laraib I, Siddique MJ, Zia R, Mirza MS, Imran A. Rhizosphere Engineering With Plant Growth-Promoting Microorganisms for Agriculture and Ecological Sustainability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.617157] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The rhizosphere is undoubtedly the most complex microhabitat, comprised of an integrated network of plant roots, soil, and a diverse consortium of bacteria, fungi, eukaryotes, and archaea. The rhizosphere conditions have a direct impact on crop growth and yield. Nutrient-rich rhizosphere environments stimulate plant growth and yield and vice versa. Extensive cultivation exhaust most of the soils which need to be nurtured before or during the next crop. Chemical fertilizers are the major source of crop nutrients but their uncontrolled and widespread usage has posed a serious threat to the sustainability of agriculture and stability of an ecosystem. These chemicals are accumulated in the soil, drained in water, and emitted to the air where they persist for decades causing a serious threat to the overall ecosystem. Plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere convert many plant-unavailable essential nutrients e.g., nitrogen, phosphorous, zinc, etc. into available forms. PGPR produces certain plant growth hormones (such as auxin, cytokinin, and gibberellin), cell lytic enzymes (chitinase, protease, hydrolases, etc.), secondary metabolites, and antibiotics, and stress alleviating compounds (e.g., 1-Aminocyclopropane-1- carboxylate deaminase), chelating agents (siderophores), and some signaling compounds (e.g., N-Acyl homoserine lactones) to interact with the beneficial or pathogenic counterparts in the rhizosphere. These multifarious activities of PGPR improve the soil structure, health, fertility, and functioning which directly or indirectly support plant growth under normal and stressed environments. Rhizosphere engineering with these PGPR has a wide-ranging application not only for crop fertilization but developing eco-friendly sustainable agriculture. Due to severe climate change effects on plants and rhizosphere biology, there is growing interest in stress-resilient PGPM and their subsequent application to induce stress (drought, salinity, and heat) tolerance mechanism in plants. This review describes the three components of rhizosphere engineering with an explicit focus on the broader perspective of PGPM that could facilitate rhizosphere engineering in selected hosts to serve as an efficient component for sustainable agriculture.
Collapse
|
10
|
Ryan MP, Pembroke JT. The Genus Ochrobactrum as Major Opportunistic Pathogens. Microorganisms 2020; 8:E1797. [PMID: 33207839 PMCID: PMC7696743 DOI: 10.3390/microorganisms8111797] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Ochrobactrum species are non-enteric, Gram-negative organisms that are closely related to the genus Brucella. Since the designation of the genus in 1988, several distinct species have now been characterised and implicated as opportunistic pathogens in multiple outbreaks. Here, we examine the genus, its members, diagnostic tools used for identification, data from recent Ochrobactrum whole genome sequencing and the pathogenicity associated with reported Ochrobactrum infections. This review identified 128 instances of Ochrobactrum spp. infections that have been discussed in the literature. These findings indicate that infection review programs should consider investigation of possible Ochrobactrum spp. outbreaks if these bacteria are clinically isolated in more than one patient and that Ochrobactrum spp. are more important pathogens than previously thought.
Collapse
Affiliation(s)
- Michael P. Ryan
- Department of Applied Sciences, Limerick Institute of Technology, Moylish V94 EC5T, Limerick, Ireland;
- Molecular Biochemistry Laboratory, Department of Chemical Sciences, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX2, Ireland
| | - J. Tony Pembroke
- Molecular Biochemistry Laboratory, Department of Chemical Sciences, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX2, Ireland
| |
Collapse
|
11
|
Ashford RT, Muchowski J, Koylass M, Scholz HC, Whatmore AM. Application of Whole Genome Sequencing and Pan-Family Multi-Locus Sequence Analysis to Characterize Relationships Within the Family Brucellaceae. Front Microbiol 2020; 11:1329. [PMID: 32760355 PMCID: PMC7372191 DOI: 10.3389/fmicb.2020.01329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/25/2020] [Indexed: 11/13/2022] Open
Abstract
The bacterial family Brucellaceae is currently composed of seven genera, including species of the genus Brucella, a number of which are significant veterinary and zoonotic pathogens. The bacteriological identification of pathogenic Brucella spp. may be hindered by their close phenotypic similarity to other members of the Brucellaceae, particularly of the genus Ochrobactrum. Additionally, a number of novel atypical Brucella taxa have recently been identified, which exhibit greater genetic diversity than observed within the previously described species, and which share genomic features with organisms outside of the genus. Furthermore, previous work has indicated that the genus Ochrobactrum is polyphyletic, raising further questions regarding the relationship between the genus Brucella and wider Brucellaceae. We have applied whole genome sequencing (WGS) and pan-family multi-locus sequence analysis (MLSA) approaches to a comprehensive panel of Brucellaceae type strains, in order to characterize relationships within the family. Phylogenies based on WGS core genome alignments were able to resolve phylogenetic relationships of 31 non-Brucella spp. type strains from within the family, alongside type strains of twelve Brucella species. A phylogeny based on concatenated pan-family MLSA data was largely consistent with WGS based analyses. Notably, recently described atypical Brucella isolates were consistently placed in a single clade with existing species, clearly distinct from all members of the genus Ochrobactrum and wider family. Both WGS and MLSA methods closely grouped Brucella spp. with a sub-set of Ochrobactrum species. However, results also confirmed that the genus Ochrobactrum is polyphyletic, with seven species forming a separate grouping. The pan-family MLSA scheme was subsequently applied to a panel of 50 field strains of the family Brucellaceae, isolated from a wide variety of sources. This analysis confirmed the utility of the pan-Brucellaceae MLSA scheme in placing field isolates in relation to recognized type strains. However, a significant number of these isolates did not cluster with currently identified type strains, suggesting the existence of additional taxonomic diversity within some members of the Brucellaceae. The WGS and pan-family MLSA approaches applied here provide valuable tools for resolving the identity and phylogenetic relationships of isolates from an expanding bacterial family containing a number of important pathogens.
