1
|
Lee H, Kim I, Park S, Woo H, Yook S, Seo T. Sphingomonas rustica sp. nov. and Sphingomonas agrestis sp. nov., novel carotenoid-producing bacterial species isolated from farm soil. Int J Syst Evol Microbiol 2024; 74. [PMID: 39418191 DOI: 10.1099/ijsem.0.006551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Two yellow-pigmented novel strains, designated HF-S3T and HF-S4T, were isolated from farm soil in Paju, Republic of Korea. Cells of the two strains are characteristically Gram-stain-negative, facultatively anaerobic, catalase- and oxidase-positive, non-motile and rod-shaped. Strain HF-S3T grew at 10-37 °C, while HF-S4T grew at 15-35 °C. Both strains grew at pH 5.0-12.0 and in NaCl concentrations (w/v) of 0-2.0%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that HF-S3T and HF-S4T belong to the genus Sphingomonas, with HF-S3T exhibiting 97.7, 97.6 and 97.4% similarity to Sphingomonas cannabina DM2-R-LB4T, Sphingomonas leidyi DSM 4733T and Sphingomonas canadensis FWC47T, respectively. Strain HF-S4T displayed 97.9, 97.7 and 97.6% similarity to Sphingomonas psychrotolerans Cra20T, Sphingomonas gei ZFGT-11T and Sphingomonas naasensis KIS18-15T, respectively. The DNA G+C contents of HF-S3T and HF-S4T were 67.0 and 66.5 mol%, respectively. The digital DNA-DNA hybridization and average nucleotide identity values among the novel and related type strains were 20.2-28.2% and 75.9-84.3%, respectively. They all contained C14:0 2-OH and C16:0, summed feature 8 (C18:1 ω6c and/or C18:1 ω7c) as the major fatty acids and ubiquinone-10 as the predominant respiratory quinone. Strains HF-S3T and HF-S4T were found to produce carotenoid-type pigments. Based on polyphasic taxonomic analysis, the new isolates ostensibly represent two novel species of the genus Sphingomonas, with the proposed names Sphingomonas rustica sp. nov. and Sphingomonas agrestis sp. nov. for strains HF-S3T and HF-S4T, respectively. The S. rustica and S. agrestis type strains are HF-S3T (=KACC 23554T =TBRC 18352T) and HF-S4T (=KACC 23386T =TBRC 17899T), respectively.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Life Science, Dongguk University-Seoul, Goyang10326, Republic of Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang10326, Republic of Korea
| | - Sunho Park
- Department of Life Science, Dongguk University-Seoul, Goyang10326, Republic of Korea
| | - Haejin Woo
- Department of Life Science, Dongguk University-Seoul, Goyang10326, Republic of Korea
| | - Subin Yook
- Department of Life Science, Dongguk University-Seoul, Goyang10326, Republic of Korea
| | | |
Collapse
|
2
|
Shi H, Mao X, Yang F, Zhu M, Tan N, Tan W, Gu T, Zhang X. Multi-scale analysis of acidophilic microbial consortium biofilm's tolerance of lithium and cobalt ions in bioleaching. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134764. [PMID: 38824773 DOI: 10.1016/j.jhazmat.2024.134764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Metal ions stress will inhibit the oxidation capacity of iron and sulfur of an acidophilic microbial consortium (AMC), which leads to reduced bioleaching efficiency. This work explored the impacts of Li+ and Co2+ on the composition and function of AMC biofilms with a multi-scale approach. At the reactor scale, the results indicated that the oxidative activity, the adsorption capacity, and the biofilm formation ability of AMC on pyrite surfaces decreased under 500 mM Li+ and 500 mM Co2+. At the biofilm scale, the electrochemical measurements showed that Li+ and Co2+ inhibited the charge transfer between the pyrite working electrode and the biofilm, and decreased the corrosion current density of the pyrite working electrode. At the cell scale, the content of proteins in extracellular polymers substrate (EPS) increased as the concentrations of metal ions increased. Moreover, the adsorption capacity of EPS for Li+ and Co2+ increased. At the microbial consortium scale, a BugBase phenotype analysis showed that under 500 mM Li+ and 500 mM Co2+, the antioxidant stress capacity and the content of mobile gene elements in AMC increased. The results in this work can provide useful data and theoretical support for the regulation strategy of the bioleaching of spent lithium-ion batteries to recover valuable metals.
Collapse
Affiliation(s)
- Hongjie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xingshun Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minglong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ningjie Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Xu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Samadi A, Kermanshahi Pour A, Beims RF, Xu CC. Delignified porous wood as biofilm support for 1,4-dioxane-degrading bacterial consortium. ENVIRONMENTAL TECHNOLOGY 2024; 45:2541-2557. [PMID: 36749305 DOI: 10.1080/09593330.2023.2178330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Delignified porous wood samples were used as carriers for biofilm formation of a bacterial consortium with the ability to degrade 1,4-dioxane (DX). The delignification treatment of the natural wood resulted in higher porosity, formation of macropores, increase in surface roughness and hydrophilicity of the treated wood pieces. These superior properties of two types of treated carriers (respectively, A and B) compared to the untreated wood resulted in 2.19 ± 0.52- and 2.66 ± 0.23-fold higher growth of biofilm. Moreover, analysis of the fatty acid profiles indicated an increase in proportion of the saturated fatty acids during the biofilm formation, characterising an enhancement in rigidity and hydrophobicity of the biofilms. DX initial concentration of 100 mg/L was completely degraded (detection limit 0.01 mg/L) in 24 and 32 h using the treated A and B woods, while only 25.84 ± 5.95% was removed after 32 h using the untreated wood. However, fitting the DX biodegradation data to the Monod model showed a lower maximum specific growth rate for biofilm (0.0276 ± 0.0018 1/h) versus planktonic (0.0382 ± 0.0024 1/h), because of gradual accumulation of inactive cells in the biofilm. Findings of this study can contribute to the knowledge of biofilm formation regarding the physical/chemical properties of biofilm carriers and be helpful to the ongoing research on bioremediation of DX.
Collapse
Affiliation(s)
- Aryan Samadi
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Canada
| | - Azadeh Kermanshahi Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Canada
| | - Ramon Filipe Beims
- Department of Biochemical and Chemical Engineering, University of Western Ontario, London, Canada
| | - Chunbao Charles Xu
- Department of Biochemical and Chemical Engineering, University of Western Ontario, London, Canada
| |
Collapse
|
4
|
Tian M, Zhang W, Zhang G, Bahadur A, Wu S, Yu X, Wu Y, Jia P, Chen T, Liu G. A novel UV-resistant bacterium Sphingomonas endolithica sp. nov., and genomic analysis, isolated from the north slope of Mount Everest. Antonie Van Leeuwenhoek 2023; 117:5. [PMID: 38153511 DOI: 10.1007/s10482-023-01903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Gram-stain-negative, aerobic, rod-shaped, non-motile bacterium strain ZFBP2030T was isolated from a rock on the North slope of Mount Everest. This strain contained a unique ubiquinone-10 (Q-10) as a predominant respiratory quinone. Among the tested fatty acids, the strain contained summed feature 8, C14:0 2OH, and C16:0, as major cellular fatty acids. The polar lipid profile contained phosphatidyl glycerol, phosphatidyl ethanolamine, three unidentified phospholipids, two unidentified aminolipids, and six unidentified lipids. The cell-wall peptidoglycan was a meso-diaminopimelic acid, and cell-wall sugars were ribose and galactose. Phylogenetic analyses based on 16S rRNA gene sequence revealed that strain ZFBP2030T was a member of the genus Sphingomonas, exhibiting high sequence similarity to the 16S rRNA gene sequences of Sphingomonas aliaeris DH-S5T (97.9%), Sphingomonas alpina DSM 22537T (97.3%) and Sphingomonas hylomeconis CCTCC AB 2013304T (97.0%). The 16S rRNA gene sequence similarity between ZFBP2030T and other typical strains was less than 97.0%. The average amino acid identity values, average nucleotide identity, and digital DNA-DNA hybridization values between strain ZFBP2030T and its highest sequence similarity strains were 56.9-79.9%, 65.1-82.2%, and 19.3-25.8%, respectively. The whole-genome size of the novel strain ZFBP2030T was 4.1 Mbp, annotated with 3838 protein-coding genes and 54 RNA genes. Moreover, DNA G + C content was 64.7 mol%. Stress-related functions predicted in the subsystem classification of the strain ZFBP2030T genome included osmotic, oxidative, cold/heat shock, detoxification, and periplasmic stress responses. The overall results of this study clearly showed that strain ZFBP2030T is a novel species of the genus Sphingomonas, for which the name Sphingomonas endolithica sp. nov. is proposed. The type of strain is ZFBP2030T (= EE 013T = GDMCC 1.3123T = JCM 35386T).
Collapse
Affiliation(s)
- Mao Tian
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China.
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, 730000, Gansu Province, China.
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyu Wu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Yu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Yujie Wu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Puchao Jia
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| | - Guangxiu Liu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|
5
|
Siddiqi MZ, Rajivgandhi G, Lee SY, Im WT. Characterization of four novel bacterial species of the genus Sphingomonas, Sphingomonas anseongensis, Sphingomonas alba, Sphingomonas brevis and Sphingomonas hankyongi sp.nov., isolated from wet land. Int J Syst Evol Microbiol 2023; 73. [PMID: 37216283 DOI: 10.1099/ijsem.0.005884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Four novel bacterial strains, designated as RG327T, SE158T, RB56-2T and SE220T, were isolated from wet soil in the Republic of Korea. To determine their taxonomic positions, the strains were fully characterized. On the basis of genomic information (16S rRNA gene and draft genome sequences), all four isolates represent members of the genus Sphingomonas. The draft genomes of RG327T, SE158T, RB56-2T and SE220T consisted of circular chromosomes of 2 226 119, 2 507 338, 2 593 639 and 2 548 888 base pairs with DNA G+C contents of 64.6, 63.6, 63.0 and 63.1 %, respectively. All the isolates contained ubiquinone Q-10 as the predominant quinone compound and a fatty acid profile with C16 : 0, C17 : 1ω6c, C18 : 1 2-OH, summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) and summed feature 8 (C18 : 1ω7c/C18 : 1ω6c) as the major fatty acids, supporting the affiliation of strains RG327T, SE158T, RB56-2T and SE220T to the genus Sphingomonas. The major identified polar lipids in all four novel isolates were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine. Moreover, the physiological, biochemical results and low level of DNA-DNA relatedness and average nucleotide identity values allowed the phenotypic and genotypic differentiation of RG327T, SE158T, RB56-2T and SE220T from other species of the genus Sphingomonas with validly published names and indicated that they represented novel species of the genus Sphingomonas, for which the names Sphingomonas anseongensis sp. nov. (RG327T = KACC 22409T = LMG 32497T), Sphingomonas alba sp. nov. (SE158T = KACC 224408T = LMG 324498T), Sphingomonas brevis (RB56-2T = KACC 22410T = LMG 32496T) and Sphingomonas hankyongi sp. nov., (SE220T = KACC 22406T = LMG 32499T) are proposed.
