1
|
Takahashi Y. Isolation of hitherto-uncultivated microorganisms- Application of radical scavengers. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38417898 DOI: 10.2323/jgam.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The culture filtrates of the predominant bacterial strains isolated from soil samples have been shown to increase the microbial colony counts on agar plates used for the isolation of uncultured bacteria. One of the factors in the culture filtrates responsible for this increase was identified to be superoxide dismutase (SOD). The generation of reactive oxygen species (O2-, H2O2, and ・OH) was detected from conventional laboratory agar media. The use of agar media supplemented with radical scavengers (SOD, catalase, ascorbic acid, or rutin) effectively increased the colony counts and kinds of microbial strains that grew from soil samples. Taxonomical studies on these isolates revealed new taxa for phylum Actinomycetota; one family, three genera, and nine species were newly described. One of the strains, Patulibacter minatonensis KV-614T belonging to the new family Patulibacteraceae, was isolated on agar medium supplemented with SOD. P. minatonensis KV-614T represents a novel lineage within the phylum Actinomycetota. A polymerase chain reaction (PCR) study using specific primers for the detection of strains related to the genus Patulibacter, order Solirubrobacterales, showed a high distribution frequency, with detection in over 70% of the soil samples tested. These data suggest that the use of radical scavengers may facilitate the isolation of some hitherto-uncultivated microorganisms widely distributed in soil.
Collapse
|
2
|
Jiang T, Jia W, Deng W, Mai Z, Dong M, Huang Y, Wu H, Xu M. Patulibacter defluvii sp. nov., Isolated from a Wastewater Treatment Plant in Guangzhou City, China. Curr Microbiol 2024; 81:291. [PMID: 39088066 DOI: 10.1007/s00284-024-03816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
A novel Gram-stain-positive, aerobic, catalase-positive, oxidase-negative, non-motile, and rod-shaped bacterium with ibuprofen-degrading capacity, designated DM4T, was isolated from the sewage of a wastewater treatment plant (WWTP) in Guangzhou city, China. Strain DM4T grew optimally at 0% (w/v) NaCl, pH 5.0-7.0, and 30 °C, forming white colonies on trypticase soy agar. C18:1ω9c, C18:2ω9.12c and C15:1ω10c were the predominant fatty acids. Results of 16S rRNA gene alignment and phylogenetic analysis indicated that strain DM4T belonged to the genus Patulibacter, was closely related to Patulibacter medicamentivorans DSM 25692T (98.5%) and P. brassicae KCTC 39817T (98.1%). Strain DM4T had a genome size of 5.33Mbp, and the DNA G + C content was 75.0%. The average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridisation (dDDH) values between strain DM4T and P. medicamentivorans were 85.2%, 83.9%, and 29.0% respectively, while those between strain DM4T and P. brassicae were 78.5%, 71.3%, and 22.2%, respectively. Strain DM4T could significantly degrade ibuprofen by almost 80% after 84 h of incubation, and the degradation kinetics was well fitted with the first-order kinetics. Evidence from phenotypic, phylogenetic and chemotaxonomic analyses support that strain DM4T (= GDMCC 1.4574T = KCTC 59145T) represents a new species of the genus Patulibacter, for which the name Patulibacter defluvii sp. nov. is proposed.
Collapse
Affiliation(s)
- Tianhui Jiang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- School of Biology and Blialogical Engineering, South China University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou, 510070, Guangdong, China
| | - Weibin Jia
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou, 510070, Guangdong, China
| | - Wenfang Deng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou, 510070, Guangdong, China
| | - Zhiyuan Mai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou, 510070, Guangdong, China
| | - Meijun Dong
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou, 510070, Guangdong, China
| | - Youda Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
- Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou, 510070, Guangdong, China.
