1
|
Ge X, Yang S, Zhen C, Liu W. Actinophytocola gossypii sp. nov. and Streptomyces gossypii sp. nov., two novel actinomycetes isolated from rhizosphere soil of cotton. Int J Syst Evol Microbiol 2023; 73. [PMID: 37068120 DOI: 10.1099/ijsem.0.005832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Two Gram-positive, aerobic and non-motile actinomycetes, designated S1-96T and N2-109T, were isolated from soils collected from a cotton field. They are described as representing two novel species of genera Actinophytocola and Streptomyces through a polyphasic approach. Analysis of 16S rRNA gene sequences revealed that strains S1-96T and N2-109T showed highest similarity to Actinophytocola xinjiangensis CGMCC 4.4663T (99.10 %) and Streptomyces iconiensis BNT558T (98.21 %), respectively. Phylogenetic analyses based on 16S rRNA and core genes confirmed the close relationships of these strains. Genomic analyses further supported the novel taxonomic delimitation of these two species based on digital DNA-DNA hybridization and average nucleotide identity. Strains S1-96T and N2-109T contained MK-9(H4) and MK-9(H6) as the most abundant menaquinone, respectively. High abundances of iso-fatty acids were detected in both strains, which was similar to their close relatives. Physiological and polar lipid analyses also revealed differences between these strains and their phylogenetic neighbours, supporting their taxonomic delimitation as novel species. The names Actinophytocola gossypii sp. nov. (type strain S1-96T=JCM 34412T=CGMCC 4.7707T) and Streptomyces gossypii sp. nov. (type strain N2-109T=JCM 34628T=CGMCC 4.7717T) are proposed.
Collapse
Affiliation(s)
- Xianfeng Ge
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Shenrong Yang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Cheng Zhen
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Wenzheng Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
2
|
Streptomyces gobiensis sp. nov., an antimicrobial producing actinobacterium isolated from soil under black Gobi rocks. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A novel actinomycete, strain 1_25T, was isolated from soil under a black Gobi rock sample from Shuangta, PR China, and characterized using a polyphasic taxonomic approach. The results of comparative analysis of the 16S rRNA gene sequences indicated the 1_25T represented a member of the genus
Streptomyces
. Chemotaxonomic data revealed that 1_25T possessed MK-9(H8) as the major menaquinone. The cell wall contained ll-diaminopimelic acid (ll-DAP) and the whole-cell sugar pattern consisted of ribose, glucose and galactose. Major fatty acid methyl esters were observed to be iso-C16 : 0 (23.6 %), and anteiso-C15 : 0 (10.4 %). The genomic DNA G+C content of 1_25T was 69 mol %. The results of phylogenetic analysis based on 16S rRNA gene sequence indicated that 1_25T had high sequence similarity with
Streptomyces qinglanensis
172205T (98.1 %),
Streptomyces lycii
TRM 66187T (98 %), and
Streptomyces griseocarneus
JCM4580T (98 %). In addition to the differences in phenotypic characters, the average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between 1_25T and closely related species were below the recommended threshold values for assigning strains to the same species. The fermentation product of 1_25T in ISP2 had an inhibitory effect on
Staphylococcus aureus
. On the basis of these genotypic and phenotypic characteristics, strain 1_25T (=JCM 34936T=GDMCC 4.216T) represents a novel species of the genus
Streptomyces
, for which the name Streptomyces gobiensis sp. nov. is proposed.
Collapse
|
3
|
Zamora-Quintero AY, Torres-Beltrán M, Guillén Matus DG, Oroz-Parra I, Millán-Aguiñaga N. Rare actinobacteria isolated from the hypersaline Ojo de Liebre Lagoon as a source of novel bioactive compounds with biotechnological potential. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001144. [PMID: 35213299 PMCID: PMC8941997 DOI: 10.1099/mic.0.001144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
The Ojo de Liebre Lagoon is a Marine Protected Area that lies within a UNESCO World Heritage Site and is a critical habitat for important migratory species such as the grey whale and bird species. Unique hypersaline environments, such as the Ojo de Liebre Lagoon, are underexplored in terms of their bacterial and chemical diversity, representing a potential source for new bioactive compounds with pharmacological properties. Actinobacteria are one of the most diverse and prolific taxonomic bacterial groups in terms of marine bioactive compounds. This study aimed to identify the culturable actinobacterial community inhabiting the Lagoon, as well as to test their potential as new sources of anticancer compounds with pharmacological potential. A selective isolation approach focused on spore-forming bacteria from 40 sediment samples generated a culture collection of 64 strains. The 16S rRNA gene analyses identified three phyla in this study, the Actinobacteria, Firmicutes and Proteobacteria, where the phylum Actinobacteria dominated (57%) the microbial community profiles. Within the Actinobacteria, nine different genera were isolated including the Actinomadura, Micromonospora, Nocardiopsis, Plantactinospora and Streptomyces sp. We observed seasonal differences on actinobacteria recovery. For instance, Micromonospora strains were recovered during the four sampling seasons, while Arthrobacter and Pseudokineococcus were only isolated in February 2018, and Blastococcus, Rhodococcus and Streptomyces were uniquely isolated in June 2018. Ethyl acetate crude extracts derived from actinobacterial cultures were generated and screened for cytotoxic activity against six cancer cell lines. Strains showed promising low percentages of viability on lung (H1299), cervical (SiHa), colon (Caco-2) and liver (HepG2) cancer lines. Molecular networking results suggest many of the metabolites produced by these strains are unknown and they might harbour novel chemistry. Our results showed the Ojo de Liebre Lagoon is a novel source for isolating diverse marine actinobacteria which produce promising bioactive compounds for potential biotechnological use as anticancer agents.
Collapse
Affiliation(s)
- Andrea Y. Zamora-Quintero
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Mónica Torres-Beltrán
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Dulce G. Guillén Matus
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Irasema Oroz-Parra
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Natalie Millán-Aguiñaga
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| |
Collapse
|
4
|
Choi B, Jeong S, Kim E. Variation of the seed endophytic bacteria among plant populations and their plant growth-promoting activities in a wild mustard plant species, Capsella bursa-pastoris. Ecol Evol 2022; 12:e8683. [PMID: 35309752 PMCID: PMC8901890 DOI: 10.1002/ece3.8683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 12/26/2022] Open
Abstract
Recent studies have revealed that some bacteria can inhabit plant seeds, and they are likely founders of the bacterial community in the rhizosphere of or inside plants at the early developmental stage. Given that the seedling establishment is a critical fitness component of weedy plant species, the effects of seed endophytic bacteria (SEB) on the seedling performance are of particular interest in weed ecology. Here, we characterized the SEB in natural populations of Capsella bursa-pastoris, a model species of weed ecology. The composition of endophytic bacterial community was evaluated using deep sequencing of a 16S rDNA gene fragment. Additionally, we isolated bacterial strains from seeds and examined their plant growth-promoting traits. Actinobacteria, Firmicutes, Alpha-, and Gammaproteobacteria were major bacterial phyla inside seeds. C. bursa-pastoris natural populations exhibited variable seed microbiome such that the proportion of Actinobacteria and Alphaproteobacteria differed among populations, and 60 out of 82 OTUs occurred only in a single population. Thirteen cultivable bacterial species in six genera (Bacillus, Rhodococcus, Streptomyces, Staphylococcus, Paenibacillus, Pseudomonas) were isolated, and none of them except Staphylococcus haemolyticus were previously reported as seed endophytes. Eight isolates exhibited plant growth-promoting traits like phosphate solubilization activity, indole-3-acetic acid, or siderophore production. Despite the differences in the bacterial communities among plant populations, at least one isolated strain from each population stimulated shoot growth of either C. bursa-pastoris or its close relative A. thaliana when grown with plants in the same media. These results suggest that a weedy plant species, C. bursa-pastoris, contains bacterial endophytes inside their seeds, stimulating seedling growth and thereby potentially affecting seedling establishment.
