1
|
Gao P, Zhang X, Huang X, Chen Z, Marietou A, Holmkvist L, Qu L, Finster K, Gong X. Genomic insight of sulfate reducing bacterial genus Desulfofaba reveals their metabolic versatility in biogeochemical cycling. BMC Genomics 2023; 24:209. [PMID: 37076818 PMCID: PMC10116758 DOI: 10.1186/s12864-023-09297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Sulfate-reducing bacteria (SRB) drive the ocean sulfur and carbon cycling. They constitute a diverse phylogenetic and physiological group and are widely distributed in anoxic marine environments. From a physiological viewpoint, SRB's can be categorized as complete or incomplete oxidizers, meaning that they either oxidize their carbon substrate completely to CO2 or to a stoichiometric mix of CO2 and acetate. Members of Desulfofabaceae family are incomplete oxidizers, and within that family, Desulfofaba is the only genus with three isolates that are classified into three species. Previous physiological experiments revealed their capability of respiring oxygen. RESULTS Here, we sequenced the genomes of three isolates in Desulfofaba genus and reported on a genomic comparison of the three species to reveal their metabolic potentials. Based on their genomic contents, they all could oxidize propionate to acetate and CO2. We confirmed their phylogenetic position as incomplete oxidizers based on dissimilatory sulfate reductase (DsrAB) phylogeny. We found the complete pathway for dissimilatory sulfate reduction, but also different key genes for nitrogen cycling, including nitrogen fixation, assimilatory nitrate/nitrite reduction, and hydroxylamine reduction to nitrous oxide. Their genomes also contain genes that allow them to cope with oxygen and oxidative stress. They have genes that encode for diverse central metabolisms for utilizing different substrates with the potential for more strains to be isolated in the future, yet their distribution is limited. CONCLUSIONS Results based on marker gene search and curated metagenome assembled genomes search suggest a limited environmental distribution of this genus. Our results reveal a large metabolic versatility within the Desulfofaba genus which establishes their importance in biogeochemical cycling of carbon in their respective habitats, as well as in the support of the entire microbial community through releasing easily degraded organic matters.
Collapse
Affiliation(s)
- Ping Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources (MNR), 266061, Qingdao, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, 266237, Qingdao, PR China
| | - Xiaoting Zhang
- Institute of Marine Science and Technology, Shandong University, 266237, Qingdao, PR China
| | - Xiaomei Huang
- Institute of Marine Science and Technology, Shandong University, 266237, Qingdao, PR China
| | - Zhiyi Chen
- Institute of Marine Science and Technology, Shandong University, 266237, Qingdao, PR China
| | - Angeliki Marietou
- Section for Microbiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Lars Holmkvist
- Section for Microbiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Lingyun Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources (MNR), 266061, Qingdao, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, 266237, Qingdao, PR China
| | - Kai Finster
- Section for Microbiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
- Stellar Astrophysics Center, Department of Physics and Astronomy, Aarhus University, 8000, Aarhus, Denmark
| | - Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, 266237, Qingdao, PR China.
| |
Collapse
|
2
|
Santos JCD, Lopes DRG, Silva LCF, Ramos JLL, Dias RS, Lima HS, Sousa MPD, Waldow VDA, Paula SOD, Ferreira SO, Silva CCD. Characterization of the biofilm structure and microbial diversity of sulfate-reducing bacteria from petroleum produced water supplemented by different carbon sources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114189. [PMID: 34864413 DOI: 10.1016/j.jenvman.2021.114189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Colonization by sulfate-reducing bacteria (SRB) in environments associated with oil is mainly dependent on the availability of sulfate and carbon sources. The formation of biofilms by SRB increases the corrosion of pipelines and oil storage tanks, representing great occupational and operational risks and respective economic losses for the oil industry. The aim of this study was to evaluate the influence of the addition of acetate, butyrate, lactate, propionate and oil on the structure of biofilm formed in carbon steel coupons, as well as on the diversity of total bacteria and SRB in the planktonic and sessile communities from petroleum produced water. The biofilm morphology, chemical composition, average roughness and the microbial diversity was analyzed. In all carbon sources, formation of dense biofilm without morphological and/or microbial density differences was detected, with the most of cells observed in the form of individual rods. The diversity and richness indices of bacterial species in the planktonic community was greater than in the biofilm. Geotoga was the most abundant genus, and more than 85% of SRB species were common to all treatments. The functional predicted profile shown that the observed genres in planktonic communities were related to the reduction of sulfate, sulfite, elementary sulfur and other sulfur compounds, but the abundance varied between treatments. For the biofilm, the functions predicted profile for the oil treatment was the one that most varied in relation to the control, while for the planktonic community, the addition of all carbon sources interfered in the predicted functional profile. Thus, although it does not cause changes in the structure and morphology biofilm, the supplementation of produced water with different carbon sources is associated with changes in the SRB taxonomic composition and functional profiles of the biofilm and the planktonic bacterial communities.
