1
|
Xu L, Liu X, Wu Q, Hua ZL, Yang F, Zhang JF. Phylogenetic analysis of pathogenic genes in Helicobacter species. Shijie Huaren Xiaohua Zazhi 2024; 32:58-70. [DOI: 10.11569/wcjd.v32.i1.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Helicobacter bacteria are associated with gastrointestinal diseases, especially Helicobacter pylori (H. pylori). With the isolation of many non-Helicobacter pylori Helicobacters (NHPH) from the liver, intestines, and gallbladder of natural animal reservoirs, NHPH have been potential zoonotic pathogens, but their infection and pathogenic mechanisms are still unclear.
AIM To explore the phylogenetic relationship of Helicobacter species based on their pathogenic genes.
METHODS The present study collected the genomic sequences of 50 strains in genus Helicobacter, including 12 strains of H. pylori and 38 strains of NHPH. Based on 16S rRNA gene and several pathogenic genes (flagella, urease, and virulence factors), MAGA software (Version 11.0) was used to align their sequences and construct phylogenetic trees.
RESULTS The phylogenetic tree of 16S rRNA gene showed that gastric Helicobacter (GH) and enterohepatic Helicobacter species (EHS) were clustered into two large branches, respectively. All of the GH's hosts were mammals, while the hosts of EHS were many wild poultry and mammals. Based on the flagella motility-related genes (flaA, flaB, fliP, fliQ, fliR, fliG, fliM, and fliN), the phylogenetic trees were divided into two major branches (GH and EHS). Similarly, the phylogenetic trees of lipopolysaccharide (LPS) biosynthesis-related genes (lptA, waaC, and waaF) presented two major branches (GH and EHS), too. The urease genes existed in all of the 12 strains of H. pylori, 13 strains of gastric NHPH, and 4 strains of EHS (H. hepaticus, H. muridarum, H. bilis, and H. anseris). However, no significant phylogenetic patterns of GH and EHS were observed in the seven urease genes (ureA, ureB, ureE, ureF, ureG, ureH, and ureI).
CONCLUSION The phylogenetic relationship of Helicobacter species' pathogenic genes is dominated distinctly by the special colonization areas including gastric and enterohepatic niches.
Collapse
Affiliation(s)
- Le Xu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xing Liu
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Qi Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao-Lai Hua
- Institute of Tumor Prevention and Control, People's Hospital of Yangzhong City, Zhenjiang 212299, Jiangsu Province, China
| | - Fei Yang
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Jun-Feng Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
2
|
Gibson K, Chu JK, Zhu S, Nguyen D, Mrázek J, Liu J, Hoover TR. A Tripartite Efflux System Affects Flagellum Stability in Helicobacter pylori. Int J Mol Sci 2022; 23:ijms231911609. [PMID: 36232924 PMCID: PMC9570263 DOI: 10.3390/ijms231911609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Helicobacter pylori uses a cluster of polar, sheathed flagella for swimming motility. A search for homologs of H. pylori proteins that were conserved in Helicobacter species that possess flagellar sheaths but were underrepresented in Helicobacter species with unsheathed flagella identified several candidate proteins. Four of the identified proteins are predicted to form part of a tripartite efflux system that includes two transmembrane domains of an ABC transporter (HP1487 and HP1486), a periplasmic membrane fusion protein (HP1488), and a TolC-like outer membrane efflux protein (HP1489). Deleting hp1486/hp1487 and hp1489 homologs in H. pylori B128 resulted in reductions in motility and the number of flagella per cell. Cryo-electron tomography studies of intact motors of the Δhp1489 and Δhp1486/hp1487 mutants revealed many of the cells contained a potential flagellum disassembly product consisting of decorated L and P rings, which has been reported in other bacteria. Aberrant motors lacking specific components, including a cage-like structure that surrounds the motor, were also observed in the Δhp1489 mutant. These findings suggest a role for the H. pylori HP1486-HP1489 tripartite efflux system in flagellum stability. Three independent variants of the Δhp1486/hp1487 mutant with enhanced motility were isolated. All three motile variants had the same frameshift mutation in fliL, suggesting a role for FliL in flagellum disassembly.
Collapse
Affiliation(s)
- Katherine Gibson
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Joshua K. Chu
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Shiwei Zhu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | - Doreen Nguyen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Jan Mrázek
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-2675
| |
Collapse
|
3
|
Methylation-Independent Chemotaxis Systems Are the Norm for Gastric-Colonizing Helicobacter Species. J Bacteriol 2022; 204:e0023122. [PMID: 35972258 PMCID: PMC9487461 DOI: 10.1128/jb.00231-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacteria and archaea rely on chemotaxis signal transduction systems for optimal fitness. These complex, multiprotein signaling systems have core components found in all chemotactic microbes, as well as variable proteins found in only some species. We do not yet understand why these variations exist or whether there are specific niches that favor particular chemotaxis signaling organization. One variation is in the presence/absence of the chemotaxis methylation adaptation enzymes CheB and CheR. Genes for CheB and CheR are missing in the gastric pathogen Helicobacter pylori but present in related Helicobacter that colonize the liver or intestine. In this work, we asked whether there was a general pattern of CheB/CheR across multiple Helicobacter species. Helicobacter spp. all possess chemotactic behavior, based on the presence of genes for core signaling proteins CheA, CheW, and chemoreceptors. Genes for the CheB and CheR proteins, in contrast, were variably present. Niche mapping supported the idea that these genes were present in enterohepatic Helicobacter species and absent in gastric ones. We then analyzed whether there were differences between gastric and enterohepatic species in the CheB/CheR chemoreceptor target methylation sites. Indeed, these sites were less conserved in gastric species that lack CheB/CheR. Lastly, we determined that cheB and cheR could serve as markers to indicate whether an unknown Helicobacter species was of enterohepatic or gastric origin. Overall, these findings suggest the interesting idea that methylation-based adaptation is not required in specific environments, particularly the stomach. IMPORTANCE Chemotaxis signal transduction systems are common in the archaeal and bacterial world, but not all systems contain the same components. The rationale for this system variation remains unknown. In this report, comparative genomics analysis showed that the presence/absence of CheR and CheB is one main variation within the Helicobacter genus, and it is strongly associated with the niche of Helicobacter species: gastric Helicobacter species, which infect animal stomachs, have lost their CheB and CheR, while enterohepatic Helicobacter species, which infect the liver and intestine, retain them. This study not only provides an example that a chemotaxis system variant is associated with particular niches but also proposes that CheB and CheR are new markers distinguishing gastric from enterohepatic Helicobacter species.
Collapse
|
4
|
Taillieu E, Chiers K, Amorim I, Gärtner F, Maes D, Van Steenkiste C, Haesebrouck F. Gastric Helicobacter species associated with dogs, cats and pigs: significance for public and animal health. Vet Res 2022; 53:42. [PMID: 35692057 PMCID: PMC9190127 DOI: 10.1186/s13567-022-01059-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022] Open
Abstract
This article focuses on the pathogenic significance of Helicobacter species naturally colonizing the stomach of dogs, cats and pigs. These gastric "non-Helicobacter (H.) pylori Helicobacter species" (NHPH) are less well-known than the human adapted H. pylori. Helicobacter suis has been associated with gastritis and decreased daily weight gain in pigs. Several studies also attribute a role to this pathogen in the development of hyperkeratosis and ulceration of the non-glandular stratified squamous epithelium of the pars oesophagea of the porcine stomach. The stomach of dogs and cats can be colonized by several Helicobacter species but their pathogenic significance for these animals is probably low. Helicobacter suis as well as several canine and feline gastric Helicobacter species may also infect humans, resulting in gastritis, peptic and duodenal ulcers, and low-grade mucosa-associated lymphoid tissue lymphoma. These agents may be transmitted to humans most likely through direct or indirect contact with dogs, cats and pigs. Additional possible transmission routes include consumption of water and, for H. suis, also consumption of contaminated pork. It has been described that standard H. pylori eradication therapy is usually also effective to eradicate the NHPH in human patients, although acquired antimicrobial resistance may occasionally occur and porcine H. suis strains are intrinsically less susceptible to aminopenicillins than non-human primate H. suis strains and other gastric Helicobacter species. Virulence factors of H. suis and the canine and feline gastric Helicobacter species include urease activity, motility, chemotaxis, adhesins and gamma-glutamyl transpeptidase. These NHPH, however, lack orthologs of cytotoxin-associated gene pathogenicity island and vacuolating cytotoxin A, which are major virulence factors in H. pylori. It can be concluded that besides H. pylori, gastric Helicobacter species associated with dogs, cats and pigs are also clinically relevant in humans. Although recent research has provided better insights regarding pathogenic mechanisms and treatment strategies, a lot remains to be investigated, including true prevalence rates, exact modes of transmission and molecular pathways underlying disease development and progression.