Collapse
Affiliation(s)
- Muhammad Zubair Siddiqi
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro Anseong-si, Gyeonggi-do 17579, Republic of Korea
- HK Ginseng Research Center, Hankyong National University, 327 Jungang-ro Anseong-si, Gyonggi-do, 13449, Republic of Korea
- AceEMzyme Co., Ltd., Room 733, 815 Daewangpangyo-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13449, Republic of Korea
| | - Govindan Rajivgandhi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun YatSen University, Guangzhou 510275, PR China
| | - Soon-Youl Lee
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro Anseong-si, Gyeonggi-do 17579, Republic of Korea
- HK Ginseng Research Center, Hankyong National University, 327 Jungang-ro Anseong-si, Gyonggi-do, 13449, Republic of Korea
| | - Wan-Taek Im
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro Anseong-si, Gyeonggi-do 17579, Republic of Korea
- HK Ginseng Research Center, Hankyong National University, 327 Jungang-ro Anseong-si, Gyonggi-do, 13449, Republic of Korea
- AceEMzyme Co., Ltd., Room 733, 815 Daewangpangyo-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13449, Republic of Korea
| |
Collapse
|
6
|
Himi E, Miyoshi-Akiyama T, Matsushima Y, Shiono I, Aragane S, Hirano Y, Ikeda G, Kitaura Y, Kobayashi K, Konno D, Morohashi A, Noguchi Y, Ominato Y, Shinbo S, Suzuki N, Takatsuka K, Tashiro H, Yamada Y, Yamashita K, Yoshino N, Kitashima M, Kotani S, Inoue K, Hino A, Hosoya H. Establishment of an unfed strain of Paramecium bursaria and analysis of associated bacterial communities controlling its proliferation. Front Microbiol 2023; 14:1036372. [PMID: 36960277 PMCID: PMC10029143 DOI: 10.3389/fmicb.2023.1036372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/27/2023] [Indexed: 03/09/2023] Open
Abstract
The ciliate Paramecium bursaria harbors several hundred symbiotic algae in its cell and is widely used as an experimental model for studying symbiosis between eukaryotic cells. Currently, various types of bacteria and eukaryotic microorganisms are used as food for culturing P. bursaria; thus, the cultivation conditions are not uniform among researchers. To unify cultivation conditions, we established cloned, unfed strains that can be cultured using only sterile medium without exogenous food. The proliferation of these unfed strains was suppressed in the presence of antibiotics, suggesting that bacteria are required for the proliferation of the unfed strains. Indeed, several kinds of bacteria, such as Burkholderiales, Rhizobiales, Rhodospirillales, and Sphingomonadales, which are able to fix atmospheric nitrogen and/or degrade chemical pollutants, were detected in the unfed strains. The genetic background of the individually cloned, unfed strains were the same, but the proliferation curves of the individual P. bursaria strains were very diverse. Therefore, we selected multiple actively and poorly proliferating individual strains and compared the bacterial composition among the individual strains using 16S rDNA sequencing. The results showed that the bacterial composition among actively proliferating P. bursaria strains was highly homologous but different to poorly proliferating strains. Using unfed strains, the cultivation conditions applied in different laboratories can be unified, and symbiosis research on P. bursaria will make great progress.
Collapse
Affiliation(s)
- Eiko Himi
- Faculty of Agriculture, Kibi International University, Minamiawaji, Hyogo, Japan
| | - Tohru Miyoshi-Akiyama
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuri Matsushima
- Department of Biological Sciences, Graduate School of Science, Kanagawa University, Kanagawa, Japan
| | - Iru Shiono
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Seiji Aragane
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Yui Hirano
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Gaku Ikeda
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Yuki Kitaura
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Kyohei Kobayashi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Daichi Konno
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Ayata Morohashi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Yui Noguchi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Yuka Ominato
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Soma Shinbo
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Naruya Suzuki
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Kurama Takatsuka
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Hitomi Tashiro
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Yoki Yamada
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Kenya Yamashita
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Natsumi Yoshino
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Masaharu Kitashima
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Susumu Kotani
- Department of Biological Sciences, Graduate School of Science, Kanagawa University, Kanagawa, Japan
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
- Research Institute for Integrated Science, Kanagawa University, Kanagawa, Japan
| | - Kazuhito Inoue
- Department of Biological Sciences, Graduate School of Science, Kanagawa University, Kanagawa, Japan
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
- Research Institute for Integrated Science, Kanagawa University, Kanagawa, Japan
| | - Akiya Hino
- Research Institute for Integrated Science, Kanagawa University, Kanagawa, Japan
| | - Hiroshi Hosoya
- Research Institute for Integrated Science, Kanagawa University, Kanagawa, Japan
- *Correspondence: Hiroshi Hosoya, ;
| |
Collapse
|
7
|
Kim I, Chhetri G, So Y, Jung Y, Park S, Seo T. Sphingomonas liriopis sp. nov., Sphingomonas donggukensis sp. nov., and Sphingomonas tagetis sp. nov., isolated from Liriope platyphylla fruit, soil, and Tagetes patula roots. Arch Microbiol 2022; 205:16. [PMID: 36477930 DOI: 10.1007/s00203-022-03360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Three bacterial strains, designated RP10T, RMG20T, and MG17T, were isolated from Liriope platyphylla fruit (strain RP10T), soil (RMG20T), and Tagetes patula roots (MG17T) collected in Goyang, Republic of Korea. The 16S rRNA gene sequences revealed that strains RP10T, RMG20T, and MG17T were closely related to Sphingomonas melonis DSM 14444 T (highest similarity of the strain RP10T), Sphingomonas asaccharolytica DSM 10564 T (strain RMG20T), and Sphingomonas suaedae JCM 33850 T (strain MG17T) with 98.0-99.0% highest sequence similarity. The 16S rRNA gene sequences similarity between strains RP10T, RMG20T, and MG17T was 96.6-97.4%. Strains RP10T, RMG20T, MG17T, and the closely related type strains have digital DNA-DNA hybridization and average nucleotide identity values of 19.4-65.3% and 74.0-95.7%, respectively. Based on phylogenetic, biochemical, chemotaxonomic, and phenotypic data, strains RP10T, RMG20T, and MG17T are considered to represent novel species of the genus Sphingomonas, for which the name Sphingomonas liriopis sp. nov. (type strain RP10T = KACC 22357 T = TBRC 15161 T), Sphingomonas donggukensis sp. nov. (type strain RMG20T = KACC 22358 T = TBRC 15162 T), and Sphingomonas tagetis sp. nov. (type strain MG17T = KACC 22355 T = TBRC 15160 T), are proposed.
Collapse
Affiliation(s)
- Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Geeta Chhetri
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Yoonseop So
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Yonghee Jung
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Sunho Park
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
8
|
Jeon D, Jiang L, Peng Y, Seo J, Li Z, Park SH, Jeong RD, Park SJ, Jeong JC, Lee J. Sphingomonas cannabina sp. nov., isolated from Cannabis sativa L. 'Cheungsam'. Int J Syst Evol Microbiol 2022; 72. [PMID: 36260506 DOI: 10.1099/ijsem.0.005566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
A Gram-negative, aerobic, rod-shaped bacterium, designated DM2-R-LB4T was isolated from Cannabis sativa L. 'Cheungsam' in Andong, Republic of Korea. The strain DM2-R-LB4T grew at temperatures of 15-45 °C (optimum, 30-37 °C), pH of 5.5-9 (optimum, 8.0), and 0-2 % (w/v) NaCl concentration (optimum, 0%). Phylogenetic analyses based on the 16S rRNA gene sequences revealed that strain DM2-R-LB4T is related to species of the genus Sphingomonas, and shared 97.8 and 97.5% similarity to Sphingomonas kyenggiensis KCTC 42244T and Sphingomonas leidyi DSM 4733T, respectively. The DNA G+C content was 67.9 mol% and genome analysis of the strain DM2-R-LB4T revealed that the genome size was 4 386 171 bp and contained 4 009 predicted protein-coding genes. The average nucleotide identity (ANI) values between strain DM2-R-LB4T and S. kyenggiensis KCTC 42244T, and S. leidyi DSM 4733T was 76.8 and 76.7 %, respectively, while the values of digital DNA-DNA hybridization (dDDH) were 20.7 and 20.6 %, respectively. C14 : 0 2-OH, C16 : 0, and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c) were the major fatty acids (>10 %) in the strain DM2-R-LB4T. The polar lipids comprised diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), sphingoglycolipid (SGL), glycolipid (GL), phospholipid (PL), and two unidentified polar lipids (L1 and L2). Ubiquinone-10 (Q-10) was the only respiratory quinone. The polyamine pattern was found to contain homospermidine, putrescine, and spermidine. The results of phylogenetic anlayses, polyphasic studies, revealed that strain DM2-R-LB4T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas cannabina sp. nov., is proposed. The type strain is DM2-R-LB4T (=KCTC 92075T = GDMCC 1.3018T).
Collapse
Affiliation(s)
- Doeun Jeon
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Lingmin Jiang
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Yuxin Peng
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jiyoon Seo
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Zhun Li
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Rae-Dong Jeong
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Soon Ju Park
- Division of Biological Science, Wonkwang University, Iksan 54538, Republic of Korea
| | - Jae Cheol Jeong
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| |
Collapse
|
9
|
Wei DW, Yang Y, Zeng Y, Wang C, Feng J. Sphingomonas baiyangensis sp. nov., isolated from water in Baiyang Lake. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, short-rod-shaped, orange-pigmented bacterial strain, designated L-1–4 w-11T, was isolated from Baiyang Lake in China. The strain grew at 15–35 °C (optimum 30 °C) and pH 7–8 (optimum pH 7) in TSA medium. The predominant polar lipids of strain L-1–4 w-11T were sphingoglycolipid, phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified glycolipid and three unidentified lipids; the major cellular fatty acids were C17 : 1ω6c and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c); and the major respiratory quinone was ubiquinone 10 (Q-10). Strain L-1–4 w-11T showed the highest 16S rRNA gene sequence similarity to
Sphingomonas japonica
JCM 15438T (98.3 %) and
S. spermidinifaciens
GDMCC 1.657T (98.0 %). The draft genome size of strain L-1–4 w-11T was 3.3 Mbp, and the G+C content was 67.8 mol%. Digital DNA–DNA hydridization and average nucleotide identity values between the genome sequences of strain L-1–4 w-11T and
S. spermidinifaciens
GDMCC 1.657T (76.9 and 21.0 %),
S. japonica
JCM 15438T (76.0 and 19.9 %) and
S. paucimobilis
CGMCC 1.12825T (72.8 and 19.6 %) were far below the thresholds for prokaryotic conspecific assignment. With the evidence from the phylogenetic, chemotaxonomic and genotypic analyses, we propose that strain L-1–4 w-11T represents a novel
Sphingomonas
species with the name S. baiyangensis sp. nov. The type strain is L-1–4 w-11T (=CGMCC 1.13572T=JCM 33962T).