Collapse
Affiliation(s)
- Roland T Ashford
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Jakub Muchowski
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Mark Koylass
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Holger C Scholz
- Department of Bacteriology and Toxinology, Bundeswehr Institute of Microbiology, Munich, Germany
| | - Adrian M Whatmore
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| |
Collapse
|
12
|
Structure, gene cluster of the O antigen and biological activity of the lipopolysaccharide from the rhizospheric bacterium Ochrobactrum cytisi IPA7.2. Int J Biol Macromol 2020; 154:1375-1381. [DOI: 10.1016/j.ijbiomac.2019.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023]
|
13
|
Shoaib A, Ali H, Javaid A, Awan ZA. Contending charcoal rot disease of mungbean by employing biocontrol Ochrobactrum ciceri and zinc. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1385-1397. [PMID: 32647456 PMCID: PMC7326837 DOI: 10.1007/s12298-020-00817-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Role of rhizobacteria and zinc (Zn) was investigated in the management of charcoal rot disease in mungbean [Vigna radiata (L.) Wilczek] caused by Macrophomina phaseolina (Tassi) Goid. In vitro, screening tests with eight rhizobacteria [Bacillus subtilis (FCBP-0324), B. subtilis (FCBP-0189), Rhizobacter daucus (FCBP-0450), Azospirillum brasilense (FCBP-0025), Azospirillum lipoferum (FCBP-0022), Pseudomonas malophilia (FCBP-0099), Pseudomonas florescense (FCBP-0083) and Ochrobactrum ciceri (FCBP-0727)] were conducted against M. phaseolina and FCBP-0727 were found as the most effective biocontrol agent. Molecular analyses of 16S rDNA combined with cultural and biochemical analyses confirmed FCBP-0727 identification (GeneBank Accession No. LC415039). Cell-free culture filtrate (CFCF) and cell culture of O. ciceri were separated and antifungal trials of both substrates indicated inhibition in mycelial growth and suppression in sclerotia formation, although the CFCF appeared to be more destructive against the pathogen. Ethyl-acetate and chloroform extracts of bacterial secondary metabolites completely halted the growth of M. phaseolina. The GC-MS analysis of CFCF of chloroform extract proved to be rich sources of bioactive fungicide like phthalates, adipic acid, propanoic acid, and linoleic acid. Likewise, CFCF of ethyl acetate also exhibited important organic compounds like phthalates, diisopropylglycol and octasiloxan. Pot experiment revealed that soil inoculation with O. ciceri in combination with Zn (2.5 mg/kg) protected mungbean plants against M. phaseolina through improving photosynthetic pigment, total protein content and activities of antioxidant enzymes (catalase, peroxidase and polyphenol oxidase). The present study will open new vistas for biological management of charcoal rot disease of mungbean using a combination of rhizobacteria and Zn.
Collapse
Affiliation(s)
- Amna Shoaib
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Haider Ali
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Arshad Javaid
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Zoia Arshad Awan
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
14
|
Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie van Leeuwenhoek 2020; 113:1075-1107. [PMID: 32488494 DOI: 10.1007/s10482-020-01429-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Endophytic microbes are known to live asymptomatically inside their host throughout different stages of their life cycle and play crucial roles in the growth, development, fitness, and diversification of plants. The plant-endophyte association ranges from mutualism to pathogenicity. These microbes help the host to combat a diverse array of biotic and abiotic stressful conditions. Endophytic microbes play a major role in the growth promotion of their host by solubilizing of macronutrients such as phosphorous, potassium, and zinc; fixing of atmospheric nitrogen, synthesizing of phytohormones, siderophores, hydrogen cyanide, ammonia, and act as a biocontrol agent against wide array of phytopathogens. Endophytic microbes are beneficial to plants by directly promoting their growth or indirectly by inhibiting the growth of phytopathogens. Over a long period of co-evolution, endophytic microbes have attained the mechanism of synthesis of various hydrolytic enzymes such as pectinase, xylanases, cellulase, and proteinase which help in the penetration of endophytic microbes into tissues of plants. The effective usage of endophytic microbes in the form of bioinoculants reduce the usage of chemical fertilizers. Endophytic microbes belong to different phyla such as Actinobacteria, Acidobacteria, Bacteroidetes, Deinococcus-thermus, Firmicutes, Proteobacteria, and Verrucomicrobia. The most predominant and studied endophytic bacteria belonged to Proteobacteria followed by Firmicutes and then by Actinobacteria. The most dominant among reported genera in most of the leguminous and non-leguminous plants are Bacillus, Pseudomonas, Fusarium, Burkholderia, Rhizobium, and Klebsiella. In future, endophytic microbes have a wide range of potential for maintaining health of plant as well as environmental conditions for agricultural sustainability. The present review is focused on endophytic microbes, their diversity in leguminous as well as non-leguminous crops, biotechnological applications, and ability to promote the growth of plant for agro-environmental sustainability.
Collapse
|
15
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
16
|
Comparative Genomics of a Paddy Field Bacterial Isolate Ochrobactrum sp. CPD-03: Analysis of Chlorpyrifos Degradation Potential. Indian J Microbiol 2020; 60:325-333. [PMID: 32655199 DOI: 10.1007/s12088-020-00864-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
Ochrobactrum genus is known to catabolize aromatic compounds. This study reports a complete genome sequence of Ochrobactrum sp. CPD-03 (~ 4.6 Mb of chromosomal features) responsible for chlorpyrifos (CP) isolated form a paddy field (20.3588° N, 85.8333° E) in Bhubaneswar, India. A comparative genomics approach was performed between CPD-03 and eight closely related genomes of other Ochrobactrum strains in order to deepen our knowledge, to establish its phylogenetic and functional relationships. The involvement of CP degrading genes indicated a versatile role of CPD-03 in additional field trails. This research would provide the genetic information for its use in natural environment for the depletion of organophosphorus (OP) compounds.
Collapse
|
17
|
Hu M, Li X, Li Z, Liu B, Yang Z, Tian Y. Ochrobactrum teleogrylli sp. nov., a pesticide-degrading bacterium isolated from the insect Teleogryllus occipitalis living in deserted cropland. Int J Syst Evol Microbiol 2020; 70:2217-2225. [PMID: 32100690 DOI: 10.1099/ijsem.0.003964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A Gram-stain-negative, non-spore-forming, motile, aerobic, rod-shaped bacteria strain, designated LCB8T, was isolated from the insect Teleogryllus occipitalis captured from a deserted cropland in Shuangliu district, Chengdu, PR China. Phylogenetic analysis on the basis of 16S rRNA gene sequence indicated that the strain represented a member of the genus Ochrobactrum, family Brucellaceae, class Alphaproteobacteria. Ochrobactrum pecoris CCUG 60088T (97.9 %) and Ochrobactrum haematophilum CCUG 38531T (98.8 %) were identified as the most closely related phylogenetic neighbours of strain LCB8T. The novel strain was able to grow at salt concentrations of 0-4.5 % (w/v), pH 5-9 and temperatures of 20-42 °C. The major quinone system was ubiquinone Q-10, the major fatty acids were C18 : 1ω7c, C16 : 0 and C18 : 0. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylmonomethylethanolamine, diphosphatidylglycerol and four undefined aminolipids. The major polyamines were putrescine and spermidine. Genome sequencing revealed a genome size of 4.76 Mbp and a DNA G+C content of 57.1 mol%. These phenotypic, genotypic and chemotaxonomic traits excellently supported the affiliation of LCB8T to the genus Ochrobactrum. Pairwise determined whole-genome average nucleotide identity (ANI) values indicated that strain LCB8T represents a novel species, for which we propose the name Ochrobactrum teleogrylli sp. nov. with the type strain LCB8T (=KCTC 72031T=CGMCC 1.13984T).