Collapse
Affiliation(s)
| | | | | | - José Luiz Lima Ramos
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Roberto Sousa Dias
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Helena Santiago Lima
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Maíra Paula de Sousa
- Petrobras Research and Development Center (CENPES), Petrobras, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | |
Collapse
|
3
|
Murphy AE, Bulseco AN, Ackerman R, Vineis JH, Bowen JL. Sulphide addition favours respiratory ammonification (DNRA) over complete denitrification and alters the active microbial community in salt marsh sediments. Environ Microbiol 2020; 22:2124-2139. [DOI: 10.1111/1462-2920.14969] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Anna E. Murphy
- Department of Marine and Environmental Sciences Marine Science Center, Northeastern University Nahant Massachusetts 01908 USA
- INSPIRE Environmental, Inc 513 Broadway Suite 314, Newport Rhode Island 02840 USA
| | - Ashley N. Bulseco
- Department of Marine and Environmental Sciences Marine Science Center, Northeastern University Nahant Massachusetts 01908 USA
- The Ecosystems Center Marine Biological Laboratory Woods Hole Massachusetts 02543 USA
| | - Ross Ackerman
- Biology Department, Bates College Lewiston Maine 04240 USA
| | - Joseph H. Vineis
- Department of Marine and Environmental Sciences Marine Science Center, Northeastern University Nahant Massachusetts 01908 USA
| | - Jennifer L. Bowen
- Department of Marine and Environmental Sciences Marine Science Center, Northeastern University Nahant Massachusetts 01908 USA
| |
Collapse
|
4
|
Shah RM, Crosswell J, Metcalfe SS, Carlin G, Morrison PD, Karpe AV, Palombo EA, Steven ADL, Beale DJ. Influence of Human Activities on Broad-Scale Estuarine-Marine Habitats Using Omics-Based Approaches Applied to Marine Sediments. Microorganisms 2019; 7:microorganisms7100419. [PMID: 31590307 PMCID: PMC6843362 DOI: 10.3390/microorganisms7100419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/24/2019] [Indexed: 11/23/2022] Open
Abstract
Rapid urban expansion and increased human activities have led to the progressive deterioration of many marine ecosystems. The diverse microbial communities that inhabit these ecosystems are believed to influence large-scale geochemical processes and, as such, analyzing their composition and functional metabolism can be a means to assessing an ecosystem’s resilience to physical and chemical perturbations, or at the very least provide baseline information and insight into future research needs. Here we show the utilization of organic and inorganic contaminant screening coupled with metabolomics and bacterial 16S rRNA gene sequencing to assess the microbial community structure of marine sediments and their functional metabolic output. The sediments collected from Moreton Bay (Queensland, Australia) contained low levels of organic and inorganic contaminants, typically below guideline levels. The sequencing dataset suggest that sulfur and nitrite reduction, dehalogenation, ammonia oxidation, and xylan degradation were the major metabolic functions. The community metabolites suggest a level of functional homogeneity down the 40-cm core depth sampled, with sediment habitat identified as a significant driver for metabolic differences. The communities present in river and sandy channel samples were found to be the most active, with the river habitats likely to be dominated by photoheterotrophs that utilized carbohydrates, fatty acids and alcohols as well as reduce nitrates to release atmospheric nitrogen and oxidize sulfur. Bioturbated mud habitats showed overlapping faunal activity between riverine and sandy ecosystems. Nitrogen-fixing bacteria and lignin-degrading bacteria were most abundant in the sandy channel and bioturbated mud, respectively. The use of omics-based approaches provide greater insight into the functional metabolism of these impacted habitats, extending beyond discrete monitoring to encompassing whole community profiling that represents true phenotypical outputs. Ongoing omics-based monitoring that focuses on more targeted pathway analyses is recommended in order to quantify the flux changes within these systems and establish variations from these baseline measurements.