Collapse
Affiliation(s)
- Da-Wei Wei
- College of Life Science, University of Chinese Academy of Sciences, Beijing, PR China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Yunzhen Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Yuan Zeng
- College of Life Science, University of Chinese Academy of Sciences, Beijing, PR China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
10
|
Sphingomonas folii sp. nov., Sphingomonas citri sp. nov. and Sphingomonas citricola sp. nov., isolated from citrus phyllosphere. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three novel Gram-stain-negative, aerobic and rod-shaped bacterial strains, designated RHCKR7T, RRHST34T and RHCKR47T, were isolated from phyllosphere of healthy citrus collected in Renhua County, Guangdong Province, PR China. Phylogenetic analyses showed that they belonged to the genus
Sphingomonas
, among which both strains RHCKR7T and RRHST34T showed a close relationship with
Sphingomonas yunnanensis
YIM 003T with 16S rRNA gene similarity of 99.0 and 99.1%, respectively, and the similarity between the two novel strains was 99.2%, meanwhile strain RHCKR47T was most closely related to
Sphingomonas palmae
KACC 17591T (99.5%). Genome-derived average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between closely related novel strains RHCKR7T and RRHST34T were 90.43 and 40.80 %, respectively, and their most closely related type strain,
S. yunnanensis
YIM 003T, showed 90.43 % ANI and 40.7 % dDDH with RHCKR7T and 90.21 % and 42.9 % with RRHST34T, respectively, and the corresponding values between strain RHCKR47T and
S. palmae
KACC 17591T were 85.53 % and 29.30%, respectively. They all took C14 : 0 2-OH and summed feature 8 (C18 : 1
ω6c and/or C18 : 1
ω7c) as the major fatty acids, and ubiquinone 10 as the predominant respiratory quinone. The major polar lipids contained sphingoglycolipid, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and unidentified phospholipids. sym-Homospermidine was the major polyamine. Based on phenotypic, genotypic and chemotaxonomic analyses, the new isolates should be considered as representing three novel species of the genus
Sphingomonas
, for which the names Sphingomonas folli sp. nov., Sphingomonas citri sp. nov. and Sphingomonas citricola sp. nov. are proposed with RHCKR7T (=GDMCC 1.2663T=JCM 34794T), RRHST34T (=GDMCC 1.2665T=JCM 34796T) and RHCKR47T (=GDMCC 1.2664T=JCM 34795T) as the type strains, respectively.
Collapse
|
11
|
Luo Y, Zhou M, Wang F, Sheng H. Sphingomonas psychrotolerans sp. nov., isolated from root surface of Leontopodium leontopodioides in the Tianshan Mountains, Xinjiang, China. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel rod-shaped, Gram-stain-negative, aerobic bacterial strain, designated Cra20T, was isolated from the root surface of Leontopodium leontopodioides collected in the Tianshan Mountains, Xinjiang, PR China. Phylogenetic analysis based on 16S rRNA gene sequences, indicated that strain Cra20T was affiliated with the genus
Sphingomonas
, and was most closely related to
Sphingomonas gei
ZFGT-11T (99.0 %),
Sphingomonas naasensis
KIS18-15T (97.8%) and
Sphingomonas kyeonggiensis
THG-DT81T (97.2 %). The average nucleotide identity values between strain Cra20T,
S. gei
ZFGT-11T,
S. naasensis
KIS18-15T and
S. kyeonggiensis
THG-DT81T were 86.2, 84.2 and 78.2 %, respectively. The genomic DNA G+C content of strain Cra20T was 65.6 mol% (whole genome sequence), and Q-10 was the predominant ubiquinone. The major cellular fatty acids of strain Cra20T were summed feature 8 (comprising C18 : 1
ω6c and/or C18 : 1
ω7c, 67.3 %) and C14 : 0 2-OH (6.4 %). On the basis of genotypic, phenotypic and biochemical data, strain Cra20T is considered to represent a novel species of the genus
Sphingomonas
, for which the name Sphingomonas psychrotolerans sp. nov. is proposed. The type strain is Cra20T (=CGMCC 1.15510T=NBRC 112697T).
Collapse
Affiliation(s)
- Yang Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
- School of Life Sciences, Shangrao Normal University, Shangrao Agricultural Technology Innovation Research Institute, Shangrao 334000, PR China
| | - Meng Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
- School of Life Sciences, Shangrao Normal University, Shangrao Agricultural Technology Innovation Research Institute, Shangrao 334000, PR China
| | - Fang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Hongmei Sheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
12
|
Sphingomonas quercus sp. nov., Isolated from Rhizosphere Soil of Quercus mongolica. Curr Microbiol 2022; 79:122. [PMID: 35239058 DOI: 10.1007/s00284-022-02819-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
Strain XMGL2T, isolated from rhizosphere soil of Quercus mongolica in China, was characterized using a polyphasic taxonomic approach. Cells were Gram-negative, aerobic, non-spore-forming, and rod-shaped. Growth occurred at 20-37 °C (optimum, 28 °C), pH 5.0-10.0 (optimum, pH 6.0), and with 0-1% NaCl (optimum, 1%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain XMGL2T was related to members of the genus Sphingomonas and had the highest 16S rRNA gene sequence identity to Sphingomonas oleivorans FW-11 T (96.4%). The average nucleotide identity and digital DNA-DNA hybridization values between strain XMGL2T and the closely related taxa Sphingomonas oleivorans FW-11 T and Sphingomonas fennica K101T were 75.3/19.8% and 75.8/20.2%, respectively. The major cellular fatty acids were C18:1 ω7c, C14:0 2-OH, and C16:0. The major isoprenoid quinone was Q-10 and the polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidyldimethylethanolamine, phosphatidylmonomethylethanolamine, an unidentified glycophospholipid and an unidentified phospholipid. The genomic DNA G + C content was 67.9%. Based on the phenotypic and genotypic properties and phylogenetic inference, strain XMGL2T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas quercus sp. nov. is proposed. The type strain is XMGL2T (= JCM 34441 T = GDMCC 1.2153 T).
Collapse
|
13
|
Dong L, Li S, Lian WH, Wei QC, Mohamad OAA, Hozzein WN, Ahmed I, Li WJ. Sphingomonas arenae sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2022; 72. [PMID: 35060847 DOI: 10.1099/ijsem.0.005195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Two bacterial strains, designated as SYSU D00720T and SYSU D00722, were isolated from a desert sandy soil sample collected from Gurbantunggut Desert in Xinjiang, north-west China. Cells were Gram-stain-negative, aerobic, non-motile, rod-shaped, oxidase-positive and catalase-negative. Colonies were circular, opaque, convex, smooth, orange on Reasoner's 2A (R2A) agar. The isolates were found to grow at 4-45 °C (optimum, 28-30 °C), at pH 6.0-7.0 (optimum, 7.0) and with 0-1.5 % (w/v) NaCl (optimum, 0%). Growth was observed on R2A agar, Luria-Bertani agar and nutrient agar, but not on trypticase soy agar. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid, two unidentified aminolipids, one unidentified glycolipid, one unidentified aminoglycolipid, one unidentified aminophospholipid, one unidentified phospholipid and two unidentified lipids. The main fatty acids (>10%) were C17 : 1 ω6c, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. The major respiratory quinone was ubiquinone-10 and the major polyamine was sym-homospermidine. The genomic DNA G+C content was 66.0 mol%. Strains SYSU D00720T and SYSU D00722 were nearly identical with a 16S rRNA gene sequence similarity of 99.6 %, and 100.0 % average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values. Phylogenetic analyses clearly demonstrated that these two strains belonged to the same species of the genus Sphingomonas, and had highest sequence similarity to Sphingomonas lutea KCTC 23642T (97.3 %). The ANI, AAI and dDDH values of strains SYSU D00720T and SYSU D00722 to S. lutea KCTC 23642T were both 73.2, 69.9 and 19.2 %, respectively. Based on phylogenetic, phenotypic and chemotaxonomic distinctiveness, strains SYSU D00720T and SYSU D00722 represent a novel species of the genus Sphingomonas, for which the name Sphingomonas arenae sp. nov. is proposed. The type strain is SYSU D00720T (=MCCC 1K05154T=NBRC 115061T).
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Qi-Chuang Wei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Wael N Hozzein
- Zoology Department, College of Science, King Saud University, Riyadh 999088, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Bio-Resources Conservation Institute (BCI), National Agricultural Research Centre (NARC), Park Road, Islamabad 45500, Pakistan
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| |
Collapse
|
14
|
Hyun DW, Jeong YS, Lee JY, Sung H, Lee SY, Choi JW, Kim HS, Kim PS, Bae JW. Description of Nocardioides piscis sp. nov., Sphingomonas piscis sp. nov. and Sphingomonas sinipercae sp. nov., isolated from the intestine of fish species Odontobutis interrupta (Korean spotted sleeper) and Siniperca scherzeri (leopard mandarin fish). J Microbiol 2021; 59:552-562. [PMID: 33877575 DOI: 10.1007/s12275-021-1036-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
A polyphasic taxonomic approach was used to characterize three novel bacterial strains, designated as HDW12AT, HDW-15BT, and HDW15CT, isolated from the intestine of fish species Odontobutis interrupta or Siniperca scherzeri. All isolates were obligate aerobic, non-motile bacteria, and grew optimally at 30°C. Phylogenetic analysis based on 16S rRNA sequences revealed that strain HDW12AT was a member of the genus Nocardioides, and closely related to Nocardioides allogilvus CFH 30205T (98.9% sequence identities). Furthermore, strains HDW15BT and HDW15CT were members of the genus Sphingomonas, and closely related to Sphingomonas lutea JS5T and Sphingomonas sediminicola Dae 20T (97.1% and 97.9% sequence identities), respectively. Strain HDW12AT contained MK-8 (H4), and strains HDW15BT and HDW15CT contained Q-10 as the respiratory quinone. Major polar lipid components of strain HDW12AT were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylinositol, and those of strains HDW15BT and HDW15CT were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine. The G + C content of strains HDW12AT, HDW15BT, and HDW15CT were 69.7, 63.3, and 65.5%, respectively. The results of phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses suggest that strain HDW12AT represents a novel species within the genus Nocardioides, and strains HDW15BT and HDW15CT represent two novel species within the genus Sphingomonas. We propose the names Nocardioides piscis for strain HDW12AT (= KACC 21336T = KCTC 49321T = JCM 33670T), Sphingomonas piscis for strain HDW15BT (= KACC 21341T = KCTC 72588T = JCM 33738T), and Sphingomonas sinipercae for strain HDW15CT (= KACC 21342T = KCTC 72589T = JCM 33739T).
Collapse
Affiliation(s)
- Dong-Wook Hyun
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yun-Seok Jeong
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae-Yun Lee
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hojun Sung
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - So-Yeon Lee
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jee-Won Choi
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyun Sik Kim
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Pil Soo Kim
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
15
|
Gao JL, Sun P, Sun YC, Xue J, Wang G, Wang LW, Du Y, Zhang X, Sun JG. Caulobacter endophyticus sp. nov., an endophytic bacterium harboring three lasso peptide biosynthetic gene clusters and producing indoleacetic acid isolated from maize root. Antonie van Leeuwenhoek 2021; 114:1213-1224. [PMID: 34002321 DOI: 10.1007/s10482-021-01593-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/08/2021] [Indexed: 11/30/2022]
Abstract
A novel Gram-stain-negative, aerobic and rod-shaped bacterium with a single polar flagellum or a stalk at the end of the cell, was isolated from maize roots in the Fangshan District of Beijing, People's Republic of China. The new strain designated 774T produced indole acetic acid (IAA). The 16S rRNA gene sequence analysis indicated that strain 774T belongs to the genus Caulobacter and is closely related to Caulobacter flavus RHGG3T, Caulobacter zeae 410Tand Caulobacter radices 695T, all with sequence similarities of 99.9%. The genome size of strain774T was 5.4 Mb, comprising 5042 predicted genes with a DNA G+C content of 68.7%.Three striking lasso peptide biosynthetic gene clusters and two IAA synthesis genes belonging to the TPM pathway were also found in the genome of strain 774T. The average nucleotide identity values and digital DNA-DNA hybridization values of the strain774T with its closely phylogenetic neighbours were less than 91.5% and 45.0%, respectively, indicating a new Caulobacter species. The major fatty acids of strain774T were identified as C16: 0 (27.7%), summed feature 3 (C16: 1ω6c and/or C16: 1ω7c) (12.6%) and summed feature 8 (C18: 1ω7c and/or C18: 1ω6c) (42.9%).The major polar lipids consisted of phosphatidyl-glycerol and glycolipids. The predominant ubiquinone was identified as Quinone 10. Based on the polyphasic characterization, strain 774T represents a novel species of the genus Caulobacter, for which the name Caulobacter endophyticus sp. nov. is proposed with 774T (= CGMCC 1.16558T = DSM 106777T) as the type strain.