Collapse
Affiliation(s)
- Byungwook Choi
- School of Earth Sciences and Environmental EngineeringGwangju Institute of Science and TechnologyGwangjuSouth Korea
| | - Seorin Jeong
- School of Earth Sciences and Environmental EngineeringGwangju Institute of Science and TechnologyGwangjuSouth Korea
| | - Eunsuk Kim
- School of Earth Sciences and Environmental EngineeringGwangju Institute of Science and TechnologyGwangjuSouth Korea
| |
Collapse
|
5
|
Saimee Y, Duangmal K. Streptomyces spirodelae sp. nov., isolated from duckweed. Int J Syst Evol Microbiol 2021; 71. [PMID: 34752211 DOI: 10.1099/ijsem.0.005106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinobacterium, designated strain DW4-2T, was isolated from duckweed (Spirodela sp.) collected from an agricultural pond in Kasetsart University, Bangkok, Thailand. The morphological, chemotaxonomic and phylogenetic characteristics were consistent with its classification in the genus Streptomyces. Strain DW4-2T showed the highest 16S rRNA gene sequence similarity values to Streptomyces qinglanensis DSM 42035T (98.5 %), Streptomyces smyrnaeus DSM 42105T (98.4 %) and Streptomyces oryzae S16-07T (98.4 %). Digital DNA-DNA hydridization and average nucleotide identity values between the genome sequences of strain DW4-2T with S. qinglanensis DSM 42035T (29.8 and 87.8 %), S. smyrnaeus DSM 42105T (33.1 and 89.0 %) and S. oryzae S16-07T (33.0 and 88.9 %) were below the thresholds of 70 and 95-96 % for prokaryotic conspecific assignation. Chemotaxonomic data revealed that strain DW4-2T possessed MK-9(H6) and MK-9(H8) as the predominant menaquinones. It contained ll -diaminopimelic acid as the diagnostic diamino acid and glucose, ribose and trace amount of madurose in whole-cell sugars. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, an unidentified aminolipid, an unidentified lipid and an unidentified phospholipid. The predominant cellular fatty acids were anteiso-C17 : 0, anteiso-C15 : 0 and iso-C16 : 0. The genomic DNA size of the strain DW4-2T was 7 310 765 bp with DNA G+C content 71.0 mol%. Genomic analysis of the genome indicated that the strain DW4-2T had the potential to produce bioactive compounds. On the basis of these genotypic and phenotypic data, it is supported that strain DW4-2T represents a novel species of the genus Streptomyces, for which the name Streptomyces spirodelae sp. nov. is proposed. The type strain is strain DW4-2T (=TBRC 13095T=NBRC 114803T).
Collapse
Affiliation(s)
- Yuparat Saimee
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Kannika Duangmal
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.,Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| |
Collapse
|
6
|
Streptomyces lycii sp. nov., an endogenous actinomycete isolated from Lycium ruthenicum. Int J Syst Evol Microbiol 2020; 70:5197-5204. [DOI: 10.1099/ijsem.0.004372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A novel endogenous actinobacteria strain, designated TRM 66187T, was isolated from Lycium ruthenicum sampled at Alar, Xinjiang, Northwest PR China, and characterized using a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 66187T with the genus
Streptomyces
. The whole-cell sugar pattern of TRM 66187T consisted of galactose, glucose and ribose. The predominant menaquinones were MK-9(H4) and MK-9(H6). Major cellular fatty acids were iso-C14:0, iso-C15:0, anteiso-C15:0 and anteiso-C16:0. The detected polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside and two unidentified polar lipids. The G+C content of strain TRM 66187T was 71.8 mol%. Results of phylogenetic analysis showed that strain TRM 66187T had 98.48% 16S rRNA gene sequence similarity to the closest described species
Streptomyces qinglanensis
DSM 42035T. The average nucleotide identity value between strain TRM 66187T and the closest related strain
Streptomyces qinglanensis
DSM 42035T was calculated to be 77.2%. The digital DNA–DNA hybridization value between them was 22.4%. Multilocus sequence analyses based on five housekeeping genes (atpD, gyrB, recA, rpoB and trpB) also indicated that strain TRM 66187T should be assigned to the genus
Streptomyces
. On the basis of evidence from this polyphasic study, strain TRM 66187T should be designated as representing a novel species of the genus
Streptomyces
, for which the name Streptomyces lycii sp. nov. is proposed. The type strain is TRM 66187T (=LMG 31493T=CCTCC AA 2018094T).
Collapse
|
7
|
Saygin H, Veyisoglu A, Tatar D, Nigiz C, Tokatli A, Sahin N. Streptomyces coryli sp. nov., isolated from hazelnut orchard soil. Int J Syst Evol Microbiol 2020; 70:4791-4797. [DOI: 10.1099/ijsem.0.004347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinobacteria, isolate A7024T, was isolated from commercial hazelnut orchard soil sample which was collected at Duzce, West Black Sea region, Turkey. A polyphasic taxonomic study was carried out to determine the status of this isolate. The phylogenetic tree reconstructed using the neighbour-joining algorithm based on 16S rRNA gene sequences indicated that isolate A7024T was positioned within the members of the genus
Streptomyces
with the highest sequence similarity (97.7 %) to
Streptomyces cadmiisoli
ZFG47T. The organism formed an extensively branched substrate and aerial hyphae which generated irregular rod-shaped spores with smooth-surfaces. The cell wall of strain A7024T contained ll-diaminopimelic. Glucose, mannose and ribose were detected as whole-cell sugars. Its polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, three unidentified phospholipids and three unidentified glycolipids. Major menaquinones were MK-9(H6) and MK-9(H4). The major cellular fatty acids were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. Strain A7024T had a genome size of 9.0 Mb with a genome G+C content of 71.5 mol%. The low level of 16S rRNA gene similarity, 19.3 ± 2.3% digital DNA–DNA
hybridization and 76.94 % average nucleotide identity values, as well as some different phenotypic characteristics allowed the strain to be distinguished from the closely related type strains. Therefore, it is concluded that strain A7024T represents a novel species of the genus of
Streptomyces
, for which the name Streptomyces coryli sp. nov. is proposed. The type strain is A7024T (=DSM 42066T=KCTC 29102T=NRRL B-24888T).