Collapse
Affiliation(s)
- Rohan M Shah
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC 3122, Australia.
| | - Joseph Crosswell
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organization, P. O. Box 2583, Dutton Park, QLD 4001, Australia.
| | - Suzanne S Metcalfe
- Land and Water, Commonwealth Scientific and Industrial Research Organization, P. O. Box 2583, Dutton Park, QLD 4001, Australia.
| | - Geoffrey Carlin
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organization, P. O. Box 2583, Dutton Park, QLD 4001, Australia.
| | - Paul D Morrison
- Australian Centre for Research on Separation Science, School of Applied Sciences, RMIT University, Melbourne, VIC 3001, Australia.
| | - Avinash V Karpe
- Land and Water, Commonwealth Scientific and Industrial Research Organization, P. O. Box 2583, Dutton Park, QLD 4001, Australia.
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC 3122, Australia.
| | - Andy D L Steven
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organization, P. O. Box 2583, Dutton Park, QLD 4001, Australia.
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization, P. O. Box 2583, Dutton Park, QLD 4001, Australia.
| |
Collapse
|
5
|
Qian Z, Tianwei H, Mackey HR, van Loosdrecht MCM, Guanghao C. Recent advances in dissimilatory sulfate reduction: From metabolic study to application. WATER RESEARCH 2019; 150:162-181. [PMID: 30508713 DOI: 10.1016/j.watres.2018.11.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 05/24/2023]
Abstract
Sulfate-reducing bacteria (SRB) are a group of diverse anaerobic microorganisms omnipresent in natural habitats and engineered environments that use sulfur compounds as the electron acceptor for energy metabolism. Dissimilatory sulfate reduction (DSR)-based techniques mediated by SRB have been utilized in many sulfate-containing wastewater treatment systems worldwide, particularly for acid mine drainage, groundwater, sewage and industrial wastewater remediation. However, DSR processes are often operated suboptimally and disturbances are common in practical application. To improve the efficiency and robustness of SRB-based processes, it is necessary to study SRB metabolism and operational conditions. In this review, the mechanisms of DSR processes are reviewed and discussed focusing on intracellular and extracellular electron transfer with different electron donors (hydrogen, organics, methane and electrodes). Based on the understanding of the metabolism of SRB, responses of SRB to environmental stress (pH-, temperature-, and salinity-related stress) are summarized at the species and community levels. Application in these stressed conditions is discussed and future research is proposed. The feasibility of recovering energy and resources such as biohydrogen, hydrocarbons, polyhydroxyalkanoates, magnetite and metal sulfides through the use of SRB were investigated but some long-standing questions remain unanswered. Linking the existing scientific understanding and observations to practical application is the challenge as always for promotion of SRB-based techniques.