| | - Haizhen Wu
- School of Biology and Blialogical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou, 510070, Guangdong, China
| |
Collapse
|
3
|
Kapinusova G, Suman J, Strejcek M, Pajer P, Cajthaml T, Ulbrich P, Neumann-Schaal M, Uhlik O. Svornostia abyssi gen. nov., sp. nov. isolated from the world's deepest silver-uranium mine currently devoted to the extraction of radon-saturated water. Int J Syst Evol Microbiol 2024; 74. [PMID: 38922323 DOI: 10.1099/ijsem.0.006432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
A Gram-stain-positive, rod-shaped, aerobic, motile bacterium, J379T, was isolated from radioactive water spring C1, located in a former silver-uranium mine in the Czech Republic. This slow-growing strain exhibited optimal growth at 24-28 °C on solid media with <1 % salt concentration and alkaline pH 8-10. The only respiratory quinone found in strain J379T was MK-7(H4). C18 : 1 ω9c (60.9 %), C18 : 0 (9.4 %), C16 : 0 and alcohol-C18 : 0 (both 6.2 %) were found to be the major fatty acids. The peptidoglycan contained directly cross-linked meso-diaminopimelic acid. Phylogenetic reconstruction based on the 16S rRNA gene sequences and the core-genome analysis revealed that strain J379T forms a separate phylogenetic lineage within the recently amended order Solirubrobacterales. A comparison of the 16S rRNA gene sequences between strain J379T and other members of the order Solirubrobacterales showed <96 % similarity. This analysis revealed that the closest type strains were Parviterribacter kavangonensis D16/0 /H6T (95.2 %), Capillimicrobium parvum 0166_1T (94.9 %) and Conexibacter arvalis KV-962T (94.5 %). Whole-genome analysis showed that the closest type strain was Baekduia soli BR7-21T with an average nucleotide identity of 78 %, average amino acid identity of 63.2 % and percentage of conserved proteins of 48.2 %. The G+C content of the J379T genomic DNA was 71.7 mol%. Based on the phylogenetic and phylogenomic data, as well as its physiological characteristics, strain J379T is proposed to represent a type strain (DSM 113746T=CCM 9300T) of Svornostia abyssi gen. nov. sp. nov. within the family Baekduiaceae.
Collapse
Affiliation(s)
- Gabriela Kapinusova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Ministry of Defence of the Czech Republic, Prague, Czech Republic
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Meina Neumann-Schaal
- Leibniz institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
4
|
Ferreira BL, Ferreira DP, Borges SF, Ferreira AM, Holanda FH, Ucella-Filho JGM, Cruz RAS, Birolli WG, Luque R, Ferreira IM. Diclofenac, ibuprofen, and paracetamol biodegradation: overconsumed non-steroidal anti-inflammatories drugs at COVID-19 pandemic. Front Microbiol 2023; 14:1207664. [PMID: 37965564 PMCID: PMC10642723 DOI: 10.3389/fmicb.2023.1207664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
The consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have increased significantly in the last years (2020-2022), especially for patients in COVID-19 treatment. NSAIDs such as diclofenac, ibuprofen, and paracetamol are often available without restrictions, being employed without medical supervision for basic symptoms of inflammatory processes. Furthermore, these compounds are increasingly present in nature constituting complex mixtures discarded at domestic and hospital sewage/wastewater. Therefore, this review emphasizes the biodegradation of diclofenac, ibuprofen, and paracetamol by pure cultures or consortia of fungi and bacteria at in vitro, in situ, and ex situ processes. Considering the influence of different factors (inoculum dose, pH, temperature, co-factors, reaction time, and microbial isolation medium) relevant for the identification of highly efficient alternatives for pharmaceuticals decontamination, since biologically active micropollutants became a worldwide issue that should be carefully addressed. In addition, we present a quantitative bibliometric survey, which reinforces that the consumption of these drugs and consequently their impact on the environment goes beyond the epidemiological control of COVID-19.