Collapse
Affiliation(s)
- Hayrettin Saygin
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Aysel Veyisoglu
- Vocational School of Health Services, Department of Medical Laboratory Techniques, Sinop University, 57000, Sinop, Turkey
| | - Demet Tatar
- Department of Medical Services and Techniques, Osmancik Omer Derindere Vocational School, Hitit University, 19500, Corum, Turkey
| | - Cengiz Nigiz
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Ali Tokatli
- Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| |
Collapse
|
8
|
Xu D, Tian E, Kong F, Hong K. Bioactive Molecules from Mangrove Streptomyces qinglanensis 172205. Mar Drugs 2020; 18:md18050255. [PMID: 32414163 PMCID: PMC7281499 DOI: 10.3390/md18050255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Five new compounds 15R-17,18-dehydroxantholipin (1), (3E,5E,7E)-3-methyldeca-3,5,7-triene-2,9-dione (2) and qinlactone A–C (3–5) were identified from mangrove Streptomyces qinglanensis 172205 with “genetic dereplication,” which deleted the highly expressed secondary metabolite-enterocin biosynthetic gene cluster. The chemical structures were established by spectroscopic methods, and the absolute configurations were determined by electronic circular dichroism (ECD). Compound 1 exhibited strong anti-microbial and antiproliferative bioactivities, while compounds 2–4 showed weak antiproliferative activities.
Collapse
Affiliation(s)
- Dongbo Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (D.X.); (E.T.)
| | - Erli Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (D.X.); (E.T.)
| | - Fandong Kong
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultura Sciences, Haikou 571101, China;
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (D.X.); (E.T.)
- Correspondence: ; Tel.: +86-27-6875-2442
| |
Collapse
|
9
|
Saygin H, Ay H, Guven K, Cetin D, Sahin N. Streptomyces cahuitamycinicus sp. nov., isolated from desert soil and reclassification of Streptomyces galilaeus as a later heterotypic synonym of Streptomyces bobili. Int J Syst Evol Microbiol 2020; 70:2750-2759. [PMID: 32176603 DOI: 10.1099/ijsem.0.004103] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinobacterial strain, designated 13K301T, was isolated from a soil sample collected from the Karakum Desert, Turkmenistan. The taxonomic position of strain 13K301T was revealed by using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain 13K301T belongs to the genus Streptomyces and had highest sequence similarity to 'Streptomyces qaidamensis' S10T (99.2 %), Streptomyces flavovariabilis NRRL B-16367T (98.9 %) and Streptomyces phaeoluteigriseus DSM 41896T (98.8 %), but the strain formed a distinct clade in the phylogenetic tree. The DNA-DNA relatedness and average nucleotide identity values as well as evolutionary distances based on multilocus (atpD, gyrB, recA, rpoB and trpB) sequences between strain 13K301T and closely related type strains were significantly lower than the recommended threshold values. The cell wall contained ll-diaminopimelic acid and the whole-cell hydrolysates were glucose and ribose. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol were determined as the predominant polar lipids. The major menaquinones were identified as MK-9(H8) and MK-9(H6). On the basis of these genotypic and phenotypic data, it is proposed that strain 13K301T should be classified as representative of a novel species of the genus Streptomyces, for which the name Streptomyces cahuitamycinicus sp. nov. is proposed. The type strain is 13K301T (=DSM 106873T=KCTC 49110T). In addition, the whole genome-based comparisons as well as the multilocus sequence analysis revealed that the type strains of Streptomyces galilaeus and Streptomyces bobili belong to a single species. It is, therefore, proposed that S. galilaeus be recognised as a heterotypic synonym of S. bobili for which an emended description is given.
Collapse
Affiliation(s)
- Hayrettin Saygin
- Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Kiymet Guven
- Department of Biology, Faculty of Science, Eskisehir Technical University, 26555, Eskisehir, Turkey
| | - Demet Cetin
- Division of Science Education, Department of Mathematics and Science Education, Gazi University, 06500, Ankara, Turkey
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| |
Collapse
|
10
|
Diversity of Streptomyces spp. from mangrove forest of Sarawak (Malaysia) and screening of their antioxidant and cytotoxic activities. Sci Rep 2019; 9:15262. [PMID: 31792235 PMCID: PMC6888828 DOI: 10.1038/s41598-019-51622-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/01/2019] [Indexed: 12/25/2022] Open
Abstract
Streptomycetes have been the center of attraction within scientific community owing to their capability to produce various bioactive compounds, for instance, with different antimicrobial, anticancer, and antioxidant properties. The search for novel Streptomyces spp. from underexplored area such as mangrove environment has been gaining attention since these microorganisms could produce pharmaceutically important metabolites. The aim of this study is to discover the diversity of Streptomyces spp. from mangrove in Sarawak and their bioactive potentials — in relation to antioxidant and cytotoxic activities. A total of 88 Streptomyces isolates were successfully recovered from the mangrove soil in Kuching, state of Sarawak, Malaysia. Phylogenetic analysis of all the isolates and their closely related type strains using 16S rRNA gene sequences resulted in 7 major clades in the phylogenetic tree reconstructed based on neighbour-joining algorithm. Of the 88 isolates, 18 isolates could be considered as potentially novel species according to the 16S rRNA gene sequence and phylogenetic analyses. Preliminary bioactivity screening conducted on the potential novel Streptomyces isolates revealed significant antioxidant activity and notable cytotoxic effect against tested colon cancer cell lines (HCT-116, HT-29, Caco-2, and SW480), with greater cytotoxicity towards SW480 and HT-29 cells. This study highlighted that the Sarawak mangrove environment is a rich reservoir containing streptomycetes that could produce novel secondary metabolites with antioxidant and cytotoxic activities.
Collapse
|
11
|
Screening and characterization of marine actinomycetes from the northern Oman Sea sediments for cytotoxic and antimicrobial activity. Int Microbiol 2019; 22:521-530. [DOI: 10.1007/s10123-019-00083-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
|
12
|
Law JWF, Ser HL, Ab Mutalib NS, Saokaew S, Duangjai A, Khan TM, Chan KG, Goh BH, Lee LH. Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Sci Rep 2019; 9:3056. [PMID: 30816228 PMCID: PMC6395624 DOI: 10.1038/s41598-019-39592-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/21/2019] [Indexed: 11/18/2022] Open
Abstract
A new Streptomyces species discovered from Sarawak mangrove soil is described, with the proposed name - Streptomyces monashensis sp. nov. (strain MUSC 1JT). Taxonomy status of MUSC 1JT was determined via polyphasic approach. Phylogenetic and chemotaxonomic properties of strain MUSC 1JT were in accordance with those known for genus Streptomyces. Based on phylogenetic analyses, the strains closely related to MUSC 1JT were Streptomyces corchorusii DSM 40340T (98.7%), Streptomyces olivaceoviridis NBRC 13066T (98.7%), Streptomyces canarius NBRC 13431T (98.6%) and Streptomyces coacervatus AS-0823T (98.4%). Outcomes of DNA-DNA relatedness between strain MUSC 1JT and its closely related type strains covered from 19.7 ± 2.8% to 49.1 ± 4.3%. Strain MUSC 1JT has genome size of 10,254,857 bp with DNA G + C content of 71 mol%. MUSC 1JT extract exhibited strong antioxidative activity up to 83.80 ± 4.80% in the SOD assay, with significant cytotoxic effect against colon cancer cell lines HCT-116 and SW480. Streptomyces monashensis MUSC 1JT (=DSM 103626T = MCCC 1K03221T) could potentially be a producer of novel bioactive metabolites; hence discovery of this new species may be highly significant to the biopharmaceutical industry as it could lead to development of new and useful chemo-preventive drugs.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Pharmaceutical Outcomes Research Center (CPOR), Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Acharaporn Duangjai
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Tahir Mehmood Khan
- Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- The Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- International Genome Centre, Jiangsu University, Zhenjiang, China.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.
