1
|
Bidzhieva SK, Tourova TP, Kadnikov VV, Samigullina SR, Sokolova DS, Poltaraus AB, Avtukh AN, Tereshina VM, Beletsky AV, Mardanov AV, Nazina TN. Phenotypic and Genomic Characterization of a Sulfate-Reducing Bacterium Pseudodesulfovibrio methanolicus sp. nov. Isolated from a Petroleum Reservoir in Russia. BIOLOGY 2024; 13:800. [PMID: 39452109 PMCID: PMC11505543 DOI: 10.3390/biology13100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
The search for the microorganisms responsible for sulfide formation and corrosion of steel equipment in the oil fields of Tatarstan (Russia) resulted in the isolation of a new halotolerant strictly anaerobic sulfate-reducing bacterium, strain 5S69T. The cells were motile curved Gram-negative rods. Optimal growth was observed in the presence of 2.0-4.0% (w/v) NaCl, at pH 6.5, and at 23-28 °C under sulfate-reducing conditions. The isolate was capable of chemoorganotrophic growth with sulfate and other sulfoxides as electron acceptors, resulting in sulfide formation; and of pyruvate fermentation resulting in formation of H2 and acetate. The strain utilized lactate, pyruvate, ethanol, methanol, fumarate, and fructose, as well as H2/CO2/acetate for sulfate reduction. The genome size of the type strain 5S69T was 4.16 Mb with a G + C content of 63.0 mol%. On the basis of unique physiological properties and results of the 16S rRNA gene-based phylogenetic analysis, phylogenomic analysis of the 120 conserved single copy proteins and genomic indexes (ANI, AAI, and dDDH), assigning the type strain 5S69T ((VKM B-3653T = KCTC 25499T) to a new species within the genus Pseudodesulfovibrio, is suggested, with the proposed name Pseudodesulfovibrio methanolicus sp. nov. Genome analysis of the new isolate showed several genes involved in sulfate reduction and its sulfide-producing potential in oil fields with high saline formation water.
Collapse
Affiliation(s)
- Salimat K. Bidzhieva
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | - Tatyana P. Tourova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (V.V.K.); (A.V.B.); (A.V.M.)
| | - Salima R. Samigullina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | - Diyana S. Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | - Andrey B. Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Alexander N. Avtukh
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia;
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (V.V.K.); (A.V.B.); (A.V.M.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (V.V.K.); (A.V.B.); (A.V.M.)
| | - Tamara N. Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| |
Collapse
|
2
|
Cao J, Shao B, Lin J, Liu J, Cui Y, Wang J, Fang J. Genomic and physiological properties of Anoxybacterium hadale gen. nov. sp. nov. reveal the important role of dissolved organic sulfur in microbial metabolism in hadal ecosystems. Front Microbiol 2024; 15:1423245. [PMID: 39220043 PMCID: PMC11362086 DOI: 10.3389/fmicb.2024.1423245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Hadal zones account for the deepest 45% of the oceanic depth range and play an important role in ocean biogeochemical cycles. As the least-explored aquatic habitat on earth, hadal ecosystems contain a vast diversity of so far uncultured microorganisms that cannot be grown on conventional laboratory culture media. Therefore, it has been difficult to gain a true understanding of the detailed metabolic characteristics and ecological functions of those difficult-to-culture microorganisms in hadal environments. In this study, a novel anaerobic bacterial strain, MT110T, was isolated from a hadal sediment-water interface sample of the Mariana Trench at 10,890 m. The level of 16S rRNA gene sequence similarity and percentage of conserved proteins between strain MT110T and the closest relatives, Anaerovorax odorimutans DSM 5092T (94.9 and 46.6%) and Aminipila butyrica DSM 103574T (94.4 and 46.7%), indicated that strain MT110T exhibits sufficient molecular differences for genus-level delineation. Phylogenetic analyses based on both 16S rRNA gene and genome sequences showed that strain MT110T formed an independent monophyletic branch within the family Anaerovoracaceae. The combined evidence showed that strain MT110T represents a novel species of a novel genus, proposed as Anoxybacterium hadale gen. nov. sp. nov. (type strain MT110T = KCTC 15922T = MCCC 1K04061T), which represents a previously uncultured lineage of the class Clostridia. Physiologically, no tested organic matter could be used as sole carbon source by strain MT110T. Genomic analysis showed that MT110T had the potential capacity of utilizing various carbon sources, but the pathways of sulfur reduction were largely incomplete. Our experiments further revealed that cysteine is one of the essential nutrients for the survival of strain MT110T, and cannot be replaced by sulfite, leucine, or taurine. This result suggests that organic sulfur compounds might play an important role in metabolism and growth of the family Anaerovoracaceae and could be one of the key factors affecting the cultivation of the uncultured microbes. Our study brings a new perspective to the role of dissolved organic sulfur in hadal ecosystems and also provides valuable information for optimizing the conditions of isolating related microbial taxa from the hadal environment.
Collapse
Affiliation(s)
- Junwei Cao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Baoying Shao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jing Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jie Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yiran Cui
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiahua Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Wang C, Zheng R, Sun C. Multi-omics analyses provide insights into the sulfur metabolism of a novel deep-sea sulfate-reducing bacterium. iScience 2024; 27:110095. [PMID: 38947506 PMCID: PMC11214288 DOI: 10.1016/j.isci.2024.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Sulfate-reducing bacteria (SRB) are ubiquitously distributed across various biospheres and play key roles in global sulfur and carbon cycles. However, few deep-sea SRB have been cultivated and studied in situ, limiting our understanding of the true metabolism of deep-sea SRB. Here, we firstly clarified the high abundance of SRB in deep-sea sediments and successfully isolated a sulfate-reducing bacterium (zrk46) from a cold seep sediment. Our genomic, physiological, and phylogenetic analyses indicate that strain zrk46 is a novel species, which we propose as Pseudodesulfovibrio serpens. We found that supplementation with sulfate, thiosulfate, or sulfite promoted strain zrk46 growth by facilitating energy production through the dissimilatory sulfate reduction, which was coupled to the oxidation of organic matter in both laboratory and deep-sea conditions. Moreover, in situ metatranscriptomic results confirmed that other deep-sea SRB also performed the dissimilatory sulfate reduction, strongly suggesting that SRB may play undocumented roles in deep-sea sulfur cycling.
Collapse
Affiliation(s)
- Chong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Slobodkina G, Merkel A, Novikov A, Slobodkin A. Pseudodesulfovibrio pelocollis sp. nov. a Sulfate-Reducing Bacterium Isolated from a Terrestrial Mud Volcano. Curr Microbiol 2024; 81:120. [PMID: 38528188 DOI: 10.1007/s00284-024-03644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/17/2024] [Indexed: 03/27/2024]
Abstract
Terrestrial mud volcanoes (TMVs), surface expressions of a deep-subterranean sedimentary volcanism, are widespread throughout the world. The methane and sulfur cycles are recognized as the most important biogeochemical cycles in these environments. Only few anaerobic bacterial strains were recovered from TMVs. We have isolated a novel sulfate-reducing bacterium (strain SB368T) from TMV located at Taman Peninsula, Russia. Optimum growth of strain SB368T was observed at 30 °C, pH 8.0 and 1% NaCl. Strain SB368T utilized lactate, pyruvate and fumarate in the presence of sulfate, sulfite or thiosulfate. Growth with molecular hydrogen was observed only in the presence of acetate. Fermentative growth occurred on pyruvate. Phylogenetic analysis revealed that strain SB368T belongs to the genus Pseudodesulfovibrio but is distinct from all described species. Based on its genomic and phenotypic properties, a new species, Pseudodesulfovibrio pelocollis sp. nov. is proposed with strain SB368T (= DSM 111087 T = VKM B-3585 T) as a type strain.