Collapse
Affiliation(s)
- Zeng Qian
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Tianwei
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hamish Robert Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Chen Guanghao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
6
|
Beale DJ, Crosswell J, Karpe AV, Metcalfe SS, Morrison PD, Staley C, Ahmed W, Sadowsky MJ, Palombo EA, Steven ADL. Seasonal metabolic analysis of marine sediments collected from Moreton Bay in South East Queensland, Australia, using a multi-omics-based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1328-1341. [PMID: 29727957 DOI: 10.1016/j.scitotenv.2018.03.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Anthropogenic effects of urban density have altered natural ecosystems. Such changes include eutrophication of freshwater and adjoining coastal habitats, and increased levels of inorganic nutrients and pollutants into waterways. In Australia, these changes are intensified by large-scale ocean-atmospheric events, leading to considerable abiotic stress on the natural flora and fauna. Bacterial communities in marine sediments from Moreton Bay (South East Queensland, Australia) were examined in order to assess the impact of rainfall changes, chemical pollution, and subsequent abiotic stress on living organisms within a marine ecosystem. Sediments were collected during the wet and dry seasons and analyzed using bacterial metagenomics and community metabolomics techniques. Physicochemical data were also analyzed to account for biological variance that may be due to non-rainfall-based abiotic stresses. Wet-dry seasonality was the dominant control on bacterial community structure and metabolic function. Changes in the availability of nutrients, organic matter and light appeared to be the major seasonal stressors. In contrast, urban and industrial pollutants appeared to be minor stressors at the sites sampled. During the wet season, the bacterial community composition reflected organisms that utilize biogeochemical pathways with fast kinetics, such as aerobic metabolism, direct assimilation of inorganic compounds, and primary production. The transition to the dry season saw the bacterial community composition shift towards organisms that utilize more complex organic energy sources, such as carbohydrates and fatty acids, and anaerobic redox processes.
Collapse
Affiliation(s)
- D J Beale
- CSIRO Land & Water, Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - J Crosswell
- CSIRO Oceans & Atmosphere, Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - A V Karpe
- CSIRO Land & Water, Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - S S Metcalfe
- CSIRO Land & Water, Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - P D Morrison
- Australian Centre for Research on Separation Science, School of Applied Sciences, RMIT University, Melbourne, VIC 3001, Australia.
| | - C Staley
- Biotechnology Institute, University of Minnesota, St. Paul, MN, United States.
| | - W Ahmed
- CSIRO Land & Water, Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - M J Sadowsky
- Biotechnology Institute, University of Minnesota, St. Paul, MN, United States.
| | - E A Palombo
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - A D L Steven
- CSIRO Oceans & Atmosphere, Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
7
|
Miura T, Kita A, Okamura Y, Aki T, Matsumura Y, Tajima T, Kato J, Nakashimada Y. Effect of salinity on methanogenic propionate degradation by acclimated marine sediment-derived culture. Appl Biochem Biotechnol 2015; 177:1541-52. [PMID: 26364311 DOI: 10.1007/s12010-015-1834-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/03/2015] [Indexed: 11/25/2022]
Abstract
Degradation of propionate under high salinity is needed for biomethane production from salt-containing feedstocks. In this study, marine sediment-derived culture was evaluated to determine the effect of salinity on methanogenic propionate degradation. Microbes in marine sediments were subjected to fed-batch cultivation on propionate for developing acclimatized cultures. The rate of propionate degradation increased eightfold during 10 rounds of cultivation. Microbial community composition was determined through pyrosequencing of 16S rRNA gene amplicons after 10 rounds of cultivation. Taxa analysis was conducted for the reads obtained by pyrosequencing. Known propionate degraders were undetectable in the acclimated culture. Comparison of bacterial taxa in the original sediment with those in the acclimated culture revealed that the populations of four bacterial taxa were significantly increased during acclimation. Methanolobus was the predominant archaea genus in the acclimated culture. The propionate degradation rate of the acclimated culture was not affected by salinity of up to equivalent of 1.9 % NaCl. The rate decreased at higher salinity levels and was more than 50 % of the maximum rate even at equivalent of 4.3 % NaCl.
Collapse
Affiliation(s)
- Toyokazu Miura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8530, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Akihisa Kita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8530, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yoshiko Okamura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8530, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Tsunehiro Aki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8530, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yukihiko Matsumura
- Division of Energy and Environmental Engineering, Institute of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi, Hiroshima, 739-8527, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Takahisa Tajima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8530, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8530, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8530, Japan.