| |
Collapse
|
13
|
Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, Pukall R, Klenk HP, Goodfellow M, Göker M. Genome-Based Taxonomic Classification of the Phylum Actinobacteria. Front Microbiol 2018; 9:2007. [PMID: 30186281 PMCID: PMC6113628 DOI: 10.3389/fmicb.2018.02007] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022] Open
Abstract
The application of phylogenetic taxonomic procedures led to improvements in the classification of bacteria assigned to the phylum Actinobacteria but even so there remains a need to further clarify relationships within a taxon that encompasses organisms of agricultural, biotechnological, clinical, and ecological importance. Classification of the morphologically diverse bacteria belonging to this large phylum based on a limited number of features has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees. Here, draft genome sequences of a large collection of actinobacterial type strains were used to infer phylogenetic trees from genome-scale data using principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families, and genera, as well as many species and a few subspecies were shown to be in need of revision leading to proposals for the recognition of 2 orders, 10 families, and 17 genera, as well as the transfer of over 100 species to other genera. In addition, emended descriptions are given for many species mainly involving the addition of data on genome size and DNA G+C content, the former can be considered to be a valuable taxonomic marker in actinobacterial systematics. Many of the incongruities detected when the results of the present study were compared with existing classifications had been recognized from 16S rRNA gene trees though whole-genome phylogenies proved to be much better resolved. The few significant incongruities found between 16S/23S rRNA and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences. Similarly good congruence was found between the discontinuous distribution of phenotypic properties and taxa delineated in the phylogenetic trees though diverse non-monophyletic taxa appeared to be based on the use of plesiomorphic character states as diagnostic features.
Collapse
Affiliation(s)
- Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lorena Carro
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Rüdiger Pukall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
14
|
Law JWF, Ser HL, Duangjai A, Saokaew S, Bukhari SI, Khan TM, Ab Mutalib NS, Chan KG, Goh BH, Lee LH. Streptomyces colonosanans sp. nov., A Novel Actinobacterium Isolated from Malaysia Mangrove Soil Exhibiting Antioxidative Activity and Cytotoxic Potential against Human Colon Cancer Cell Lines. Front Microbiol 2017; 8:877. [PMID: 28559892 PMCID: PMC5432915 DOI: 10.3389/fmicb.2017.00877] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/01/2017] [Indexed: 01/18/2023] Open
Abstract
Streptomyces colonosanans MUSC 93JT, a novel strain isolated from mangrove forest soil located at Sarawak, Malaysia. The bacterium was noted to be Gram-positive and to form light yellow aerial and vivid yellow substrate mycelium on ISP 2 agar. The polyphasic approach was used to determine the taxonomy of strain MUSC 93JT and the strain showed a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. Phylogenetic and 16S rRNA gene sequence analysis indicated that closely related strains include Streptomyces malachitofuscus NBRC 13059T (99.2% sequence similarity), Streptomyces misionensis NBRC 13063T (99.1%), and Streptomyces phaeoluteichromatogenes NRRL 5799T (99.1%). The DNA–DNA relatedness values between MUSC 93JT and closely related type strains ranged from 14.4 ± 0.1 to 46.2 ± 0.4%. The comparison of BOX-PCR fingerprints indicated MUSC 93JT exhibits a unique DNA profile. The genome of MUSC 93JT consists of 7,015,076 bp. The DNA G + C content was determined to be 69.90 mol%. The extract of strain MUSC 93JT was demonstrated to exhibit potent antioxidant activity via ABTS, metal chelating, and SOD assays. This extract also exhibited anticancer activity against human colon cancer cell lines without significant cytotoxic effect against human normal colon cells. Furthermore, the chemical analysis of the extract further emphasizes the strain is producing chemo-preventive related metabolites. Based on this polyphasic study of MUSC 93JT, it is concluded that this strain represents a novel species, for which the name Streptomyces colonosanans sp. nov. is proposed. The type strain is MUSC 93JT (= DSM 102042T = MCCC 1K02298T).
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Acharaporn Duangjai
- Division of Physiology, School of Medical Sciences, University of PhayaoPhayao, Thailand.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand.,Faculty of Pharmaceutical Sciences, Pharmaceutical Outcomes Research Center, Naresuan UniversityPhitsanulok, Thailand
| | - Sarah I Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud UniversityRiyadh, Saudi Arabia
| | - Tahir M Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Department of Pharmacy, Absyn University PeshawarPeshawar, Pakistan
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, UKM Medical Centre, University Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
15
|
Biswas K, Choudhury JD, Mahansaria R, Saha M, Mukherjee J. Streptomyces euryhalinus sp. nov., a new actinomycete isolated from a mangrove forest. J Antibiot (Tokyo) 2017; 70:747-753. [PMID: 28174421 DOI: 10.1038/ja.2017.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 12/14/2016] [Accepted: 12/25/2016] [Indexed: 12/21/2022]
Abstract
A Gram-positive, aerobic, non-motile actinomycete (strain MS 3/20T) was isolated from the sediment of the Sundarbans mangrove forest in India. On International Streptomyces Project (ISP) medium 2, the isolate produced yellowish brown to red aerial hyphae that carried spiny-surfaced spores in a retinaculum-apertum arrangement. Whole-cell hydrolysate of the strain contained LL-diaminopimelic acid and galactose. Predominant menaquinones were MK-9(H8) and MK-9(H6). Diagnostic polar lipids were glycolipid, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unidentified phospholipid and unidentified amino lipid. The major fatty acids were anteiso-C15:0 (17.53%), iso-C16:0 (23.89%) and anteiso-C17:0 (10.29%). The strain showed 100% 16S ribosomal RNA (rRNA) gene sequence similarity with Streptomyces variabilis NBRC 12825T, Streptomyces erythrogriseus LMG 19406T, Streptomyces griseoincarnatus LMG 19316T and Streptomyces labedae NBRC 15864T. However, strain MS 3/20T could be distinguished from these and seven other closely related species based on low levels of DNA-DNA relatedness (27.2-53.8%), supported by the unique banding pattern obtained from random amplified polymorphic DNA-PCR amplification and the distinctive matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) profile of whole-cell proteins acquired for strain MS 3/20T in comparison with its phylogenetic relatives. Disparate morphological, physiological and chemotaxonomic features, principally growth in NaCl, further corroborated the distinction of strain MS 3/20T from other phylogenetic relatives. Strain MS 3/20T is therefore suggested to be a novel species of the genus Streptomyces, for which the name Streptomyces euryhalinus sp. nov. is proposed. The type strain is MS 3/20T (=CICC 11032T=DSM 103378T).