Collapse
Affiliation(s)
- Galina Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071, Moscow, Russia.
| | - Alexander Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071, Moscow, Russia
| | - Andrei Novikov
- Gubkin University, Leninsky Prospect, 65/1, 119991, Moscow, Russia
| | - Alexander Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Leninskiy Prospect, 33, Bld. 2, 119071, Moscow, Russia
| |
Collapse
|
5
|
Gaikwad SL, Pore SD, Dhakephalkar PK, Dagar SS, Soni R, Kaur MP, Rawat HN. Pseudodesulfovibrio thermohalotolerans sp. nov., a novel obligately anaerobic, halotolerant, thermotolerant, and sulfate-reducing bacterium isolated from a western offshore hydrocarbon reservoir in India. Anaerobe 2023; 83:102780. [PMID: 37619766 DOI: 10.1016/j.anaerobe.2023.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE Characterization and documentation of strain MCM B-1480T, a novel sulfate-reducing bacterium isolated from produced water of India's western offshore hydrocarbon reservoir. METHOD Strain MCM B-1480T was unequivocally identified using a polyphasic approach routinely followed in bacterial systematics. The morphological and biochemical characterization of strain MCM B-1480T was carried out using standard microbiological techniques. RESULTS MCM B-1480T was a Gram-stain-negative, motile, non-spore-forming, curved-rod-shaped bacterium. MCM B-1480T could grow at temperatures between 20 and 60 °C (optimum 37 °C), pH 6-8 (optimum 7), and required 1-6% NaCl (optimum 3%) for growth. Strain MCM B-1480T was reducing sulfate to produce hydrogen sulfide during growth. This strain used lactate and pyruvate as prominent electron donors, whereas sulfate, sulfite, thiosulfate, and nitrate served as electron acceptors. MCM B-1480T shared maximum 16S rRNA gene sequence homology of 98.65% with the members of the genus Pseudodesulfovibrio. The G + C content of the 3.87 Mb MCM B-1480T genome was 60.39%. Digital DDH (27.7%) and average nucleotide identity (ANI 84%) with the closest phylogenetic affiliate (less than 70% and 95%, respectively) reaffirmed its distinctiveness. The major cellular fatty acids components, namely iso-C15:0, anteiso-C15:0, C16:0, and anteiso-C17:0, differentiated strain MCM B-1480T from other species of Pseudodesulfovibrio. Genome annotation revealed the presence of genes encoding dissimilatory sulfate reduction and nitrate reduction in strain MCM B-1480T. CONCLUSION The polyphasic studies, including SSU rRNA gene sequencing, average nucleotide identity, Digital DNA-DNA hybridization, cell wall fatty acids analysis, etc., identified strain MCM B-1480T as a novel taxon and Pseudodesulfovibrio thermohalotolerans sp. nov. was proposed (= JCM 39269T = MCC 4711T).
Collapse
Affiliation(s)
- Saurabh L Gaikwad
- Bioenergy Group, Agharkar Research Institute, Pune, India; Affiliated to Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Soham D Pore
- Bioenergy Group, Agharkar Research Institute, Pune, India
| | - Prashant K Dhakephalkar
- Bioenergy Group, Agharkar Research Institute, Pune, India; Affiliated to Savitribai Phule Pune University, Ganeshkhind, Pune, India.
| | - Sumit Singh Dagar
- Bioenergy Group, Agharkar Research Institute, Pune, India; Affiliated to Savitribai Phule Pune University, Ganeshkhind, Pune, India.
| | | | | | | |
Collapse
|
6
|
Pinpatthanapong K, Puengpraput T, Phattarapattamawong S, Phalakornkule C, Panichnumsin P, Boonapatcharoen N, Paensiri P, Malila K, Ponata N, Ngamcharoen T, Jutakanoke R, Setsungnern A, Tachapermpon Y, Treesubsuntorn C, Boonnorat J. Effect of propionate-cultured sludge augmentation on methane production from upflow anaerobic sludge blanket systems treating fresh landfill leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163434. [PMID: 37059144 DOI: 10.1016/j.scitotenv.2023.163434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
This research investigates the effect of propionate-cultured sludge augmentation on methane (CH4) production from upflow anaerobic sludge blanket systems (UASB) treating fresh landfill leachate. In the study, both UASB reactors (UASB 1 and UASB 2) contained acclimatized seed sludge, and UASB 2 was augmented with propionate-cultured sludge. The organic loading rate (OLR) was varied between 120.6, 84.4, 48.2, and 12.0 gCOD/L·d. The experimental results indicated that the optimal OLR of UASB 1 (non-augmentation) was 48.2 gCOD/L·d, achieving the CH4 production of 4019 mL/d. Meanwhile, the optimal OLR of UASB 2 was 12.0 gCOD/L·d, achieving the CH4 yield of 6299 mL/d. The dominant bacterial community in the propionate-cultured sludge included the genera Methanothrix, Methanosaeta, Methanoculleus, Syntrophobacter, Smithella, Pelotomamulum, which are the VFA-degrading bacteria and methanogens responsible for unblocking the CH4 pathway bottleneck. Essentially, the novelty of this research lies in the use of propionate-cultured sludge to augment the UASB reactor in order to enhance CH4 production from fresh landfill leachate.
Collapse
Affiliation(s)
- Khathapon Pinpatthanapong
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani 12110, Thailand
| | - Tunyaporn Puengpraput
- Excellent Center of Waste Utilization and Management, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Songkeart Phattarapattamawong
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Chantaraporn Phalakornkule
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand; Research Center for Circular Products and Energy, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Pornpan Panichnumsin
- Excellent Center of Waste Utilization and Management, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Nimaradee Boonapatcharoen
- Excellent Center of Waste Utilization and Management, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Phimchaya Paensiri
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani 12110, Thailand
| | - Kanokwan Malila
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani 12110, Thailand
| | - Nattapong Ponata
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani 12110, Thailand
| | - Thakrit Ngamcharoen
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani 12110, Thailand
| | - Rumpa Jutakanoke
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Mueang, Phitsanulok 65000, Thailand
| | - Arnon Setsungnern
- Remediation Laboratory, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Yordkhuan Tachapermpon
- Remediation Laboratory, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Chairat Treesubsuntorn
- Remediation Laboratory, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand; Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Jarungwit Boonnorat
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani 12110, Thailand.
| |
Collapse
|
7
|
Kondo R. Pseudodesulfovibrio nedwellii sp. nov., a mesophilic sulphate-reducing bacterium isolated from a xenic culture of an anaerobic heterolobosean protist. Int J Syst Evol Microbiol 2023; 73. [PMID: 37115616 DOI: 10.1099/ijsem.0.005826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
A novel sulphate-reducing bacterium, strain SYKT, was isolated from a xenic culture of an anaerobic protist obtained from a sulphidogenic sediment of the saline Lake Hiruga in Fukui, Japan. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that SYKT clustered with the members of the genus Pseudodesulfovibrio. The closest relative of strain SYKT was Pseudodesulfovibrio sediminis SF6T, with 16S rRNA gene sequence identity of 97.43 %. Digital DNA-DNA hybridisation and average nucleotide identity values between SYKT and species of the genus Pseudodesulfovibrio fell below the respective thresholds for species delineation, indicating that SYKT represents a novel species of the genus Pseudodesulfovibrio. Cells measured 1.7-3.7×0.2-0.5 µm in size and were Gram-stain-negative, obligately anaerobic, motile by means of a single polar flagellum and had a curved rod or sigmoid shape. Cell growth was observed under saline conditions from pH 6.0 to 9.5 (optimum pH 8.0-9.0) and at a temperature of 10-30 °C (optimum 25 °C). SYKT used lactate, pyruvate, fumarate, formate and H2 as electron donors. It used sulphate, sulphite, thiosulphate and sulphur as terminal electron acceptors. Pyruvate and fumarate were fermented. Major cellular fatty acids were anteiso-C15 : 0, C16 : 0, anteiso-C17 : 1ω9c, summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The DNA G+C content of SYKT was 49.4 mol%. On the basis of the the genetic and phenotypic features, SYKT was determined to represent a novel species of the genus Pseudodesulfovibrio for which the name Pseudodesulfovibrio nedwellii sp. nov. is proposed with type strain SYKT (=DSM 114958T=JCM 35746T).