Collapse
Affiliation(s)
- Jun-Lian Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, People's Republic of China
| | - Pengbo Sun
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Yu-Chen Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, People's Republic of China.,College of Food Science and Engineering, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Jing Xue
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, People's Republic of China
| | - Guoliang Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, People's Republic of China
| | - Li-Wei Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, People's Republic of China
| | - Yunpeng Du
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, People's Republic of China
| | - Xiuhai Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, People's Republic of China.
| | - Jian-Guang Sun
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
16
|
Ming YZ, Liu L, Lv AP, Xian WD, Liu ZT, Li MM, Jiao JY, Fang BZ, Li WJ. Thermaurantiacus tibetensis gen. nov., sp. nov., a novel moderately thermophilic bacterium isolated from hot spring microbial mat in Tibet. Antonie van Leeuwenhoek 2021; 114:445-455. [PMID: 33620611 DOI: 10.1007/s10482-021-01530-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Two bacterial strains SYSU G02173T and SYSU G03142 were isolated from hot springs in Tibet, China. Based on the results of nearly full-length 16S rRNA gene sequences and phylogenetic analyses, strains SYSU G02173T and SYSU G03142 were assigned to the family Sphingosinicellaceae, and were closest to Sandaracinobacter sibiricus RB16-17 T (96.04% and 96.12% similarity, respectively). Cells of the both new strains were observed to be motile rod-shape, Gram-staining negative. Growth occurred at pH 6-8 (optimal: pH 7.0) and 37-55 °C (optimal: 45 °C) with 0-1.0% (w/v) NaCl in T4 broth. The cells were found to be positive for oxidase and catalase activities. The major respiratory ubiquinone was Q-8. The major fatty acids were identified as summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C16:0, C14:0 2-OH. The major polar lipids were found to consist of sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified phospholipid, one unidentified glycolipid, three unidentified aminolipids and two unidentified polar lipids. The DNA G + C contents of strains SYSU G02173T and SYSU G03142 were 71.8%. The average nucleotide identity (ANI) value between strain SYSU G02173T and SYSU G03142 was 99.98%. The amino acid identity (AAI) values between them and their closely related species were below 66.14%. The isolates are characterized by aerobic growth, a yellow endocellular pigment and a higher optimum growth temperature. The results showed that strains SYSU G02173T and SYSU G03142 represent a novel species of a novel genus in the family Sphingomonadaceae, and thus the name Thermaurantiacus tibetensis (type strain SYSU G02173T = KCTC 72052 T = CGMCC 1.16680 T) is proposed.
Collapse
Affiliation(s)
- Yu-Zhen Ming
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ze-Tao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China. .,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
17
|
Competitive Exclusion and Metabolic Dependency among Microorganisms Structure the Cellulose Economy of an Agricultural Soil. mBio 2021; 12:mBio.03099-20. [PMID: 33402535 PMCID: PMC8545098 DOI: 10.1128/mbio.03099-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms that degrade cellulose utilize extracellular reactions that yield free by-products which can promote interactions with noncellulolytic organisms. We hypothesized that these interactions determine the ecological and physiological traits governing the fate of cellulosic carbon (C) in soil. We performed comparative genomics with genome bins from a shotgun metagenomic-stable isotope probing experiment to characterize the attributes of cellulolytic and noncellulolytic taxa accessing 13C from cellulose. We hypothesized that cellulolytic taxa would exhibit competitive traits that limit access, while noncellulolytic taxa would display greater metabolic dependency, such as signatures of adaptive gene loss. We tested our hypotheses by evaluating genomic traits indicative of competitive exclusion or metabolic dependency, such as antibiotic production, growth rate, surface attachment, biomass degrading potential, and auxotrophy. The most 13C-enriched taxa were cellulolytic Cellvibrio (Gammaproteobacteria) and Chaetomium (Ascomycota), which exhibited a strategy of self-sufficiency (prototrophy), rapid growth, and competitive exclusion via antibiotic production. Auxotrophy was more prevalent in cellulolytic Actinobacteria than in cellulolytic Proteobacteria, demonstrating differences in dependency among cellulose degraders. Noncellulolytic taxa that accessed 13C from cellulose (Planctomycetales, Verrucomicrobia, and Vampirovibrionales) were also more dependent, as indicated by patterns of auxotrophy and 13C labeling (i.e., partial labeling or labeling at later stages). Major 13C-labeled cellulolytic microbes (e.g., Sorangium, Actinomycetales, Rhizobiales, and Caulobacteraceae) possessed adaptations for surface colonization (e.g., gliding motility, hyphae, attachment structures) signifying the importance of surface ecology in decomposing particulate organic matter. Our results demonstrated that access to cellulosic C was accompanied by ecological trade-offs characterized by differing degrees of metabolic dependency and competitive exclusion.
Collapse
|
18
|
Sheu SY, Yang CC, Sheu DS, Tsai JM, Chen WM. Sphingomonas lacunae sp. nov., isolated from a freshwater pond. Int J Syst Evol Microbiol 2020; 70:5899-5910. [PMID: 33016860 DOI: 10.1099/ijsem.0.004491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel bacterial strain, designated CSW-10T, isolated from a freshwater pond in Taiwan, was characterized using a polyphasic taxonomic approach. Cells were Gram-stain-negative, aerobic, non-motile, rod-shaped and formed yellow-coloured colonies. Optimal growth occurred at 30 °C, pH 7, and in the absence of NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain CSW-10T formed a phylogenetic lineage in the genus Sphingomonas. The 16S rRNA gene sequence similarity indicated that strain CSW-10T was most closely related to Sphingomonas fonticola TNR-2T (97.6%). Strain CSW-10T showed 69.8-70.7% average nucleotide identity and 19.0-23.0% digital DNA-DNA hybridization identity with the strains of other related Sphingomonas species. The major fatty acids of strain CSW-10T were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) and C17:1 ω6c. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylcholine, one uncharacterized sphingoglycolipid, five uncharacterized aminophospholipids, one uncharacterized phospholipid and one uncharacterized lipid. The predominant polyamines were homospermidine and spermidine. The major isoprenoid quinone was Q-10. Genomic DNA G+C content of strain CSW-10T was 62.0 mol%. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain CSW-10T should represent a novel species of the genus Sphingomonas, for which the name Sphingomonas lacunae sp. nov. is proposed. The type strain is CSW-10T (=BCRC 81190T =LMG 31340T).
Collapse
Affiliation(s)
- Shih-Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Che-Chia Yang
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Der-Shyan Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Jyh-Ming Tsai
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| |
Collapse
|
19
|
Sphingomonas parva sp. nov., isolated from soil in Jeju Island. Arch Microbiol 2020; 202:2429-2436. [PMID: 32594212 DOI: 10.1007/s00203-020-01925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
A Gram staining-negative, yellow-colored, rod-shaped, non-motile and aerobic, designated strain 17J27-24T was isolated from a soil sample in Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 17J27-24T was related to the members of the family Sphingomonadaceae and formed a distinct monophyletic cluster within the genus Sphingomonas with Sphingomonas deserti (98.3% 16S rRNA gene sequence similarity). Growth was observed at 30 °C (optimum), at pH 7.0 (optimum), and in the absence of NaCl (%). The predominant cellular fatty acids were summed feature 8 (18:1 ω7c and/or 18:1 ω6c) and C17:1 ω6c. The major respiratory quinone was Q10. The polar lipids profile comprised of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and sphingoglycolipid (SGL). The DNA G + C content was 77.8 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values between 17J27-24T and its phylogenetically closest Sphingomonas deserti (KCTC 62411T) were below the established cut-off < 94% (ANI) and < 70% (dDDH) for species delineation. Moreover, the results of the polyphasic approach confirmed that strain 17J27-24T represents a novel species of the genus Sphingomonas within the family Sphingomonadaceae, for which the name Sphingomonas parva sp. nov. is proposed. The type strain of this species is 17J27-24T (= KCTC 62208T = JCM 3896T). An emended description of the species Sphingomonas parva is provided.
Collapse
|
20
|
Lee JC, Whang KS. Sphingomonas segetis sp. nov., isolated from spinach farming field soil. Int J Syst Evol Microbiol 2020; 70:3905-3911. [PMID: 32501785 DOI: 10.1099/ijsem.0.004257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative bacterium, designated strain YJ09T, was isolated from spinach farming field soil at Shinan in the Republic of Korea. Cells of strain YJ09T were found to be strictly aerobic, non-motile, non-spore-forming creamy-yellow rods which can grow at 20-37 °C (optimum, 30 °C), at pH 6.0-9.0 (optimum, pH 7.0-8.0) and at salinities of 0-0.5 % (w/v) NaCl (optimum, 0 % NaCl). The 16S rRNA gene sequence analysis showed that strain YJ09T belongs to the genus Sphingomonas with high sequence similarities to Sphingomonas parvus GP20-2 T (98.0 %), Sphingomonas agri HKS-06T (97.7 %) and Sphingomonas lutea JS5T (97.4 %). The results of phylogenetic analysis indicated that strain YJ09T formed a distinct phyletic line in the genus Sphingomonas and the results of DNA-DNA relatedness studies demonstrated that strain YJ09T could be separated from its closest relatives in the genus Sphingomonas. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unidentified glycolipids, an unidentified phospholipid and sphingoglycolipid. The predominant ubiquinone and polyamine components were Q-10 and spermidine, respectively. The major fatty acids were C18:1 ω7c, C16 : 0 and C16:1 ω7c and/or iso-C15 : 0 2-OH. The DNA G+C content of this novel isolate was 65.9 mol%. On the basis of phenotypic, chemotaxonomic properties and phylogenetic analyses in this study, strain YJ09T is considered to represent a novel species in the genus Sphingomonas, for which the name Sphingomonas segetis sp. nov. is proposed. The type strain is YJ09T (=KACC 19551T=NBRC 113247T).
Collapse
Affiliation(s)
- Jae-Chan Lee
- Department of Microbiology & Resources, College of Science & Technology, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon 35349, Republic of Korea.,Institute of Microbial Ecology and Resources, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon 35349, Republic of Korea
| | - Kyung-Sook Whang
- Department of Microbiology & Resources, College of Science & Technology, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon 35349, Republic of Korea.,Institute of Microbial Ecology and Resources, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon 35349, Republic of Korea
| |
Collapse
|
21
|
Xu Z, Zhang Y, Muhammad Y, Wang G. Sphingomonas montanisoli sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2020; 70:3606-3613. [DOI: 10.1099/ijsem.0.004187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A soil bacterium, designated ZX9611T, was isolated from Taihang Mountain in Henan province, PR China. The strain was Gram-stain-negative and strictly aerobic. The cells were motile, rod-shaped and formed light pink-colored colonies. The 16S rRNA gene sequence of ZX9611T shared the highest similarities with those of
Sphingomonas crocodyli
CCP-7T (97.0%),
Sphingomonas jatrophae
S5-249T (96.6%) and
Sphingomonas starnbergensis
382T (95.9%). Phylogenetic analyses based on 16S rRNA gene sequences demonstrated that ZX9611T clustered with
S. crocodyli
CCP-7T,
S. jatrophae
S5-249T and
S. starnbergensis
382T. The average nucleotide identity (ANI) values between ZX9611T and two type strains (
S. crocodyli
BCRC 81096T and
S. jatrophae
DSM 27345T) were 88.3 and 68.6% respectively. ZX9611T exhibited genome-sequence-based digital DNA–DNA hybridization (dDDH) values of 53.3 % and 15.3 %, compared with
S. crocodyli
BCRC 81096T and
S
.
jatrophae
DSM 27345T, respectively. ZX9611T had a genome size of 4.12 Mb and an average DNA G+C content of 64.8 %. ZX9611T had major fatty acids (>5 %) including summed feature 8 (C18 : 1
ω7c and/or C18 : 1
ω6c), C14 : 0 2-OH, C16 : 0 and summed feature 3 (C16 : 1
ω7c and/or C16 : 1
ω6c), and the major polyamine was sym-homospermidine. The only respiratory quinone was ubiquinone-10. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, strain ZX9611T represents a novel species of genus Sphingomonas, for which the name Sphingomonas montanisoli sp. nov. is proposed. The type strain is ZX9611T (=KCTC 72622T=CCTCC AB 2019350T).