Collapse
Affiliation(s)
- Mengyao Hu
- Key laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xiaoguang Li
- Key laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zhenjiang Li
- Chengdu Jinkai Bioengineering Co., Ltd, Chengdu 611130, PR China
| | - Bo Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Zhigang Yang
- Chengdu Jinkai Bioengineering Co., Ltd, Chengdu 611130, PR China
| | - Yongqiang Tian
- Key laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
18
|
Yuan Z, Yan W, Wen C, Zheng J, Yang N, Sun C. Enterotype identification and its influence on regulating the duodenum metabolism in chickens. Poult Sci 2020; 99:1515-1527. [PMID: 32111319 PMCID: PMC7587748 DOI: 10.1016/j.psj.2019.10.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
Enterotypes are used to describe clusters of specific gut microbial community structures, but few reports exist on the identification of enterotypes in poultry. In addition, there is incomplete understanding on the role of the foregut microbiota in the digestion and absorption of nutrients in poultry. Thus, this study aimed to identify the duodenal enterotypes by examining microbial communities from 206 broilers using 16S rRNA high-throughput sequencing and explore the effects of enterotypes on phenotypic performance and nutrient metabolism with metabolomics. The duodenal microbial communities of the broiler population were partitioned into 3 enterotypes (ET1, ET2, and ET3), and significant differences were observed in α-diversity among the enterotypes (P < 0.01). At the genus level, the ET1 group was over-represented by Bacteroides (9.8%) and Escherichia–Shigella (8.9%), the ET2 group was over-represented by Ochrobactrum (19.4%) and Rhodococcus (14.7%), and the ET3 group was over-represented by Bacillus (23.4%) and Akkermansia (16.2%). The relative abundance of the dominant taxa of each enterotype was significantly higher than that in the other 2 enterotypes (P < 0.01). The results showed that Ochrobactrum and Rhodococcus were positively correlated with cellobiose, alpha-D-glucose, D-mannose, and D-allose (r = 0.429, 0.435, 0.482, and 0.562, respectively; all P < 0.05). Rhodococcus was also positively correlated with tridecanoic acid and glycerol 1-myristate (r = 0.655 and 0.489, respectively; all P < 0.01). In terms of phenotype, the triglyceride level in the ET2 group was significantly higher than that in the ET1 group (P < 0.05), and the subcutaneous fat thickness and abdominal fat weight in the ET2 group were the highest (P > 0.05). Taken together, these results confirmed the presence of enterotypes in broilers and found that the dominant microbes in broilers of the ET2 group might play a major role in the degradation and utilization of plant polysaccharides, which may have an impact on the serum triglyceride level and fat deposition in broilers. These findings lay a foundation for further studies on the gut microbial interactions with the metabolism in broilers and the regulation of the gut microbiota to promote growth and well-being in broilers.
Collapse
Affiliation(s)
- Zhongyang Yuan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Yan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Choi GM, Kim KM, Yun CS, Lee SY, Kim SY, Wee JH, Im WT. Ochrobactrum soli sp. nov., Isolated from a Korean Cattle Farm. Curr Microbiol 2020; 77:1104-1110. [PMID: 31960094 DOI: 10.1007/s00284-020-01882-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/10/2020] [Indexed: 11/25/2022]
Abstract
A Gram stain negative, motile, non-spore-forming, rod-shaped, strictly aerobic, beige-pigmented bacterium, designated strain BO-7T, was isolated from soil of cattle farm, in Seosan, Republic of Korea. On the basis of 16S rRNA gene sequencing, strain BO-7T clustered with species of the genus Ochrobactrum and appeared closely related to O. haematophilum CCUG 38531T (98.9%), O. daejeonense KCTC 22458T (98.1%), O. rhizosphaerae DSM 19824T (98.1%), O. pituitosum DSM 22207T (98.0%), and O. pecoris DSM 23868T (98.0%). The digital DNA-DNA hybridization and average nucleotide identity between strain BO-7T and the closely related strains were 21.9-39.1%, 78.5-89.5%, respectively, indicating that BO-7T is a novel species of the genus Ochrobactrum. The DNA G + C content of the genomic DNA was 57.1 mol%, and ubiquinone Q-10 was the predominant respiratory quinone. The polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylmonomethyl-ethanolamine, di-phosphatidylglycerol, the major polyamines were spermidine, putrescine, and sym-homospermidine. The major cellular fatty acids (> 5%) were C16:0, C19:0 cycle ω7c, and C18:1ω7c and/or C18:1ω6c (summed feature 8). ANI calculation, digital DNA-DNA hybridization, physiological and biochemical characteristics indicated that strain BO-7T represents a novel species of the genus Ochrobactrum, for which the name Ochrobactrum soli sp. nov. is proposed. The type strain is BO-7T (= KACC 19676T = LMG 30809T).
Collapse
Affiliation(s)
- Gyu-Min Choi
- Department of Biotechnology, Hankyong National University, 327 Chungang-no Anseong-si, Kyonggi-do, 17579, Republic of Korea.,AceEMzyme Co., Ltd., Academic Industry Cooperation, 327 Chungang-no Anseong-si, Kyonggi-do, 17579, Republic of Korea
| | - Kyung Min Kim
- Department of Biotechnology, Hankyong National University, 327 Chungang-no Anseong-si, Kyonggi-do, 17579, Republic of Korea.,AceEMzyme Co., Ltd., Academic Industry Cooperation, 327 Chungang-no Anseong-si, Kyonggi-do, 17579, Republic of Korea
| | - Chan-Seok Yun
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Soon Youl Lee
- Department of Biotechnology, Hankyong National University, 327 Chungang-no Anseong-si, Kyonggi-do, 17579, Republic of Korea
| | - Sang Yong Kim
- Department of Food Science & Bio Technology, Shinansan University, Ansan, Korea
| | - Ji-Hyang Wee
- Department of Food Science & Bio Technology, Shinansan University, Ansan, Korea
| | - Wan-Taek Im
- Department of Biotechnology, Hankyong National University, 327 Chungang-no Anseong-si, Kyonggi-do, 17579, Republic of Korea. .,AceEMzyme Co., Ltd., Academic Industry Cooperation, 327 Chungang-no Anseong-si, Kyonggi-do, 17579, Republic of Korea.