Collapse
Affiliation(s)
- Kaushik Biswas
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | | | - Riddhi Mahansaria
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Malay Saha
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, India
| |
Collapse
|
16
|
Ma GQ, Xia ZF, Zhang Y, Wan CX, Luo XX, Zhang LL. Streptomyces litoralis sp. nov., isolated from a salt water beach. Int J Syst Evol Microbiol 2016; 66:5051-5055. [PMID: 27580743 DOI: 10.1099/ijsem.0.001468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinomycete strain, designated TRM 46515T, was isolated from a salt water beach at Awat, Xinjiang, Northwest China, and characterized using polyphasic taxonomy. Comparison of 16S rRNA gene sequences showed that strain TRM 46515T is a member of the genus Streptomyces, exhibiting highest similarity with Streptomyces qinglanensis 172205T (98.32 %). However, DNA-DNA relatedness and phenotypic data readily distinguished strain TRM 46515T from phylogenetically related type strains. The G+C content of the DNA was 70.40 mol%. Whole-cell hydrolysates of strain TRM 46515T were found to contain ll-diaminopimelic acid as the diagnostic diamino acid and ribose was the major whole-cell sugar. The major fatty acids identified were anteiso-C17 : 0, anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0 and iso-C17 : 0. The main menaquinone was MK-9(H8) and the polar lipids were identified as diphosphatidylglycerol, phosphatidyl ethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol and one unknown glycolipid. On the basis of these phenotypic, chemotaxonomic and phylogenetic data, strain TRM 46515T should be designated as a representative of a novel species of the genus Streptomyces, for which the name Streptomyces litoralis sp. nov. is proposed. The type strain is TRM 46515T (=CCTCC AA 2015040T=KCTC 39729T).
Collapse
Affiliation(s)
- Guo-Quan Ma
- College of Life Science, Tarim University/ Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Alar 843300, PR China
| | - Zhan-Feng Xia
- College of Life Science, Tarim University/ Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Alar 843300, PR China
| | - Yao Zhang
- College of Life Science, Tarim University/ Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Alar 843300, PR China
| | - Chuan-Xing Wan
- College of Life Science, Tarim University/ Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Alar 843300, PR China
| | - Xiao-Xia Luo
- College of Life Science, Tarim University/ Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Alar 843300, PR China
| | - Li-Li Zhang
- College of Life Science, Tarim University/ Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Alar 843300, PR China
| |
Collapse
|
17
|
Phongsopitanun W, Kudo T, Ohkuma M, Pittayakhajonwut P, Suwanborirux K, Tanasupawat S. Streptomyces verrucosisporus sp. nov., isolated from marine sediments. Int J Syst Evol Microbiol 2016; 66:3607-3613. [PMID: 27306744 DOI: 10.1099/ijsem.0.001240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five actinomycete isolates, CPB1-1T, CPB2-10, BM1-4, CPB3-1 and CPB1-18, belonging to the genus Streptomyces were isolated from marine sediments collected from Chumphon Province, Thailand. They produced open loops of warty spore chains on aerial mycelia. ll-Diaminopimelic acid, glucose and ribose were found in their whole-cell hydrolysates. Polar lipids found were diphosphatidylglycerol, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. Menaquinones were MK-9(H6), MK-9(H8), MK-10(H6) and MK-10(H8). Major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The taxonomic position of the strains was described using a polyphasic approach. blastn analysis of the 16S rRNA gene sequence revealed that these five strains exhibited the highest similarities with 'Streptomyces mangrovicola' GY1 (99.0 %), Streptomyces fenghuangensisGIMN4.003T (98.6 %), Streptomyces barkulensisRC 1831T (98.5 %) and Streptomyces radiopugnans R97T (98.3 %). However, their phenotypic characteristics and 16S rRNA gene sequences as well as DNA-DNA relatedness differentiated these five strains from the other species of the genus Streptomyces. Here, we propose the novel actinomycetes all being representatives of the same novel species, Streptomyces verrucosisporus, with type strain CPB1-1T (=JCM 18519T=PCU 343T=TISTR 2344T).
Collapse
Affiliation(s)
- Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takuji Kudo
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani 12120, Thailand
| | - Khanit Suwanborirux
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
18
|
Ser HL, Tan LTH, Palanisamy UD, Abd Malek SN, Yin WF, Chan KG, Goh BH, Lee LH. Streptomyces antioxidans sp. nov., a Novel Mangrove Soil Actinobacterium with Antioxidative and Neuroprotective Potentials. Front Microbiol 2016; 7:899. [PMID: 27379040 PMCID: PMC4909769 DOI: 10.3389/fmicb.2016.00899] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/26/2016] [Indexed: 11/16/2022] Open
Abstract
A novel strain, Streptomyces antioxidans MUSC 164T was recovered from mangrove forest soil located at Tanjung Lumpur, Malaysia. The Gram-positive bacterium forms yellowish-white aerial and brilliant greenish yellow substrate mycelium on ISP 2 agar. A polyphasic approach was used to determine the taxonomy status of strain MUSC 164T. The strain showed a spectrum of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The cell wall peptidoglycan was determined to contain LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9(H6) and MK-9(H8), while the identified polar lipids consisted of aminolipid, diphosphatidylglycerol, glycolipid, hydroxyphosphatidylethanolamine, phospholipid, phosphatidylinositol, phosphatidylethanolamine, phosphatidylglycerol and lipid. The cell wall sugars consist of galactose, glucose and ribose. The predominant cellular fatty acids (>10.0%) were identified as iso-C15:0 (34.8%) and anteiso-C15:0(14.0%). Phylogenetic analysis identified that closely related strains for MUSC 164T as Streptomyces javensis NBRC 100777T (99.6% sequence similarity), Streptomyces yogyakartensis NBRC 100779T (99.6%) and Streptomyces violaceusniger NBRC 13459T (99.6%). The DNA–DNA relatedness values between MUSC 164T and closely related type strains ranged from 23.8 ± 0.3% to 53.1 ± 4.3%. BOX-PCR fingerprints comparison showed that MUSC 164T exhibits a unique DNA profile, with DNA G + C content determined to be 71.6 mol%. Based on the polyphasic study of MUSC 164T, it is concluded that this strain represents a novel species, for which the name Streptomyces antioxidans sp. nov. is proposed. The type strain is MUSC 164T (=DSM 101523T = MCCC 1K01590T). The extract of MUSC 164T showed potent antioxidative and neuroprotective activities against hydrogen peroxide. The chemical analysis of the extract revealed that the strain produces pyrazines and phenolic-related compounds that could explain for the observed bioactivities.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Uma D Palanisamy
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Sri N Abd Malek
- Biochemistry Program, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
19
|
Zainal N, Ser HL, Yin WF, Tee KK, Lee LH, Chan KG. Streptomyces humi sp. nov., an actinobacterium isolated from soil of a mangrove forest. Antonie van Leeuwenhoek 2016; 109:467-74. [PMID: 26786500 DOI: 10.1007/s10482-016-0653-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/13/2016] [Indexed: 11/30/2022]
Abstract
A novel Streptomyces strain, MUSC 119(T), was isolated from a soil collected from a mangrove forest. Cells of MUSC 119(T) stained Gram-positive and formed light brownish grey aerial mycelium and grayish yellowish brown substrate mycelium on ISP 2 medium. A polyphasic approach was used to determine the taxonomic status of strain MUSC 119(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Streptomyces. The cell wall peptidoglycan consisted of LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9(H8), MK-9(H6) and MK-9(H4). The polar lipid profile consisted of phosphatidylinositol, phosphatidylethanolamine, glycolipids, diphosphatidylglycerol and four phospholipids. The predominant cellular fatty acids were anteiso-C15:0, iso-C16:0, and anteiso-C17:0. The cell wall sugars were glucose, mannose, ribose and rhamnose. The phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain MUSC119(T) to be closely related to Streptomyces rhizophilus JR-41(T) (99.0 % sequence similarity), S. panaciradicis 1MR-8(T) (98.9 %), S. gramineus JR-43(T) (98.8 %) and S. graminisoli JR-19(T) (98.7 %). These results suggest that MUSC 119(T) should be placed within the genus Streptomyces. DNA-DNA relatedness values between MUSC 119(T) to closely related strains ranged from 14.5 ± 1.3 to 27.5 ± 0.7 %. The G+C content was determined to be 72.6 mol %. The polyphasic study of MUSC 119(T) showed that this strain represents a novel species, for which the name Streptomyces humi sp. nov. is proposed. The type strain of S. humi is MUSC 119(T) (=DSM 42174(T) = MCCC 1K00505(T)).