Collapse
Affiliation(s)
- Zixiao Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuxiao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yasir Muhammad
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
22
|
Qin D, Ma C, Lv M, Yu CP. Sphingobium estronivorans sp. nov. and Sphingobium bisphenolivorans sp. nov., isolated from a wastewater treatment plant. Int J Syst Evol Microbiol 2020; 70:1822-1829. [PMID: 32048985 DOI: 10.1099/ijsem.0.003978] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-negative, aerobic, motile and rod-shaped bacteria, one designated as strain AXBT, capable of degrading estrogens, and another, YL23T, capable of degrading estrogen and bisphenol A, were isolated from activated sludge in Xiamen City, PR China. The optimum temperature and pH of both strains were 25-35 °C and pH 7.0-8.0. While strain AXBT could tolerate 3 % (w/v) NaCl, YL23T could only grow between 0-1 % (w/v) NaCl. They contained ubiquinone-10 as the major quinone, spermidine as the major polyamine, summed feature 8 (comprising C18:1ω6c and/or C18:1ω7c) as the major fatty acids and diphosphatidylglycerol, phosphatidylcholine, phosphatidyldimethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid as the major polar lipids. The DNA G+C contents of strains AXBT and YL23T were 63.6 and 63.7 mol%, respectively. Based on the results of 16S rRNA gene sequence analysis, strains AXBT and YL23T belonged to the genus Sphingobium. Strain AXBT was most closely related to Sphingobium chlorophenolicum NBRC 16172T (97.5 %) and Sphingobium chungbukense DJ77T (97.2 %), and strain YL23T was most closely related to S. chlorophenolicum NBRC 16172T (97.4 %) and S. quisquiliarum P25T (97.1 %). Average nucleotide identity values between these two strains and S. chlorophenolicum NBRC 16172T, S. chungbukense DJ77T, Sphingobium chinhatense IP26T, Sphingobium quisquiliarum P25T and Sphingobium japonicum UT26ST were from 80.7 to 85.8 %. In conclusion, strains AXBT and YL23T represent novel species of the genus Sphingobium, for which the names Sphingobium estronivorans sp. nov. and Sphingobium bisphenolivorans sp. nov. are proposed, respectively. The type strains of S. estronivorans and S. bisphenolivorans are AXBT (=MCCC 1K01232T=DSM 102173T) and YL23T (=MCCC 1K02300T=DSM 102172T), respectively.
Collapse
Affiliation(s)
- Dan Qin
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China
| | - Cong Ma
- Xiamen Water Environment Technology Co., Ltd, Xiamen, Fujian 361000, PR China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, PR China
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC.,CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China
| |
Collapse
|
23
|
Removal of high concentrations of NO3− from nuclear industrial wastewater by using a fixed-bed bioreactor. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07104-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
25
|
Guo L, Wang G, Sheng Y, Shi Z, Sun X. Groundwater microbial communities and their connection to hydrochemical environment in Golmud, Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133848. [PMID: 31422331 DOI: 10.1016/j.scitotenv.2019.133848] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 05/20/2023]
Abstract
Groundwater microbial community normally co-varies with the associated geochemical transect in some hydrogeological sections along flowpath. However, in hydrogeological section with similar geochemical transect (e.g., salinity, ion compositions) how microbial community in groundwater varies are poorly understood. In this study, groundwater samples were collected at six boreholes vertically and horizontally along a generalized groundwater flowpath in the Golmud area, Qaidam Basin, northwest China. High-throughput sequencing and multivariate statistical analysis were applied to explore the underlying relationships between microbial community structure and hydrogeochemical environment. The result showed that microbial communities changed considerably at both horizontal and vertical scales, although the groundwater samples were of relatively stable ionic compositions and hydrochemical types. The dominant bacterial phyla in groundwater varied from Alphaproteobacteria, Betaproteobacteria and Flavobacteriia in 'phreatic and phreatic-like' groundwater in the recharge area to Gammaproteobacteria in the confined groundwater in the lacustrine plain. At both vertical and horizontal scale, Gammaproteobacteria increased while Alpha- and Betaproteobacteria decreased as the function of distance. Genera Roseateles, Aquabacterium, Sphingomonas, Acinetobacter, Acidovorax and Flavobacterium presented in phreatic groundwater, while Pseudomonas, Hydrogenophaga and Perlucidibaca presented in confined groundwater. Spatial distribution of microbial community was highly affected by the pH (for 'phreatic and phreatic-like' groundwater) and ORP (for confined groundwater) of groundwater that had similar salinity or ion compositions. This research extends our knowledge about microbial communities' variation along groundwater flowpath in studied area and similar arid or semi-arid areas.
Collapse
Affiliation(s)
- Liang Guo
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Yizhi Sheng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zheming Shi
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Xiaoyi Sun
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
26
|
Geng Y, Zhang Y, Qin K, Liu J, Tian J, Huang Y, Wei Z, Zhang F, Peng F. Sphingomonas paeninsulae sp. nov., isolated from soil sampled at Fildes Peninsula, Antarctica. Int J Syst Evol Microbiol 2019; 69:3702-3709. [PMID: 31671048 DOI: 10.1099/ijsem.0.003504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain YZ-8T, isolated from soil sampled at Fildes Peninsula, Antarctica, was found to be a Gram-stain-negative, yellow-pigmented, oxidase- and catalase-positive, non-motile, non-spore-forming, rod-shaped and aerobic bacterium. Strain YZ-8T grewoptimally at pH 7.0 and 20 °C. Tolerance to NaCl was up to 0.3 % (w/v) with optimum growth in the absence of NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YZ-8T belonged to the family Sphingomonas. Strain YZ-8T showed the highest sequence similarities to Sphingomonas molluscorum KMM 3882T (94.4 %), Sphingomonas oligophenolica JCM 12082T (94.4 %), Sphingomonas gotjawalisoli SN6-9T (94.3 %) and Sphingomonas aquatica W1-2-1T (94.3 %). The predominant respiratory isoprenoid quinone and polyamine components were identified as ubiquinone Q-10 and sym-homospermidine, respectively. In addition, carotenoid were also found. The polar lipid profile of the strain YZ-8T was found to contain one phosphatidylethanolamine, an unidentified phospholipid, one diphosphatidylglycerol, one phosphatidylglycerol, two sphingophosphonolipids, one phosphatidylcholine and two unidentified alkali-stable lipids. The G+C content of the genomic DNA was determined to be 58.8 mol%. The main fatty acids were summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c; 35.4 %), summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c; 32.6 %) and C14 : 0 2-OH (7.7 %). On the basis of the evidence presented in this study, a novel species of the genus Sphingomonas, Sphingomonaspaeninsulae sp. nov., is proposed, with the type strain YZ-8T (=CCTCC AB 2017137T=LMG 31027T).
Collapse
Affiliation(s)
- Yingchao Geng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yumin Zhang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Kun Qin
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jia Liu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jin Tian
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yao Huang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Ziyan Wei
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Fang Zhang
- Key Laboratory For Polar Science, State Ocean Administration, Polar Research Institute of China, Shanghai, PR China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
27
|
Zhu D, Niu Y, Liu D, Wang G, Zheng S. Sphingomonas gilva sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2019; 69:3472-3477. [DOI: 10.1099/ijsem.0.003645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Dahui Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yaxin Niu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dongmei Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
28
|
Zhou XY, Zhang L, Su XJ, Hang P, Hu B, Jiang JD. Sphingomonas flavalba sp. nov., isolated from a procymidone-contaminated soil. Int J Syst Evol Microbiol 2019; 69:2936-2941. [DOI: 10.1099/ijsem.0.003581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xi-Yi Zhou
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xiao-Jing Su
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Ping Hang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Bing Hu
- Laboratory Centre of Life Science, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| |
Collapse
|
29
|
Jani K, Feng GD, Zhu HH, Prakash O, Bandal J, Rale V, Shouche Y, Sharma A. Chakrabartia godavariana gen. nov., sp. nov., a novel member of the family Sphingomonadaceae isolated from the Godavari River, India. Int J Syst Evol Microbiol 2019; 69:2452-2458. [DOI: 10.1099/ijsem.0.003512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kunal Jani
- 1National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411021, India
- 2Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, India
| | - Guang-Da Feng
- 3State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Hong-Hui Zhu
- 3State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Om Prakash
- 1National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411021, India
| | - Jayashree Bandal
- 4Department of Microbiology, KTHM College, Nashik, Maharashtra, India
| | - Vinay Rale
- 2Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, India
| | - Yogesh Shouche
- 1National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411021, India
| | - Avinash Sharma
- 1National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411021, India
| |
Collapse
|
30
|
Feng GD, Wang YH, Zhang XJ, Chen WD, Zhang J, Xiong X, Zhu HH. Sphingomonas lenta sp. nov., a slowly growing bacterium isolated from an abandoned lead–zinc mine. Int J Syst Evol Microbiol 2019; 69:2214-2219. [DOI: 10.1099/ijsem.0.003427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Guang-Da Feng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Yong-Hong Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Xian-Jiao Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Wen-Di Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Jun Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Xiong Xiong
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Hong-Hui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| |
Collapse
|
31
|
Sheu SY, Xie YR, Kwon SW, Sheu C, Chen WM. Sphingomonas crocodyli sp. nov., isolated from a crocodile pond. Int J Syst Evol Microbiol 2019; 69:2153-2160. [PMID: 31120830 DOI: 10.1099/ijsem.0.003455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain CCP-7T, isolated from a freshwater pond in Taiwan, was characterized using a polyphasic taxonomy approach. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain CCP-7T formed a phylogenetic lineage in the genus Sphingomonas. Strain CCP-7T was most closely related to Sphingomonas starnbergensis 382T and Sphingomonas naphthae DKC-5-1T with 96.2 % 16S rRNA gene sequence similarity. Strain CCP-7T showed 65.5-76.7 % average nucleotide identity and 20.2-22.5 % digital DNA-DNA hybridization identity with the strains of other related Sphingomonas species. Cells were Gram-stain-negative, aerobic, motile, rod-shaped and formed light orange-coloured colonies. Optimal growth occurred at 30 °C, pH 6 and in the absence of NaCl. The major fatty acid of strain CCP-7T was C18 : 1ω7c. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylmonomethylethanolamine, three uncharacterized sphingoglycolipids, two uncharacterized phospholipids and six uncharacterized lipids. The predominant polyamine was homospermidine. The only isoprenoid quinone was Q-10. Genomic DNA G+C content of strain CCP-7T was 64.5 %. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain CCP-7T should be classified in a novel species of the genus Sphingomonas, for which the name Sphingomonas crocodyli sp. nov. is proposed. The type strain is CCP-7T (=BCRC 81096T=LMG 30311T=KCTC 62190T).