Collapse
Affiliation(s)
- Emily Taillieu
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Koen Chiers
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Irina Amorim
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Porto, Portugal.,Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal.,School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
| | - Fátima Gärtner
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Porto, Portugal.,Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Christophe Van Steenkiste
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp University, Edegem, Belgium.,Department of Gastroenterology and Hepatology, General Hospital Maria Middelares, Ghent, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
5
|
Husnik R, Klimes J, Kovarikova S, Kolorz M. Helicobacter Species and Their Association with Gastric Pathology in a Cohort of Dogs with Chronic Gastrointestinal Signs. Animals (Basel) 2022; 12:ani12101254. [PMID: 35625100 PMCID: PMC9137851 DOI: 10.3390/ani12101254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Prevalence of individual Helicobacter species, data evaluating their association with gastric pathology and comparison of accuracy of diagnostic techniques are limited. The aims of this study were to determine the prevalence of gastric Helicobacter species, their association with gastric pathology, and to compare diagnostic techniques. Gastric biopsies from 84 privately-owned dogs with chronic gastrointestinal signs were obtained endoscopically. Helicobacters were detected using PCR, cytology, urease test, and histopathology. PCR detected helicobacters in 71.4% of dogs. Helicobacter heilmannii sensu stricto (s.s.) was the predominant species. Mixed infection was detected in 40% of PCR positive dogs. Gastritis was diagnosed in 38.5% of Helicobacter positive and 47.4% of Helicobacter negative dogs. Mono-infection was associated with 2.4 times increased odds of having more severe inflammation compared to mixed infection. Erosions and ulcers were common endoscopic lesions. Cytology had sensitivity/specificity of 88.3/91.7%. Association between infection and lymphoid follicular hyperplasia was demonstrated.
Collapse
Affiliation(s)
- Roman Husnik
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
- Correspondence:
| | - Jiri Klimes
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic;
| | - Simona Kovarikova
- Department of Animal Protection, Welfare and Behavior, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic;
| | - Michal Kolorz
- Department of Clinical Pharmacy, University Hospital Martin, 036 01 Martin, Slovakia;
| |
Collapse
|
6
|
Ochoa S, Collado L. Enterohepatic Helicobacter species - clinical importance, host range, and zoonotic potential. Crit Rev Microbiol 2021; 47:728-761. [PMID: 34153195 DOI: 10.1080/1040841x.2021.1924117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The genus Helicobacter defined just over 30 years ago, is a highly diverse and fast-growing group of bacteria that are able to persistently colonize a wide range of animals. The members of this genus are subdivided into two groups with different ecological niches, associated pathologies, and phylogenetic relationships: the gastric Helicobacter (GH) and the enterohepatic Helicobacter (EHH) species. Although GH have been mostly studied, EHH species have become increasingly important as emerging human pathogens and potential zoonotic agents in the last years. This group of bacteria has been associated with the development of several diseases in humans from acute pathologies like gastroenteritis to chronic pathologies that include inflammatory bowel disease, and liver and gallbladder diseases. However, their reservoirs, as well as their routes of transmission, have not been well established yet. Therefore, this review summarizes the current knowledge of taxonomy, epidemiology, and clinical role of the EHH group.
Collapse
Affiliation(s)
- Sofia Ochoa
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Luis Collado
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
7
|
Berthenet E, Bénéjat L, Ménard A, Varon C, Lacomme S, Gontier E, Raymond J, Boussaba O, Toulza O, Ducournau A, Buissonnière A, Giese A, Megraud F, Bessède E, Jehanne Q, Lehours P. Whole-Genome Sequencing and Bioinformatics as Pertinent Tools to Support Helicobacteracae Taxonomy, Based on Three Strains Suspected to Belong to Novel Helicobacter Species. Front Microbiol 2019; 10:2820. [PMID: 31866982 PMCID: PMC6908825 DOI: 10.3389/fmicb.2019.02820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
The present study describes three putative novel species received at the French National Reference Center for Campylobacters & Helicobacters (CNRCH). The CNRCH 2005/566H strain was isolated in 2005 from the feces of a patient with a hepatocellular carcinoma and gastroenteritis. Strain 48519 was isolated in 2017 from the blood of a male patient suffering from a bacteremia. Strain Cn23e was isolated from a gastric biopsy from a dog suffering from chronic gastritis. Biochemical and growth characteristics and electron microscopy for these three strains were studied. Their genomes were also sequenced. gyrA based phylogeny built with 72 nucleotide sequences placed CNRCH 2005/566H among the unsheathed enterohepatic helicobacters, close to Helicobacter valdiviensis; strain 48519 among the sheathed enterohepatic helicobacters, close to Helicobacter cinaedi; and strain Cn23e among gastric helicobacters, close to Helicobacter felis. 16S rRNA gene phylogeny showed similar results, but with weak discriminant strength. Average nucleotide identity and in silico DNA–DNA hybridization analyses revealed that CNRCH 2005/566H and 48519 strains belong to new putative species, but confirmed that Cn23e corresponds to H. felis. Cn23e was able to infect C57BL6 mice and to induce gastric inflammation. The genomics data, together with their different morphological and biochemical characteristics, revealed that these two strains represent novel Helicobacter species. We propose the following names: ‘Helicobacter burdigaliensis,’ with the type strain CNRCH 2005/566H ( =CECT 8850 =CIP 111660), and ‘Helicobacter labetoulli,’ with the type strain 48519 ( =CCUG 73475 =CIP 1111659). This study highlights that the diversity of the Helicobacteraceae family remains to be fully explored.
Collapse
Affiliation(s)
- Elvire Berthenet
- French National Reference Center for Campylobacters and Helicobacters, Bordeaux, France.,Univ. Bordeaux, INSERM, Bordeaux Research in Translational Oncology, BaRITOn, U1053, Bordeaux, France
| | - Lucie Bénéjat
- French National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
| | - Armelle Ménard
- Univ. Bordeaux, INSERM, Bordeaux Research in Translational Oncology, BaRITOn, U1053, Bordeaux, France
| | - Christine Varon
- Univ. Bordeaux, INSERM, Bordeaux Research in Translational Oncology, BaRITOn, U1053, Bordeaux, France
| | - Sabrina Lacomme
- CNRS, INSERM, Bordeaux Imaging Center UMS 3420 - US4, Pôle d'Imagerie Électronique, Bordeaux, France
| | - Etienne Gontier
- CNRS, INSERM, Bordeaux Imaging Center UMS 3420 - US4, Pôle d'Imagerie Électronique, Bordeaux, France
| | - Josette Raymond
- Bacteriology, Cochin Hospital, Institut Pasteur, University of Paris-Descartes, Paris, France
| | - Ouahiba Boussaba
- French National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
| | | | - Astrid Ducournau
- French National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
| | - Alice Buissonnière
- French National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
| | - Alban Giese
- Univ. Bordeaux, INSERM, Bordeaux Research in Translational Oncology, BaRITOn, U1053, Bordeaux, France
| | - Francis Megraud
- French National Reference Center for Campylobacters and Helicobacters, Bordeaux, France.,Univ. Bordeaux, INSERM, Bordeaux Research in Translational Oncology, BaRITOn, U1053, Bordeaux, France
| | - Emilie Bessède
- French National Reference Center for Campylobacters and Helicobacters, Bordeaux, France.,Univ. Bordeaux, INSERM, Bordeaux Research in Translational Oncology, BaRITOn, U1053, Bordeaux, France
| | - Quentin Jehanne
- French National Reference Center for Campylobacters and Helicobacters, Bordeaux, France.,Univ. Bordeaux, INSERM, Bordeaux Research in Translational Oncology, BaRITOn, U1053, Bordeaux, France
| | - Philippe Lehours
- French National Reference Center for Campylobacters and Helicobacters, Bordeaux, France.,Univ. Bordeaux, INSERM, Bordeaux Research in Translational Oncology, BaRITOn, U1053, Bordeaux, France
| |
Collapse
|
8
|
Takemura LS, Marcasso RA, Lorenzetti E, Alfieri AA, Bracarense APL. Helicobacter infection in the hepatobiliary system and hepatic lesions: a possible association in dogs. Braz J Microbiol 2018; 50:297-305. [PMID: 30637645 DOI: 10.1007/s42770-018-0003-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
Helicobacter infection has been associated with hepatobiliary diseases in humans and animals. The aims of this study were to identify Helicobacter species in the hepatobiliary tract of dogs and to elucidate the possible association of these bacteria in liver diseases. Twenty-seven gastric and hepatobiliary samples were collected from 33 dogs with hepatic lesions and 17 dogs with no liver histological changes. Warthin-Starry staining, immunohistochemical assay, and PCR were performed to detect the presence of Helicobacter. Helicobacter genus was detected in 21.2% of the samples with hepatic lesions. The main lesion was chronic hepatitis. Immunohistochemistry revealed infection in liver (1/5) and gallbladder (1/3) 32 samples. The sequence analysis of seven amplicons of the 16S rRNA gene of Helicobacter genus from hepatobiliary samples showed 97.8 to 100% of nucleotide identity with gastric helicobacter. One amplicon of the ureA and ureB gene of Helicobacter genus from the stomach showed 89.1 to 90.7% nucleotide identity with H. heilmannii. The presence of Helicobacter genus in liver samples showing hepatic lesions suggests the involvement of these bacteria in the etiology of hepatobiliary disease in dogs. DNA sequences were similar to gastric Helicobacter species, reinforcing the hypothesis of bacterial translocation from the stomach to liver by the biliary pathway.