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
8
|
Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene. Syst Appl Microbiol 2013; 36:436-43. [DOI: 10.1016/j.syapm.2013.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/23/2013] [Accepted: 04/27/2013] [Indexed: 11/21/2022]
|
9
|
Cockell CS, Voytek MA, Gronstal AL, Finster K, Kirshtein JD, Howard K, Reitner J, Gohn GS, Sanford WE, Horton JW, Kallmeyer J, Kelly L, Powars DS. Impact disruption and recovery of the deep subsurface biosphere. ASTROBIOLOGY 2012; 12:231-46. [PMID: 22468887 DOI: 10.1089/ast.2011.0722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from the ∼35 million-year-old Chesapeake Bay impact structure, USA, with robust contamination control. Microbial enumerations displayed a logarithmic downward decline, but the different gradient, when compared to previously studied sites, and the scatter of the data are consistent with a microbiota influenced by the geological disturbances caused by the impact. Microbial abundance is low in buried crater-fill, ocean-resurge, and avalanche deposits despite the presence of redox couples for growth. Coupled with the low hydraulic conductivity, the data suggest the microbial community has not yet recovered from the impact ∼35 million years ago. Microbial enumerations, molecular analysis of microbial enrichment cultures, and geochemical analysis showed recolonization of a deep region of impact-fractured rock that was heated to above the upper temperature limit for life at the time of impact. These results show how, by fracturing subsurface rocks, impacts can extend the depth of the biosphere. This phenomenon would have provided deep refugia for life on the more heavily bombarded early Earth, and it shows that the deeply fractured regions of impact craters are promising targets to study the past and present habitability of Mars.
Collapse
|
10
|
Fan LF, Tang SL, Chen CP, Hsieh HL. Diversity and composition of sulfate- and sulfite-reducing prokaryotes as affected by marine-freshwater gradient and sulfate availability. MICROBIAL ECOLOGY 2012; 63:224-237. [PMID: 21785985 DOI: 10.1007/s00248-011-9912-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/30/2011] [Indexed: 05/31/2023]
Abstract
Sulfate- and sulfite-reducing prokaryotes (SSRP) communities play a key role in both sulfur and carbon cycles. In estuarine ecosystems, sulfate concentrations change with tides and could be limited in tidal freshwater reach or deep sediments. In a subtropical estuary of northern Taiwan in December 2007, we examined the compositional changes of SSRP communities. We examined three sites: from the lower estuarine brackish-water reach (site GR and mangrove vegetation site, GM) to the upper estuarine tidal freshwater reach (site HR), as well as from surface to a 50-cm depth. The partial sequence of sulfite reductase (dsrB) genes was used as a molecular marker of SSRP, linked to polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE) techniques. SSRP communities of the DGGE profiles varied with sites according to one-way analyses of similarities (Global R = 0.69, P = 0.001). Using cluster analysis, the DGGE profile was found to show site-specific clusters and a distinct depth zonation (five, six, and two SSRP communities at the GM, GR, and HR sites, respectively). SSRP composition was highly correlated to the combination of salinity, reduced sulfur, and total organic carbon contents (BIO-ENV analysis, r ( s ) = 0.56). After analyzing a total of 35 dsrB sequences in the DGGE gel, six groups with 15 phylotypes were found, which were closely related to marine-freshwater gradient. Moreover, sequences neighboring sulfite-reducing prokaryotes were observed, in addition to those affiliated to sulfate-reducing prokaryotes. Four phylotypes harvested in HR resembled the genus Desulfitobacterium, a sulfite-reducing prokaryote, which failed to use sulfate as an electron acceptor and were active in freshwater and sulfate-limited habitat. The other five phylotypes in the HR reach belonged to the sulfate-reducing prokaryotes of the genera Desulfatiferula, Desulfosarcina, Desulfovibrio, and Desulfotomaculum, which appeared to tolerate low salinity and low sulfate supply. SSRP phylotypes at the mangrove-vegetated GM site (five phylotypes in two groups) were phylogenetically less diverse, when compared with those at the non-mangrove-vegetated GR site (three phylotypes in three groups) and the tidally influenced freshwater HR site (nine phylotypes in five groups). Phylotypes found at GR and GM were all affiliated to marine sulfate-reducing prokaryote strains of the genera Desulfofaba, Desulfobotulus, Desulfatiferula, Desulfosarcina, and Desulfotomaculum. Notably, a phylotype recorded in the surface sediment at GR resembled the genus Desulfobulbus, which was recorded from freshwater environment consisting of the freshwater input at GR during ebb tides.
