1
|
Pavlović J, Bosch-Roig P, Rusková M, Planý M, Pangallo D, Sanmartín P. Long-amplicon MinION-based sequencing study in a salt-contaminated twelfth century granite-built chapel. Appl Microbiol Biotechnol 2022; 106:4297-4314. [PMID: 35596787 PMCID: PMC9200699 DOI: 10.1007/s00253-022-11961-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
The irregular damp dark staining on the stonework of a salt-contaminated twelfth century granite-built chapel is thought to be related to a non-homogeneous distribution of salts and microbial communities. To enhance understanding of the role of microorganisms in the presence of salt and damp stains, we determined the salt content and identified the microbial ecosystem in several paving slabs and inner wall slabs (untreated and previously bio-desalinated) and in the exterior surrounding soil. Soluble salt analysis and culture-dependent approaches combined with archaeal and bacterial 16S rRNA and fungal ITS fragment as well as with the functional genes nirK, dsr, and soxB long-amplicon MinION-based sequencing were performed. State-of-the-art technology was used for microbial identification, providing information about the microbial diversity and phylogenetic groups present and enabling us to gain some insight into the biological cycles occurring in the community key genes involved in the different geomicrobiological cycles. A well-defined relationship between microbial data and soluble salts was identified, suggesting that poorly soluble salts (CaSO4) could fill the pores in the stone and lead to condensation and dissolution of highly soluble salts (Ca(NO3)2 and Mg(NO3)2) in the thin layer of water formed on the stonework. By contrast, no direct relationship between the damp staining and the salt content or related microbiota was established. Further analysis regarding organic matter and recalcitrant elements in the stonework should be carried out. KEY POINTS : • Poorly (CaSO4) and highly (Ca(NO3)2, Mg(NO3)2) soluble salts were detected • Halophilic and mineral weathering microorganisms reveal ecological impacts of salts • Microbial communities involved in nitrate and sulfate cycles were detected.
Collapse
Affiliation(s)
- Jelena Pavlović
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
| | - Pilar Bosch-Roig
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Magdalena Rusková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
| | - Matej Planý
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
- Caravella, s.r.o., Tupolevova 2, 851 01, Bratislava, Slovakia
| | - Patricia Sanmartín
- Departamento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Ghori NUH, Wise MJ, Whiteley AS. Temporal Microbial Community Dynamics Within a Unique Acid Saline Lake. Front Microbiol 2021; 12:649594. [PMID: 34248867 PMCID: PMC8264302 DOI: 10.3389/fmicb.2021.649594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Lake Magic is an extremely acidic, hypersaline lake found in Western Australia, with the highest concentrations of aluminum and silica in the world. Previous studies of Lake Magic diversity have revealed that the lake hosts acid- and halotolerant bacterial and fungal species. However, they have not canvassed microbial population dynamics across flooding, evapo-concentration and desiccation stages. In this study, we used amplicon sequencing and potential function prediction on sediment and salt mat samples. We observed that the bacterial and fungal diversity in Lake Magic is strongly driven by carbon, temperature, pH and salt concentrations at the different stages of the lake. We also saw that the fungal diversity decreased as the environmental conditions became more extreme. However, prokaryotic diversity was very dynamic and bacteria dominated archaeal species, both in abundance and diversity, perhaps because bacteria better tolerate the extreme variation in conditions. Bacterial species diversity was the highest during early flooding stage and decreased during more stressful conditions. We observed an increase in acid tolerant and halotolerant species in the sediment, involved in functions such as sulfur and iron metabolism, i.e., species involved in buffering the external environment. Thus, due to activity within the microbial community, the environmental conditions in the sediment do not change to the same degree as conditions in the salt mat, resulting in the sediment becoming a safe haven for microbes, which are able to thrive during the extreme conditions of the evapo-concentration and desiccation stages.