Collapse
Affiliation(s)
- Nurullhudda Zainal
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 46150, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hooi-Leng Ser
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 46150, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok-Keng Tee
- Department of Medicine, Faculty of Medicine, Centre of Excellent for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 46150, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Ser HL, Ab Mutalib NS, Yin WF, Chan KG, Goh BH, Lee LH. Evaluation of Antioxidative and Cytotoxic Activities of Streptomyces pluripotens MUSC 137 Isolated from Mangrove Soil in Malaysia. Front Microbiol 2015; 6:1398. [PMID: 26733951 PMCID: PMC4679926 DOI: 10.3389/fmicb.2015.01398] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/24/2015] [Indexed: 12/30/2022] Open
Abstract
Streptomyces pluripotens MUSC 137 was isolated from mangrove soil obtained from Tanjung Lumpur, Pahang, Malaysia. We investigated the phylogenetic, genomic, biochemical, and phenotypic characteristics of this strain. Uniquely adapted microorganisms from mangrove habitats have previously yielded compounds of biopharmaceutical interest. In order to examine the bioactivities possessed by the strain, fermentation extract was prepared through solvent extraction method prior to bioactivities screenings. Antioxidant activity was examined via DPPH assay while the cytotoxic effect was assessed by means of examining the activity of the extract against selected human cancer cell lines, namely colon cancer cells (HCT-116, Caco-2, SW480, and HT-29), breast cancer cell (MCF-7), lung cancer cell (A549), prostate cancer cell (DU145), and cervical cancer cell (Ca Ski). The results revealed MUSC 137 possesses significant antioxidant activity and demonstrates cytotoxic effect against several cancer cell lines tested. The results indicated MCF-7 cells were most susceptible to the extract with the lowest IC50 (61.33 ± 17.10 μg/mL), followed by HCT-116 and A549. Additionally, selective index (SI) showed that MUSC 137 extract was less toxic against normal cell lines when compared to MCF-7 and HCT-116 cells. The extract was further subjected to chemical analysis using GC–MS and revealed the presence of deferoxamine and pyrrolizidines related compounds which may account for the antioxidant and cytotoxic properties observed.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute-UKM Medical Centre, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Learn-Han Lee
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| |
Collapse
|
21
|
Tan LTH, Ser HL, Yin WF, Chan KG, Lee LH, Goh BH. Investigation of Antioxidative and Anticancer Potentials of Streptomyces sp. MUM256 Isolated from Malaysia Mangrove Soil. Front Microbiol 2015; 6:1316. [PMID: 26635777 PMCID: PMC4659911 DOI: 10.3389/fmicb.2015.01316] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/09/2015] [Indexed: 12/24/2022] Open
Abstract
A Streptomyces strain, MUM256 was isolated from Tanjung Lumpur mangrove soil in Malaysia. Characterization of the strain showed that it has properties consistent with those of the members of the genus Streptomyces. In order to explore the potential bioactivities, extract of the fermented broth culture of MUM256 was prepared with organic solvent extraction method. DPPH and SOD activity were utilized to examine the antioxidant capacity and the results have revealed the potency of MUM256 in superoxide anion scavenging activity in dose-dependent manner. The cytotoxicity of MUM256 extract was determined using cell viability assay against 8 different panels of human cancer cell lines. Among all the tested cancer cells, HCT116 was the most sensitive toward the extract treatment. At the highest concentration of tested extract, the result showed 2.3-, 2.0-, and 1.8-folds higher inhibitory effect against HCT116, HT29, and Caco-2 respectively when compared to normal cell line. This result has demonstrated that MUM256 extract was selectively cytotoxic toward colon cancer cell lines. In order to determine the constituents responsible for its bioactivities, the extract was then subjected to chemical analysis using GC-MS. The analysis resulted in the identification of chemical constituents including phenolic and pyrrolopyrazine compounds which may responsible for antioxidant and anticancer activities observed. Based on the findings of this study, the presence of bioactive constituents in MUM256 extract could be a potential source for the development of antioxidative and chemopreventive agents.
Collapse
Affiliation(s)
- Loh Teng-Hern Tan
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Hooi-Leng Ser
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Learn-Han Lee
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Bey-Hing Goh
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| |
Collapse
|
22
|
Ser HL, Palanisamy UD, Yin WF, Abd Malek SN, Chan KG, Goh BH, Lee LH. Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Front Microbiol 2015; 6:854. [PMID: 26347733 PMCID: PMC4542459 DOI: 10.3389/fmicb.2015.00854] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/06/2015] [Indexed: 02/03/2023] Open
Abstract
A novel Streptomyces, strain MUSC 149(T) was isolated from mangrove soil. A polyphasic approach was used to study the taxonomy of MUSC 149(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The diamino acid of the cell wall peptidoglycan was LL-diaminopimelic acid. The predominant menaquinones were identified as MK9(H8) and MK9(H6). Phylogenetic analysis indicated that closely related strains include Streptomyces rhizophilus NBRC 108885(T) (99.2% sequence similarity), S. gramineus NBRC 107863(T) (98.7%) and S. graminisoli NBRC 108883(T) (98.5%). The DNA-DNA relatedness values between MUSC 149(T) and closely related type strains ranged from 12.4 ± 3.3% to 27.3 ± 1.9%. The DNA G + C content was determined to be 72.7 mol%. The extract of MUSC 149(T) exhibited strong antioxidant activity and chemical analysis reported identification of an antioxidant agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-. These data showed that metabolites of MUSC 149(T) shall be useful as preventive agent against free-radical associated diseases. Based on the polyphasic study of MUSC 149(T), the strain merits assignment to a novel species, for which the name S. mangrovisoli sp. nov. is proposed. The type strain is MUSC 149(T) (=MCCC 1K00699(T)=DSM 100438(T)).