Collapse
Affiliation(s)
- Beatriz L. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Dionisia P. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Swanny F. Borges
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Adriana M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Fabricio H. Holanda
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - João G. M. Ucella-Filho
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo, Jerônimo Monteiro, Espirito Santo, Brazil
| | - Rodrigo Alves S. Cruz
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Willian G. Birolli
- Molecular Oncology Research Center, Institute of Learning and Research, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Rafael Luque
- Universidad ECOTEC, Via Principal Campus Ecotec, Samborondón, Ecuador
| | - Irlon M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| |
Collapse
|
5
|
Vieira S, Huber KJ, Geppert A, Wolf J, Neumann-Schaal M, Luckner M, Wanner G, Müsken M, Overmann J. Capillimicrobium parvum gen. nov., sp. nov., a novel representative of Capillimicrobiaceae fam. nov. within the order Solirubrobacterales, isolated from a grassland soil. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The order
Solirubrobacterales
is a deep-branching lineage within the phylum
Actinomycetota
. Most representatives have been isolated from terrestrial environments. A strain isolated from a grassland soil was found to be affiliated with this order and therefore characterized by a polyphasic approach. Cells of strain 0166_1T are Gram-positive, short rods, non-motile, non-spore-forming and divide by binary fission. A surface layer with protrusions covers the majority of the cells. Strain 0166_1T grows optimally around neutral to slightly alkaline pH (pH 7.1–7.9) and at temperatures between 24–36 °C in SSE/HD 1 : 10 medium. It grows optimally with 0–0.5% NaCl (w/v) but can withstand concentrations up to 5 %. The major fatty acids are C18 : 1 ω9c, C16 : 1
ω7c, C17 : 0 cyclo ω7c, C18 : 1
ω7c methyl and C19 : 0 cyclo ω9c. The major polar lipids are diphosphatidylglycerol, two unidentified phospholipids and one unidentified glycolipid. MK-7(H4) and MK-7(H2) are the predominant respiratory quinones. meso-2,6-Diaminopimelic acid is the diagnostic diamino acid in the cell-wall peptidoglycan. The G+C content for strain 0166_1T is 72.8 mol%. 16S rRNA gene sequence analysis indicated that this bacterium was related to
Conexibacter arvalis
KV-962T and
Conexibacter stalactiti
YC2-25T with 95.5 and 95.2 % sequence similarity, respectively. Based on the phenotypic, genomic and phylogenetic data, we propose the novel species Capillimicrobium parvum sp. nov. (type strain 0166_1T=DSM 104329T=LMG 29999T=CECT 9240T) of the novel genus Capillimicrobium gen. nov. within the novel family Capillimicrobiaceae fam. nov.
Collapse
Affiliation(s)
- Selma Vieira
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Katharina J. Huber
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Alicia Geppert
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Jacqueline Wolf
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Manja Luckner
- Department of Biology I, Biocenter Ludwig-Maximilians-University of Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Department of Biology I, Biocenter Ludwig-Maximilians-University of Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jörg Overmann
- Braunschweig University of Technology, Spielmanstraße 7, 38106 Braunschweig, Germany
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| |
Collapse
|
6
|
Abstract