Collapse
Affiliation(s)
- Noor-Ul-Huda Ghori
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia.,The Marshall Centre of Infectious Diseases, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Michael J Wise
- The Marshall Centre of Infectious Diseases, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.,Department of Computer Science and Engineering, The University of Western Australia, Perth, WA, Australia
| | - Andrew S Whiteley
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia.,Centre for Environment and Life Sciences, CSIRO Land Water, Perth, WA, Australia
| |
Collapse
|
3
|
Stahl-Rommel S, Jain M, Nguyen HN, Arnold RR, Aunon-Chancellor SM, Sharp GM, Castro CL, John KK, Juul S, Turner DJ, Stoddart D, Paten B, Akeson M, Burton AS, Castro-Wallace SL. Real-Time Culture-Independent Microbial Profiling Onboard the International Space Station Using Nanopore Sequencing. Genes (Basel) 2021; 12:genes12010106. [PMID: 33467183 PMCID: PMC7830261 DOI: 10.3390/genes12010106] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
For the past two decades, microbial monitoring of the International Space Station (ISS) has relied on culture-dependent methods that require return to Earth for analysis. This has a number of limitations, with the most significant being bias towards the detection of culturable organisms and the inherent delay between sample collection and ground-based analysis. In recent years, portable and easy-to-use molecular-based tools, such as Oxford Nanopore Technologies’ MinION™ sequencer and miniPCR bio’s miniPCR™ thermal cycler, have been validated onboard the ISS. Here, we report on the development, validation, and implementation of a swab-to-sequencer method that provides a culture-independent solution to real-time microbial profiling onboard the ISS. Method development focused on analysis of swabs collected in a low-biomass environment with limited facility resources and stringent controls on allowed processes and reagents. ISS-optimized procedures included enzymatic DNA extraction from a swab tip, bead-based purifications, altered buffers, and the use of miniPCR and the MinION. Validation was conducted through extensive ground-based assessments comparing current standard culture-dependent and newly developed culture-independent methods. Similar microbial distributions were observed between the two methods; however, as expected, the culture-independent data revealed microbial profiles with greater diversity. Protocol optimization and verification was established during NASA Extreme Environment Mission Operations (NEEMO) analog missions 21 and 22, respectively. Unique microbial profiles obtained from analog testing validated the swab-to-sequencer method in an extreme environment. Finally, four independent swab-to-sequencer experiments were conducted onboard the ISS by two crewmembers. Microorganisms identified from ISS swabs were consistent with historical culture-based data, and primarily consisted of commonly observed human-associated microbes. This simplified method has been streamlined for high ease-of-use for a non-trained crew to complete in an extreme environment, thereby enabling environmental and human health diagnostics in real-time as future missions take us beyond low-Earth orbit.
Collapse
Affiliation(s)
| | - Miten Jain
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064, USA; (M.J.); (B.P.); (M.A.)
| | - Hang N. Nguyen
- JES Tech, Houston, TX 77058, USA; (S.S.-R.); (H.N.N.); (C.L.C.)
| | - Richard R. Arnold
- Astronaut Office, NASA Johnson Space Center, Houston, TX 77058, USA; (R.R.A.); (S.M.A.-C.)
| | | | | | | | - Kristen K. John
- Project Management and Systems Engineering Division, NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Sissel Juul
- Oxford Nanopore Technologies, New York, NY 10013, USA;
| | - Daniel J. Turner
- Oxford Nanopore Technologies, Oxford Science Park, Oxford OX4 4DQ, UK; (D.J.T.); (D.S.)
| | - David Stoddart
- Oxford Nanopore Technologies, Oxford Science Park, Oxford OX4 4DQ, UK; (D.J.T.); (D.S.)
| | - Benedict Paten
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064, USA; (M.J.); (B.P.); (M.A.)
| | - Mark Akeson
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064, USA; (M.J.); (B.P.); (M.A.)