Collapse
Affiliation(s)
- Shih-Yi Sheu
- 1Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan, ROC
| | - Yi-Ru Xie
- 2Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan, ROC
| | - Soon-Wo Kwon
- 3Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Ceshing Sheu
- 4Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, ROC
| | - Wen-Ming Chen
- 2Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan, ROC
| |
Collapse
|
32
|
Li YQ, Narsing Rao MP, Zhang H, Guo YM, Dong ZY, Alkhalifah DHM, Hozzein WN, Xiao M, Li WJ. Description of Sphingomonas mesophila sp. nov., isolated from Gastrodia elata Blume. Int J Syst Evol Microbiol 2019; 69:1030-1034. [PMID: 30735115 DOI: 10.1099/ijsem.0.003263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative, strictly aerobic, non-motile strain, SYSUP0001T, was isolated from tubers of Gastrodia elata Blume. The 16S rRNA gene sequence result indicated that SYSUP0001T represents a member of the genus Sphingomonas, with the highest sequence similarity (97.7 %) to the type strain of Sphingomonasginsengisoli. SYSUP0001T grew at 14-37 °C and pH 6-8, with optimum growth at 28 °C and pH 7. Tolerance to NaCl was up to 3 % (w/v) with optimum growth in the absence of NaCl. The respiratory quinone was Q-10. The major fatty acids were C18 : 1ω7c, Summed feature 3 (C16 : 1ω7c/C16 : 1ω6c), and C16 : 0. The polar lipids were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), sphingoglycolipid (SGL), phosphatidylcholine (PC) and four unidentified polar lipids (L). The DNA G+C content was 67.5 %. The average nucleotide identity (ANI) values between SYSUP0001T and closely related members of the genus Sphingomonas were below the cut-off level (95-96 %) for species delineation. On the basis of the phenotypic, phylogenetic and chemotaxonomic characterizations, SYSUP0001T represents a novel species of the genus Sphingomonas, for which the name Sphingomonasmesophila sp. nov. is proposed. The type strain is SYSUP0001T (=KCTC 62179 T=CGMCC 1.16462T).
Collapse
Affiliation(s)
- Yan-Qiong Li
- Kunming Medical University Haiyuan College, Kunming, 650106, PR China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat- Sen University, Guangzhou, PR China
| | - Hui Zhang
- Kunming Medical University Haiyuan College, Kunming, 650106, PR China
| | - Yan-Mei Guo
- Kunming Medical University Haiyuan College, Kunming, 650106, PR China
| | - Zhou-Yan Dong
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat- Sen University, Guangzhou, PR China
| | - Dalal Hussien M Alkhalifah
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11564, Kingdom of Saudi Arabia
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.,Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat- Sen University, Guangzhou, PR China
| | - Wen-Jun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat- Sen University, Guangzhou, PR China
| |
Collapse
|
33
|
de Vries HJ, Beyer F, Jarzembowska M, Lipińska J, van den Brink P, Zwijnenburg A, Timmers PHA, Stams AJM, Plugge CM. Isolation and characterization of Sphingomonadaceae from fouled membranes. NPJ Biofilms Microbiomes 2019; 5:6. [PMID: 30701078 PMCID: PMC6347639 DOI: 10.1038/s41522-018-0074-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/11/2018] [Indexed: 11/09/2022] Open
Abstract
Membrane filtration systems are widely applied for the production of clean drinking water. However, the accumulation of particles on synthetic membranes leads to fouling. Biological fouling (i.e., biofouling) of reverse osmosis and nanofiltration membranes is difficult to control by existing cleaning procedures. Improved strategies are therefore needed. The bacterial diversity on fouled membranes has been studied, especially to identify bacteria with specialized functions and to develop targeted approaches against these microbes. Previous studies have shown that Sphingomonadaceae are initial membrane colonizers that remain dominant while the biofilm develops. Here, we characterized 21 Sphingomonadaceae isolates, obtained from six different fouled membranes, to determine which physiological traits could contribute to colonization of membrane surfaces. Their growth conditions ranged from temperatures between 8 and 42 oC, salinity between 0.0 and 5.0% w/v NaCl, pH from 4 and 10, and all isolates were able to metabolize a wide range of substrates. The results presented here show that Sphingomonadaceae membrane isolates share many features that are uncommon for other members of the Sphingomonadaceae family: all membrane isolates are motile and their tolerance for different temperatures, salt concentrations, and pH is high. Although relative abundance is an indicator of fitness for a whole group, for the Sphingomonadaceae it does not reveal the specific physiological traits that are required for membrane colonization. This study, therefore, adds to more fundamental insights in membrane biofouling.
Collapse
Affiliation(s)
- Hendrik J. de Vries
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Florian Beyer
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Monika Jarzembowska
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Joanna Lipińska
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Paula van den Brink
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Arie Zwijnenburg
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Peer H. A. Timmers
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Caroline M. Plugge
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
34
|
Liu L, Hui N, Liang L, Zhang X, Sun Q, Li L. Sphingomonas deserti sp. nov., isolated from Mu Us Sandy Land soil. Int J Syst Evol Microbiol 2018; 69:441-446. [PMID: 30543503 DOI: 10.1099/ijsem.0.003168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A Gram-stain-negative, rod-shaped bacterium, designated as strain GL-C-18T, was isolated from soil sample collected at Mu Us Sandy Land, China, and its taxonomic position was investigated using a polyphasic approach. Growth was observed in the presence of 0-1 % (w/v) NaCl (optimum, 0 %), pH 6.0-9.0 (optimum, pH 7.0-8.0) and 20-37 °C. On the basis of 16S rRNA gene sequence similarity, strain GL-C-18T belonged to the family Sphingomonadaceae and was most closely related to Sphingosinicella vermicomposti YC7378T (95.7 %), Sphingomonas oligophenolica S213T (95.0 %) and Sphingobium boeckii 301T (94.8 %). The draft genome of strain GL-C-18T was 6.09 Mb, and the G+C content was 66.0 %. The average nucleotide identity value to Sphingosinicella vermicomposti YC7378T was 83.7 %. The predominant respiratory quinone was Q-10. The major fatty acids were C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16:0 and C14 : 0 2OH. The main polar lipids were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. On the basis of chemotaxonomic, phylogenetic and phenotypic evidence, strain GL-C-18T represents a novel species of the genus Sphingomonas, for which the name Sphingomonasdeserti sp. nov. is proposed. The type strain is GL-C-18T (=ACCC 60076T=KCTC 62411T).
Collapse
Affiliation(s)
- Lei Liu
- 1State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Nan Hui
- 1State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Lixiong Liang
- 1State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Xiaoxia Zhang
- 2Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qiwu Sun
- 1State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Lubin Li
- 1State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| |
Collapse
|
35
|
Thaller MC, D'Andrea MM, Marmo P, Civitareale C, Casu F, Migliore L. Sphingomonas turrisvirgatae sp. nov., an agar-degrading species isolated from freshwater. Int J Syst Evol Microbiol 2018; 68:2794-2799. [PMID: 30180924 DOI: 10.1099/ijsem.0.002896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A yellow pigmented and agar-pitting colony was isolated from a water sample obtained from a drainage ditch within a disused system of constructed wetlands. The strain was purified and named MCT13T. This rod-shaped, Gram-negative, oxidase- and catalase-positive, aerobic, non-spore-forming, and non-motile strain formed round colonies and grew optimally at pH 7.5±0.2, at 28-30 °C on LB agar, with 0-0.5 % NaCl. The 16S rRNA gene sequence analysis placed the MCT13T isolate within the Sphingomonas (sensu stricto) cluster. The DNA G+C content was 65.3 %. The only observed ubiquinone was Q10. The major fatty acids included C17 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c. The major polar lipids were sphingoglycolipid, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The major polyamine was spermidine. The 16S rRNA gene phylogenetic analysis performed on the whole sequence, showed the closest relative of MCT13T to be Sphingomonas koreensis (98.52 %); however, there are several genotypic and phenotypic differences between the novel isolate and the type strain JSS26T of S. koreensis. On the basis of these results, strain MCT13T represents a novel species in the genus Sphingomonas, for which the name Sphingomonas turrisvirgatae sp. nov. is proposed. The type strain is MCT13T (=DSM 105457T=BAC RE RSCIC 7T).
Collapse
Affiliation(s)
| | - Marco Maria D'Andrea
- 2Department of Medical Biotechnologies, University of Siena, Siena, Italy.,1Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Pasquale Marmo
- 1Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Civitareale
- 3Food Safety, Nutrition and Veterinary Public Health Department, Food Chemical Safety Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Casu
- 4The University of Auckland, 49 Symonds Street, Auckland, 1010, New Zealand
| | - Luciana Migliore
- 1Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
36
|
Gao JL, Sun P, Sun XH, Tong S, Yan H, Han ML, Mao XJ, Sun JG. Caulobacter zeae sp. nov. and Caulobacter radicis sp. nov., novel endophytic bacteria isolated from maize root (Zea mays L.). Syst Appl Microbiol 2018; 41:604-610. [PMID: 30220440 DOI: 10.1016/j.syapm.2018.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/19/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
Four bacterial strains designated 410T, 441, 695T and 736 were isolated from maize root in Beijing, P. R. China. Based on 16S rRNA gene phylogeny, the four strains formed two clusters in the genus Caulobacter. Since strain 441 was a clonal variety of strain 410T, only three strains were selected for further taxonomic studies. The whole genome average nucleotide identity (ANI) value between strains 410T and 695T was 94.65%, and both strains shared less than 92.10% ANI values with their close phylogenetic neighbors Caulobacter vibrioides DSM 9893T, Caulobacter segnis ATCC 21756T and Caulobacter flavus CGMCC 1.15093T. Strains 410T and 695T contained Q-10 as the sole ubiquinone and their major fatty acids were C16:0, 11-methyl C18:1ω 0, 11-methyl C18: 1ω7c, summed feature 3 (C16:1ω7c and/or C16:1ω 1ω7c and/or C16: 1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω 1ω7c and/or C18: 1ω6c). Their major polar lipids consisted of glycolipids and phosphatidylglycerol, and phenotypic tests differentiated them from their closest phylogenetic neighbors. Based on the results obtained, it is proposed that the three strains represent two novel species, for which the names Caulobacter zeae sp. nov. (type strain 410T=CGMCC 1.15991=DSM 104304) and Caulobacter radicis sp. nov. (type strain 695T=CGMCC 1.16556=DSM 106792) are proposed.