Diverse bacterial lifestyle transitions are controlled by the nucleotide second messenger c-di-GMP, including virulence, motility, and biofilm formation. To control such fundamentally distinct processes, the set of genes under c-di-GMP control must have gone through several shifts during bacterial evolution. Here we show that the same σ–(c-di-GMP)–anti-σ switch has been co-opted during evolution to regulate distinct biological functions in unicellular and filamentous bacteria, controlling type IV pilus production in the genus Rubrobacter and the differentiation of reproductive hyphae into spores in Streptomyces. Moreover, we show that the anti-σ likely originated as a homodimer and evolved to become a monomer through an intragenic duplication event. This study thus describes the structural and functional evolution of a c-di-GMP regulatory switch. Filamentous actinobacteria of the genus Streptomyces have a complex lifecycle involving the differentiation of reproductive aerial hyphae into spores. We recently showed c-di-GMP controls this transition by arming a unique anti-σ, RsiG, to bind the sporulation-specific σ, WhiG. The Streptomyces venezuelae RsiG–(c-di-GMP)2–WhiG structure revealed that a monomeric RsiG binds c-di-GMP via two E(X)3S(X)2R(X)3Q(X)3D repeat motifs, one on each helix of an antiparallel coiled-coil. Here we show that RsiG homologs are found scattered throughout the Actinobacteria. Strikingly, RsiGs from unicellular bacteria descending from the most basal branch of the Actinobacteria are small proteins containing only one c-di-GMP binding motif, yet still bind their WhiG partners. Our structure of a Rubrobacter radiotolerans (RsiG)2–(c-di-GMP)2–WhiG complex revealed that these single-motif RsiGs are able to form an antiparallel coiled-coil through homodimerization, thereby allowing them to bind c-di-GMP similar to the monomeric twin-motif RsiGs. Further data show that in the unicellular actinobacterium R. radiotolerans, the (RsiG)2–(c-di-GMP)2–WhiG regulatory switch controls type IV pilus expression. Phylogenetic analysis indicates the single-motif RsiGs likely represent the ancestral state and an internal gene-duplication event gave rise to the twin-motif RsiGs inherited elsewhere in the Actinobacteria. Thus, these studies show how the anti-σ RsiG has evolved through an intragenic duplication event from a small protein carrying a single c-di-GMP binding motif, which functions as a homodimer, to a larger protein carrying two c-di-GMP binding motifs, which functions as a monomer. Consistent with this, our structures reveal potential selective advantages of the monomeric twin-motif anti-σ factors.
Collapse
|
7
|
Salgado R, Brito D, Noronha JP, Almeida B, Bronze MR, Oehmen A, Carvalho G, Barreto Crespo MT. Metabolite identification of ibuprofen biodegradation by Patulibacter medicamentivorans under aerobic conditions. ENVIRONMENTAL TECHNOLOGY 2020; 41:450-465. [PMID: 30015571 DOI: 10.1080/09593330.2018.1502362] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Ibuprofen (IBU) is a non-steroidal anti-inflammatory drug that is becoming increasingly recognized as an important micropollutant to be monitored in wastewater treatment plants (WWTP), since it has been detected in effluents at the µg L-1 level. The IBU metabolites from biological degradation are not completely understood and can represent a threat to natural aquatic systems. P. medicamentivorans was previously isolated from WWTP sludge and found to be capable of IBU degradation. The aerobic biodegradation of ibuprofen by this organism was investigated in a batch lab-scale reactor for the identification of the metabolites formed. The metabolites were analysed and putatively identified by HPLC-DAD-MS/MS and GC-MS and biodegradation pathways were proposed. The toxicity and the biodegradability potential of the metabolites were also investigated. The results showed that IBU biotransformation was achieved by hydroxylation followed by the formation of a carboxylic acid in the IBU molecule and by the formation of a catechol, allowing the aromatic ring cleavage. Two biodegradation pathways were proposed: in one, the metabolites generated from the enzymatic action correspond to a less biodegradable chemical structure of the intermediate products (isobutylbenzene and 3-isobutylphenol), with comparatively higher toxicity; in the other mechanism, more oxidable chemical structures were formed with less toxicity and higher biodegradability. This suggests that the biodegradation of IBU by P. medicamentivorans can take place by more than one mechanism regarding the enzymes formed by this Gram-positive bacterium, with subsequent oxidation of the parent compound to overall more soluble and less toxic compounds to fish, daphnia and green algae.