| | - Aaron S. Burton
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Sarah L. Castro-Wallace
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX 77058, USA
- Correspondence: ; Tel.: +1-281-483-7254
| |
Collapse
|
4
|
Parada-Pinilla MP, Díaz-Cárdenas C, López G, Díaz-Riaño JI, Gonzalez LN, Restrepo S, Trujillo ME, Baena S. Salifodinibacter halophilus gen. nov., sp. nov., a halophilic gammaproteobacterium in the family Salinisphaeraceae isolated from a salt mine in the Colombian Andes. Int J Syst Evol Microbiol 2020; 70:5888-5898. [PMID: 33034549 DOI: 10.1099/ijsem.0.004490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two morphologically similar halophilic strains, named USBA 874 and USBA 960T, were isolated from water and sediment samples collected from the Zipaquirá salt mine in the Colombian Andes. Both isolates had non-spore-forming, Gram-stain-negative and motile cells that grew aerobically. The strains grew optimally at 30 °C, pH 7.0 and with 25 % NaCl (w/v). The isolates showed almost identical 16S rRNA gene sequences (99.0 % similarity). The predominant quinones of USBA-960T were Q-8, Q-7 and Q-9. The major cellular fatty acids were C19 : 0 cyclo ω8c, C18 : 0 and C16 : 0. According to 16S rRNA gene sequencing, the closest phylogenetic relatives are Salinisphaera species (similarity between 93.6 and 92.3 %), Abyssibacter profundi OUC007T (88.6 %) and Oceanococcus atlanticus 22II-S10r2T (88.7 %). In addition, the result of genome blast distance phylogeny analysis between strains USBA 874 and USBA 960T, Salinisphaera halophila (YIM 95161T), Salinisphaera shabanensis (E1L3AT), Salinisphaera orenii (MK-B5T) and Salinisphaera japonica (YTM-1T) was 18.5 %. Other in silico species delineation analyses also showed low identity such as ANIb and ANIm values (<69.0 and <84.0 % respectively), TETRA (<0.81) and AAI values (<0.67). Genome sequencing of USBA 960T revealed a genome size of 2.47 Mbp and a G+C content of 59.71 mol%. Phylogenetic analysis of strains USBA 874 and USBA 960T indicated that they formed a different lineage within the family Salinisphaeraceae. Based on phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA-DNA relatedness values, along with identity at whole genome level, it can be concluded that strains USBA 960T and USBA 874 represent a novel genus of the family Salinisphaeraceae and the name Salifodinibacter halophilus gen. nov., sp. nov. is proposed. The type strain is USBA 960T (CMPUJ U095T=CECT 30006T).
Collapse
Affiliation(s)
- María Paula Parada-Pinilla
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá DC, Colombia
| | - Carolina Díaz-Cárdenas
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá DC, Colombia
| | - Gina López
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá DC, Colombia
| | - Jorge Iván Díaz-Riaño
- Vicepresidency of Research and Creation, Universidad de los Andes, Cra 1 No. 18A-12, Bogotá DC, Colombia
| | - Laura N Gonzalez
- Vicepresidency of Research and Creation, Universidad de los Andes, Cra 1 No. 18A-12, Bogotá DC, Colombia
| | - Silvia Restrepo
- Chemical Engineering Department, Universidad de los Andes, Cra 1 No. 18A-12, Bogotá DC, Colombia
| | - Martha E Trujillo
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca 37007, Spain
| | - Sandra Baena
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá DC, Colombia
| |
Collapse
|
5
|
Dong Y, Gao J, Wu Q, Ai Y, Huang Y, Wei W, Sun S, Weng Q. Co-occurrence pattern and function prediction of bacterial community in Karst cave. BMC Microbiol 2020; 20:137. [PMID: 32471344 PMCID: PMC7257168 DOI: 10.1186/s12866-020-01806-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/28/2020] [Indexed: 01/20/2023] Open
Abstract
Background Karst caves are considered as extreme environments with nutrition deficiency, darkness, and oxygen deprivation, and they are also the sources of biodiversity and metabolic pathways. Microorganisms are usually involved in the formation and maintenance of the cave system through various metabolic activities, and are indicators of changes environment influenced by human. Zhijin cave is a typical Karst cave and attracts tourists in China. However, the bacterial diversity and composition of the Karst cave are still unclear. The present study aims to reveal the bacterial diversity and composition in the cave and the potential impact of tourism activities, and better understand the roles and co-occurrence pattern of