Collapse
Affiliation(s)
- L S Takemura
- Laboratory of Animal Pathology, School of Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, Londrina, Parana, 86057-970, Brazil
| | - R A Marcasso
- Laboratory of Animal Pathology, School of Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, Londrina, Parana, 86057-970, Brazil
| | - E Lorenzetti
- Laboratory of Animal Virology, School of Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, Londrina, Parana, 86057-970, Brazil
| | - A A Alfieri
- Laboratory of Animal Virology, School of Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, Londrina, Parana, 86057-970, Brazil
| | - A P L Bracarense
- Laboratory of Animal Pathology, School of Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, Londrina, Parana, 86057-970, Brazil.
| |
Collapse
|
9
|
Burkitt MD, Duckworth CA, Williams JM, Pritchard DM. Helicobacter pylori-induced gastric pathology: insights from in vivo and ex vivo models. Dis Model Mech 2017; 10:89-104. [PMID: 28151409 PMCID: PMC5312008 DOI: 10.1242/dmm.027649] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastric colonization with Helicobacter pylori induces diverse human pathological conditions, including superficial gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric adenocarcinoma and its precursors. The treatment of these conditions often relies on the eradication of H. pylori, an intervention that is increasingly difficult to achieve and that does not prevent disease progression in some contexts. There is, therefore, a pressing need to develop new experimental models of H. pylori-associated gastric pathology to support novel drug development in this field. Here, we review the current status of in vivo and ex vivo models of gastric H. pylori colonization, and of Helicobacter-induced gastric pathology, focusing on models of gastric pathology induced by H. pylori, Helicobacter felis and Helicobacter suis in rodents and large animals. We also discuss the more recent development of gastric organoid cultures from murine and human gastric tissue, as well as from human pluripotent stem cells, and the outcomes of H. pylori infection in these systems.
Collapse
Affiliation(s)
- Michael D Burkitt
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Carrie A Duckworth
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Jonathan M Williams
- Pathology and Pathogen Biology, Royal Veterinary College, North Mymms AL9 7TA, UK
| | - D Mark Pritchard
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
10
|
On SLW, Miller WG, Houf K, Fox JG, Vandamme P. Minimal standards for describing new species belonging to the families Campylobacteraceae and Helicobacteraceae: Campylobacter, Arcobacter, Helicobacter and Wolinella spp. Int J Syst Evol Microbiol 2017; 67:5296-5311. [PMID: 29034857 PMCID: PMC5845751 DOI: 10.1099/ijsem.0.002255] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 01/25/2023] Open
Abstract
Ongoing changes in taxonomic methods, and in the rapid development of the taxonomic structure of species assigned to the Epsilonproteobacteria have lead the International Committee of Systematic Bacteriology Subcommittee on the Taxonomy of Campylobacter and Related Bacteria to discuss significant updates to previous minimal standards for describing new species of Campylobacteraceae and Helicobacteraceae. This paper is the result of these discussions and proposes minimum requirements for the description of new species belonging to the families Campylobacteraceae and Helicobacteraceae, thus including species in Campylobacter, Arcobacter, Helicobacter, and Wolinella. The core underlying principle remains the use of appropriate phenotypic and genotypic methods to characterise strains sufficiently so as to effectively and unambiguously determine their taxonomic position in these families, and provide adequate means by which the new taxon can be distinguished from extant species and subspecies. This polyphasic taxonomic approach demands the use of appropriate reference data for comparison to ensure the novelty of proposed new taxa, and the recommended study of at least five strains to enable species diversity to be assessed. Methodological approaches for phenotypic and genotypic (including whole-genome sequence comparisons) characterisation are recommended.
Collapse
Affiliation(s)
- Stephen L. W. On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85084, Lincoln, New Zealand
| | - William G. Miller
- U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Agricultural Research Service, Albany, CA, USA
| | - Kurt Houf
- Department of Veterinary Public Health, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - James G. Fox
- Department of Comparative Medicine, Massachusetts Institute of Technology, 77, Massachusetts Avenue, Cambiridge, MA 02139, USA
| | - Peter Vandamme
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
11
|
García-Alonso G, Monroy-Noyola A, Contreras-Arellano A, Mariscal-Durand JF, Gálvez-Molina Y, Vázquez-Velázquez A, García-Jimenez S, Nuñez P, Cardoso-Taketa A, Villarreal ML. Preclinical evaluation of anti-Helicobacter spp. activity of Hippocratea celastroides Kunth and its acute and sub-acute toxicity. Altern Ther Health Med 2016; 16:445. [PMID: 27825331 PMCID: PMC5101718 DOI: 10.1186/s12906-016-1412-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
Abstract
Background Hippocratea celastroides Kunth, commonly known as “cancerina”, is used in Mexican Traditional Medicine for the treatment of gastric and intestinal infections, systemic and skin inflammation, injuries and gastritis. The aim of this research was to assess the anti-Helicobacter pylori activities of hydro-ethanolic root-bark extracts from Hippocratea celastroides Kunth in naturally infected dogs, after testing their acute and subacute toxicities in mice. Methods To determine in vivo acute toxicity, a hydro-ethanolic extract was obtained and administered orally in female and male Balb-C mice, at doses ranging from 2000 to 5000 mg/kg. For the subacute study, a hydro-ethanolic extract was given to male and female Balb-C mice at doses ranging from 200 to 2000 mg/kg body weight. The animals were observed daily over a period of 42 days for signs of toxicity. In the pre-clinical anti-Helicobacter spp. assay, 60 dogs were included. Eighteen and 19 dogs for the experimental and control groups respectively, concluded the study. The experimental treatment consisted of H. celastroides hydro-ethanolic extract and the control treatment of amoxicillin-clarithromycin-omeprazole. Results Oral LD50 (lethal dose 50) values for hydro-ethanolic extract were indeterminable at the highest tested doses. Under the subacute administration, neither mortality nor any sign of toxicity were observed when the hydro-ethanolic extract was administered. There were no significant alterations in biochemical parameters. The prevalence of Helicobacter spp. infection in dogs was 97.1 % for the experimental group and 100 % for the control group. Effectiveness was of 33.3 and 55 % in the experimental and control group respectively. The oral administration of H. celastroides was well-tolerated and safe. Conclusion The root-bark of H. celastroides produced no signs of toxicity, and manifested pharmacological activity that indicated the possibility of an alternative treatment for H. pylori infection. Effectiveness is still low so it is necessary to continue research. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1412-6) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Amorim I, Taulescu MA, Day MJ, Catoi C, Reis CA, Carneiro F, Gärtner F. Canine Gastric Pathology: A Review. J Comp Pathol 2016; 154:9-37. [PMID: 26774560 DOI: 10.1016/j.jcpa.2015.10.181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
Abstract
Gastric disorders are common in dogs and are a major reason for veterinary consultation. In human medicine, the classification of gastric diseases based on histological features, genotypes and molecular phenotypes helps to better understand the characteristics of each subtype, and to improve early diagnosis, prevention and treatment. Canine gastric lesions often show strong histological similarities to their human counterparts. However, such conditions in the canine stomach are poorly studied and their cellular and molecular features are largely unknown. This article reviews the histopathological classification of inflammatory and neoplastic lesions of the canine stomach and provides an update on the application of molecular techniques within the field of canine gastric pathology. The canine disorders are compared with current knowledge of the equivalent human diseases.