Collapse
Affiliation(s)
- Jun-Lian Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, PR China
| | - Pengbo Sun
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Xiao-Hong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, PR China
| | - Shuai Tong
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hui Yan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control/College of Animal Science and Technology, China Agricultural University, Beijing 100094, PR China
| | - Mei-Lin Han
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, PR China
| | - Xiao-Jie Mao
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jian-Guang Sun
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
37
|
Zhou XK, Mi QL, Yao JH, Wu H, Liu XM, Li YD, Duan YQ, Chen JH, Dang LZ, Mo MH, Li XM, Li WJ. Sphingomonas tabacisoli sp. nov., a member of the genus Sphingomonas, isolated from rhizosphere soil of Nicotiana tabacum L. Int J Syst Evol Microbiol 2018; 68:2574-2579. [PMID: 29944093 DOI: 10.1099/ijsem.0.002879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative, aerobic, motile and rod-shaped bacterium, designated strain X1-8T, was isolated from rhizosphere soil of Nicotiana tabacum L. collected from the tobacco produce base located in Kunming, south-west PR China. Cells showed oxidase-negative and catalase-positive reactions and were motile by means of peritrichous flagella. Growth occurred at 25-40 °C and pH 6.0-8.0 with optimal growth at 30-35 °C, pH 7.0. The major respiratory lipoquinone was Q-10. C16 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) were identified as major cellular fatty acids. The profile of polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, sphingoglycolipid, phosphatidylcholine and one unidentified glycolipid. The major polyamine was sym-homospermidine. The genomic DNA G+C content was 66.5 mol%. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that X1-8T should be affiliated to the genus Sphingomonasand formed a clade with most closely related species Sphingomonas changbaiensisNBRC 104936T. The results of 16S rRNA gene sequences similarity analysis indicated that X1-8T had the highest similarity with S. changbaiensisNBRC 104936T (98.4 %) and lower than 96.0 % with other species of the genus Sphingomonas. DNA-DNA hybridization data indicated that X1-8T represented a novel genomic species of the genus Sphingomonas. The characteristics determined in the polyphasic taxonomic study indicated that X1-8T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas tabacisoli sp. nov. (type strain X1-8T=KCTC 62032T=CGMCC 1.16275T) is proposed.
Collapse
Affiliation(s)
- Xing-Kui Zhou
- 1State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
| | - Qi-Li Mi
- 2China Tobacco Yunnan Industrial Co. Ltd., Kunming 650231, PR China
| | - Jian-Hua Yao
- 2China Tobacco Yunnan Industrial Co. Ltd., Kunming 650231, PR China
| | - Heng Wu
- 2China Tobacco Yunnan Industrial Co. Ltd., Kunming 650231, PR China
| | - Xiu-Ming Liu
- 2China Tobacco Yunnan Industrial Co. Ltd., Kunming 650231, PR China
| | - Yuan-Dong Li
- 2China Tobacco Yunnan Industrial Co. Ltd., Kunming 650231, PR China
| | - Yan-Qing Duan
- 2China Tobacco Yunnan Industrial Co. Ltd., Kunming 650231, PR China
| | - Jian-Hua Chen
- 2China Tobacco Yunnan Industrial Co. Ltd., Kunming 650231, PR China
| | - Li-Zhi Dang
- 2China Tobacco Yunnan Industrial Co. Ltd., Kunming 650231, PR China
| | - Ming-He Mo
- 1State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
- 3Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan Province 650091, PR China
| | - Xue-Mei Li
- 2China Tobacco Yunnan Industrial Co. Ltd., Kunming 650231, PR China
| | - Wen-Jun Li
- 1State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
- 4State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
38
|
Xue H, Piao CG, Wang XZ, Lin CL, Guo MW, Li Y. Sphingomonas aeria sp. nov., isolated from air. Int J Syst Evol Microbiol 2018; 68:2866-2871. [PMID: 30010528 DOI: 10.1099/ijsem.0.002910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
A Gram-negative, aerobic, non-spore-forming, non-motile, yellow-pigmented and rod-shaped bacterial strain, designated B093034T, was isolated from air at the foot of Xiangshan mountain, located in Beijing, China. Cells of strain B093034T were oxidase-negative and catalase-positive. Growth was observed at 4-41 °C, at pH 4.5-10.0 and at 0-7 % (w/v) NaCl. The isolate contained Q-10 as the predominant isoprenoid quinone, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0 and C14 : 02-OH as the major fatty acids, sym-homospermidine as the major polyamine, and sphingoglycolipid, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol, aminolipid, two unidentified phospholipids and three unidentified polar lipids as the polar lipids. The DNA G+C content was 67.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain B093034T grouped with members of the genus Sphingomonas and was closely related to Sphingomonas sanguinis IFO 13937T (96.49 % similarity), Sphingomonas pseudosanguinis G1-2T (96.37 %), Sphingomonas ginsenosidimutansGsoil 1429T (95.99 %) and Sphingomonas endophytica YIM 65583T (95.78 %). On the basis of the polyphasic evidence presented here, strain B093034T represents a novel species of the genus Sphingomonas, for which the name Sphingomonasaeria sp. nov. is proposed. The type strain is B093034T (=CFCC 13949T=LMG 30133T).
Collapse
Affiliation(s)
- Han Xue
- Key Laboratory of State Forestry Administration on Forest Protection, Research Institute of Forest Ecology Environment and Protection, Chinese Academy of Forestry, Dong xiao-fu No. 1, Haidian District, Beijing 100091, PR China
| | - Chun-Gen Piao
- Key Laboratory of State Forestry Administration on Forest Protection, Research Institute of Forest Ecology Environment and Protection, Chinese Academy of Forestry, Dong xiao-fu No. 1, Haidian District, Beijing 100091, PR China
| | - Xi-Zhuo Wang
- Key Laboratory of State Forestry Administration on Forest Protection, Research Institute of Forest Ecology Environment and Protection, Chinese Academy of Forestry, Dong xiao-fu No. 1, Haidian District, Beijing 100091, PR China
| | - Cai-Li Lin
- Key Laboratory of State Forestry Administration on Forest Protection, Research Institute of Forest Ecology Environment and Protection, Chinese Academy of Forestry, Dong xiao-fu No. 1, Haidian District, Beijing 100091, PR China
| | - Min-Wei Guo
- Key Laboratory of State Forestry Administration on Forest Protection, Research Institute of Forest Ecology Environment and Protection, Chinese Academy of Forestry, Dong xiao-fu No. 1, Haidian District, Beijing 100091, PR China
| | - Yong Li
- Key Laboratory of State Forestry Administration on Forest Protection, Research Institute of Forest Ecology Environment and Protection, Chinese Academy of Forestry, Dong xiao-fu No. 1, Haidian District, Beijing 100091, PR China
| |
Collapse
|
39
|
Feng GD, Xiong X, Zhu HH, Li HP. Sphingomonas difficilis sp. nov., a difficultly cultivable bacterium that grows on solid but not in liquid medium, isolated from an abandoned lead-zinc mine. Int J Syst Evol Microbiol 2017; 67:5273-5278. [PMID: 29091024 DOI: 10.1099/ijsem.0.002461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A difficult to cultivate bacterial strain, designated 1PNM-26T, isolated from a lead-zinc mine, was investigated using a polyphasic taxonomic approach. The strain was able to grow on solid medium but not in liquid medium. Cells were Gram-reaction-negative, aerobic, non-spore-forming, non-motile and rod-shaped. It showed positive reactions for catalase and oxidase and hydrolysis of aesculin. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that strain 1PNM-26T represents a member of the genus Sphingomonas and forms a stable cluster with Sphingomonas morindae KCTC 42183T, Sphingomonas polyaromaticivorans JCM 16711T and Sphingomonas oligoaromativorans NBRC 105508T. The major fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. C14 : 0 2-OH was present as the major hydroxyl fatty acid. The major polyamine was sym-homospermidine, and ubiquinone 10 (Q-10) was the predominant respiratory quinone. The genomic DNA G+C content of strain 1PNM-26T was determined to be 66.3±0.3 mol%, and the polar lipids consisted of sphingoglycolipid, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidyldimethylethanolamine, phosphatidylmonomethylethanolamine, an unidentified glycolipid, three unidentified aminolipids and three unidentified lipids. The phenotypic, phylogenetic and chemotaxonomic results strongly supported the hypothesis that strain 1PNM-26T represents a novel species of the genus Sphingomonas, for which the name Sphingomonasdifficilis sp. nov. is proposed. The type strain is 1PNM-26T (=GDMCC 1.664T=KCTC 42758T=DSM 27573T).
Collapse
Affiliation(s)
- Guang-Da Feng
- College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Xiong Xiong
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Hong-Hui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Hua-Ping Li
- College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
40
|
Lee Y, Jeon CO. Sphingomonas frigidaeris sp. nov., isolated from an air conditioning system. Int J Syst Evol Microbiol 2017; 67:3907-3912. [DOI: 10.1099/ijsem.0.002221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yunho Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
41
|
Huang Y, Wei Z, Danzeng W, Kim MC, Zhu G, Zhang Y, Liu Z, Peng F. Sphingomonas antarctica sp. nov., isolated from Antarctic tundra soil. Int J Syst Evol Microbiol 2017; 67:4064-4068. [PMID: 28933318 DOI: 10.1099/ijsem.0.002253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain 200T, isolated from a soil sample taken from Antarctic tundra soil around Zhongshan Station, was found to be a Gram-stain-negative, yellow-pigmented, catalase-positive, oxidase-negative, non-motile, non-spore-forming, rod-shaped and aerobic bacterium. Strain 200T grew optimally at pH 7.0 and in the absence of NaCl on R2A. Its optimum growth temperature was 20 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 200T belonged to the genus Sphingomonas. Strain 200T showed the highest sequence similarities to Sphingomonas kyeonggiense THG-DT81T (95.1 %) and Sphingomonas molluscorum KMM 3882T (95.1 %). Chemotaxonomic analysis showed that strain 200T had characteristics typical of members of the genus Sphingomonas. Ubiquinone 10 was the predominant respiratory quinone and sym-homospermidine was the polyamine. The major polar lipids were sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylcholine. The G+C content of the genomic DNA was determined to be 60.9 mol%. Strain 200T contained C16 : 0 (31.6 %), summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c, 22.7 %), summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c, 11.2 %), C18 : 0 (7.8 %) and C14 : 0 2OH (6.7 %) as the major cellular fatty acids. On the basis of phylogenetic analysis, and physiological and biochemical characterization, strain 200T should be classified as representing a novel species of the genus Sphingomonas, for which the name Sphingomonasantarctica sp. nov. is proposed. The type strain is 200T (=CCTCC AB 2016064T=KCTC 52488T).
Collapse
Affiliation(s)
- Yao Huang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Ziyan Wei
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Wangmu Danzeng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Myong Chol Kim
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China.,College of Life Sciences, Kim II Sung University, Pyongyang, DPR of Korea
| | - Guoxin Zhu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yumin Zhang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zuobing Liu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Fang Peng
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan 430072, PR China.,China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
42
|
Wübbeler JH, Oppermann-Sanio FB, Ockenfels A, Röttig A, Osthaar-Ebker A, Verbarg S, Poehlein A, Madkour MH, Al-Ansari AM, Almakishah NH, Daniel R, Steinbüchel A. Sphingomonas jeddahensis sp. nov., isolated from Saudi Arabian desert soil. Int J Syst Evol Microbiol 2017; 67:4057-4063. [PMID: 28905699 DOI: 10.1099/ijsem.0.002249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Sphingomonas strain was isolated from a sample of desert soil collected near Jeddah in Saudi Arabia. A polyphasic approach was performed to characterize this strain, initially designated as G39T. Cells of strain G39T are motile, Gram-negative, catalase- and oxidase-positive. The strain is able to grow aerobically at 20-35 °C, pH 6.5-8 and tolerates up to 4 % (w/v) NaCl. Based on 16S rRNA gene sequence similarity, the closest relative type strains of G39T are Sphingomonas mucosissima DSM 17494T (98.6 %), S. dokdonensis DSM 21029T (98.4 %) and S. hankookensis DSM 23329T (97.4 %). Furthermore, the average nucleotide identities between the draft genome sequence of strain G39T and the genome sequences of all other available and related Sphingomonas species are significantly below the threshold of 94 %. The G+C content of the draft genome (3.12 Mbp) is 65.84 %. The prevalent (>5 %) cellular fatty acids of G39T were C18 : 1ω7c, C16 : 1ω7c and/or C16 : 1ω6c, C14 : 0 2-OH and C16 : 0. The only detectable respiratory quinone was ubiquinone-10 and the polar lipids profile is composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, as well as unidentified lipids, phospholipids and glycolipids. The results of the conducted polyphasic approach confirmed that this isolate represents a novel species of the genus Sphingomonas, for which the name Sphingomonas jeddahensis sp. nov. is proposed. The type strain of this species is G39T (=DSM 103790T=LMG 29955T).