the bacterial community in the extreme cave habitats. Results The bacterial community consisted of the major Proteobacteria, Actinobacteria, and Firmicutes, with Proteobacteria being the predominant phylum in the rock, soil, and stalactite samples. Compositions and specialized bacterial phyla of the bacterial communities were different among different sample types. The highest diversity index was found in the rock samples with a Shannon index of 4.71. Overall, Zhijin cave has relatively lower diversity than that in natural caves. The prediction of function showed that various enzymes, including ribulose-bisphosphate carboxylase, 4-hydroxybutyryl-CoA dehydratase, nitrogenase NifH, and Nitrite reductase, involved in carbon and nitrogen cycles were detected in Zhijin cave. Additionally, the modularity indices of all co-occurrence network were greater than 0.40 and the species interactions were complex across different sample types. Co-occurring positive interactions in the bacteria groups in different phyla were also observed. Conclusion These results uncovered that the oligotrophic Zhijin cave maintains the bacterial communities with the diverse metabolic pathways, interdependent and cooperative co-existence patterns. Moreover, as a hotspot for tourism, the composition and diversity of bacterial community are influenced by tourism activities. These afford new insights for further exploring the adaptation of bacteria to extreme environments and the conservation of cave ecosystem.
Collapse
Affiliation(s)
- Yiyi Dong
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China.,CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Yilang Ai
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Yu Huang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Wenzhang Wei
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China.,Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Shiyu Sun
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
6
|
Megaw J, Kelly SA, Thompson TP, Skvortsov T, Gilmore BF. Profiling the microbial community of a Triassic halite deposit in Northern Ireland: an environment with significant potential for biodiscovery. FEMS Microbiol Lett 2019; 366:5645231. [DOI: 10.1093/femsle/fnz242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
ABSTRACTKilroot salt mine, a Triassic halite deposit located in County Antrim, Northern Ireland, is the only permanent hypersaline environment on the island of Ireland. In this study, the microbiome of this unstudied environment was profiled for the first time using conventional and enhanced culturing techniques, and culture independent metagenomic approaches. Using both conventional isolation plates and iChip devices, 89 halophilic archaeal isolates from six known genera, and 55 halophilic or halotolerant bacterial isolates from 18 genera were obtained, based on 16S rRNA gene sequencing. The archaeal isolates were similar to those previously isolated from other ancient halite deposits, and as expected, numerous genera were identified in the metagenome which were not represented among the culturable isolates. Preliminary screening of a selection of isolates from this environment identified antimicrobial activities against a panel of clinically important bacterial pathogens from 15 of the bacterial isolates and one of the archaea. This, alongside previous studies reporting the discovery of novel biocatalysts from the Kilroot mine microbiome, suggests that this environment may be a new, untapped source of of chemical diversity with high biodiscovery potential.
Collapse
Affiliation(s)
- Julianne Megaw
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Stephen A Kelly
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thomas P Thompson
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Timofey Skvortsov
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Brendan F Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
7
|
Draft Genome Sequence of Salinisphaera sp. Strain KSM-18, an Obligately Halophilic Bacterium Isolated from a Triassic Salt Mine. Microbiol Resour Announc 2018; 7:MRA00897-18. [PMID: 30533900 PMCID: PMC6256468 DOI: 10.1128/mra.00897-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 11/20/2022] Open
Abstract
Here, we report the draft genome sequence of Salinisphaera sp. strain KSM-18. This obligately halophilic bacterium was isolated from a brine sample obtained from a Triassic salt mine.