| |
Collapse
|
20
|
Burygin GL, Kargapolova KY, Kryuchkova YV, Avdeeva ES, Gogoleva NE, Ponomaryova TS, Tkachenko OV. Ochrobactrum cytisi IPA7.2 promotes growth of potato microplants and is resistant to abiotic stress. World J Microbiol Biotechnol 2019; 35:55. [PMID: 30900049 DOI: 10.1007/s11274-019-2633-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/08/2019] [Indexed: 11/26/2022]
Abstract
Bacteria in natural associations with agricultural crops are promising for use in the improvement of clonal micropropagation of plants. We clarified the taxonomic position of Ochrobactrum cytisi strain IPA7.2 and investigated its tolerance for salinity, high temperature, and glyphosate pollution. We also tested the strain's potential to promote the growth of potato (Solanum tuberosum L.) microplants. Using the IPA7.2 draft genome (no. NZ_MOEC00000000), we searched for housekeeping genes and also for the target genes encoding glyphosate tolerance and plant-growth-promoting ability. A multilocus sequence analysis of the gap, rpoB, dnaK, trpE, aroC, and recA housekeeping genes led us to identify isolate IPA7.2 as O. cytisi. The strain tolerated temperatures up to 50 °C and NaCl concentrations up to 3-4%, and it produced 8 µg ml-1 of indole-3-acetic acid. It also tolerated 6 mM glyphosate owing to the presence of type II 5-enolpyruvylshikimate-3-phosphate synthase. Finally, it was able to colonize the roots and tissues of potato microplants, an ability preserved by several generations after subculturing. We identified the development phase of potato microplants that was optimal for inoculation with O. cytisi IPA7.2. Inoculation of in vitro-grown 15-day-old microplants increased the mitotic index of root meristem cells (by 50%), the length of shoots (by 34%), the number of leaves (by 7%), and the number of roots (by 16%). Under ex vitro conditions, the inoculated plants had a greater leaf area (by 77%) and greater shoot and root dry weight (by 84 and 61%, respectively) than did the control plants. We recommend O. cytisi IPA 7.2 for use in the growing of potato microplants to improve the production of elite seed material.
Collapse
Affiliation(s)
- Gennady L Burygin
- Vavilov Saratov State Agrarian University, 1 Teatralnaya Ploshchad, Saratov, Russia, 410012.
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049.
| | | | - Yelena V Kryuchkova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Elena S Avdeeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Natalia E Gogoleva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, Kazan, Russia, 420111
- Kazan Federal University, 18 Ulitsa Kremlyovskaya, Kazan, Russia, 420111
| | | | - Oksana V Tkachenko
- Vavilov Saratov State Agrarian University, 1 Teatralnaya Ploshchad, Saratov, Russia, 410012
| |
Collapse
|
21
|
Sun L, Yao L, Gao X, Huang K, Bai N, Lyu W, Chen W. Falsochrobactrum shanghaiense sp. nov., isolated from paddy soil and emended description of the genus Falsochrobactrum. Int J Syst Evol Microbiol 2019; 69:778-782. [PMID: 30652966 DOI: 10.1099/ijsem.0.003236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A non-spore-forming, motile, Gram-stain-negative, short rod-shaped strain, designated HN4T, was isolated from a paddy soil sample collected in Shanghai, China. A comparative analysis o-f 16S rRNA gene sequences showed that strain HN4T fell within the genus Falsochrobactrum, forming a clear cluster with the type strain of Falsochrobactrum ovis, with which it exhibited a 16S rRNA gene sequence similarity value of 98.2 %. Strain HN4T grew optimally at pH 7.0, 30-35 °C and in the presence of 1 % (w/v) NaCl. It was positive for oxidase activity. Chemotaxonomic analysis showed that strain HN4T contained ubiquinone-10 as the predominant respiratory quinone and possessed summed feature 8(C18 : 1ω7c and/or C18 : 1ω6c) and C19 : 0cyclo ω8c as predominant fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine. The DNA G+C content was 56.9 mol%. Strain HN4T exhibited a DNA-DNA relatedness level of 18±1 % with Falsochrobactrum ovis CCM 8460T. Based on the data obtained in this study, strain HN4T represents a novel species of the genus Falsochrobactrum, for which the name Falsochrobactrumshanghaiense sp. nov. is proposed. The type strain is HN4T (=JCM 32785T=CCTCC AB 2018063T).
Collapse
Affiliation(s)
- Lina Sun
- 1Eco-Environmental Protection Research Institute Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- 2Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201403, PR China
| | - Li Yao
- 3College of Marine and Bio-Engineering, Yancheng Teachers University, Yancheng,Jiangsu 210095, PR China
| | - Xinhua Gao
- 1Eco-Environmental Protection Research Institute Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- 4Shanghai Key Laboratory of Horticultural Technology, Shanghai, 201403, PR China
| | - Kaihua Huang
- 1Eco-Environmental Protection Research Institute Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- 5Environmental Protection Monitoring Station of Shanghai, Shanghai, 201403, PR China
| | - Naling Bai
- 1Eco-Environmental Protection Research Institute Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- 6Shanghai Agricultural Environment and Farmland Conservation Experiment Station of Ministry of Agriculture, Shanghai, 201403, PR China
| | - Weiguang Lyu
- 6Shanghai Agricultural Environment and Farmland Conservation Experiment Station of Ministry of Agriculture, Shanghai, 201403, PR China
- 1Eco-Environmental Protection Research Institute Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- 2Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201403, PR China
| | - Wei Chen
- 1Eco-Environmental Protection Research Institute Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- 5Environmental Protection Monitoring Station of Shanghai, Shanghai, 201403, PR China
| |
Collapse
|
22
|
Villagrasa E, Ferrer-Miralles N, Millach L, Obiol A, Creus J, Esteve I, Solé A. Morphological responses to nitrogen stress deficiency of a new heterotrophic isolated strain of Ebro Delta microbial mats. PROTOPLASMA 2019; 256:105-116. [PMID: 29987389 DOI: 10.1007/s00709-018-1263-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Microorganisms living in hypersaline microbial mats frequently form consortia under stressful and changing environmental conditions. In this paper, the heterotrophic strain DE2010 from a microalgae consortium (Scenedesmus sp. DE2009) from Ebro Delta microbial mats has been phenotypically and genotypically characterized and identified. In addition, changes in the morphology and biomass of this bacterium in response to nitrogen deficiency stress have been evaluated by correlative light and electron microscopy (CLEM) combining differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) and scanning electron microscopy (SEM). These isolated bacteria are chemoorganoheterotrophic, gram-negative, and strictly aerobic bacteria that use a variety of amino acids, organic acids, and carbohydrates as carbon and energy sources, and they grow optimally at 27 °C in a pH range of 5 to 9 and tolerate salinity from 0 to 70‰ NaCl. The DNA-sequencing analysis of the 16S rRNA and nudC and fixH genes and the metabolic characterization highlight that strain DE2010 corresponds to the species Ochrobactrum anthropi. Cells are rod shaped, 1-3 μm in length, and 0.5 μm wide, but under deprived nitrogen conditions, cells are less abundant and become more round, reducing their length and area and, consequently, their biomass. An increase in the number of pleomorphic cells is observed in cultures grown without nitrogen using different optical and electron microscopy techniques. In addition, the amplification of the fixH gene confirms that Ochrobactrum anthropi DE2010 has the capacity to fix nitrogen, overcoming N2-limiting conditions through a nifH-independent mechanism that is still unidentified.