Collapse
Affiliation(s)
- I Amorim
- Instituto de Investigação e Inovação em Saúde, Universidadedo Porto, Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Rua Júlio Amaral de Carvalho nr. 45, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira nr. 228, Porto, Portugal
| | - M A Taulescu
- Pathology Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
| | - M J Day
- School of Veterinary Sciences, University of Bristol, Langford, Bristol, UK
| | - C Catoi
- Pathology Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - C A Reis
- Instituto de Investigação e Inovação em Saúde, Universidadedo Porto, Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Rua Júlio Amaral de Carvalho nr. 45, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira nr. 228, Porto, Portugal; Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - F Carneiro
- Instituto de Investigação e Inovação em Saúde, Universidadedo Porto, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira nr. 228, Porto, Portugal; Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal; Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
| | - F Gärtner
- Instituto de Investigação e Inovação em Saúde, Universidadedo Porto, Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Rua Júlio Amaral de Carvalho nr. 45, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira nr. 228, Porto, Portugal
| |
Collapse
|
13
|
Divergence between the Highly Virulent Zoonotic Pathogen Helicobacter heilmannii and Its Closest Relative, the Low-Virulence "Helicobacter ailurogastricus" sp. nov. Infect Immun 2015; 84:293-306. [PMID: 26527212 DOI: 10.1128/iai.01300-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
Abstract
Helicobacter heilmannii naturally colonizes the stomachs of dogs and cats and has been associated with gastric disorders in humans. Nine feline Helicobacter strains, classified as H. heilmannii based on ureAB and 16S rRNA gene sequences, were divided into a highly virulent and a low-virulence group. The genomes of these strains were sequenced to investigate their phylogenetic relationships, to define their gene content and diversity, and to determine if the differences in pathogenicity were associated with the presence or absence of potential virulence genes. The capacities of these helicobacters to bind to the gastric mucosa were investigated as well. Our analyses revealed that the low-virulence strains do not belong to the species H. heilmannii but to a novel, closely related species for which we propose the name Helicobacter ailurogastricus. Several homologs of H. pylori virulence factors, such as IceA1, HrgA, and jhp0562-like glycosyltransferase, are present in H. heilmannii but absent in H. ailurogastricus. Both species contain a VacA-like autotransporter, for which the passenger domain is remarkably larger in H. ailurogastricus than in H. heilmannii. In addition, H. ailurogastricus shows clear differences in binding to the gastric mucosa compared to H. heilmannii. These findings highlight the low-virulence character of this novel Helicobacter species.
Collapse
|
14
|
Amorim I, Smet A, Alves O, Teixeira S, Saraiva AL, Taulescu M, Reis C, Haesebrouck F, Gärtner F. Presence and significance of Helicobacter spp. in the gastric mucosa of Portuguese dogs. Gut Pathog 2015; 7:12. [PMID: 25897328 PMCID: PMC4404211 DOI: 10.1186/s13099-015-0057-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/19/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Non-Helicobacter pylori Helicobacters (NHPH) are also able to cause disease in humans. Dogs are a natural reservoir for many of these species. Close and intense human contact with animals has been identified as a risk factor and therefore, an important zoonotic significance has been attributed to NHPH. METHODS To determine the prevalence of Helicobacter species and the gastric histopathological changes associated, gastric mucosa samples of 69 dogs were evaluated. RESULTS Only one dog presented a normal histopathological mucosa with absence of spiral-shaped organisms. A normal gastric mucosa and the presence of spiral-shaped bacteria was observed in two dogs. All remaining animals presented histopathological changes representative of gastritis. Helicobacter species were detected in 60 dogs (87.0%) by at least one detection method. Histological, histochemical and immunohistochemical evaluations revealed that Helicobacter spp. were present in 45 (65.2%), 52 (75.4%) and 57 (82.6%) dogs, respectively. Spiral-shaped bacteria were detected by qPCR analysis in 33 (47.8%) dogs. H. heilmannii-like organisms were identified in 22 animals (66.7%) and predominantly in the antral gastric region. H. salomonis was the second most prevalent species (51.5%) although it was mainly found in association with other Helicobacter spp. and in the body gastric region. H. bizzozeronii and H. felis were less frequently detected. CONCLUSIONS It was concluded that, despite the high incidence and worldwide distribution of gastric NHPH in dogs, the presence of specific Helicobacter species may vary between geographic regions. NHPH infections were significantly accompanied by mild to moderate intraepithelial lymphocyte infiltration and mild to moderate gastric epithelial injury, but a clear relationship between gastritis and Helicobacter infection could not be established.
Collapse
Affiliation(s)
- Irina Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira nr.228, 4050-313 Porto, Portugal
| | - Annemieke Smet
- Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820 Belgium
| | - Odete Alves
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira nr.228, 4050-313 Porto, Portugal
| | - Silvia Teixeira
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira nr.228, 4050-313 Porto, Portugal
| | - Ana Laura Saraiva
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira nr.228, 4050-313 Porto, Portugal ; CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Marian Taulescu
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Celso Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira nr.228, 4050-313 Porto, Portugal ; Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Freddy Haesebrouck
- Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820 Belgium
| | - Fátima Gärtner
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira nr.228, 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Hu S, Jin D, Lu S, Liu S, Zhang J, Wang Y, Bai X, Xiong Y, Huang Y, Xu H, Wang Y, Du X, Ye C, Hänninen ML, Xu J. Helicobacter himalayensis sp. nov. isolated from gastric mucosa of Marmota himalayana. Int J Syst Evol Microbiol 2015; 65:1719-1725. [PMID: 25736414 DOI: 10.1099/ijs.0.000163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A Gram-stain-negative, microaerophilic strain, 80(YS1)T, with a spiral-shaped morphology and 1-2 sheathed flagella at each end of the cells was isolated from the gastric mucosa of Marmota himalayana, the animal reservoir of Yersinia pestis in China, on the Qinghai-Tibet Plateau. The strain grew at 30, 35 and 42 °C, but not at 25 °C. Growth was in the form of a thinly spreading film on brain heart infusion agar containing 8 % sheep blood under microaerobic conditions. The strain did not hydrolyse urea or hippurate, and did not grow on media containing 1 % glycine. It reduced nitrate to nitrite, and was catalase- and alkaline-phosphatase-positive, susceptible to nalidixic acid and resistant to cefalotin. It was positive for genus-specific PCR for the genus Helicobacter, but could not be classified to any recognized species according biochemical tests results. Therefore, a phylogenetic study based on 16S rRNA, 23S rRNA, 60 kDa heat-shock protein (hsp60) and gyrase subunit B (gyrB) genes was conducted. The 16S rRNA gene sequence (1468 bp) analysis showed that strain 80(YS1)T was most closely related to Helicobacter marmotae (96.7 % similarity). The 23S rRNA gene sequence (2879 bp) analysis showed that the strain was most closely related to Helicobacter canis (96 % similarity). The complete gyrB gene sequence (2325 bp) analysis showed that it was related phylogenetically to Helicobacter cinaedi (79.4 % similarity) and H. marmotae (79.1 % similarity). Analysis of the partial sequence of the hsp60 gene of strain 80(YS1)T showed closest similarity to the sequences of Helicobacter equorum (82 %) and H. cinaedi (81 %), respectively. However, there was no hsp60 sequence of H. marmotae available for analysis. The data of morphological, biochemical and phylogenetic characteristics all supported that this strain represents a novel species. The name Helicobacter himalayensis sp. nov. is proposed for this novel species with the type strain 80(YS1)T ( = CGMCC 1.12864T = DSM 28742T).