Collapse
Affiliation(s)
- Ryuji Kondo
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| |
Collapse
|
8
|
Wang H, Shao T, Zhou Y, Long X, Rengel Z. The effect of biochar prepared at different pyrolysis temperatures on microbially driven conversion and retention of nitrogen during composting. Heliyon 2023; 9:e13698. [PMID: 36873514 PMCID: PMC9976328 DOI: 10.1016/j.heliyon.2023.e13698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Aerobic composting is one of the most economical ways to produce organic fertilizer from agricultural wastes. In this research, we independently developed a simple composting simulation reactor. The effects of biochar pyrolysised at different pyrolysis temperatures (B1-450 °C; B2-550 °C; and B3-650 °C) on nitrogen conversion (Total nitrogen (TN), ammonium nitrogen (NH4 +-N), nitrate nitrogen (NO3 --N), cumulative amount of ammonia (CEA) and nitrous oxide (CEN) emission, nitrogen loss rate (NLR), etc.) and functional microbial community (cbbL, cbbM and nifH) structure in the composting system were studied. Results showed that the addition of biochar significantly improved the efficiency of composting, increased the NO3 --N concentration and reduced the NLR (%) in the composting system (B3 (31.4 ± 2.73)<B2=B1 (41.7 ± 3.29)<B0 (54.5 ± 3.34), p ≤ 0.05), while the loss rate of nitrogen positively correlated with compost pH. Denitrifying bacterial genera such as Pseudomonas, Alcaligenes, Paracoccus, Bacillus, Citrobacter, Mesorhizobium, Thiobacillus and Rhodococcus in this study was an important reason for nitrogen loss during composting, and the abundance of autotrophic microorganisms (such as Sulfuritalea, Hydrogenophaga, Thiobacillus, Thiomonas and Candidatus_Thioglobus) in treatments with biochar (B1, B2 and B3) were higher than that in B0. Besides, the community structure in the treatments B2 and B3 was similar at the end of composting and clearly distinguished from that in B1. Moreover, the five functions predicted by OTUs in this study with the highest proportions were chemoheterotrophy, nitrate reduction, fermentation, aerobic chemoheterotrophy and nitrogen respiration. The study provided a theoretical basis for the application of biochar to improve the compost-related processes.
Collapse
Affiliation(s)
- Haihou Wang
- Suzhou Academy of Agricultural Sciences, Institution of Agricultural Sciences Taihu Lake District, Suzhou, 215155, China.,National Soil Quality Observation and Experimental Station in Xiangcheng, Suzhou, 215131, China
| | - Tianyun Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujie Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaohua Long
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.,Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split, Croatia
| |
Collapse
|
9
|
Nguyen HT, Choi W, Kim EJ, Cho K. Microbial community niches on microplastics and prioritized environmental factors under various urban riverine conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157781. [PMID: 35926609 DOI: 10.1016/j.scitotenv.2022.157781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) provide habitats to microorganisms in aquatic environments; distinct microbial niches have recently been elucidated. However, there is little known about the microbial communities on MPs under urban riverine conditions, in which environmental factors fluctuate. Therefore, this study investigated MP biofilm communities under various urban riverine conditions (i.e., organic content, salinity, and dissolved oxygen (DO) concentration) and evaluated the prioritized factors affecting plastisphere communities. Nine biofilm-forming reactors were operated under various environmental conditions. Under all testing conditions, biofilms grew on MPs with decreasing bacterial diversity. Interestingly, biofilm morphology and bacterial populations were driven by the environmental parameters. We found that plastisphere community structures were grouped according to the environmental conditions; organic content in the water was the most significant factor determining MP biofilm communities, followed by salinity and DO concentration. The principal plastisphere communities were Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes phyla. In-depth analyses of plastisphere communities revealed that biofilm-forming and plastic-degrading bacteria were the predominant microbes. In addition, potential pathogens were majorly discovered in the riverine waters with high organic content. Our results suggest that distinct plastisphere communities coexist with MP particles under certain riverine water conditions, implying that the varied MP biofilm communities may affect urban riverine ecology in a variety of ways.
Collapse
Affiliation(s)
- Hien Thi Nguyen
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Woodan Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Eun-Ju Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
10
|
Genome Sequence of the Sulfate-Reducing Bacterium Pseudodesulfovibrio portus JCM 14722
T. Microbiol Resour Announc 2022; 11:e0094722. [DOI: 10.1128/mra.00947-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pseudodesulfovibrio portus
JCM 14722
T
is a strictly anaerobic, mesophilic sulfate-reducing bacterium isolated from estuarine sediments in Japan. Its draft genome sequence comprises 1 circular chromosome (3,403,863 bp), harboring 3,182 predicted protein- and 60 tRNA-encoding genes, as well as 2 rRNA operons.
Collapse
|
11
|
Park MJ, Kim YJ, Park M, Yu J, Namirimu T, Roh YR, Kwon KK. Establishment of Genome Based Criteria for Classification of the Family Desulfovibrionaceae and Proposal of Two Novel Genera, Alkalidesulfovibrio gen. nov. and Salidesulfovibrio gen. nov. Front Microbiol 2022; 13:738205. [PMID: 35694308 PMCID: PMC9174804 DOI: 10.3389/fmicb.2022.738205] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 04/11/2022] [Indexed: 01/14/2023] Open
Abstract
Bacteria in the Desulfovibrionaceae family, which contribute to S element turnover as sulfate-reducing bacteria (SRB) and disproportionation of partially oxidized sulfoxy anions, have been extensively investigated since the importance of the sulfur cycle emerged. Novel species belonging to this taxon are frequently reported, because they exist in various environments and are easy to culture using established methods. Due to the rapid expansion of the taxon, correction and reclassification have been conducted. The development of high-throughput sequencing facilitated rapid expansion of genome sequence database. Genome-based criteria, based on these databases, proved to be potential classification standard by overcoming the limitations of 16S rRNA-based phylogeny. Although standards methods for taxogenomics are being established, the addition of a novel genus requires extensive calculations with taxa, including many species, such as Desulfovibrionaceae. Thus, the genome-based criteria for classification of Desulfovibrionaceae were established and validated in this study. The average amino-acid identity (AAI) cut-off value, 63.43 ± 0.01, was calculated to be an appropriate criterion for genus delineation of the family Desulfovibrionaceae. By applying the AAI cut-off value, 88 genomes of the Desulfovibrionaceae were divided into 27 genera, which follows the core gene phylogeny results. In this process, two novel genera (Alkalidesulfovibrio and Salidesulfovibrio) and one former invalid genus (“Psychrodesulfovibrio”) were officially proposed. Further, by applying the 95–96% average nucleotide identity (ANI) standard and the 70% digital DNA–DNA hybridization standard values for species delineation of strains that were classified as the same species, five strains have the potential to be newly classified. After verifying that the classification was appropriately performed through relative synonymous codon usage analysis, common characteristics were listed by group. In addition, by detecting metal resistance related genes via in silico analysis, it was confirmed that most strains display metal tolerance.