Collapse
Affiliation(s)
- Ricado Salgado
- LAQV, REQUIMTE, Chemistry Department, FCT, Universidade Nova de Lisboa, Caparica, Portugal
- ESTS-IPS-CINEA, Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal, Setúbal, Portugal
| | - Dulce Brito
- ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Joao P Noronha
- LAQV, REQUIMTE, Chemistry Department, FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Barbara Almeida
- UCBIO, REQUIMTE, Chemistry Department, FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Maria R Bronze
- ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- IBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Adrian Oehmen
- UCBIO, REQUIMTE, Chemistry Department, FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Gilda Carvalho
- UCBIO, REQUIMTE, Chemistry Department, FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Maria T Barreto Crespo
- ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- IBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
8
|
New genus-specific primers for PCR identification of Rubrobacter strains. Antonie Van Leeuwenhoek 2019; 112:1863-1874. [PMID: 31407134 PMCID: PMC6834744 DOI: 10.1007/s10482-019-01314-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/01/2019] [Indexed: 12/02/2022]
Abstract
A set of oligonucleotide primers, Rubro223f and Rubro454r, were found to amplify a 267 nucleotide sequence of 16S rRNA genes of Rubrobacter type strains. The primers distinguished members of this genus from other deeply-rooted actinobacterial lineages corresponding to the genera Conexibacter, Gaiella, Parviterribacter, Patulibacter, Solirubrobacter and Thermoleophilum of the class Thermoleophilia. Amplification of DNA bands of about 267 nucleotides were generated from environmental DNA extracted from soil samples taken from two locations in the Atacama Desert. Sequencing of a DNA library prepared from the bands showed that all of the clones fell within the evolutionary radiation occupied by the genus Rubrobacter. Most of the clones were assigned to two lineages that were well separated from phyletic lines composed of Rubrobacter type strains. It can be concluded that primers Rubro223f and Rubro454r are specific for the genus Rubrobacter and can be used to detect the presence and abundance of members of this genus in the Atacama Desert and other biomes.
Collapse
|
9
|
De Sotto R, Ho J, Lee W, Bae S. Discriminating activated sludge flocs from biofilm microbial communities in a novel pilot-scale reciprocation MBR using high-throughput 16S rRNA gene sequencing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:268-277. [PMID: 29605781 DOI: 10.1016/j.jenvman.2018.03.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/24/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Membrane bioreactors (MBRs) are a well-established filtration technology that has become a popular solution for treating wastewater. One of the drawbacks of MBRs, however, is the formation of biofilm on the surface of membrane modules. The occurrence of biofilms leads to biofouling, which eventually compromises water quality and damages the membranes. To prevent this, it is vital to understand the mechanism of biofilm formation on membrane surfaces. In this pilot-scale study, a novel reciprocation membrane bioreactor was operated for a period of 8 months and fed with domestic wastewater from an aerobic tank of a local WWTP. Water quality parameters were monitored and the microbial composition of the attached biofilm and suspended aggregates was evaluated in this reciprocating MBR configuration. The abundance of nitrifiers and composition of microbial communities from biofilm and suspended solids samples were investigated using qPCR and high throughput 16S amplicon sequencing. Removal efficiencies of 29%, 16%, and 15% of chemical oxygen demand, total phosphorus and total nitrogen from the influent were observed after the MBR process with average effluent concentrations of 16 mg/L, 4.6 mg/L, and 5.8 mg/L respectively. This suggests that the energy-efficient MBR, apart from reducing the total energy consumption, was able to maintain effluent concentrations that are within regulatory standards for discharge. Molecular analysis showed the presence of amoA Bacteria and 16S Nitrospira genes with the occurrence of nitrification. Candidatus Accumulibacter, a genus with organisms that can accumulate phosphorus, was found to be present in both groups which explains why phosphorus removal was observed in the system. High-throughput 16S rRNA amplicon sequencing revealed the genus Saprospira to be the most abundant species from the total OTUs of both the membrane tank and biofilm samples.