Collapse
Affiliation(s)
- Shoukui Hu
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Dong Jin
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Shan Lu
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Sha Liu
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Ji Zhang
- Department of Food Hygiene and Environmental Health, Helsinki University, Finland
| | - Yiting Wang
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Xiangning Bai
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Yanwen Xiong
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Ying Huang
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Huaqing Xu
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Yi Wang
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Xiaoli Du
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Changyun Ye
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, Helsinki University, Finland
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, PR China
| |
Collapse
|
16
|
Amorim I, Freitas DP, Magalhães A, Faria F, Lopes C, Faustino AM, Smet A, Haesebrouck F, Reis CA, Gärtner F. A comparison of Helicobacter pylori and non-Helicobacter pylori Helicobacter spp. Binding to canine gastric mucosa with defined gastric glycophenotype. Helicobacter 2014; 19:249-59. [PMID: 24689986 DOI: 10.1111/hel.12125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The gastric mucosa of dogs is often colonized by non-Helicobacter pylori helicobacters (NHPH), while H. pylori is the predominant gastric Helicobacter species in humans. The colonization of the human gastric mucosa by H. pylori is highly dependent on the recognition of host glycan receptors. Our goal was to define the canine gastric mucosa glycophenotype and to evaluate the capacity of different gastric Helicobacter species to adhere to the canine gastric mucosa. MATERIALS AND METHODS The glycosylation profile in body and antral compartments of the canine gastric mucosa, with focus on the expression of histo-blood group antigens was evaluated. The in vitro binding capacity of FITC-labeled H. pylori and NHPH to the canine gastric mucosa was assessed in cases representative of the canine glycosylation pattern. RESULTS The canine gastric mucosa lacks expression of type 1 Lewis antigens and presents a broad expression of type 2 structures and A antigen, both in the surface and glandular epithelium. Regarding the canine antral mucosa, H. heilmannii s.s. presented the highest adhesion score whereas in the body region the SabA-positive H. pylori strain was the strain that adhered more. CONCLUSIONS The canine gastric mucosa showed a glycosylation profile different from the human gastric mucosa suggesting that alternative glycan receptors may be involved in Helicobacter spp. binding. Helicobacter pylori and NHPH strains differ in their ability to adhere to canine gastric mucosa. Among the NHPH, H. heilmannii s.s. presented the highest adhesion capacity in agreement with its reported colonization of the canine stomach.
Collapse
Affiliation(s)
- Irina Amorim
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira nr. 228, Porto, 4050-313, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, Porto, 4200-465, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Matsui H, Takahashi T, Murayama SY, Uchiyama I, Yamaguchi K, Shigenobu S, Matsumoto T, Kawakubo M, Horiuchi K, Ota H, Osaki T, Kamiya S, Smet A, Flahou B, Ducatelle R, Haesebrouck F, Takahashi S, Nakamura S, Nakamura M. Development of new PCR primers by comparative genomics for the detection of Helicobacter suis in gastric biopsy specimens. Helicobacter 2014; 19:260-71. [PMID: 24673878 DOI: 10.1111/hel.12127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although the infection rate of Helicobacter suis is significantly lower than that of Helicobacter pylori, the H. suis infection is associated with a high rate of gastric mucosa-associated lymphoid tissue (MALT) lymphoma. In addition, in vitro cultivation of H. suis remains difficult, and some H. suis-infected patients show negative results on the urea breath test (UBT). MATERIALS AND METHODS Female C57BL/6J mice were orally inoculated with mouse gastric mucosal homogenates containing H. suis strains TKY or SNTW101 isolated from a cynomolgus monkey or a patient suffering from nodular gastritis, respectively. The high-purity chromosomal DNA samples of H. suis strains TKY and SNTW101 were prepared from the infected mouse gastric mucosa. The SOLiD sequencing of two H. suis genomes enabled comparative genomics of 20 Helicobacter and 11 Campylobacter strains for the identification of the H. suis-specific nucleotide sequences. RESULTS Oral inoculation with mouse gastric mucosal homogenates containing H. suis strains TKY and SNTW101 induced gastric MALT lymphoma and the formation of gastric lymphoid follicles, respectively, in C57BL/6J mice. Two conserved nucleotide sequences among six H. suis strains were identified and were used to design diagnostic PCR primers for the detection of H. suis. CONCLUSIONS There was a strong association between the H. suis infection and gastric diseases in the C57BL/6 mouse model. PCR diagnosis using an H. suis-specific primer pair is a valuable method for detecting H. suis in gastric biopsy specimens.
Collapse
Affiliation(s)
- Hidenori Matsui
- Kitasato Institute for Life Sciences and Graduate School of Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Collado L, Jara R, González S. Description of Helicobacter valdiviensis sp. nov., an Epsilonproteobacteria isolated from wild bird faecal samples. Int J Syst Evol Microbiol 2014; 64:1913-1919. [DOI: 10.1099/ijs.0.057141-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two Gram-stain-negative, gently curved rod-shaped isolates (WBE14T and WBE19), recovered from wild bird faecal samples in the city of Valdivia (Southern Chile) were subjected to a polyphasic taxonomic study. Results of a genus-specific PCR indicated that these isolates belonged to the genus
Helicobacter
. This was further confirmed by a phylogenetic analyses based on the 16S rRNA, 60 kDa heat-shock protein (cpn60) and gyrase subunit B (gyrB) genes, where both strains formed a novel phylogenetic line within this genus. The 16S rRNA gene sequence similarity of strain WBE14T to the type strains of all other species of the genus
Helicobacter
examined ranged from 89.4 to 97.0 %;
Helicobacter brantae
and
Helicobacter pametensis
were the most closely related species. However, on the basis of the protein-coding genes
Helicobacter pullorum
and
Helicobacter canadensis
are the most closely related species. These data, together with their different morphological and biochemical characteristics, revealed that these strains represent a novel species, for which the name Helicobacter valdiviensis sp. nov. is proposed, with the type strain WBE14T ( = CECT 8410T = LMG 27920T).
Collapse
Affiliation(s)
- Luis Collado
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Ronald Jara
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Susana González
- Medical Technology School, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
19
|
Yadegar A, Alebouyeh M, Lawson AJ, Mirzaei T, Nazemalhosseini Mojarad E, Zali MR. Differentiation of non-pylori Helicobacter species based on PCR-restriction fragment length polymorphism of the 23S rRNA gene. World J Microbiol Biotechnol 2014; 30:1909-17. [PMID: 24493015 DOI: 10.1007/s11274-014-1615-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/27/2014] [Indexed: 01/21/2023]
Abstract
Phenotypic identification of non-pylori Helicobacter species has always been problematic and time-consuming in comparison with many other bacteria. We developed a rapid two-step identification assay based on PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of the 23S rRNA gene for differentiating between non-pylori Helicobacter species. A new genus-specific primer pair based on all available complete and partial 23S rRNA sequences of Helicobacter species was designed. In silico restriction analysis of variable regions of the 23S rRNA gene suggested SmaI and HindIII endonucleases would provide a good level of differentiation. Analysis of the obtained 23S rRNA RFLP patterns divided all Helicobacter study strains into three species groups (groups A-C) and 12 unique restriction patterns. Wolinella succinogenes also gave a unique pattern. Our proposed PCR-RFLP method was found to be as a valuable tool for routine identification of non-pylori Helicobacter species from human or animal samples.