Collapse
Affiliation(s)
- Mi-Jeong Park
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, South Korea
| | - Yun Jae Kim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
| | - Myeongkyu Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Jihyun Yu
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, South Korea
| | - Teddy Namirimu
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, South Korea
| | - Yoo-Rim Roh
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, South Korea
| | - Kae Kyoung Kwon
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, South Korea
- *Correspondence: Kae Kyoung Kwon,
| |
Collapse
|
12
|
Takahashi A, Kojima H, Watanabe M, Fukui M. Pseudodesulfovibrio sediminis sp. nov., a mesophilic and neutrophilic sulfate-reducing bacterium isolated from sediment of a brackish lake. Arch Microbiol 2022; 204:307. [PMID: 35532841 DOI: 10.1007/s00203-022-02870-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022]
Abstract
A novel mesophilic and neutrophilic sulfate-reducing bacterium, strain SF6T, was isolated from sediment of a brackish lake in Japan. Cells of strain SF6T were motile and rod-shaped with length of 1.2-2.5 μm and width of 0.6-0.9 μm. Growth was observed at 10-37 °C with an optimum growth temperature of 28 °C. The pH range for growth was 5.8-8.2 with an optimum pH of 7.0. The most predominant fatty acid was anteiso-C15:0. Under sulfate-reducing conditions, strain SF6T utilized lactate, ethanol and glucose as growth substrate. Chemolithoautotrophic growth on H2 was not observed, although H2 was used as electron donor. Fermentative growth occurred on pyruvate. As electron acceptor, sulfate, sulfite, thiosulfate and nitrate supported heterotrophic growth of the strain. The complete genome of strain SF6T is composed of a circular chromosome with length of 3.8 Mbp and G+C content of 54 mol%. Analyses of the 16S rRNA gene and whole genome sequence indicated that strain SF6T belongs to the genus Pseudodesulfovibrio but distinct form all existing species in the genus. On the basis of its genomic and phenotypic properties, strain SF6T (= DSM111931T = NBRC 114895T) is proposed as the type strain of a new species, with name of Pseudodesulfovibrio sediminis sp. nov.
Collapse
Affiliation(s)
- Ayaka Takahashi
- Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo, 060-0810, Japan.,The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| | - Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan.
| | - Miho Watanabe
- Department of Biological Environment, Faculty of Bioresource Sciences, Akita Prefectural University, Shimo-Shinjyo Nakano, Akita, 010-0195, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
13
|
Yu RQ, Barkay T. Microbial mercury transformations: Molecules, functions and organisms. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:31-90. [PMID: 35461663 DOI: 10.1016/bs.aambs.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mercury (Hg) methylation, methylmercury (MeHg) demethylation, and inorganic redox transformations of Hg are microbe-mediating processes that determine the fate and cycling of Hg and MeHg in many environments, and by doing so influence the health of humans and wild life. The discovery of the Hg methylation genes, hgcAB, in the last decade together with advances in high throughput and genome sequencing methods, have resulted in an expanded appreciation of the diversity of Hg methylating microbes. This review aims to describe experimentally confirmed and recently discovered hgcAB gene-carrying Hg methylating microbes; phylogenetic and taxonomic analyses are presented. In addition, the current knowledge on transformation mechanisms, the organisms that carry them out, and the impact of environmental parameters on Hg methylation, MeHg demethylation, and inorganic Hg reduction and oxidation is summarized. This knowledge provides a foundation for future action toward mitigating the impact of environmental Hg pollution.
Collapse
Affiliation(s)
- Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX, United States.
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
14
|
Interaction between Microbes, Minerals, and Fluids in Deep-Sea Hydrothermal Systems. MINERALS 2021. [DOI: 10.3390/min11121324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The discovery of deep-sea hydrothermal vents in the late 1970s widened the limits of life and habitability. The mixing of oxidizing seawater and reduction of hydrothermal fluids create a chemical disequilibrium that is exploited by chemosynthetic bacteria and archaea to harness energy by converting inorganic carbon into organic biomass. Due to the rich variety of chemical sources and steep physico-chemical gradients, a large array of microorganisms thrive in these extreme environments, which includes but are not restricted to chemolithoautotrophs, heterotrophs, and mixotrophs. Past research has revealed the underlying relationship of these microbial communities with the subsurface geology and hydrothermal geochemistry. Endolithic microbial communities at the ocean floor catalyze a number of redox reactions through various metabolic activities. Hydrothermal chimneys harbor Fe-reducers, sulfur-reducers, sulfide and H2-oxidizers, methanogens, and heterotrophs that continuously interact with the basaltic, carbonate, or ultramafic basement rocks for energy-yielding reactions. Here, we briefly review the global deep-sea hydrothermal systems, microbial diversity, and microbe–mineral interactions therein to obtain in-depth knowledge of the biogeochemistry in such a unique and geologically critical subseafloor environment.
Collapse
|
15
|
Hashimoto Y, Tame A, Sawayama S, Miyazaki J, Takai K, Nakagawa S. Desulfomarina profundi gen. nov., sp. nov., a novel mesophilic, hydrogen-oxidizing, sulphate-reducing chemolithoautotroph isolated from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 2021; 71. [PMID: 34739365 DOI: 10.1099/ijsem.0.005083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel mesophilic, strictly anaerobic, chemolithoautotrophic sulphate-reducing bacterium, designated strain KT2T, was isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc. Strain KT2T grew at 25-40 °C (optimum 35 °C) and pH 5.5-7.0 (optimum 6.6) in the presence of 25-45 g l-1 NaCl (optimum 30 g l-1). Growth occurred with molecular hydrogen as the electron donor and sulphate, thiosulphate, and sulphite as the electron acceptors. The isolate utilized CO2 as the sole carbon source for chemolithoautotrophic growth on H2. Glycerol, succinate, fumarate, malate, glutamate, or casamino acids could serve as an alternative electron donor in the presence of CO2. Malate, citrate, glutamate, and casamino acids were used as fermentative substrates for weak growth. The G+C content of genomic DNA was 46.1 %. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain KT2T is a member of the family Desulfobulbaceae, showing a sequence similarity of 94.3 % with Desulforhopalus singaporensis. Phylogenomic analysis based on concatenated 156 single-copy marker genes confirmed the same topology as the 16S rRNA gene phylogeny. The ANI and AAI values between strain KT2T and related genera of the family Desulfobulbaceae were 65.6-68.6 % and 53.1-62.9 %. Based on the genomic, molecular, and physiological characteristics, strain KT2T represents a novel genus and species within the family Desulfobulbaceae, for which the name Desulfomarina profundi gen. nov., sp. nov. is proposed, with KT2T (=JCM 34118T = DSM 111364T) as the type strain.
Collapse
Affiliation(s)
- Yurina Hashimoto
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akihiro Tame
- Department of Technical Services, Marine Works Japan, Ltd., 3-54-1 Oppamahigashi, Yokosuka 237-0063, Japan.,General Affairs Department, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Junichi Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| |
Collapse
|
16
|
Li Y, Yang G, Yao S, Zhuang L. Paradesulfitobacterium ferrireducens gen. nov., sp. nov., a Fe(III)-reducing bacterium from petroleum-contaminated soil and reclassification of Desulfitobacterium aromaticivorans as Paradesulfitobacterium aromaticivorans comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34559621 DOI: 10.1099/ijsem.0.005025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic bacterium, strain PLL0T, was isolated from petroleum-contaminated soil sampled in Gansu Province, PR China. Cells were rods, non-motile and Gram-stain-positive. The strain grew at 25-37 °C (optimum, 30 °C) in the presence of 0-3 % (w/v) NaCl (optimum, 2 %). Strain PLL0T was able to reduce ferrihydrite, Fe(III) citrate and thiosulphate. The 16S rRNA gene analysis revealed that this strain clustered with the genus Desulfitobacterium, and showed highest similarity to Desulfitobacterium aromaticivorans UKTLT (95.4 %) followed by Desulfitobacterium chlororespirans Co23T (93.9 %). However, strains PLL0T and UKTLT showed no more than 94.0 % similarity to other species of the genus Desulfitobacterium, and formed an independent group in the phylogenetic tree. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain PLL0T and Desulfitobacterium species (except for D. aromaticivorans) were 67.4-68.5 % and 12.6-12.7 %, respectively, which are far below the threshold for delineation of a new species. Based on ANI, dDDH, average amino acid identity, phylogenetic analysis and physiologic differences from the previously described taxa, we suggest that strain PLL0T represents a novel species of a novel genus, for which the name Paradesulfitobacterium ferrireducens gen. nov. sp. nov. is proposed. The type strain is PLL0T (=MCCC 1K05549=KCTC 25248). We also propose the reclassification of D. aromaticivorans as Paradesulfitobacterium aromaticivorans comb. nov.