Collapse
Affiliation(s)
- Ryan De Sotto
- Department of Civil and Environmental Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jaeho Ho
- Doosan Hydro Technology, 9208 Palm River Road, 302, Tampa, FL 33619, United States
| | - Woonyoung Lee
- Doosan Heavy Industries, 465 Gangnam-daero, Seocho-Gu, Seoul 06611, South Korea
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
10
|
Moss habitats distinctly affect their associated bacterial community structures as revealed by the high-throughput sequencing method. World J Microbiol Biotechnol 2018; 34:58. [PMID: 29605884 DOI: 10.1007/s11274-018-2436-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 03/17/2018] [Indexed: 10/17/2022]
Abstract
To better understand the factors that influence the distribution of bacteria associated with mosses, the communities inhabiting in five moss species from two different habitats in Beijing Songshan National Nature Reserve were investigated using the high-throughput sequencing method. The sequencing was performed based on the bacterial 16S rRNA and 16S rDNA libraries. Results showed that there are abundant bacteria inhabiting in all the mosses sampled. The taxonomic analysis of these bacteria showed that they mainly consisted of those in the phyla Proteobacteria and Actinobacteria, and seldom were from phylum Armatimonadetes, Bacteroidetes and Firmicutes. The hierarchical cluster tree, based on the OTU level, divided the bacteria associated with all samples into two branches according to the habitat types of the host (terrestrial and aquatic). The PCoA diagram further divided the bacterial compositions into four groups according to both types of habitats and the data sources (DNA and RNA). There were larger differences in the bacterial community composition in the mosses collected from aquatic habitat than those of terrestrial one, whether at the DNA or RNA level. Thus, this survey supposed that the habitat where the host was growing was a relevant factor influencing bacterial community composition. In addition, the bacterial community detected at the RNA level was more sensitive to the habitat of the growing host, which could also be proved by the significantly differences in the predicted function by PICRUSt and the metabolically active dominant genera between different groups. This study expands the knowledge about the interactions between mosses and microbes.
Collapse
|
11
|
Jin D, Kong X, Li H, Luo L, Zhuang X, Zhuang G, Deng Y, Bai Z. Patulibacter brassicae sp. nov., isolated from rhizosphere soil of Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 2016; 66:5056-5060. [PMID: 27620694 DOI: 10.1099/ijsem.0.001469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinobacterial strain, designated SDT, was isolated from rhizosphere soil of Chinese cabbage in Shandong province, China. The cells were aerobic, Gram-staining-positive, oxidase- and catalase-positive, short rods and formed white colonies on trypticase soy agar. The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid and alanine, glutamic acid and leucine. Diphosphatidylglycerol was the predominant polar lipid. The predominant cellular fatty acid was C18 : 1ω9c; minor components were anteiso-C15 : 0 and anteiso-C17 : 0. The only isoprenoid quinone was demethylmenaquinone 7 (DMK-7), and the DNA G+C content was 72.7 mol%. Based on the full-length 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of strain SDT were Patulibacter medicamentivorans DSM 25962T (96.9 %), Patulibacter minatonensis DSM 18081T (96.7 %), Patulibacter americanus DSM 16676T (96.2 %) and Patulibacter ginsengiterrae DSM 25990T (95.9 %). Considering combined phenotypic and genotypic characteristics, it is proposed that strain SDT represents a novel species of the genus Patulibacter, for which the name Patulibacter brassicae sp. nov. is proposed. The type strain is SDT (=CICC 24108T=KCTC 39817T).
Collapse
Affiliation(s)
- Decai Jin
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiao Kong
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Honghong Li
- College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Luyun Luo
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, PR China
| | - Xuliang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guoqiang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, PR China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Zhihui Bai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, PR China.,CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
12
|
Růžička J, Fusková J, Křížek K, Měrková M, Černotová A, Smělík M. Microbial degradation of N-methyl-2-pyrrolidone in surface water and bacteria responsible for the process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:643-647. [PMID: 26877048 DOI: 10.2166/wst.2015.540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Due to widespread utilization in many industrial spheres and agrochemicals, N-methyl-2-pyrrolidone (NMP) is a potential contaminant of different surface water ecosystems. Hence, investigation was made into its aerobic microbial degradability in samples of water from a river, wetland area and spring. The results showed that the compound was degradable in all water types, and that the fastest NMP removal occurred in 4 days in river water, while in the wetland and spring samples the process was relatively slow, requiring several months to complete. Key bacterial degraders were successfully isolated in all cases, and their identification proved that pseudomonads played a major role in NMP degradation in river water, while the genera Rhodococcus and Patulibacter fulfilled a similar task in the wetland sample. Regarding spring water, degrading members of the Mesorhizobium and Rhizobium genera were found.