Collapse
Affiliation(s)
- Abbas Yadegar
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
20
|
Craven M, Recordati C, Gualdi V, Pengo G, Luini M, Scanziani E, Simpson KW. Evaluation of the Helicobacteraceae in the oral cavity of dogs. Am J Vet Res 2012; 72:1476-81. [PMID: 22023125 DOI: 10.2460/ajvr.72.11.1476] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the Helicobacter spp present in the oral cavity of dogs and the relationship of those organisms with gastric Helicobacter spp to better define the potential for dog-human and dog-dog transmission. SAMPLE Saliva and dental plaque from 28 dogs and gastric biopsy specimens from a subset of 8 dogs. PROCEDURES PCR-based screening for Helicobacter spp was conducted on samples obtained from the oral cavity of 28 dogs. Comparative analysis was conducted on Helicobacteraceae 16S rDNA clone libraries from the oral cavity and stomach of a subset of 8 dogs (5 vomiting and 3 healthy) that had positive PCR results for Helicobacter spp. RESULTS Helicobacteraceae DNA was identified in the oral cavity of 24 of 28 dogs. Analysis of cloned 16S rDNA amplicons from 8 dogs revealed that Wolinella spp was the most common (8/8 dogs) and abundant (52/57 [91%] clones) member of the Helicobacteraceae family in the oral cavity. Only 2 of 8 dogs harbored Helicobacter spp in the oral cavity, and 1 of those was coinfected with Helicobacter heilmannii and Helicobacter felis in samples obtained from the stomach and saliva. Evaluation of oral cavity DNA with Wolinella-specific PCR primers yielded positive results for 16 of 20 other dogs (24/28 samples were positive for Wolinella spp). CONCLUSIONS AND CLINICAL RELEVANCE Wolinella spp rather than Helicobacter spp were the predominant Helicobacteraceae in the oral cavity of dogs. The oral cavity of dogs was apparently not a zoonotically important reservoir of Helicobacter spp that were non-Helicobacter pylori organisms.
Collapse
Affiliation(s)
- Melanie Craven
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Yamamoto K, Tanaka H, Nishitani Y, Nishiumi S, Miki I, Takenaka M, Nobutani K, Mimura T, Ben Suleiman Y, Mizuno S, Kawai M, Uchiyama I, Yoshida M, Azuma T. Helicobacter suis KB1 derived from pig gastric lymphoid follicles induces the formation of gastric lymphoid follicles in mice through the activation of B cells and CD4 positive cells. Microbes Infect 2011; 13:697-708. [DOI: 10.1016/j.micinf.2011.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/14/2011] [Accepted: 02/23/2011] [Indexed: 01/12/2023]
|
22
|
Smet A, Flahou B, D'Herde K, Vandamme P, Cleenwerck I, Ducatelle R, Pasmans F, Haesebrouck F. Helicobacter heilmannii sp. nov., isolated from feline gastric mucosa. Int J Syst Evol Microbiol 2011; 62:299-306. [PMID: 21421932 DOI: 10.1099/ijs.0.029207-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Three gram-negative, microaerophilic bacteria, strains ASB1(T), ASB2 and ASB3, with a corkscrew-like morphology isolated from the gastric mucosa of cats were studied using a polyphasic taxonomic approach. The isolates grew on biphasic culture plates under microaerobic conditions at 37 °C and exhibited urease, oxidase and catalase activities. They were also able to grow in colonies on dry agar plates. Based on 16S rRNA gene sequence analysis, ASB1(T), ASB2 and ASB3 were identified as members of the genus Helicobacter and showed 98 to 99 % sequence similarity to strains of Helicobacter felis, Helicobacter bizzozeronii, 'Candidatus Helicobacter heilmannii', Helicobacter cynogastricus, Helicobacter baculiformis and Helicobacter salomonis, six related Helicobacter species previously detected in feline or canine gastric mucosa. Sequencing of the partial hsp60 gene demonstrated that ASB1(T), ASB2 and ASB3 constitute a separate taxon among the feline and canine Helicobacter species. The urease gene sequences of ASB1(T), ASB2 and ASB3 showed approximately 91 % similarity to those of 'Candidatus Helicobacter heilmannii'. Protein profiling, the absence of alkaline phosphatase activity and several other biochemical characteristics also allowed strains ASB1(T), ASB2 and ASB3 to be differentiated from other Helicobacter species of feline or canine gastric origin. The results of this polyphasic taxonomic study show that the cultured isolates constitute a new taxon corresponding to 'Candidatus Helicobacter heilmannii', which was previously demonstrated in the stomach of humans, wild felidae, cats and dogs. The name Helicobacter heilmannii sp. nov. is proposed for these isolates; the type strain is ASB1(T) (=DSM 24751 (T) =LMG 26292(T)) [corrected].
Collapse
Affiliation(s)
- A Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - B Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - K D'Herde
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | - P Vandamme
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - I Cleenwerck
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - R Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - F Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - F Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|
23
|
Lanzoni A, Faustinelli I, Cristofori P, Luini M, Simpson KW, Scanziani E, Recordati C. Localization of Helicobacter spp. in the fundic mucosa of laboratory Beagle dogs: an ultrastructural study. Vet Res 2011; 42:42. [PMID: 21366900 PMCID: PMC3056783 DOI: 10.1186/1297-9716-42-42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/02/2011] [Indexed: 12/27/2022] Open
Abstract
In dogs Helicobacter spp. are found in all gastric regions usually localized in the surface mucus, gastric glands and parietal cells. The aim of this study was to detail the distribution of Helicobacter spp. in the fundic mucosa of asymptomatic Beagle dogs and their intracellular localization within parietal cells, in order to evaluate species-specific pathogenetic effects on gastric cells. The presence of Helicobacter spp. was investigated by immunohistochemistry, TEM, and PCR in the fundic mucosa of six Beagle dogs. Helicobacter spp. were found in all dogs examined, and H. bizzozeronii and H. felis were identified by PCR and confirmed by TEM. In the lumen of the fundic glands, co-localization was common. H. bizzozeronii was present in larger numbers than H. felis in both intraluminal and intraparietal localization. The amounts of H. bizzozeronii were similar in superficial and basal portions of the glands. H. felis was predominantly localized in the superficial portions of gastric glands but almost absent from the base. Within parietal cells, most Helicobacter organisms were intracanalicular, but intact and degenerate Helicobacter organisms were also visualized free in the cytoplasm or in secondary lysosomes. No specific degenerative lesions were found in infected parietal cells. Helicobacter organisms were also observed within macrophages in the lamina propria. In conclusion, there is a differential distribution of H. bizzozeronii and H. felis in the fundic mucosa of Beagle dogs, and their intracellular localization in parietal cells and macrophages suggests novel pathogenic scenarios for the development of immune response and maintenance of chronic gastritis in dogs.
Collapse
Affiliation(s)
- Anna Lanzoni
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Facoltà di Medicina Veterinaria, Università degli Studi di Milano, 20133 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kivistö R, Linros J, Rossi M, Rautelin H, Hänninen ML. Characterization of multiple Helicobacter bizzozeronii isolates from a Finnish patient with severe dyspeptic symptoms and chronic active gastritis. Helicobacter 2010; 15:58-66. [PMID: 20302591 DOI: 10.1111/j.1523-5378.2009.00730.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Helicobacter pylori is the primary cause of gastritis and peptic ulceration in humans. In a minority of patients with upper gastrointestinal symptoms, long tightly coiled spiral bacteria, provisionally named "Helicobacter heilmannii," are observed in gastric biopsies. These bacteria are extremely fastidious and only one previous study has succeeded in obtaining an isolate in vitro. MATERIALS AND METHODS We used two different selective media to isolate "H. heilmannii" from the gastric mucosa of a Finnish patient presenting with severe dyspeptic symptoms. The isolates were characterized by testing for urease and catalase activity, by using light and electron microscopy, and by sequencing of the partial 16S rRNA and ureAB genes. Single-enzyme amplified fragment length polymorphism (sAFLP) was used to analyze the genetic diversity among the isolates. RESULTS We obtained 15 isolates from different gastric biopsies prior and three after unsuccessful treatment of the patient. The isolates were identified as Helicobacter bizzozeronii. Eradication therapy was unsuccessful most probably due to high level of resistance to metronidazole. Persistent colonization by the same H. bizzozeronii clone was confirmed by sAFLP, however, small differences between the profiles suggested long-term colonization of the patient. CONCLUSIONS Helicobacter bizzozeronii remains the only "H. heilmannii" species isolated from human gastric mucosa although it has been an infrequent observation among "H. heilmannii"-infected patients in PCR-based screening studies. The relevance of H. bizzozeronii and other potentially zoonotic gastric Helicobacter spp. in human disease remains to be determined.