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Uma D. Palanisamy
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Sri N. Abd Malek
- Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Learn-Han Lee
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| |
Collapse
|
23
|
Genotype-driven isolation of enterocin with novel bioactivities from mangrove-derived Streptomyces qinglanensis 172205. Appl Microbiol Biotechnol 2015; 99:5825-32. [DOI: 10.1007/s00253-015-6574-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 01/03/2023]
|
24
|
Ser HL, Zainal N, Palanisamy UD, Goh BH, Yin WF, Chan KG, Lee LH. Streptomyces gilvigriseus sp. nov., a novel actinobacterium isolated from mangrove forest soil. Antonie van Leeuwenhoek 2015; 107:1369-78. [PMID: 25863667 DOI: 10.1007/s10482-015-0431-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
Abstract
A novel Streptomyces, strain MUSC 26(T), was isolated from mangrove soil at Tanjung Lumpur, Malaysia. The bacterium was observed to be Gram-positive and to form grayish yellow aerial and substrate mycelium on ISP 7 agar. A polyphasic approach was used to study the taxonomy of strain MUSC 26(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The cell wall peptidoglycan was determined to contain LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9 (H8) and MK-9(H6). The polar lipids detected were identified as diphosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylmethylethanolamine and hydroxyphosphatidylmethylethanolamine. The predominant cellular fatty acids (>10.0 %) were identified as anteiso-C15:0 (31.4 %), iso-C16:0 (16.3 %), iso-C15:0 (13.9 %) and anteiso-C17:0 (12.6 %). The cell wall sugars were found to be galactose, glucose, mannose, ribose and rhamnose. These results suggest that MUSC 26(T) should be placed within the genus Streptomyces. Phylogenetic analysis indicated that closely related strains include Streptomyces qinglanensis 172205(T) (96.5 % sequence similarity), S. sodiiphilus YIM 80305(T) (96.5 %) and S. rimosus subsp. rimosus ATCC 10970(T) (96.4 %). DNA-DNA relatedness values between MUSC 26(T) and closely related type strains ranged from 17.0 ± 2.2 to 33.2 ± 5.3 %. Comparison of BOX-PCR fingerprints indicated MUSC 26(T) presents a unique DNA profile. The DNA G+C content was determined to be 74.6 mol%. Based on this polyphasic study of MUSC 26(T), it is concluded that this strain represents a novel species, for which the name Streptomyces gilvigriseus sp. nov. is proposed. The type strain is MUSC 26(T) (=DSMZ 42173(T) = MCCC 1K00504(T)).
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 46150, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | | | | | | | | | | | | |
Collapse
|
25
|
Streptomyces alkaliphilus sp. nov., isolated from sediments of Lake Elmenteita in the Kenyan Rift Valley. Antonie van Leeuwenhoek 2015; 107:1249-59. [DOI: 10.1007/s10482-015-0418-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
|
26
|
Diversity and bioprospecting of culturable actinomycetes from marine sediment of the Yellow Sea, China. Arch Microbiol 2014; 197:299-309. [DOI: 10.1007/s00203-014-1059-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/27/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|
27
|
Streptomyces ferrugineus sp. nov., isolated from mangrove soil in Thailand. Antonie van Leeuwenhoek 2014; 107:39-45. [PMID: 25331336 DOI: 10.1007/s10482-014-0301-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Bacterial strain HV38(T) was isolated from mangrove soil, which was collected from Thailand. Chemotaxonomic and morphological characteristics were found to be typical of members of the genus Streptomyces. The strain was found to form a distinct phyletic line in the Streptomyces 16S rRNA gene tree and to be closely associated with the type strains of Streptomyces coeruleofuscus CGMCC 4.1667(T) (98.84 % sequence similarity), Streptomyces chromofuscus CGMCC 4.1451(T) (98.63 %) and Streptomyces albidoflavus CGMCC 4.1291(T) (98.56 %). The major menaquinones were identified as MK-9(H8) and MK-9(H10). Its major cellular fatty acids were found to be iso-C14:0, iso-C15:0, anteiso-C15:0, iso-C16:1ω8c, C16:0, anteiso-C16:1ω8c, iso-C16:0 and anteiso-C16:0. The DNA-DNA hybridization values between strain HV38(T) with S. coeruleofuscus CGMCC 4.1667(T), S. chromofuscus CGMCC 4.1451(T) and S. albidoflavus CGMCC 4.1291(T) were 32.7 ± 0.9, 21.8 ± 0.3 and 19.9 ± 0.9 %, respectively, which clearly supported the conclusion that they belong to separate genomic species. Cumulatively, the data indicated that strain HV38(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces ferrugineus sp. nov. is proposed. The type strain is HV38(T) (=CCTCC AA2014009(T )= DSM 42152(T)).
Collapse
|
28
|
Zheng B, Han XX, Xia ZF, Wan CX, Zhang LL. Streptomyces lopnurensis sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 2014; 64:4179-4183. [PMID: 25253072 DOI: 10.1099/ijs.0.066357-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinomycete, designated strain TRM 49590(T), was isolated from a soil sample from Lop Nur in Xinjiang Province, China. Strain TRM 49590(T) was aerobic, Gram-staining-positive, with an optimum NaCl concentration for growth of 1.5 % (w/v) and an optimum temperature for growth of 28-37 °C. The aerial mycelium was sparse, cylindrical and smooth-surfaced with irregular branches on ISP medium 4. The whole-cell sugars of strain TRM 49590(T) were ribose and glucose. The diagnostic diamino acid contained ll-diaminopimelic acid. The predominant menaquinones were MK-9(H6) and MK-9(H8), with MK-9(H4) and MK-10(H6) present in smaller amounts. The major fatty acids were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The G+C content of the genomic DNA was 62.2 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain TRM 49590(T) belongs to the genus Streptomyces with a sequence similarity of 97.16 % with the most closely related species Streptomyces sodiiphilus. Based on these observations, strain TRM 49590(T) is proposed to represent a novel species of the genus Streptomyces for which the name Streptomyces lopnurensis sp. nov. is suggested. The type strain is TRM 49590(T) ( = CCTCC AA 2013018(T) = NRRL B59109(T)).
Collapse
Affiliation(s)
- Bei Zheng
- College of Life Science and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar Xinjiang 843300, PR China
| | - Xiao-Xue Han
- College of Life Science and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar Xinjiang 843300, PR China
| | - Zhan-Feng Xia
- College of Life Science and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar Xinjiang 843300, PR China
| | - Chuan-Xing Wan
- College of Life Science and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar Xinjiang 843300, PR China
| | - Li-Li Zhang
- College of Life Science and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar Xinjiang 843300, PR China
| |
Collapse
|
29
|
Govindarajan G, Satheeja Santhi V, Jebakumar SRD. Antimicrobial potential of phylogenetically unique actinomycete, Streptomyces sp. JRG-04 from marine origin. Biologicals 2014; 42:305-11. [PMID: 25205608 DOI: 10.1016/j.biologicals.2014.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 11/27/2022] Open
Abstract
Due to the emergence of severe infectious diseases and thriving antibiotic resistance, there is a need to explore microbial-derived bioactive secondary metabolites from unexplored regions. Present study deals with a mangrove estuary derived strain of Streptomyces sp. with potent antimicrobial activity against various pathogens, including methicillin resistant Staphylococcus aureus. Bioactive compound was effective even at low MIC level, damages the membrane of methicillin resistant S. aureus and causes cell death, however it has no cytotoxic effect on H9C2 cells. 16S rRNA shared 99.5% sequence similarity to Streptomyces longispororuber. Optimum biomass and antimicrobial compound production were observed in production medium supplemented with 1.0% maltose and 0.5% yeast extract. The active compound purified from the chloroform extract of the cell-free supernatant was studied by FT-IR, 1H NMR, 13C NMR and LC ESI-MS and identified as aromatic polyketide. β-ketosynthase (KS) domain of the Streptomyces strain revealed 93.2% sequence similarity to the benzoisochromanequinone, an actinorhodin biosynthetic gene cluster of Streptomyces coelicolor A3(2). However, the region synthesizing the secondary metabolite produced by the S. longispororuber was not related to the KS domain of the strain, due to the phenomenon of horizontal gene transfer over the period of evolutionary process, thus generating metabolic compound diversity.