Collapse
Affiliation(s)
- Lan-Feng Fan
- Biodiversity Research Center, Academia Sinica, No. 128 Academia Rd., Sec. 2, Nankang, Taipei, 115, Taiwan
| | | | | | | |
Collapse
|
11
|
Upadhyaya G, Jackson J, Clancy TM, Hyun SP, Brown J, Hayes KF, Raskin L. Simultaneous removal of nitrate and arsenic from drinking water sources utilizing a fixed-bed bioreactor system. WATER RESEARCH 2010; 44:4958-4969. [PMID: 20732708 DOI: 10.1016/j.watres.2010.07.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/06/2010] [Accepted: 07/13/2010] [Indexed: 05/29/2023]
Abstract
A novel bioreactor system, consisting of two biologically active carbon (BAC) reactors in series, was developed for the simultaneous removal of nitrate and arsenic from a synthetic groundwater supplemented with acetic acid. A mixed biofilm microbial community that developed on the BAC was capable of utilizing dissolved oxygen, nitrate, arsenate, and sulfate as the electron acceptors. Nitrate was removed from a concentration of approximately 50 mg/L in the influent to below the detection limit of 0.2 mg/L. Biologically generated sulfides resulted in the precipitation of the iron sulfides mackinawite and greigite, which concomitantly removed arsenic from an influent concentration of approximately 200 ug/L to below 20 ug/L through arsenic sulfide precipitation and surface precipitation on iron sulfides. This study showed for the first time that arsenic and nitrate can be simultaneously removed from drinking water sources utilizing a bioreactor system.
Collapse
Affiliation(s)
- Giridhar Upadhyaya
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Zaballos M, López-López A, Ovreas L, Bartual SG, D'Auria G, Alba JC, Legault B, Pushker R, Daae FL, Rodríguez-Valera F. Comparison of prokaryotic diversity at offshore oceanic locations reveals a different microbiota in the Mediterranean Sea. FEMS Microbiol Ecol 2006; 56:389-405. [PMID: 16689872 DOI: 10.1111/j.1574-6941.2006.00060.x] [Citation(s) in RCA: 497] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The bacterial and archaeal assemblages at two offshore sites located in polar (Greenland Sea; depth: 50 and 2000 m) and Mediterranean (Ionian Sea; depth 50 and 3000 m) waters were studied by PCR amplification and sequencing of the last 450-500 bp of the 16S rRNA gene. A total of 1621 sequences, together with alignable 16S rRNA gene fragments from the Sargasso Sea metagenome database, were analysed to ascertain variations associated with geographical location and depth. The Ionian 50 m sample appeared to be the most diverse and also had remarkable differences in terms of the prokaryotic groups retrieved; surprisingly, however, many similarities were found at the level of large-scale diversity between the Sargasso database fragments and the Greenland 50 m sample. Most sequences with more than 97% sequence similarity, a value often taken as indicative of species delimitation, were only found at a single location/depth; nevertheless, a few examples of cosmopolitan sequences were found in all samples. Depth was also an important factor and, although both deep-water samples had overall similarities, there were important differences that could be due to the warmer waters at depth of the Mediterranean Sea.