Collapse
Affiliation(s)
- Rauni Kivistö
- Department of Food and Environmental Hygiene, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
25
|
Gastric helicobacters in domestic animals and nonhuman primates and their significance for human health. Clin Microbiol Rev 2009; 22:202-23, Table of Contents. [PMID: 19366912 DOI: 10.1128/cmr.00041-08] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacters other than Helicobacter pylori have been associated with gastritis, gastric ulcers, and gastric mucosa-associated lymphoid tissue lymphoma in humans. These very fastidious microorganisms with a typical large spiral-shaped morphology were provisionally designated "H. heilmannii," but in fact they comprise at least five different Helicobacter species, all of which are known to colonize the gastric mucosa of animals. H. suis, which has been isolated from the stomachs of pigs, is the most prevalent gastric non-H. pylori Helicobacter species in humans. Other gastric non-H. pylori helicobacters colonizing the human stomach are H. felis, H. salomonis, H. bizzozeronii, and the still-uncultivable "Candidatus Helicobacter heilmannii." These microorganisms are often detected in the stomachs of dogs and cats. "Candidatus Helicobacter bovis" is highly prevalent in the abomasums of cattle but has only occasionally been detected in the stomachs of humans. There are clear indications that gastric non-H. pylori Helicobacter infections in humans originate from animals, and it is likely that transmission to humans occurs through direct contact. Little is known about the virulence factors of these microorganisms. The recent successes with in vitro isolation of non-H. pylori helicobacters from domestic animals open new perspectives for studying these microorganisms and their interactions with the host.
Collapse
|
26
|
Recordati C, Gualdi V, Craven M, Sala L, Luini M, Lanzoni A, Rishniw M, Simpson KW, Scanziani E. Spatial distribution of Helicobacter spp. in the gastrointestinal tract of dogs. Helicobacter 2009; 14:180-91. [PMID: 19702848 DOI: 10.1111/j.1523-5378.2009.00674.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND In dogs, the gastric Helicobacter spp. have been well studied, but there is little information regarding the other parts of the alimentary system. We sought to determine the spatial distribution of Helicobacter spp. in the gastrointestinal tract and the hepatobiliary system of dogs using culture-independent methods. MATERIALS AND METHODS Samples of stomach, duodenum, ileum, cecum, colon, pancreas, liver, and bile from six dogs were evaluated for Helicobacter spp. by genus, gastric, and enterohepatic Helicobacter spp. Polymerase chain reaction, 16S rRNA gene sequence analysis, immunohistochemistry, and fluorescence in situ hybridization (FISH). RESULTS In the stomach, Helicobacter spp. DNA was detected in all six dogs, with H. bizzozeronii and H. felis identified by specific polymerase chain reaction. Helicobacter organisms were localized within the surface mucus, the lumen of gastric glands, and inside parietal cells. The small intestine harbored gastric and enterohepatic Helicobacter spp. DNA/antigen in low amounts. In the cecum and colon, Helicobacter spp. DNA, with highest similarity to H. bilis/flexispira taxon 8, H. cinaedi, and H. canis, was detected in all six dogs. Helicobacter organisms were localized at the mucosal surface and within the crypts. Gastric Helicobacter spp. DNA was detected occasionally in the large intestine, but no gastric Helicobacter spp. were present in clone libraries or detected by FISH. CONCLUSIONS This study demonstrates that in addition to the stomach, the large intestine of dogs is also abundantly colonized by Helicobacter spp. Additional studies are necessary to investigate the association between enterohepatic Helicobacter spp. and presence of intestinal inflammatory or proliferative disorders in dogs.
Collapse
Affiliation(s)
- Camilla Recordati
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Sezione di Anatomia Patologica Veterinaria e Patologia Aviare, Facoltà di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Baele M, Pasmans F, Flahou B, Chiers K, Ducatelle R, Haesebrouck F. Non-Helicobacter pylori helicobacters detected in the stomach of humans comprise several naturally occurring Helicobacter species in animals. ACTA ACUST UNITED AC 2009; 55:306-13. [PMID: 19243435 DOI: 10.1111/j.1574-695x.2009.00535.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Besides the well-known gastric pathogen Helicobacter pylori, other Helicobacter species with a spiral morphology have been detected in a minority of human patients who have undergone gastroscopy. The very fastidious nature of these non-Helicobacter pylori helicobacters (NHPH) makes their in vitro isolation difficult. These organisms have been designated 'Helicobacter heilmannii'. However, sequencing of several genes detected in NHPH-infected tissues has shown that the 'H. heilmannii' group comprises at least five different Helicobacter species, all of them known to colonize the stomach of animals. Recent investigations have indicated that Helicobacter suis is the most prevalent NHPH species in human. This species has only recently been isolated in vitro from porcine stomach mucosa. Other NHPH that colonize the human stomach are Helicobacter felis, Helicobacter bizzozeronii, Helicobacter salomonis and 'Candidatus Helicobacter heilmannii'. In numerous case reports of human gastric NHPH infections, no substantial information is available about the species status of the infecting strain, making it difficult to link the species with certain pathologies. This review aims to clarify the complex nomenclature of NHPH species associated with human gastric disease and their possible animal origin. It is proposed to use the term 'gastric NHPH' to designate gastric spirals that are morphologically different from H. pylori when no identification is available at the species level. Species designations should be reserved for those situations in which the species is defined.
Collapse
Affiliation(s)
- Margo Baele
- Department of Pathology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
28
|
Flahou B, Hellemans A, Meyns T, Duchateau L, Chiers K, Baele M, Pasmans F, Haesebrouck F, Ducatelle R. Protective immunization with homologous and heterologous antigens against Helicobacter suis challenge in a mouse model. Vaccine 2009; 27:1416-21. [PMID: 19136039 DOI: 10.1016/j.vaccine.2008.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/10/2008] [Accepted: 12/20/2008] [Indexed: 12/31/2022]
Abstract
Helicobacter (H.) suis colonizes the stomach of more than 60% of slaughter pigs and is also of zoonotic importance. Recently, this bacterium was isolated in vitro, enabling the use of pure cultures for research purposes. In this study, mice were immunized intranasally or subcutaneously with whole bacterial cell lysate of H. suis or the closely related species H. bizzozeronii and H. cynogastricus, and subsequently challenged with H. suis. Control groups consisted of non-immunized and non-challenged mice (negative control group), as well as of sham-immunized mice that were inoculated with H. suis (positive control group). Urease tests on stomach tissue samples at 7 weeks after challenge infection were negative in all negative control mice, all intranasally immunized mice except one, and in all and 3 out of 5 animals of the H. cynogastricus and H. suis subcutaneously immunized groups, respectively. H. suis DNA was detected by PCR in the stomach of all positive control animals and all subcutaneously immunized/challenged animals. All negative control animals and some intranasally immunized/challenged mice were PCR-negative. In conclusion, immunization using antigens derived from the same or closely related bacterial species suppressed gastric colonization with H. suis, but complete protection was only achieved in a minority of animals following intranasal immunization.
Collapse
Affiliation(s)
- Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Baele M, Decostere A, Vandamme P, Ceelen L, Hellemans A, Mast J, Chiers K, Ducatelle R, Haesebrouck F. Isolation and characterization of Helicobacter suis sp. nov. from pig stomachs. Int J Syst Evol Microbiol 2008; 58:1350-8. [PMID: 18523177 DOI: 10.1099/ijs.0.65133-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A new cultivation method was successfully applied for the in vitro isolation of a hitherto uncultured spiral Helicobacter species associated with ulceration of the non-glandular stomach and gastritis in pigs and formerly described as 'Candidatus Helicobacter suis'. Three isolates, HS1(T), HS2 and HS3, were subcultured from the stomach mucosa of three pigs after slaughter and were analysed using a polyphasic taxonomic approach. The novel isolates grew on biphasic culture plates or very moist agar bases in microaerobic conditions and exhibited urease, oxidase and catalase activities. Sequencing of the 16S rRNA gene, the 23S rRNA gene, the partial hsp60 gene and partial ureAB genes confirmed that the strains present in the gastric mucosa of pigs constituted a separate taxon, corresponding to 'Helicobacter heilmannii' type 1 strains as detected in the gastric mucosa of humans and other primates. For all genes sequenced, the highest sequence similarities were obtained with Helicobacter felis, Helicobacter bizzozeronii and Helicobacter salomonis, Helicobacter species isolated from the gastric mucosa of dogs and cats, which have also been detected in the human gastric mucosa and which are commonly referred to as 'Helicobacter heilmannii' type 2. SDS-PAGE of whole-cell proteins of strains HS1(T), HS2 and HS3 differentiated them from other Helicobacter species of gastric origin. The results of the polyphasic taxonomic analysis confirmed that the novel isolates constitute a novel taxon corresponding to 'Helicobacter heilmannii' type 1 strains from humans and to 'Candidatus H. suis' from pigs. The name Helicobacter suis sp. nov. is proposed for the novel isolates with the type strain HS1(T) (=LMG 23995(T)=DSM 19735(T)).