Collapse
Affiliation(s)
- Eduard Villagrasa
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Laia Millach
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Aleix Obiol
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Jordi Creus
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Isabel Esteve
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Antonio Solé
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
23
|
Stępkowski T, Banasiewicz J, Granada CE, Andrews M, Passaglia LMP. Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae. Genes (Basel) 2018. [PMID: 29538303 PMCID: PMC5867884 DOI: 10.3390/genes9030163] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The legume tribe Genisteae comprises 618, predominantly temperate species, showing an amphi-Atlantic distribution that was caused by several long-distance dispersal events. Seven out of the 16 authenticated rhizobial genera can nodulate particular Genisteae species. Bradyrhizobium predominates among rhizobia nodulating Genisteae legumes. Bradyrhizobium strains that infect Genisteae species belong to both the Bradyrhizobium japonicum and Bradyrhizobium elkanii superclades. In symbiotic gene phylogenies, Genisteae bradyrhizobia are scattered among several distinct clades, comprising strains that originate from phylogenetically distant legumes. This indicates that the capacity for nodulation of Genisteae spp. has evolved independently in various symbiotic gene clades, and that it has not been a long-multi-step process. The exception is Bradyrhizobium Clade II, which unlike other clades comprises strains that are specialized in nodulation of Genisteae, but also Loteae spp. Presumably, Clade II represents an example of long-lasting co-evolution of bradyrhizobial symbionts with their legume hosts.
Collapse
Affiliation(s)
- Tomasz Stępkowski
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Joanna Banasiewicz
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Camille E Granada
- Universidade do Vale do Taquari-UNIVATES, Rua Avelino Tallini, 171, 95900-000 Lajeado, RS, Brazil.
| | - Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
| | - Luciane M P Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Korshunova TY, Mukhamatdyarova SR, Loginov ON. Molecular genetic and chemotaxonomic identification of the bacterium of the genus Ochrobactrum possessing oil-oxidizing and nitrogen-fixing activity. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017050090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Yu X, Li Y, Cui Y, Liu R, Li Y, Chen Q, Gu Y, Zhao K, Xiang Q, Xu K, Zhang X. An indoleacetic acid-producing Ochrobactrum sp. MGJ11 counteracts cadmium effect on soybean by promoting plant growth. J Appl Microbiol 2017; 122:987-996. [PMID: 27995689 DOI: 10.1111/jam.13379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/16/2016] [Accepted: 12/08/2016] [Indexed: 11/29/2022]
Abstract
AIMS To analyse whether some indoleacetic acid (IAA)-secreting plant growth-promoting bacteria can alleviate cadmium (Cd) stress, the role of an Ochrobactrum sp. MGJ11 from rhizosphere of soybean in promoting plant growth, and to evaluate the counteracting Cd effects on soybean. METHODS AND RESULTS Ochrobactrum sp. MGJ11 produced 121·2 mg l-1 of IAA. MGJ11 increased soybean root length, shoot length and biomass by 30·1, 30·8 and 13·4% respectively. In liquid medium, no IAA production was detected in Cd concentration of 100 mg l-1 . In soil with 20-80 mg kg-1 Cd, MGJ11 promoted soybean root elongation (29·4-161·4%) and increased the shoot length (up to 52·7%) and biomass (up to 87·2%). After growing for 38 days, Cd concentrations in the roots of inoculated soybean were lower than in those of noninoculated plants. Only a little Cd (2·6-16·9 μg g-1 ) was translocated from the root to shoot. CONCLUSIONS Ochrobactrum sp. MGJ11 secretes IAA and shows tolerance against Cd. MGJ11 inoculation improves the root length, shoot length and biomass of soybean in both vermiculite and Cd vermiculite, and decreases Cd concentration of soybean root. The characteristics of MGJ11 suggest that it could be used for promoting soybean growth and lowering bioavailability of soil Cd for soybean root. SIGNIFICANCE AND IMPACT OF THE STUDY In this study, we isolated a plant growth-promoting Ochrobactrum with the activity of mitigating Cd toxicity to plant roots. The Ochrobactrum can be considered as a potential bioaugmentation agent that promotes plant growth, especially in some agricultural systems, or that helps in the phytoremediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- X Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Y Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Y Cui
- Sichuan Provincial Academy of Natural Resource and Sciences, Chengdu, China
| | - R Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Y Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Q Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Y Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - K Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Q Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - K Xu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - X Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
26
|
de Lajudie P, Martinez-Romero E. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Agrobacterium and Rhizobium Minutes of the meeting, 7 September 2014, Tenerife, Spain. Int J Syst Evol Microbiol 2017; 67:516-520. [DOI: 10.1099/ijsem.0.001597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Philippe de Lajudie
- IRD, LSTM, Campus International de Baillarguet TA A-82/J, 34398 Montpellier Cédex 5, France
| | | |
Collapse
|
27
|
Hirai J, Yamagishi Y, Sakanashi D, Koizumi Y, Suematsu H, Mikamo H. [A Case of Bacteremia Caused by Ochrobacterium intermedium]. ACTA ACUST UNITED AC 2016; 90:129-33. [PMID: 27197440 DOI: 10.11150/kansenshogakuzasshi.90.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report herein on a case of bacteremia caused by Ochrobactrum intermedium (O. intermedium) identified with biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). An 86-year-old man was admitted to our hospital with paralysis of the right side of the body and dysphagia. He was diagnosed as having a pontine infarction based on the brain MRI findings and was admitted to hospital to have anti-platelet therapy. Three days after admission, he had a fever. Although he had redness and swelling at the peripheral venous catheter insertion site, he was diagnosed as having aspiration pneumonia, since he had fine crackles on auscultation. Soon after taking two sets of blood cultures and removal of the peripheral venous catheter, sulbactam/ampicillin (SBT/ABPC) was administrated. Fifty three hours after incubation, gram-negative bacilli was detected from an aerobic bottle and identified as O. intermedium with MALDI-TOF MS (Bruker MS). Antimicrobial chemotherapy was changed to meropenem (MEPM). He was treated for a total of seven days, and recovered without relapse. Infection caused by O. intermedium has been very uncommon, however, O. intermedium has been recognized as an emerging pathogen in immunodeficient and immunocompetent patients. Since identification of Ochrobactrum species by biochemical methods could be difficult, MALDI-TOF MS might be helpful to clarify Ochrobactrum species just as in the present case.