Collapse
Affiliation(s)
- Yanling Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Sijie Yao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
17
|
Pseudodesulfovibrio alkaliphilus, sp. nov., an alkaliphilic sulfate-reducing bacterium isolated from a terrestrial mud volcano. Antonie van Leeuwenhoek 2021; 114:1387-1397. [PMID: 34212258 DOI: 10.1007/s10482-021-01608-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
The diversity of anaerobic microorganisms in terrestrial mud volcanoes is largely unexplored. Here we report the isolation of a novel sulfate-reducing alkaliphilic bacterium (strain F-1T) from a terrestrial mud volcano located at the Taman peninsula, Russia. Cells of strain F-1T were Gram-negative motile vibrios with a single polar flagellum; 2.0-4.0 µm in length and 0.5 µm in diameter. The temperature range for growth was 6-37 °C, with an optimum at 24 °C. The pH range for growth was 7.0-10.5, with an optimum at pH 9.5. Strain F-1T utilized lactate, pyruvate, and molecular hydrogen as electron donors and sulfate, sulfite, thiosulfate, elemental sulfur, fumarate or arsenate as electron acceptors. In the presence of sulfate, the end products of lactate oxidation were acetate, H2S and CO2. Lactate and pyruvate could also be fermented. The major product of lactate fermentation was acetate. The main cellular fatty acids were anteiso-C15:0, C16:0, C18:0, and iso-C17:1ω8. Phylogenetic analysis revealed that strain F-1T was most closely related to Pseudodesulfovibrio aespoeensis (98.05% similarity). The total size of the genome of the novel isolate was 3.23 Mb and the genomic DNA G + C content was 61.93 mol%. The genome contained all genes essential for dissimilatory sulfate reduction. We propose to assign strain F-1T to the genus Pseudodesulfovibrio, as a new species, Pseudodesulfovibrio alkaliphilus sp. nov. The type strain is F-1T (= KCTC 15918T = VKM B-3405T).
Collapse
|
18
|
Zeng X, Alain K, Shao Z. Microorganisms from deep-sea hydrothermal vents. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:204-230. [PMID: 37073341 PMCID: PMC10077256 DOI: 10.1007/s42995-020-00086-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00086-4.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E UMR6197, Univ Brest, CNRS, IFREMER, F-29280 Plouzané, France
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| |
Collapse
|
19
|
Wan YY, Luo N, Liu XL, Lai QL, Goodfellow M. Cupidesulfovibrio liaohensis gen. nov., sp. nov., a novel sulphate-reducing bacterium isolated from an oil reservoir and reclassification of Desulfovibrio oxamicus and Desulfovibrio termitidis as Cupidesulfovibrio oxamicus comb. nov. and Cupidesulfovibrio termitidis comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 33406030 DOI: 10.1099/ijsem.0.004618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel sulphate-reducing, Gram-stain-negative, anaerobic strain, isolate XJ01T, recovered from production fluid at the LiaoHe oilfield, PR China, was the subject of a polyphasic study. The isolate together with Desulfovibrio oxamicus NCIMB 9442T and Desulfovibrio termitidis DSM 5308T formed a distinct, well-supported clade in the Desulfovibrionaceae 16S rRNA gene tree. The taxonomic status of the clade was underscored by complementary phenotypic data. The three isolates comprising the clade formed distinct phyletic branches and were distinguished using a combination of physiological features and by low average nucleotide identity and digital DNA-DNA hybridization values. Consequently, it is proposed that isolate XJ01T represents a novel genus and species for which the name Cupidesulfovibrio liaohensis gen. nov., sp. nov. is proposed with the type strain XJ01T (=CGMCC 1.5227T=DSM 107637T). It is also proposed that D. oxamicus and D. termitidis be reclassified as Cupidesulfovibrio oxamicus comb. nov. and Cupidesulfovibrio termitidis comb. nov., respectively.
Collapse
Affiliation(s)
- Yun Yang Wan
- State Key Laboratory of Petroleum Resources and Prospectng, Beijing Key Laoratory of Petroleum Pollution and Control, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, China University of Petroleum, Beijing, PR China
| | - Na Luo
- State Key Laboratory of Petroleum Resources and Prospectng, Beijing Key Laoratory of Petroleum Pollution and Control, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, China University of Petroleum, Beijing, PR China
| | - Xiao-Li Liu
- State Key Laboratory of Petroleum Resources and Prospectng, Beijing Key Laoratory of Petroleum Pollution and Control, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, China University of Petroleum, Beijing, PR China
| | - Qi-Liang Lai
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, PR China
| | - Michael Goodfellow
- School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
Zheng R, Wu S, Sun C. Pseudodesulfovibrio cashew sp. Nov., a Novel Deep-Sea Sulfate-Reducing Bacterium, Linking Heavy Metal Resistance and Sulfur Cycle. Microorganisms 2021; 9:429. [PMID: 33669756 PMCID: PMC7922080 DOI: 10.3390/microorganisms9020429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022] Open
Abstract
Sulfur cycling is primarily driven by sulfate reduction mediated by sulfate-reducing bacteria (SRB) in marine sediments. The dissimilatory sulfate reduction drives the production of enormous quantities of reduced sulfide and thereby the formation of highly insoluble metal sulfides in marine sediments. Here, a novel sulfate-reducing bacterium designated Pseudodesulfovibrio cashew SRB007 was isolated and purified from the deep-sea cold seep and proposed to represent a novel species in the genus of Pseudodesulfovibrio. A detailed description of the phenotypic traits, phylogenetic status and central metabolisms of strain SRB007 allowed the reconstruction of the metabolic potential and lifestyle of a novel member of deep-sea SRB. Notably, P. cashew SRB007 showed a strong ability to resist and remove different heavy metal ions including Co2+, Ni2+, Cd2+ and Hg2+. The dissimilatory sulfate reduction was demonstrated to contribute to the prominent removal capability of P. cashew SRB007 against different heavy metals via the formation of insoluble metal sulfides.
Collapse
Affiliation(s)
- Rikuan Zheng
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shimei Wu
- Department of Life Science, Qingdao University, Qingdao 266071, China;
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
21
|
Gilmour CC, Soren AB, Gionfriddo CM, Podar M, Wall JD, Brown SD, Michener JK, Urriza MSG, Elias DA. Pseudodesulfovibrio mercurii sp. nov., a mercury-methylating bacterium isolated from sediment. Int J Syst Evol Microbiol 2021; 71. [PMID: 33570484 DOI: 10.1099/ijsem.0.004697] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sulfate-reducing, mercury-methylating strain ND132T was isolated from the brackish anaerobic bottom sediments of Chesapeake Bay, USA. Capable of high levels of mercury (Hg) methylation, ND132T has been widely used as a model strain to study the process and to determine the genetic basis of Hg methylation. Originally called Desulfovibrio desulfuricans ND132T on the basis of an early partial 16S rRNA sequence, the strain has never been formally described. Phylogenetic and physiological traits place this strain within the genus Pseudodesulfovibrio, in the recently reclassified phylum Desulfobacterota (formerly Deltaproteobacteria). ND132T is most closely related to Pseudodesulfovibrio hydrargyri BerOc1T and Pseudodesulfovibrio indicus J2T. Analysis of average nucleotide identity (ANI) of whole-genome sequences showed roughly 88 % ANI between P. hydrargyri BerOc1T and ND132T, and 84 % similarity between ND132T and P. indicus J2T. These cut-off scores <95 %, along with a multi-gene phylogenetic analysis of members of the family Desulfovibrionacea, and differences in physiology indicate that all three strains represent separate species. The Gram-stain-negative cells are vibrio-shaped, motile and not sporulated. ND132T is a salt-tolerant mesophile with optimal growth in the laboratory at 32 °C, 2 % salinity, and pH 7.8. The DNA G+C content of the genomic DNA is 65.2 %. It is an incomplete oxidizer of short chain fatty acids, using lactate, pyruvate and fumarate with sulfate or sulfite as the terminal electron acceptors. ND132T can respire fumarate using pyruvate as an electron donor. The major fatty acids are iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 0, iso-C17 : 1ω9c and anteiso-C17 : 0. We propose the classification of strain ND132T (DSM 110689, ATCC TSD-224) as the type strain Pseudodesulfovibrio mercurii sp. nov.