Collapse
Affiliation(s)
- Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany
| | - Fred Bernd Oppermann-Sanio
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany
| | - Andrea Ockenfels
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany
| | - Annika Röttig
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany
| | - Alena Osthaar-Ebker
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany
| | - Susanne Verbarg
- Leibniz-Institut DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124 Braunschweig, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Mohamed H Madkour
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Ahmed M Al-Ansari
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Naief H Almakishah
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany.,Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
43
|
Lee H, Kim DU, Lee S, Yun J, Park S, Yoon JH, Park SY, Ka JO. Sphingomonas carri sp. nov., isolated from a car air-conditioning system. Int J Syst Evol Microbiol 2017; 67:4069-4074. [PMID: 28905694 DOI: 10.1099/ijsem.0.002250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, yellow-pigmented bacterial strain, designated PR0302T, was isolated from a car evaporator core collected in Korea. The cells were strictly aerobic, non-spore-forming and rod-shaped. The strain grew at 15-37 °C (optimum, 25 °C), at pH 6.0-8.0 (optimum, 7.0) and in the presence of 0-1 % (w/v) NaCl. Phylogenetically, the strain was closely related to members of the genus Sphingomonas(97.04-91.22 % 16S rRNA gene sequence similarities) and showed the highest sequence similarity of 97.04 % to Sphingomonas kyeonggiensis THG-DT81T. It contained C16 : 0, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C14 : 0 2-OH as the predominant fatty acids and Q-10 as the major ubiquinone. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and sphingoglycolipid. The major polyamine was sym-homospermidine. The serine palmitoyl transferase gene (spt) was detected and sphingolipid synthesis was confirmed. The mean DNA G+C content of the strain was 67.8±0.5 mol%. DNA-DNA relatedness between strain PR0302T and closely related type strains of Sphingomonas species was less than 30 %. The low levels of DNA-DNA relatedness identified strain PR0302T as a member of a novel species in the genus Sphingomonas. Based on phenotypic, genotypic and chemotaxonomic data, strain PR0302T represents a novel species in the genus Sphingomonas, for which the name Sphingomonas carri sp. nov. is proposed. The type strain is PR0302T (=KACC 18487T=NBRC 111532T).
Collapse
Affiliation(s)
- Hyosun Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dong-Uk Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Suyeon Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jungpyo Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - So Yoon Park
- Research & Development Division, Hyundai Motor Group, Uiwang, 437-815, Republic of Korea
| | - Jong-Ok Ka
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
44
|
Moya G, Yan ZF, Won K, Yang JE, Wang QJ, Kook M, Yi TH. Caulobacter hibisci sp. nov., isolated from rhizosphere of Hibiscus syriacus L. (Mugunghwa flower). Int J Syst Evol Microbiol 2017; 67:3167-3173. [PMID: 28866999 DOI: 10.1099/ijsem.0.002021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, smooth, bright yellow-pigmented, aerobic, catalase- and oxidase-positive and rod-shaped bacterial strain was isolated from rhizosphere of Hibiscus syriacus L. (Mugunghwa flower) located in Kyung Hee University, Yongin, Gyeonggi, South Korea. Cells were dimorphic, non-motile or non-stalked, and motile by means of peritrichous flagellum. The strain, named THG-AG3.4T, grew at 15-35 °C, at pH 6.5-9.0 and in the presence of 0-1.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain THG-AG3.4T was most closely related to Caulobacter segnis ATCC 21756T (98.64 % similarity), Caulobacter vibrioides CB51T (98.57 %) and Caulobacter henricii ATCC 15253T (97.41 %). The DNA G+C content of strain THG-AG3.4T was 64.0 mol%. In DNA-DNA hybridization, the DNA-DNA relatedness between strain THG-AG3.4T and its closest phylogenetic neighbour was below 55.0 %. The predominant isoprenoid quinone detected in strain THG-AG3.4T was ubiquinone-10 (Q-10). The major polar lipids were found to be an unidentified lipid, two unidentified phosphoglycolipids, five unidentified glycolipids, eight unidentified aminolipids and phosphatidylglycerol. The major fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). Thus, based on the report of the phenotypic, genotypic and phylogenetic characterization of strain THG-AG3.4T, it has been concluded that the isolate represents a novel species of the genus Caulobacter, for which the name Caulobacter hibisci sp. nov. is proposed. The type strain is THG-AG3.4T (=KACC 18849T=CCTCC AB 2016077T).
Collapse
Affiliation(s)
- Gabriela Moya
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732 Deokyoungdaero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Zheng-Fei Yan
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732 Deokyoungdaero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - KyungHwa Won
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732 Deokyoungdaero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jung-Eun Yang
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732 Deokyoungdaero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Qi-Jun Wang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - MooChang Kook
- Department of Marine Biotechnology, Anyang University, Incheon 23038, Republic of Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732 Deokyoungdaero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
45
|
Draft Genome Sequences of Sphingomonas mucosissima DSM 17494 and Sphingomonas dokdonensis DSM 21029. GENOME ANNOUNCEMENTS 2017; 5:5/35/e00889-17. [PMID: 28860249 PMCID: PMC5578847 DOI: 10.1128/genomea.00889-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sphingomonas mucosissima and Sphingomonas dokdonensis are Gram-negative chemoheterotrophic strictly aerobic rods or cocci. The genomes (3.453 Mb and 3.587 Mb, respectively) contain 3,279 and 3,329 predicted protein-encoding genes, respectively. The genome of S. dokdonensis harbors a 90-kb plasmid.
Collapse
|
46
|
Lee KC, Kim KK, Eom MK, Kim JS, Kim DS, Ko SH, Yang SH, Lee JS. Sphingomonas gotjawalisoli sp. nov., isolated from soil of a lava forest. Int J Syst Evol Microbiol 2017; 67:2975-2979. [PMID: 28820106 DOI: 10.1099/ijsem.0.002061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain, designated SN6-9T, was isolated from soil of the Gotjawal, lava forest, located in Jeju, Republic of Korea. Strain SN6-9T was Gram-stain-negative, motile, oxidase- and catalase-negative, yellow-pigmented and rod-shaped. It contained summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) as the major fatty acids, Q-10 as the predominant isoprenoid quinone, sym-homospermidine as the major polyamine and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid and two unidentified phospholipids as the polar lipids. The DNA G+C content was 64.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain formed a separate lineage in the genus Sphingomonas. Based on the results from this polyphasic taxonomic study, it is concluded that strain SN6-9T represents a novel species in the genus Sphingomonas. The name Sphingomonas gotjawalisoli sp. nov. is proposed; the type strain is SN6-9T (=KCTC 52405T=NRRL B-65395T).
Collapse
Affiliation(s)
- Keun Chul Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Kwang Kyu Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Mi Kyung Eom
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Jong-Shik Kim
- Gyeongbuk Institute for Marine Bioindustry, Uljin, 767-813, Republic of Korea
| | - Dae-Shin Kim
- World Heritage and Mt. Hallasan Research Institute, Jeju Special Self-Governing Province, 63341, Republic of Korea
| | - Suk-Hyung Ko
- World Heritage and Mt. Hallasan Research Institute, Jeju Special Self-Governing Province, 63341, Republic of Korea
| | - Seung-Hoon Yang
- World Heritage and Mt. Hallasan Research Institute, Jeju Special Self-Governing Province, 63341, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.,University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
47
|
Lee JH, Kim DI, Choe HN, Lee SD, Seong CN. Sphingomonas limnosediminicola sp. nov. and Sphingomonas palustris sp. nov., isolated from freshwater environments. Int J Syst Evol Microbiol 2017; 67:2834-2841. [DOI: 10.1099/ijsem.0.002029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ji Hee Lee
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Dae In Kim
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Han Na Choe
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Soon Dong Lee
- Faculty of Science Education, Jeju National University, Jeju63243, Republic of Korea
| | - Chi Nam Seong
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
48
|
Ko Y, Hwang WM, Kim M, Kang K, Ahn TY. Sphingomonas silvisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:2704-2710. [DOI: 10.1099/ijsem.0.002001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yongseok Ko
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Republic of Korea
| | - Woon Mo Hwang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Republic of Korea
| | - Minsun Kim
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Republic of Korea
| | - Tae-Young Ahn
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
49
|
Sphingomonas montana sp. nov., isolated from a soil sample from the Tanggula Mountain in the Qinghai Tibetan Plateau. Antonie van Leeuwenhoek 2017; 110:1659-1668. [PMID: 28755311 DOI: 10.1007/s10482-017-0915-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
Abstract
An orange pigmented, Gram-staining negative, aerobic, motile, rod-shaped bacterium isolated from a soil from the Tanggula Mountain, China was studied using a polyphasic approach. Based on 16S rRNA gene sequence similarity, strain W16RDT was found to be closely related to Sphingomonas prati DSM 103336T (99%), Sphingomonas fennica DSM 13665T (97.21%), followed by Sphingomonas laterariae DSM 25432T (96.44%), Sphingomonas haloaromaticamans CGMCC 1.10206 T (96.36%) and Sphingomonas formosensis DSM 24164T (96.06%). The strain was found to be catalase and oxidase positive and was found to grow optimally at temperatures of 20-25 °C, pH 8 and tolerated NaCl concentration up to 1% (w/v). The major fatty acids identified were summed feature eight comprising C18:1 ω 7c and/or C18:1 ω 6c (39.2%), summed feature three comprising of C16:1 ω7c and/or C16:1 ω6c (36.7%) and C16:0 (7.0%). The polar lipids detected were phosphatidylcholine, sphingoglycolipid, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylmonomethylethanolamine, and three unidentified lipids. The strain possessed ubiquinone-10 (Q-10) as the predominant respiratory quinone. Along with other distinguishing characteristics, we also describe the draft genome of strain W16RDT. The final assembled draft genome sequence is 3,722,743 bp with 3390 coding and 48 RNA (45 tRNA and 3 rRNA) genes. The DNA G+C content of the genomic DNA was determined to be 67%. The DNA-DNA relatedness value between the strain W16RDT and its closest phylogenetic relatives S. prati DSM 103336T, S. fennica DSM 13665T, S. laterariae DSM 25432T, and S. haloaromaticamans CGMCC 1.10206T were 52.17, 47.60, 20.93 and 17.09% respectively. The strain W16RDT could be distinguished genotypically and phenotypically from the recognized species belonging to the genus Sphingomonas and thus represents a novel species, for which the name Sphingomonas montana sp. nov. is proposed. The type strain is W16RDT (=CGMCC 1.15646T = DSM 103337T).
Collapse
|
50
|
Sphingomonas spermidinifaciens sp. nov., a novel bacterium containing spermidine as the major polyamine, isolated from an abandoned lead–zinc mine and emended descriptions of the genus Sphingomonas and the species Sphingomonas yantingensis and Sphingomonas japonica. Int J Syst Evol Microbiol 2017; 67:2160-2165. [DOI: 10.1099/ijsem.0.001905] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|