Collapse
|
28
|
Li L, Li YQ, Jiang Z, Gao R, Nimaichand S, Duan YQ, Egamberdieva D, Chen W, Li WJ. Ochrobactrum endophyticum sp. nov., isolated from roots of Glycyrrhiza uralensis. Arch Microbiol 2015; 198:171-9. [PMID: 26615404 DOI: 10.1007/s00203-015-1170-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 11/29/2022]
Abstract
A novel Gram-staining negative, motile, rod-shaped and aerobic bacterial strain, designated EGI 60010(T), was isolated from healthy roots of Glycyrrhiza uralensis F. collected from Yili County, Xinjiang Province, North-West China. The 16S rRNA gene sequence of strain EGI 60010(T) showed 97.2 % sequence similarities with Ochrobactrum anthropi ATCC 49188(T) and Ochrobactrum cytisi ESC1(T), and 97.1 % with Ochrobactrum lupini LUP21(T). The phylogenetic analysis based on 16S rRNA gene sequences showed that the new isolate clustered with members of the genera Ochrobactrum, and formed a distinct clade in the neighbour-joining tree. Q-10 was identified as the respiratory quinone for strain EGI 60010(T). The major fatty acids were summed feature 8 (C18:1 ω6c and/or C18:1 ω7c), C19:0 cyclo ω8c, summed feature 4 (C17:1 iso I/anteiso B) and C16:0. The polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol and phosphatidylcholine. The DNA G+C content of strain EGI 60010(T) was determined to be 60.4 mol%. The genomic DNA relatedness values determined between strain EGI 60010(T) and the closely related strains O. anthropi JCM 21032(T), O. cytisi CCTCC AB2014258(T) and O. lupini NBRC 102587(T) were 50.3, 50.0 and 41.6 %, respectively. Based on the results of the molecular studies supported by its differentiating phenotypic characteristics, strain EGI 60010(T) was considered to represent a novel species within the genus Ochrobactrum, for which the name Ochrobactrum endophyticum sp. nov., is proposed. The type strain is EGI 60010(T) (=CGMCC 1.15082(T) = KCTC 42485(T) = DSM 29930(T)).
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, People's Republic of China
| | - Yan-Qiong Li
- Kunming Medical University Haiyuan College, Kunming, 650106, People's Republic of China
| | - Zhao Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Rui Gao
- China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650231, People's Republic of China
| | - Salam Nimaichand
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yan-Qing Duan
- China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650231, People's Republic of China
| | - Dilfuza Egamberdieva
- Department of Biotechnology and Microbiology, Faculty of Biology and Soil Science, National University of Uzbekistan, Tashkent, Republic of Uzbekistan, 100174
| | - Wei Chen
- China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650231, People's Republic of China.
| | - Wen-Jun Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, People's Republic of China.
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China.
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
29
|
Imran A, Mirza MS, Shah TM, Malik KA, Hafeez FY. Differential response of kabuli and desi chickpea genotypes toward inoculation with PGPR in different soils. Front Microbiol 2015; 6:859. [PMID: 26379638 PMCID: PMC4548240 DOI: 10.3389/fmicb.2015.00859] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
Pakistan is among top three chickpea producing countries but the crop is usually grown on marginal lands without irrigation and fertilizer application which significantly hampers its yield. Soil fertility and inoculation with beneficial rhizobacteria play a key role in nodulation and yield of legumes. Four kabuli and six desi chickpea genotypes were, therefore, evaluated for inoculation response with IAA-producing Ochrobactrum ciceri Ca-34(T) and nitrogen fixing Mesorhizobium ciceri TAL-1148 in single and co-inoculation in two soils. The soil type 1 was previously unplanted marginal soil having low organic matter, P and N contents compared to soil type 2 which was a fertile routinely legume-cultivated soil. The effect of soil fertility status was pronounced and fertile soil on average, produced 31% more nodules, 62% more biomass and 111% grain yield than marginal soil. Inoculation either with O. ciceri alone or its co-inoculation with M. ciceri produced on average higher nodules (42%), biomass (31%), grains yield (64%) and harvest index (72%) in both chickpea genotypes over non-inoculated controls in both soils. Soil 1 showed maximum relative effectiveness of Ca-34(T) inoculation for kabuli genotypes while soil 2 showed for desi genotypes except B8/02. Desi genotype B8/02 in soil type 1 and Pb-2008 in soil type 2 showed significant yield increase as compared to respective un-inoculated controls. Across bacterial inoculation treatments, grain yield was positively correlated to growth and yield contributing parameters (r = 0.294(*) to 0.838(***) for desi and r = 0.388(*) to 0.857(**) for kabuli). PCA and CAT-PCA analyses clearly showed a site-specific response of genotype x bacterial inoculation. Furthermore, the inoculated bacterial strains were able to persist in the rhizosphere showing colonization on root and within nodules. Present study shows that plant growth promoting rhizobacteria (PGPR) inoculation should be integrated with national chickpea breading program in Pakistan especially for marginal soils. Furthermore, the study shows the potential of phytohormone producing strain Ca-34(T) as promising candidate for development of biofertilizer alongwith nodulating strains to get sustainable yield of kabuli and desi chickpea with minimum inputs at marginal land.
Collapse
Affiliation(s)
- Asma Imran
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Pakistan
| | - Muhammad S Mirza
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Pakistan
| | - Tariq M Shah
- Plant Breeding and Genetic Division, Nuclear Institute for Agriculture and Biology Faisalabad, Pakistan
| | - Kauser A Malik
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Pakistan ; Department of Biological Sciences, Forman Christian College University Lahore, Pakistan
| | - Fauzia Y Hafeez
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Pakistan ; Department of Biological Sciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| |
Collapse
|
30
|
Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 2015; 6:198. [PMID: 25852661 PMCID: PMC4362341 DOI: 10.3389/fmicb.2015.00198] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/24/2015] [Indexed: 11/24/2022] Open
Abstract
The present study was conducted to characterize the native plant growth promoting (PGP) bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. Nine bacterial isolates were purified, screened in vitro for PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.). Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram-positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK-3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these Plant growth-promoting rhizobacteria (PGPR) strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76%) and root N contents (up to 32%) was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK.
Collapse
Affiliation(s)
- Afshan Majeed
- Department of Soil and Environmental Sciences, The University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - M Kaleem Abbasi
- Department of Soil and Environmental Sciences, The University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan ; Department of Soil and Environmental Sciences, The University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Sohail Hameed
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Pakistan
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Pakistan
| | - Nasir Rahim
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Pakistan
| |
Collapse
|
31
|
Paulucci NS, Gallarato LA, Reguera YB, Vicario JC, Cesari AB, García de Lema MB, Dardanelli MS. Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity. Microbiol Res 2015; 173:1-9. [PMID: 25801965 DOI: 10.1016/j.micres.2014.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 11/17/2022]
Abstract
The aim of this work was to clarify the mechanism related to plant growth promoting of a bacterial strain (L115) isolated from Arachis hypogaea rhizospheres and the effects of high growth temperature and salinity on phospholipids and fatty acids composition. L115 was isolated from peanut rhizospheres and identified according to the sequence analysis of the 16S rRNA gene. Phenotypic, metabolic and plant growth promoting rhizobacteria (PGPR) characteristics of L115 were tested. Inoculation test in plant growth chamber was performed. In addition, L115 was exposed to a 37 °C and 300 mM NaCl and phospholipids and fatty acid composition were evaluated. L115 strain was identified as Ochrobactrum intermedium and was able to increase the peanut shoot and root length as well as dry weight, indicating a PGPR role by being able to produce indole acetic acid and siderophores and present ACC deaminase activity. In addition, L115 showed tolerance to both high growth temperature and 300 mM NaCl. The most striking change was a decreased percentage of 18:1 fatty acid and an increase in 16:0 and 18:0 fatty acids, under high growth temperature or a combination of increased temperature and salinity. The most important change in phospholipid levels was an increase in phosphatidylcholine biosynthesis in all growth conditions. L115 can promote the growth of peanut and can tolerate high growth temperature and salinity modifying the fatty acid unsaturation degree and increasing phosphatidylcholine levels. This work is the first to report the importance of the genus Ochrobactrum as PGPR on peanut growth as well as on the metabolic behaviour against abiotic stresses that occur in soil. This knowledge will be useful for developing strategies to improve the growth of this bacterium under stress and to enhance its bioprocess for the production of inoculants.