Collapse
Affiliation(s)
- Jan Růžička
- Department of Environmental Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 762 72 Zlín, Czech Republic E-mail:
| | - Jana Fusková
- Department of Environmental Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 762 72 Zlín, Czech Republic E-mail:
| | - Karel Křížek
- Department of Environmental Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 762 72 Zlín, Czech Republic E-mail:
| | - Markéta Měrková
- Department of Environmental Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 762 72 Zlín, Czech Republic E-mail:
| | - Alena Černotová
- Department of Environmental Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 762 72 Zlín, Czech Republic E-mail:
| | - Michal Smělík
- Department of Environmental Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 762 72 Zlín, Czech Republic E-mail:
| |
Collapse
|
13
|
Foesel BU, Geppert A, Rohde M, Overmann J. Parviterribacter kavangonensis gen. nov., sp. nov. and Parviterribacter multiflagellatus sp. nov., novel members of Parviterribacteraceae fam. nov. within the order Solirubrobacterales, and emended descriptions of the classes Thermoleophilia and Rubrobacteria and their orders and families. Int J Syst Evol Microbiol 2015; 66:652-665. [PMID: 26582010 DOI: 10.1099/ijsem.0.000770] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-type-positive, non-spore-forming bacteria, strains D16/0/H6T and A22/0/F9_1T, were isolated from Namibian semiarid savannah soils. 16S rRNA gene sequence analysis revealed 96.6 % identity between the two strains and placed them within the order Solirubrobacterales of the class Thermoleophilia. The closest phylogenetic relatives with validly published names were several strains of the genus Solirubrobacter and the species Conexibacter arvalis, with pairwise sequence similarities of ≤ 94.0 %. Cells of strain D16/0/H6T were ovoid to rod-shaped, whereas strain A22/0/F9_1T formed regular rods. Cells of both strains were motile and divided by binary fission. Colonies were pink and white to pale yellowish/brownish, respectively. Strains D16/0/H6T and A22/0/F9_1T were aerobic, chemoheterotrophic mesophiles with broad temperature (13-43 and 17-43 °C, respectively) and pH (pH 4.5-8.5 and 5.0-9.5) ranges for growth. Complex proteinaceous substrates and glucose were the preferred carbon and energy sources. Strain A22/0/F9_1T also grew on various carboxylic acids. For both strains, the peptidoglycan diamino acid was meso-2,6-diaminopimelic acid. The major quinone was MK-8. As a minor compound, MK-7 occurred in strain D16/0/H6T; strain A22/0F9_1T also contained MK-7, MK-7(H2) and MK-8(H2). Major fatty acids of strain D16/0/H6T were 10-methyl C17 : 0, iso-C16 : 0 and C18 : 1ω9c. Strain A22/0F9_1T contained C18 : 1ω9c, C17 : 1ω8c, C17 : 1ω6c and iso-C16 : 0 as major components. The DNA G+C contents of strains D16/0/H6T and A22/0/F9_1T were 72.8 and 74.0 mol%, respectively. Based on these characteristics, the two isolates are assigned to novel species of the new genus Parviterribacter gen. nov., the type species Parviterribacter kavangonensis sp. nov. (type strain D16/0/H6T = DSM 25205T = LMG 26950T) and a second species Parviterribacter multiflagellatus sp. nov. (type strain A22/0/F9_1T = DSM 25204T = LMG 26949T). As the novel genus and species cannot be clearly assigned to an established family within the order Solirubrobacterales, the novel family Parviterribacteraceae fam. nov. is proposed. Emended descriptions of the classes Thermoleophilia and Rubrobacteria and their orders and families are also provided.
Collapse
Affiliation(s)
- Bärbel U Foesel
- Department of Microbial Ecology and Diversity Research, Leibniz Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Alicia Geppert
- Department of Microbial Ecology and Diversity Research, Leibniz Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jörg Overmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|