Collapse
Affiliation(s)
| | | | - Caitlin M Gionfriddo
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Judy D Wall
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Steven D Brown
- Present address: LanzaTech, Skokie, Illinois, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Joshua K Michener
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Dwayne A Elias
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
22
|
Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, Loy A, Naganuma T, Nakai R, Whitman WB, Hahn MW, Kuever J, Hugenholtz P. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70:5972-6016. [DOI: 10.1099/ijsem.0.004213] [Citation(s) in RCA: 696] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The class
Deltaproteobacteria
comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum
Proteobacteria
, it rarely affiliates with other proteobacterial classes and is frequently not recovered as a monophyletic unit in phylogenetic analyses. Indeed, one branch of the class
Deltaproteobacteria
encompassing Bdellovibrio-like predators was recently reclassified into a separate proteobacterial class, the
Oligoflexia
. Here we systematically explore the phylogeny of taxa currently assigned to these classes using 120 conserved single-copy marker genes as well as rRNA genes. The overwhelming majority of markers reject the inclusion of the classes
Deltaproteobacteria
and
Oligoflexia
in the phylum
Proteobacteria
. Instead, the great majority of currently recognized members of the class
Deltaproteobacteria
are better classified into four novel phylum-level lineages. We propose the names Desulfobacterota phyl. nov. and Myxococcota phyl. nov. for two of these phyla, based on the oldest validly published names in each lineage, and retain the placeholder name SAR324 for the third phylum pending formal description of type material. Members of the class
Oligoflexia
represent a separate phylum for which we propose the name Bdellovibrionota phyl. nov. based on priority in the literature and general recognition of the genus Bdellovibrio. Desulfobacterota phyl. nov. includes the taxa previously classified in the phylum
Thermodesulfobacteria
, and these reclassifications imply that the ability of sulphate reduction was vertically inherited in the
Thermodesulfobacteria
rather than laterally acquired as previously inferred. Our analysis also indicates the independent acquisition of predatory behaviour in the phyla Myxococcota and Bdellovibrionota, which is consistent with their distinct modes of action. This work represents a stable reclassification of one of the most taxonomically challenging areas of the bacterial tree and provides a robust framework for future ecological and systematic studies.
Collapse
Affiliation(s)
- David W Waite
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Maria Chuvochina
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Claus Pelikan
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | | | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Alexander Loy
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | | | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Jan Kuever
- Department of Microbiology, Bremen Institute for Materials Testing, Bremen, Germany
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
23
|
Thiel J, Spring S, Tindall BJ, Spröer C, Bunk B, Koeksoy E, Ngugi DK, Schink B, Pester M. Desulfolutivibrio sulfoxidireducens gen. nov., sp. nov., isolated from a pyrite-forming enrichment culture and reclassification of Desulfovibrio sulfodismutans as Desulfolutivibrio sulfodismutans comb. nov. Syst Appl Microbiol 2020; 43:126105. [DOI: 10.1016/j.syapm.2020.126105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
|
24
|
Villar E, Cabrol L, Heimbürger-Boavida LE. Widespread microbial mercury methylation genes in the global ocean. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020. [PMID: 32090489 DOI: 10.1101/648329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Methylmercury is a neurotoxin that bioaccumulates from seawater to high concentrations in marine fish, putting human and ecosystem health at risk. High methylmercury levels have been found in the oxic subsurface waters of all oceans, but only anaerobic microorganisms have been shown to efficiently produce methylmercury in anoxic environments. The microaerophilic nitrite-oxidizing bacteria Nitrospina have previously been suggested as possible mercury methylating bacteria in Antarctic sea ice. However, the microorganisms responsible for processing inorganic mercury into methylmercury in oxic seawater remain unknown. Here, we show metagenomic and metatranscriptomic evidence that the genetic potential for microbial methylmercury production is widespread in oxic seawater. We find high abundance and expression of the key mercury methylating genes hgcAB across all ocean basins, corresponding to the taxonomic relatives of known mercury methylating bacteria from Deltaproteobacteria, Firmicutes and Chloroflexi. Our results identify Nitrospina as the predominant and widespread microorganism carrying and actively expressing hgcAB. The highest hgcAB abundance and expression occurs in the oxic subsurface waters of the global ocean where the highest MeHg concentrations are typically observed.
Collapse
Affiliation(s)
- Emilie Villar
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
- Sorbonne Université, Université Pierre et Marie Curie - Paris 6, CNRS, UMR 7144 (AD2M), Station Biologique de Roscoff, Place Georges Teissier, CS90074, Roscoff, 29688, France
| | - Léa Cabrol
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
- Instituto de Ecologia y Biodiversidad, Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| |
Collapse
|
25
|
Villar E, Cabrol L, Heimbürger-Boavida LE. Widespread microbial mercury methylation genes in the global ocean. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:277-287. [PMID: 32090489 DOI: 10.1111/1758-2229.12829] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 05/16/2023]
Abstract
Methylmercury is a neurotoxin that bioaccumulates from seawater to high concentrations in marine fish, putting human and ecosystem health at risk. High methylmercury levels have been found in the oxic subsurface waters of all oceans, but only anaerobic microorganisms have been shown to efficiently produce methylmercury in anoxic environments. The microaerophilic nitrite-oxidizing bacteria Nitrospina have previously been suggested as possible mercury methylating bacteria in Antarctic sea ice. However, the microorganisms responsible for processing inorganic mercury into methylmercury in oxic seawater remain unknown. Here, we show metagenomic and metatranscriptomic evidence that the genetic potential for microbial methylmercury production is widespread in oxic seawater. We find high abundance and expression of the key mercury methylating genes hgcAB across all ocean basins, corresponding to the taxonomic relatives of known mercury methylating bacteria from Deltaproteobacteria, Firmicutes and Chloroflexi. Our results identify Nitrospina as the predominant and widespread microorganism carrying and actively expressing hgcAB. The highest hgcAB abundance and expression occurs in the oxic subsurface waters of the global ocean where the highest MeHg concentrations are typically observed.