Collapse
Affiliation(s)
- Natalia S Paulucci
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina.
| | - Lucas A Gallarato
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - Yanina B Reguera
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - Julio C Vicario
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - Adriana B Cesari
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - Mirta B García de Lema
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - Marta S Dardanelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| |
Collapse
|
32
|
Imran A, Saadalla MJA, Khan SU, Mirza MS, Malik KA, Hafeez FY. Ochrobactrum sp. Pv2Z2 exhibits multiple traits of plant growth promotion, biodegradation and N-acyl-homoserine-lactone quorum sensing. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0824-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Niches, population structure and genome reduction in Ochrobactrum intermedium: clues to technology-driven emergence of pathogens. PLoS One 2014; 9:e83376. [PMID: 24465379 PMCID: PMC3894950 DOI: 10.1371/journal.pone.0083376] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/01/2013] [Indexed: 12/21/2022] Open
Abstract
Ochrobactrum intermedium is considered as an emerging human environmental opportunistic pathogen with mild virulence. The distribution of isolates and sequences described in literature and databases showed frequent association with human beings and polluted environments. As population structures are related to bacterial lifestyles, we investigated by multi-locus approach the genetic structure of a population of 65 isolates representative of the known natural distribution of O. intermedium. The population was further surveyed for genome dynamics using pulsed-field gel electrophoresis and genomics. The population displayed a clonal epidemic structure with events of recombination that occurred mainly in clonal complexes. Concerning biogeography, clones were shared by human and environments and were both cosmopolitan and local. The main cosmopolitan clone was genetically and genomically stable, and grouped isolates that all harbored an atypical insertion in the rrs. Ubiquitism and stability of this major clone suggested a clonal succes in a particular niche. Events of genomic reduction were detected in the population and the deleted genomic content was described for one isolate. O. intermedium displayed allopatric characters associated to a tendancy of genome reduction suggesting a specialization process. Considering its relatedness with Brucella, this specialization might be a commitment toward pathogenic life-style that could be driven by technological selective pressure related medical and industrial technologies.
Collapse
|
34
|
Wang L, Ma F, Lee DJ, Wang A, Ren N. Bioflocculants from hydrolysates of corn stover using isolated strain Ochrobactium ciceri W2. BIORESOURCE TECHNOLOGY 2013; 145:259-63. [PMID: 23232033 DOI: 10.1016/j.biortech.2012.11.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/02/2012] [Accepted: 11/02/2012] [Indexed: 05/22/2023]
Abstract
This study isolated a total of seven pure cultures from activated sludge that could produce bioflocculants from 1.7% v/v H2SO4 treated hydrolysates of corn stover. The most effective strain amongst the seven isolates was identified as Ochrobactrum ciceri W2. The W2 cells produced biopolymers in logarithm growth phase, peaking at 3.8 g l(-1)in productivity on 16 h. The yielded bioflocculant was primarily consisting of polysaccharides and proteins, and maintained its flocculating activity to 0.5% w/w kaolin suspensions over pH 1-10 (at 30°C) and 30-100°C (at pH 7). This study also revealed that the strain W2 could utilize biopolymers from hydrolysate of corn stover without addition of excess phosphate salts, which could largely reduce production costs of bioflocculants.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | | | | | | | | |
Collapse
|
35
|
Carro L, Flores-Félix JD, Cerda-Castillo E, Ramírez-Bahena MH, Igual JM, Tejedor C, Velázquez E, Peix A. Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol Microbiol 2013; 63:4433-4438. [PMID: 23852155 DOI: 10.1099/ijs.0.050310-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain, designated PECAE04(T), was isolated from root nodules of Cicer arietinum in Spain. Phylogenetic analysis based on 16S rRNA gene sequence placed the isolate into the genus Paenibacillus with its closest relative being Paenibacillus castaneae Ch-32(T) with 98.4 % 16S rRNA gene sequence similarity followed by Paenibacillus glycanilyticus DS-1(T), Paenibacillus prosopidis PW21(T), Paenibacillus xinjiangensis B538(T) and Paenibacillus catalpae D75(T) with similarities ranging from 97.9 to 96.8 %. DNA-DNA hybridization measurements showed values lower than 20 % between the strain PECAE04(T) and any of these species. The isolate was a Gram-stain-positive, motile, sporulating rod. Catalase and oxidase activities were positive. Aesculin was hydrolysed but casein and gelatin were not. Acetoin production, H2S production, nitrate reduction and urease and caseinase production were negative. Growth was supported by many carbohydrates and organic acids as carbon sources. MK-7 was the predominant menaquinone and anteiso-C15 : 0, iso-C16 : 0 and C16 : 0 were the major fatty acids. Major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, a glycolipid, three phospholipids and an unidentified lipid. Meso-diaminopimelic acid was not detected in the peptidoglycan. The DNA G+C content was 52.9 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain PECAE04(T) should be considered to be a representative of a novel species of the genus Paenibacillus, for which the name Paenibacillus endophyticus sp. nov. is proposed. The type strain is PECAE04(T) ( = LMG 27297(T) = CECT 8234(T)).