Collapse
|
8
|
Zhou S, Ren Q, Li Y, Liu J, Wang X, Wu Y, Zhang Y, Zhang XH. Abyssibacter profundi gen. nov., sp. nov., a marine bacterium isolated from seawater of the Mariana Trench. Int J Syst Evol Microbiol 2018; 68:3424-3429. [DOI: 10.1099/ijsem.0.002999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shun Zhou
- 1College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Qiaomeng Ren
- 1College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yuying Li
- 1College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jiwen Liu
- 1College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- 2Laboratory for Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Xiaolei Wang
- 1College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanhong Wu
- 1College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yulin Zhang
- 1College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiao-hua Zhang
- 1College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- 2Laboratory for Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| |
Collapse
|
9
|
Tang L, Zhang Z, Xie R, Jiao N, Zhang Y. Salinisphaera aquimarina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2018; 68:1130-1134. [PMID: 29458504 DOI: 10.1099/ijsem.0.002638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, rod-shaped, motile bacterium with a subpolar flagellum, designated strain CCMM005T, was isolated from offshore seawater at Qingdao, China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CCMM005T belonged to the genus Salinisphaera and exhibited highest 16S rRNA gene sequence similarity to Salinisphaera dokdonensis CL-ES53T (96.9 %). It showed lower sequence similarities (94.9-96.4 %) with all other representatives of the genus Salinisphaera. Optimal growth occurred in the presence of 4 % (w/v) NaCl, at 30 °C and at pH 7.0. The polar lipids of strain CCMM005T consisted of phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, one unidentified phosphoglycolipid and one unidentified phospholipid. The predominant isoprenoid quinone was Q-8. The major fatty acids were C19 : 0cyclo ω8c, C18 : 0 and C18 : 1ω7c. The DNA G+C content of strain CCMM005T was 65.3 mol%. On the basis of data from this polyphasic study, strain CCMM005T is considered to represent a novel species of the genus Salinisphaera, for which the name Salinisphaera aquimarina sp. nov. is proposed. The type strain is CCMM005T (=MCCC 1K03246T=KCTC 52640T).
Collapse
Affiliation(s)
- Lili Tang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zenghu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Ruize Xie
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361101, Fujian Province, PR China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| |
Collapse
|
10
|
Zaikova E, Benison KC, Mormile MR, Johnson SS. Microbial communities and their predicted metabolic functions in a desiccating acid salt lake. Extremophiles 2018; 22:367-379. [PMID: 29350297 DOI: 10.1007/s00792-018-1000-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/02/2018] [Indexed: 11/30/2022]
Abstract
The waters of Lake Magic in Western Australia are among the most geochemically extreme on Earth. This ephemeral saline lake is characterized by pH as low as 1.6 salinity as high as 32% total dissolved solids, and unusually complex geochemistry, including extremely high concentrations of aluminum, silica, and iron. We examined the microbial composition and putative function in this extreme acid brine environment by analyzing lake water, groundwater, and sediment samples collected during the austral summer near peak evapoconcentration. Our results reveal that the lake water metagenome, surprisingly, was comprised of mostly eukaryote sequences, particularly fungi and to a lesser extent, green algae. Groundwater and sediment samples were dominated by acidophilic Firmicutes, with eukaryotic community members only detected at low abundances. The lake water bacterial community was less diverse than that in groundwater and sediment, and was overwhelmingly represented by a single OTU affiliated with Salinisphaera. Pathways associated with halotolerance were found in the metagenomes, as were genes associated with biosynthesis of protective carotenoids. During periods of complete desiccation of the lake, we hypothesize that dormancy and entrapment in fluid inclusions in halite crystals may increase long-term survival, leading to the resilience of complex eukaryotes in this extreme environment.
Collapse
Affiliation(s)
- Elena Zaikova
- Department of Biology, Georgetown University, Washington, USA
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, USA
| | - Melanie R Mormile
- Department of Biology, Missouri University of Science and Technology, Rolla, USA
| | - Sarah Stewart Johnson
- Department of Biology, Georgetown University, Washington, USA. .,Program on Science, Technology, and International Affairs, Georgetown University, Washington, USA.
| |
Collapse
|
11
|
Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE, Gupta RS. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek 2014; 107:467-85. [DOI: 10.1007/s10482-014-0344-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/28/2014] [Indexed: 01/10/2023]
|