Collapse
Affiliation(s)
- Emilie Villar
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
- Sorbonne Université, Université Pierre et Marie Curie - Paris 6, CNRS, UMR 7144 (AD2M), Station Biologique de Roscoff, Place Georges Teissier, CS90074, Roscoff, 29688, France
| | - Léa Cabrol
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
- Instituto de Ecologia y Biodiversidad, Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| |
Collapse
|
26
|
Paradesulfovibrio onnuriensis gen. nov., sp. nov., a chemolithoautotrophic sulfate-reducing bacterium isolated from the Onnuri vent field of the Indian Ocean and reclassification of Desulfovibrio senegalensis as Paradesulfovibrio senegalensis comb. nov. J Microbiol 2020; 58:252-259. [DOI: 10.1007/s12275-020-9376-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 01/21/2020] [Indexed: 10/24/2022]
|
27
|
Cao J, Wei Y, Lai Q, Wu Y, Deng J, Li J, Liu R, Wang L, Fang J. Georhizobium profundi gen. nov., sp. nov., a piezotolerant bacterium isolated from a deep-sea sediment sample of the New Britain Trench. Int J Syst Evol Microbiol 2020; 70:373-379. [PMID: 31613738 DOI: 10.1099/ijsem.0.003766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
A novel alphaproteobacterium, strain WS11T, was isolated from a deep-sea sediment sample collected from the New Britain Trench. The full-length 16S rRNA gene of strain WS11T had the highest sequence similarity of 97.6 % to Rhizobium subbaraonis JC85T, followed by Mycoplana ramosa DSM 7292T (96.9 %) and Rhizobium azooxidifex Po 20/26T (96.8 %). Phylogenetic analysis of concatenated 16S rRNA, atpD and recA gene sequences showed that strain WS11T was deeply separated from the species within the family Rhizobiaceae. Phylogenomic analysis based on the whole-genome protein sequences showed that strain WS11T formed an independent monophyletic branch in the family Rhizobiaceae, paralleled with the species in the families Brucellaceae and Phyllobacteriaceae within the order Rhizobiales. Cells were Gram-stain-negative, oxidase- and catalase-positive, and aerobic short rods (1.5-2.4×0.9-1.0 µm). Growth was observed at salinities ranging from 0 to 5% (optimum, 1 %), from pH 6.5 to 9 (optimum, pH 7) and at temperatures between 20 and 30 °C (optimum, 28 °C). Strain WS11T was piezotolerant, growing optimally at 0.1 MPa (range 0.1-70 MPa). The main fatty acid was summed feature 8 (C18 : 1 ω7c/C18 : 1 ω 6c). The sole respiratory quinone was ubiquinone-10 (Q-10). The predominant polar lipids were phosphatidylcholine, two unidentified aminophospholipids and an unidentified phospholipid. The genome size was about 4.36 Mbp and the G+C content was 62.3 mol%. The combined genotypic and phenotypic data show that strain WS11T represents a novel species of a novel genus in the family Rhizobiaceae, for which the name Georhizobium profundi gen. nov., sp. nov. is proposed (type strain WS11T=MCCC 1K03498T=KCTC 62439T).
Collapse
Affiliation(s)
- Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Yunjie Wu
- Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, PR China
| | - Junhao Deng
- Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, PR China
| | - Jianyang Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
- Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI 96813, USA
| |
Collapse
|
28
|
Liu P, Ding W, Lai Q, Liu R, Wei Y, Wang L, Xie Z, Cao J, Fang J. Physiological and genomic features of Paraoceanicella profunda gen. nov., sp. nov., a novel piezophile isolated from deep seawater of the Mariana Trench. Microbiologyopen 2019; 9:e966. [PMID: 31743595 PMCID: PMC7002103 DOI: 10.1002/mbo3.966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 01/11/2023] Open
Abstract
A novel piezophilic alphaproteobacterium, strain D4M1T, was isolated from deep seawater of the Mariana Trench. 16S rRNA gene analysis showed that strain D4M1T was most closely related to Oceanicella actignis PRQ‐67T (94.2%), Oceanibium sediminis O448T (94.2%), and Thioclava electrotropha ElOx9T (94.1%). Phylogenetic analyses based on both 16S rRNA gene and genome sequences showed that strain D4M1T formed an independent monophyletic branch paralleled with the genus Oceanicella in the family Rhodobacteraceae. Cells were Gram‐stain‐negative, aerobic short rods, and grew optimally at 37°C, pH 6.5, and 3.0% (w/v) NaCl. Strain D4M1T was piezophilic with the optimum pressure of 10 MPa. The principal fatty acids were C18:1ω7c/C18:1ω6c and C16:0, major respiratory quinone was ubiquinone‐10, and predominant polar lipids were phosphatidylglycerol, phosphatidylethanolamine, and an unidentified aminophospholipid. The complete genome contained 5,468,583‐bp with a G + C content of 70.2 mol% and contained 4,855 protein‐coding genes and 78 RNA genes. Genomic analysis revealed abundant clues on bacterial high‐pressure adaptation and piezophilic lifestyle. The combined evidence shows that strain D4M1T represents a novel species of a novel genus in the family Rhodobacteraceae, for which the name Paraoceanicella profunda gen. nov., sp. nov. is proposed (type strain D4M1T = MCCC 1K03820T = KCTC 72285T).
Collapse
Affiliation(s)
- Ping Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Wanzhen Ding
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Xiamen, China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Zhe Xie
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI, USA
| |
Collapse
|
29
|
Ding W, Liu P, Xu Y, Fang J, Cao J. Polyphasic taxonomic analysis of Parasedimentitalea marina gen. nov., sp. nov., a psychrotolerant bacterium isolated from deep sea water of the New Britain Trench. FEMS Microbiol Lett 2019; 366:5698325. [PMID: 31913437 DOI: 10.1093/femsle/fnaa004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/07/2020] [Indexed: 11/12/2022] Open
Abstract
A novel Rhodobacteraceae bacterium, strain W43T, was isolated from a deep-sea water sample from the New Britain Trench. Strain W43T exhibited the highest 16S rRNA gene sequence similarity of 96.5% to Sedimentitalea nanhaiensis DSM 24252T, Phaeobacter gallaeciensis DSM 26640T, Phaeobacter inhibens DSM 16374T, and Phaeobacter porticola P97T. Phylogenetic analysis of the 16S rRNA gene and phylogenomic analysis of the genome showed that strain W43T formed an independent monophyletic branch within the family Rhodobacteraceae. Strain W43T was Gram-stain-negative, rod-shaped, and grew optimally at 16-20°C, pH 6.5-7.0 and 2% (w/v) NaCl. The principal fatty acids were C18:1ω7c/C18:1ω6c, major respiratory quinone was ubiquinone-10 and predominant polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The 5 080 916 bp long genome, comprising a circular chromosome and four plasmids, exhibits a G + C content of 55.9 mol%. The combined phenotypic, chemotaxonomic and molecular data show that strain W43T represents a novel species of a novel genus, for which the name Parasedimentitalea marina gen. nov. sp. nov. is proposed (type strain W43T = MCCC 1K03532T = KCTC 62635T).
Collapse
Affiliation(s)
- Wanzhen Ding
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Pudong, Shanghai 201306, PR China
| | - Ping Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Pudong, Shanghai 201306, PR China
| | - Yunping Xu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Pudong, Shanghai 201306, PR China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Pudong, Shanghai 201306, PR China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, PR China.,Department of Natural Sciences, Hawaii Pacific University, Waterfront Plaza 500 Ala Moana Blvd Ste 4-545, Honolulu, HI 96813, USA
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Pudong, Shanghai 201306, PR China
| |
Collapse
|
30
|
Goñi-Urriza M, Klopp C, Ranchou-Peyruse M, Ranchou-Peyruse A, Monperrus M, Khalfaoui-Hassani B, Guyoneaud R. Genome insights of mercury methylation among Desulfovibrio and Pseudodesulfovibrio strains. Res Microbiol 2019; 171:3-12. [PMID: 31655199 DOI: 10.1016/j.resmic.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/28/2023]
Abstract
Mercury methylation converts inorganic mercury into the toxic methylmercury, and the consequences of this transformation are worrisome for human health and the environment. This process is performed by anaerobic microorganisms, such as several strains related to Pseudodesulfovibrio and Desulfovibrio genera. In order to provide new insights into the molecular mechanisms of mercury methylation, we performed a comparative genomic analysis on mercury methylators and non-methylators from (Pseudo)Desulfovibrio strains. Our results showed that (Pseudo)Desulfovibrio species are phylogenetically and metabolically distant and consequently, these genera should be divided into various genera. Strains able to perform methylation are affiliated with one branch of the phylogenetic tree, but, except for hgcA and hgcB genes, no other specific genetic markers were found among methylating strains. hgcA and hgcB genes can be found adjacent or separated, but proximity between those genes does not promote higher mercury methylation. In addition, close examination of the non-methylator Pseudodesulfovibrio piezophilus C1TLV30 strain, showed a syntenic structure that suggests a recombination event and may have led to hgcB depletion. The genomic analyses identify also arsR gene coding for a putative regulator upstream hgcA. Both genes are cotranscribed suggesting a role of ArsR in hgcA expression and probably a role in mercury methylation.