Collapse
Affiliation(s)
- Lorena Carro
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | | | | - Martha-Helena Ramírez-Bahena
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Spain.,Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - José M Igual
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Spain.,Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Carmen Tejedor
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Encarna Velázquez
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Alvaro Peix
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Spain.,Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
36
|
Boukhatem ZF, Domergue O, Bekki A, Merabet C, Sekkour S, Bouazza F, Duponnois R, Lajudie P, Galiana A. Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria. FEMS Microbiol Ecol 2012; 80:534-47. [DOI: 10.1111/j.1574-6941.2012.01315.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/02/2012] [Accepted: 01/23/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Zineb Faiza Boukhatem
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes; Département de Biotechnologie; Université d'Oran; Es Senia; Algeria
| | - Odile Domergue
- INRA; Laboratoire des Symbioses Tropicales et Méditerranéennes; UMR LSTM; Montpellier; France
| | - Abdelkader Bekki
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes; Département de Biotechnologie; Université d'Oran; Es Senia; Algeria
| | - Chahinez Merabet
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes; Département de Biotechnologie; Université d'Oran; Es Senia; Algeria
| | - Sonia Sekkour
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes; Département de Biotechnologie; Université d'Oran; Es Senia; Algeria
| | - Fatima Bouazza
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes; Département de Biotechnologie; Université d'Oran; Es Senia; Algeria
| | - Robin Duponnois
- IRD; Laboratoire des Symbioses Tropicales et Méditerranéennes; UMR LSTM; Montpellier; France
| | - Philippe Lajudie
- IRD; Laboratoire des Symbioses Tropicales et Méditerranéennes; UMR LSTM; Montpellier; France
| | - Antoine Galiana
- CIRAD; Laboratoire des Symbioses Tropicales et Méditerranéennes; UMR LSTM; Montpellier; France
| |
Collapse
|
37
|
Characterization of a versatile rhizospheric organism from cucumber identified asOchrobactrum haematophilum. J Basic Microbiol 2011; 52:232-44. [DOI: 10.1002/jobm.201000491] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 04/26/2011] [Indexed: 11/07/2022]
|
38
|
Woo SG, Ten LN, Park J, Lee M. Ochrobactrum daejeonense sp. nov., a nitrate-reducing bacterium isolated from sludge of a leachate treatment plant. Int J Syst Evol Microbiol 2010; 61:2690-2696. [PMID: 21169456 DOI: 10.1099/ijs.0.025510-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-reaction-negative, non-spore-forming, rod-shaped, aerobic bacterial strain, designated MJ11(T), was isolated from sludge of a leachate treatment plant in Daejeon, South Korea, and was characterized taxonomically by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ11(T) belonged to the family Brucellaceae, class Alphaproteobacteria, and was most closely related to Ochrobactrum ciceri Ca-34(T) (97.9 % sequence similarity) and Ochrobactrum pituitosum CCUG 50899(T) (96.4 %). Comparative sequence analyses of the additional phylogenetic marker genes dnaK, groEL and gyrB confirmed the affiliation of strain MJ11(T) to the genus Ochrobactrum. The G+C content of the genomic DNA of strain MJ11(T) was 59.3 mol%. The detection of a quinone system with ubiquinone Q-10 as the predominant respiratory lipoquinone, a fatty acid profile with C(18 : 1)ω7c (62.6 %) and C(19 : 0) cyclo ω8c (14.2 %) as the major components, a polar lipid profile with phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylmonomethylethanolamine, diphosphatidylglycerol and unknown aminolipids AL1 and AL2 as major polar lipids and spermidine and putrescine as the predominant polyamines also supported the affiliation of strain MJ11(T) to the genus Ochrobactrum. The DNA-DNA relatedness between strain MJ11(T) and Ochrobactrum ciceri DSM 22292(T) was 29 ± 7 %, clearly showing that the isolate constitutes a new genospecies. Strain MJ11(T) could be clearly differentiated from its closest neighbours on the basis of its phenotypic, genotypic and chemotaxonomic features. Therefore, strain MJ11(T) represents a novel species of the genus Ochrobactrum, for which the name Ochrobactrum daejeonense sp. nov. is proposed. The type strain is MJ11(T) ( = KCTC 22458(T) = JCM 16234(T)).
Collapse
Affiliation(s)
- Sung-Geun Woo
- School of Civil and Environmental Engineering, Yonsei University, Seoul 120-749, Republic of Korea.,Research and Development Division, H-Plus Eco Ltd, BVC 301, KRIBB, Eoeun-dong, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Leonid N Ten
- Research and Development Division, H-Plus Eco Ltd, BVC 301, KRIBB, Eoeun-dong, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Joonhong Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Myungjin Lee
- Research and Development Division, H-Plus Eco Ltd, BVC 301, KRIBB, Eoeun-dong, Yuseong-gu, Daejeon 305-333, Republic of Korea
| |
Collapse
|
39
|
Kämpfer P, Huber B, Busse HJ, Scholz HC, Tomaso H, Hotzel H, Melzer F. Ochrobactrum pecoris sp. nov., isolated from farm animals. Int J Syst Evol Microbiol 2010; 61:2278-2283. [PMID: 20952542 DOI: 10.1099/ijs.0.027631-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-negative, rod-shaped, non-spore-forming strains, designated 08RB2639(T) and 08RB2781-1, were isolated from a sheep (Ovis aries) and a domestic boar (Sus scrofa domestica), respectively. By 16S rRNA gene sequencing, the isolates revealed identical sequences and were shown to belong to the Alphaproteobacteria. They exhibited 97.8 % 16S rRNA gene sequence similarity with Ochrobactrum rhizosphaerae PR17(T), O. pituitosum CCUG 50899(T), O. tritici SCII24(T) and O. haematophilum CCUG 38531(T) and 97.4 % sequence similarity with O. cytisi ESC1(T), O. anthropi LMG 3331(T) and O. lupini LUP21(T). The recA gene sequences of the two isolates showed only minor differences (99.5 % recA sequence similarity), and strain 08RB2639(T) exhibited the highest recA sequence similarity with Ochrobactrum intermedium CCUG 24694(T) (91.3 %). The quinone system was ubiquinone Q-10, with minor amounts of Q-9 and Q-11, the major polyamines were spermidine, putrescine and sym-homospermidine and the major lipids were phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylcholine, with moderate amounts of the Ochrobactrum-specific unidentified aminolipid AL2. The major fatty acids (>20 %) were C₁₈:₁ω7c and C₁₉:₀ cyclo ω8c. These traits were in excellent agreement with the assignment of the isolates to the genus Ochrobactrum. DNA-DNA relatedness and physiological and biochemical tests allowed genotypic and phenotypic differentiation from other members of the genus Ochrobactrum. Hence, it is concluded that the isolates represent a novel species, for which the name Ochrobactrum pecoris sp. nov. is proposed (type strain 08RB2639(T) = DSM 23868(T) = CCUG 60088(T) = CCM 7822(T)).
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Bettina Huber
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität Wien, A-1210 Vienna, Austria
| | - Hans-Jürgen Busse
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität Wien, A-1210 Vienna, Austria
| | - Holger C Scholz
- Bundeswehr Institute of Microbiology, D-80937 Munich, Germany
| | - Herbert Tomaso
- Friedrich Loeffler Institute, Institute of Bacterial Infections and Zoonoses, D-07743 Jena, Germany
| | - Helmut Hotzel
- Friedrich Loeffler Institute, Institute of Bacterial Infections and Zoonoses, D-07743 Jena, Germany
| | - Falk Melzer
- Friedrich Loeffler Institute, Institute of Bacterial Infections and Zoonoses, D-07743 Jena, Germany
| |
Collapse
|