Collapse
Affiliation(s)
- Ganesan Govindarajan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Velayudhan Satheeja Santhi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | | |
Collapse
|
30
|
Lee LH, Zainal N, Azman AS, Eng SK, Ab Mutalib NS, Yin WF, Chan KG. Streptomyces pluripotens sp. nov., a bacteriocin-producing streptomycete that inhibits meticillin-resistant Staphylococcus aureus. Int J Syst Evol Microbiol 2014; 64:3297-3306. [PMID: 24994773 DOI: 10.1099/ijs.0.065045-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel actinobacteria, strains MUSC 135(T) and MUSC 137, were isolated from mangrove soil at Tanjung Lumpur, Malaysia. The 16S rRNA gene sequence similarity and DNA-DNA relatedness between strains MUSC 135(T) and MUSC 137 were 100 % and 83±3.2 %, confirming that these two strains should be classified in the same species. Strain MUSC 135(T) exhibited a broad-spectrum bacteriocin against the pathogens meticillin-resistant Staphylococcus aureus (MRSA) strain ATCC BAA-44, Salmonella typhi ATCC 19430(T) and Aeromonas hydrophila ATCC 7966(T). A polyphasic approach was used to study the taxonomy of MUSC 135(T), and it showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Streptomyces. The diamino acid of the cell-wall peptidoglycan was ll-diaminopimelic acid. The predominant menaquinones were MK-9(H6), MK-9(H4) and MK-9(H8). Polar lipids detected were a lipid, an aminolipid, a phospholipid, phosphatidylinositol, phosphatidylethanolamine and two glycolipids. The predominant cellular fatty acids (>10.0 %) were anteiso-C15 : 0 (20.8 %), iso-C16 : 0 (18.0 %), iso-C15 : 0 (12.2 %) and anteiso-C17 : 0 (11.6 %). The whole-cell sugars were ribose, glucose and mannose. These results suggested that MUSC 135(T) should be placed within the genus Streptomyces. Phylogenetic analysis based on the 16S rRNA gene sequence exhibited that the most closely related strains were Streptomyces cinereospinus NBRC 15397(T) (99.18 % similarity), Streptomyces mexicanus NBRC 100915(T) (99.17 %) and Streptomyces coeruleofuscus NBRC 12757(T) (98.97 %). DNA-DNA relatedness between MUSC 135(T) and closely related type strains ranged from 26.3±2.1 to 49.6±2.5 %. BOX-PCR fingerprint comparisons showed that MUSC 135(T) exhibited a unique DNA profile. The DNA G+C content determined was 70.7±0.3 mol%. Based on our polyphasic study of MUSC 135(T), the strain merits assignment to a novel species, for which the name Streptomyces pluripotens sp. nov. is proposed. The type strain is MUSC 135(T) ( = MCCC 1K00252(T) = DSM 42140(T)).
Collapse
Affiliation(s)
- Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 46150 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Nurullhudda Zainal
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 46150 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Adzzie-Shazleen Azman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 46150 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Shu-Kee Eng
- School of Science, Monash University Malaysia, 46150 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 46150 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Duan YY, Ming H, Dong L, Yin YR, Zhang Y, Zhou EM, Liu L, Nie GX, Li WJ. Streptomyces calidiresistens sp. nov., isolated from a hot spring sediment. Antonie van Leeuwenhoek 2014; 106:189-96. [DOI: 10.1007/s10482-014-0180-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/18/2014] [Indexed: 11/25/2022]
|
32
|
Streptomyces siamensis sp. nov., and Streptomyces similanensis sp. nov., isolated from Thai soils. J Antibiot (Tokyo) 2013; 66:633-40. [PMID: 23756683 DOI: 10.1038/ja.2013.60] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/02/2013] [Accepted: 05/09/2013] [Indexed: 11/08/2022]
Abstract
Three actinomycete strains, KC-038(T), KC-031 and KC-106(T), were isolated from soil samples collected in the southern Thailand. The morphological and chemotaxonomic properties of strains KC-038(T), KC-031 and KC-106(T) were consistent with the characteristics of members of the genus Streptomyces, that is, the formation of aerial mycelia bearing spiral spore chains; the presence of LL-diaminopimelic acid in the cell wall, MK-9 (H6), MK-9 (H4) and MK-9 (H8) as the predominant menaquinones; and C16:0, iso-C16:0 and anteiso-C15:0 as the major cellular fatty acids. 16S rRNA gene sequence analyses indicated that strains KC-038(T) and KC-031 were highly similar (99.9%), and they were closely related to S. olivochromogenes NBRC 3178(T) (98.1%) and S. psammoticus NBRC 13971(T) (98.1%). Strain KC-106(T) was closely related to S. seoulensis NBRC 16668(T) (98.9%), S. recifensis NBRC 12813(T) (98.9%), S. chartreusis NBRC 12753(T) (98.7%) and S. griseoluteus NBRC 13375(T) (98.4%). The values of DNA-DNA relatedness between the isolates and the type strains of the related species were below 70%. On the basis of the polyphasic evidence, the isolates should be classified as two novel species, namely Streptomyces siamensis sp. nov. (type strain, KC-038(T) = NBRC 108799(T) = PCU 328(T) = TISTR 2107(T)) and Streptomyces similanensis sp. nov. (type strain, KC-106(T) = NBRC 108798(T) = PCU 329(T) = TISTR 2104(T)).
Collapse
|
33
|
Tian XP, Xu Y, Zhang J, Li J, Chen Z, Kim CJ, Li WJ, Zhang CS, Zhang S. Streptomyces oceani sp. nov., a new obligate marine actinomycete isolated from a deep-sea sample of seep authigenic carbonate nodule in South China Sea. Antonie van Leeuwenhoek 2012; 102:335-43. [PMID: 22696167 DOI: 10.1007/s10482-012-9743-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/22/2012] [Indexed: 11/26/2022]
Abstract
A novel aerobic actinomycete strain, designated as SCSIO 02100(T), was isolated from a deep sea sediment sample collected from Northern South China Sea at a depth of 578 m. This isolate requires sea water or a sodium-supplemented medium for growth. BLAST searches based on the almost full length of the 16S rRNA gene sequence, showed that strain SCSIO 02100(T) had the highest similarities with Streptomyces armeniacus (JCM 3070(T)) (97.1 %). Phylogenetic trees reconstructed on the basis of 16S rRNA gene sequences revealed that strain SCSIO 02100(T) formed a distinct lineage with S. nanshensis SCSIO 01066(T) with 96.9 % similarity. Further analysis of the polyphasic taxonomic data, including morphological, phenotypic and chemotaxonomic properties, showed that strain SCSIO 02100(T) could be readily distinguished from the most closely related members of the genus Streptomyces. Thus, based on the polyphasic taxonomic data, a novel species, Streptomyces oceani sp. nov., is proposed, with the type strain SCSIO 02100(T) (=DSM 42043(T) = CGMCC 4.7007(T)).
Collapse
Affiliation(s)
- Xin-Peng Tian
- Key Laboratory of Marine Bio-resources Sustainable Utilization, CAS, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|