Collapse
Affiliation(s)
- Milagros Zaballos
- División de Microbiología and Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abildgaard L, Nielsen MB, Kjeldsen KU, Ingvorsen K. Desulfovibrio alkalitolerans sp. nov., a novel alkalitolerant, sulphate-reducing bacterium isolated from district heating water. Int J Syst Evol Microbiol 2006; 56:1019-1024. [PMID: 16627648 DOI: 10.1099/ijs.0.63909-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel alkalitolerant, sulphate-reducing bacterium (strain RT2T) was isolated from alkaline district heating water. Strain RT2T was a motile vibrio (0.5–0.8 μm wide and 1.4–1.9 μm long) and grew at pH 6.9–9.9 (optimum at pH 9.0–9.4) and at 16–47 °C (optimum at 43 °C). The genomic DNA G+C content was 64.7 mol%. A limited number of compounds were used as electron donors with sulphate as electron acceptor, including lactate, pyruvate, formate and hydrogen/acetate. Sulphite and thiosulphate also served as electron acceptors. Based on physiological and genotypic properties, the isolate was considered to represent a novel species of the genus Desulfovibrio, for which the name Desulfovibrio alkalitolerans sp. nov. is proposed. The type strain is RT2T (=DSM 16529T=JCM 12612T). The strain is the first alkali-tolerant member of the genus Desulfovibrio to be described.
Collapse
Affiliation(s)
- Lone Abildgaard
- Department of Microbiology, Institute of Biological Sciences, University of Aarhus, Denmark
| | - Marie Bank Nielsen
- Department of Microbiology, Institute of Biological Sciences, University of Aarhus, Denmark
| | - Kasper Urup Kjeldsen
- Department of Microbiology, Institute of Biological Sciences, University of Aarhus, Denmark
| | - Kjeld Ingvorsen
- Department of Microbiology, Institute of Biological Sciences, University of Aarhus, Denmark
| |
Collapse
|
14
|
Tarpgaard IH, Boetius A, Finster K. Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes. Antonie van Leeuwenhoek 2005; 89:109-24. [PMID: 16328859 DOI: 10.1007/s10482-005-9014-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 09/15/2005] [Indexed: 11/25/2022]
Abstract
A psychrotrolerant acetate-oxidizing sulfate-reducing bacterium (strain akvb(T)) was isolated from sediment from the northern part of The North Sea with annual temperature fluctuations between 8 and 14 degrees C. Of the various substrates tested, strain akvb(T) grew exclusively by the oxidation of acetate coupled to the reduction of sulfate. The cells were motile, thick rods with round ends and grew in dense aggregates. Strain akvb(T) grew at temperatures ranging from -3.6 to 26.3 degrees C. Optimal growth was observed at 20 degrees C. The highest cell specific sulfate reduction rate of 6.2 fmol cell(-1) d(-1) determined by the (35)SO(2-)(40) method was measured at 26 degrees C. The temperature range of short-term sulfate reduction rates exceeded the temperature range of growth by 5 degrees C. The Arrhenius relationship for the temperature dependence of growth and sulfate reduction was linear, with two distinct slopes below the optimum temperatures of both processes. The critical temperature was 6.4 degrees C. The highest growth yield (4.3-4.5 g dry weight mol(-1) acetate) was determined at temperatures between 5 and 15 degrees C. The cellular fatty acid composition was determined with cultures grown at 4 and 20 degrees C, respectively. The relative proportion of cellular unsaturated fatty acids (e.g. 16:1omega7c) was higher in cells grown at 4 degrees C than in cells grown at 20 degrees C. The physiological responses to temperature changes showed that strain akvb(T) was well adapted to the temperature regime of the environment from which it was isolated. Phylogenetic analysis showed that strain akvb(T) is closest related to Desulfobacter hydrogenophilus, with a 16S rRNA gene sequence similarity of 98.6%. DNA-DNA-hybridization showed a similarity of 32% between D. hydrogenophilus and strain akvb(T). Based on phenotypic and DNA-based characteristics we propose that strain akvb(T) is a member of a new species, Desulfobacter psychrotolerans sp. nov.
Collapse
Affiliation(s)
- Irene H Tarpgaard
- Department of Microbiology, Bldg. 540, Institute of Biological Sciences, University of Aarhus, 8000 Aarhus, Denmark
| | | | | |
Collapse
|