Collapse
Affiliation(s)
- M Baele
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Immunogenicity and pathogenicity of Helicobacter infections of veterinary animals. Vet Immunol Immunopathol 2008; 122:191-203. [PMID: 18243338 DOI: 10.1016/j.vetimm.2007.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 11/29/2007] [Accepted: 12/21/2007] [Indexed: 02/08/2023]
Abstract
The initial discovery that the human stomach is commonly infected by the bacterium Helicobacter pylori subsequently resulted in the identification of a whole new family of pathogenic bacteria. In less than 25 years, the Helicobacter genus has grown from obscurity to number at least 38 different species with many more awaiting classifications. These bacteria, many of which are either direct or opportunistic pathogens, are present in virtually every mammalian species examined, and have also now been identified in a number of birds. The pathogenesis associated with these infections is predominantly the result of a chronic inflammatory response mounted by the host against the infection. This is typically a Th1-driven response which can result in a range of conditions from hepatitis, through gallstones to cancer. In some cases the inflammatory response to these infections is normally well managed by the host and disease only results when there is a breakdown or misbalance in the immunoregulatory process, which for example can result in inflammatory bowel disease in experimental models. Understanding the disease association and pathogenic mechanisms of the different Helicobacter infections is clearly of potential significance not only from an animal welfare point of view but also from the growing realisation of how commonly transmission of Helicobacter occurs between different mammals, including pathogenic zoonotic infections of humans.
Collapse
|
31
|
Bohr URM, Annibale B, Franceschi F, Roccarina D, Gasbarrini A. Extragastric manifestations of Helicobacter pylori infection -- other Helicobacters. Helicobacter 2007; 12 Suppl 1:45-53. [PMID: 17727460 DOI: 10.1111/j.1523-5378.2007.00533.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Today there is evidence that Helicobacter pylori has a critical role in different extragastric diseases. The discovery of a number of other novel Helicobacter species has stimulated the research in different extragastric diseases, in which an infectious hypothesis is plausible. Enterohepatic Helicobacter species have been hypothesized to play a role in different disorders, including hepatocellular carcinoma, gallstones formation and cholangiocellular carcinoma, as well as enteric diseases and inflammatory bowel diseases. Concerning the extragastric manifestations of H. pylori infection, idiopathic thrombocytopenic purpura, and sideropenic anemia represent, based on the current data, the diseases in which the pathogenic link appears to be strongest. There is also an increasing evidence for a possible association of H. pylori with cardiovascular disease.
Collapse
Affiliation(s)
- Ulrich R M Bohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
32
|
Moyaert H, Decostere A, Vandamme P, Debruyne L, Mast J, Baele M, Ceelen L, Ducatelle R, Haesebrouck F. Helicobacter equorum sp. nov., a urease-negative Helicobacter species isolated from horse faeces. Int J Syst Evol Microbiol 2007; 57:213-218. [PMID: 17267952 DOI: 10.1099/ijs.0.64279-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-negative, curved, motile bacteria (strains EqF1T and EqF2) were isolated from faecal samples from two clinically healthy horses. Both strains possessed a single, monopolar, sheathed flagellum and were urease-negative. The novel strains grew at 37 °C under microaerobic conditions and were positive for oxidase, catalase and alkaline phosphatase activities. The isolates reduced nitrate to nitrite, but γ-glutamyl transpeptidase activity was not detected. The novel isolates did not grow at 42 °C or on media containing 1 % glycine. They were resistant to cephalotin and nalidixic acid and susceptible to metronidazole. Analysis of the 16S and 23S rRNA gene sequences of the two novel strains identified them as representing a single species within the genus Helicobacter. In terms of 16S rRNA gene sequence similarity, Helicobacter pullorum and Helicobacter canadensis were the most closely related species (98 % similarity). 23S rRNA gene sequence analysis also classified strains EqF1T and EqF2 within the enterohepatic division of the genus Helicobacter, but only 94 % similarity was detected with H. pullorum and H. canadensis, which are helicobacters with unsheathed flagella. The most closely related species in terms of 23S rRNA gene sequence similarity was Helicobacter canis (95 %). Numerical analysis of whole-cell protein extracts by SDS-PAGE was performed and the novel isolates were clearly differentiated from H. pullorum, H. canadensis, H. canis and other species of the genus Helicobacter. This finding was also confirmed by sequence analysis of the hsp60 gene. On the basis of these genetic, biochemical and protein data, the isolates are classified as representing a novel species, for which the name Helicobacter equorum sp. nov. is proposed (type strain EqF1T=LMG 23362T=CCUG 52199T).
Collapse
MESH Headings
- Aerobiosis
- Animals
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/analysis
- Bacterial Proteins/isolation & purification
- Chaperonin 60/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Electrophoresis, Polyacrylamide Gel
- Enzymes/analysis
- Feces/microbiology
- Flagella/physiology
- Genes, rRNA/genetics
- Helicobacter/classification
- Helicobacter/cytology
- Helicobacter/isolation & purification
- Helicobacter/physiology
- Horses/microbiology
- Molecular Sequence Data
- Movement
- Nitrates/metabolism
- Nitrites/metabolism
- Phylogeny
- Proteome/analysis
- Proteome/isolation & purification
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Temperature
Collapse
Affiliation(s)
- H Moyaert
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - A Decostere
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - P Vandamme
- Department of Biochemistry, Physiology and Microbiology, Faculty of Sciences, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - L Debruyne
- Department of Biochemistry, Physiology and Microbiology, Faculty of Sciences, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - J Mast
- CODA - CERVA - VAR, Groeselenberg 99, B-1180 Brussels, Belgium
| | - M Baele
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - L Ceelen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - R Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - F Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|
33
|
De Bock M, D'Herde K, Duchateau L, Hellemans A, Decostere A, Haesebrouck F, Ducatelle R. The effect of Helicobacter felis and Helicobacter bizzozeronii on the gastric mucosa in Mongolian gerbils: a sequential pathological study. J Comp Pathol 2006; 135:226-36. [PMID: 17069831 DOI: 10.1016/j.jcpa.2006.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 08/17/2006] [Indexed: 12/23/2022]
Abstract
In contrast to Helicobacter(H.) pylori, little is known about the pathogenic mechanisms of gastric non-H. pylori Helicobacter species. Mongolian gerbils were inoculated intragastrically with H. felis or H. bizzozeronii and killed at different timepoints post-inoculation (p.i.), stomach tissue being taken for light and transmission electron microscopy (TEM) and polymerase chain reaction (PCR) analysis. Parietal cells (PCs), apoptosis, cell proliferation and nuclear factor-kappaB (NF-kappaB) activation were "visualized" immunohistochemically. Inflammation consisted of neutrophilic granulocytes, mainly in the antrum, and lymphocytic infiltrates around the limiting ridge and throughout the stomach mucosa and submucosa. From day 11 p.i. onwards, H. felis-inoculated animals showed moderate to severe loss of PCs extending from the limiting ridge into the fundus. Apoptotic cells, spiral bacteria, cell proliferation, and NF-kappaB activation were detected at the transition zone between affected and normal PCs. TEM revealed interaction of H. felis flagella with PCs and chief cells. Moreover, H. felis was seen in proximity to, and inside, necrotic cells. At 10 weeks p.i., some H. felis-infected gerbils showed complete loss of fundic glands, and mucous metaplasia of the epithelium. H. bizzozeronii, which made no flagellar contact with epithelial cells, was associated with only mild PC loss. The mechanism by which H. felis induces PC necrosis and apoptosis remains unclear. The observed flagellar contact and NF-kappaB activation may play an important role in H. felis-associated inflammation.
Collapse
Affiliation(s)
- M De Bock
- Departments of Pathology, Bacteriology and Avian Diseases, Faculty of Medicine, Ghent University, Belgium.
| | | | | | | | | | | | | |
Collapse
|