Collapse
Affiliation(s)
- Marisol Goñi-Urriza
- Environmental Microbiology, CNRS/UNIV PAU & PAYS ADOUR/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, IPREM, UMR5254, Pau, France.
| | - Christophe Klopp
- Plateforme Bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, INRA, Castanet-Tolosan, France.
| | - Magali Ranchou-Peyruse
- Environmental Microbiology, CNRS/UNIV PAU & PAYS ADOUR/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, IPREM, UMR5254, Pau, France.
| | - Anthony Ranchou-Peyruse
- Environmental Microbiology, CNRS/UNIV PAU & PAYS ADOUR/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, IPREM, UMR5254, Pau, France.
| | - Mathilde Monperrus
- CNRS/UNIV PAU & PAYS ADOUR/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, IPREM, UMR5254, Anglet, France.
| | - Bahia Khalfaoui-Hassani
- Environmental Microbiology, CNRS/UNIV PAU & PAYS ADOUR/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, IPREM, UMR5254, Pau, France.
| | - Rémy Guyoneaud
- Environmental Microbiology, CNRS/UNIV PAU & PAYS ADOUR/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, IPREM, UMR5254, Pau, France.
| |
Collapse
|
31
|
Cao J, Lai Q, Liu P, Wei Y, Wang L, Liu R, Fang J. Salinimonas sediminis sp. nov., a piezophilic bacterium isolated from a deep-sea sediment sample from the New Britain Trench. Int J Syst Evol Microbiol 2018; 68:3766-3771. [DOI: 10.1099/ijsem.0.003055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Junwei Cao
- 2National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
- 1Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qiliang Lai
- 3State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration, Collaborative Innovation Center of Marine Biological Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Ping Liu
- 1Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- 2National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yuli Wei
- 1Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- 2National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Li Wang
- 1Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- 2National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Rulong Liu
- 1Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- 2National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jiasong Fang
- 4Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
- 1Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- 5Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI 96813, USA
| |
Collapse
|
32
|
Cao J, Liu P, Liu R, Su H, Wei Y, Liu R, Fang J. Marinobacter profundi sp. nov., a slightly halophilic bacterium isolated from a deep-sea sediment sample of the New Britain Trench. Antonie van Leeuwenhoek 2018; 112:425-434. [PMID: 30302650 DOI: 10.1007/s10482-018-1176-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/03/2018] [Indexed: 11/24/2022]
Abstract
A piezotolerant, cold-adapted, slightly halophilic bacterium, designated strain PWS21T, was isolated from a deep-sea sediment sample collected from the New Britain Trench. Cells were observed to be Gram-stain negative, rod-shaped, oxidase- and catalase-positive. Growth of the strain was observed at 4-45 °C (optimum 37 °C), at pH 5.0-9.0 (optimum 7.0) and in 0.5-20% (w/v) NaCl (optimum 3-4%). The optimum pressure for growth was 0.1 MPa (megapascal) with tolerance up to 70 MPa. 16S rRNA gene sequence analysis showed that strain PWS21T is closely related to Marinobacter guineae M3BT (98.4%) and Marinobacter lipolyticus SM19T (98.2%). Multilocus sequence analysis (MLSA) based on sequences of housekeeping genes gyrB, recA, atpD, rpoB and rpoD indicates that strain PWS21T represents a distinct evolutionary lineage within the genus Marinobacter. Furthermore, strain PWS21T showed low ANI and diDDH values to the closely related species. The principal fatty acids were identified as C12:0, C12:0 3-OH, C16:1ω9c, C16:0 and C18:1ω9c. Ubiquinone-9 was identified as the major respiratory quinone. The polar lipids were identified as phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), aminophospholipid (APL), two unidentified lipids and an unidentified phospholipid (PL). The G + C content of the genomic DNA was determined to be 60.3 mol%. On the basis of phenotypic, chemotaxonomic and molecular data, we conclude that strain PWS21T represents a novel species of the genus Marinobacter, for which the name Marinobacter profundi sp. nov. is proposed (type strain PWS21T = KCTC 52990T = MCCC 1K03345T).
Collapse
Affiliation(s)
- Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
| | - Ping Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Renju Liu
- Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | - Hainan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, 250100, People's Republic of China
| | - Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China.
- Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI, 96813, USA.
| |
Collapse
|
33
|
Lopez-Fernandez M, Broman E, Turner S, Wu X, Bertilsson S, Dopson M. Investigation of viable taxa in the deep terrestrial biosphere suggests high rates of nutrient recycling. FEMS Microbiol Ecol 2018; 94:5040220. [PMID: 29931252 PMCID: PMC6030916 DOI: 10.1093/femsec/fiy121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/15/2018] [Indexed: 11/14/2022] Open
Abstract
The deep biosphere is the largest 'bioreactor' on earth, and microbes inhabiting this biome profoundly influence global nutrient and energy cycles. An important question for deep biosphere microbiology is whether or not specific populations are viable. To address this, we used quantitative PCR and high throughput 16S rRNA gene sequencing of total and viable cells (i.e. with an intact cellular membrane) from three groundwaters with different ages and chemical constituents. There were no statistically significant differences in 16S rRNA gene abundances and microbial diversity between total and viable communities. This suggests that populations were adapted to prevailing oligotrophic conditions and that non-viable cells are rapidly degraded and recycled into new biomass. With higher concentrations of organic carbon, the modern marine and undefined mixed waters hosted a community with a larger range of predicted growth strategies than the ultra-oligotrophic old saline water. These strategies included fermentative and potentially symbiotic lifestyles by candidate phyla that typically have streamlined genomes. In contrast, the old saline waters had more 16S rRNA gene sequences in previously cultured lineages able to oxidize hydrogen and fix carbon dioxide. This matches the paradigm of a hydrogen and carbon dioxide-fed chemolithoautotrophic deep biosphere.
Collapse
Affiliation(s)
- Margarita Lopez-Fernandez
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Elias Broman
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Xiaofen Wu
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Norbyvägen 18D, Uppsala, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| |
Collapse
|
34
|
Ranchou-Peyruse M, Goñi-Urriza M, Guignard M, Goas M, Ranchou-Peyruse A, Guyoneaud R. Pseudodesulfovibrio hydrargyri sp. nov., a mercury-methylating bacterium isolated from a brackish sediment. Int J Syst Evol Microbiol 2018. [PMID: 29533171 DOI: 10.1099/ijsem.0.002173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The strain BerOc1T was isolated from brackish sediments contaminated with hydrocarbons and heavy metals. This strain has been used as a model strain of sulfate-reducer to study the biomethylation of mercury. The cells are vibrio-shaped, motile and not sporulated. Phylogeny and physiological traits placed this strain within the genus Pseudodesulfovibrio. Optimal growth was obtained at 30 °C, 1.5 % NaCl and pH 6.0-7.4. The estimated G+C content of the genomic DNA was 62.6 mol%. BerOc1T used lactate, pyruvate, fumarate, ethanol and hydrogen. Terminal electron acceptors used were sulfate, sulfite, thiosulfate and DMSO. Only pyruvate could be used without a terminal electron acceptor. The major fatty acids were C18 : 0, anteiso-C15 : 0, C16 : 0 and C18 : 1ω7. The name Pseudodesulfovibrio hydrargyri sp. nov. is proposed for the type strain BerOc1T (DSM 10384T=JCM 31820T).
Collapse
Affiliation(s)
- Magali Ranchou-Peyruse
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64000, Pau, France
| | - Marisol Goñi-Urriza
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64000, Pau, France
| | - Marion Guignard
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64000, Pau, France
| | - Marjorie Goas
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64000, Pau, France
| | - Anthony Ranchou-Peyruse
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64000, Pau, France
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour, CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64000, Pau, France
| |
Collapse
|
35
|
Marietou A, Røy H, Jørgensen BB, Kjeldsen KU. Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis. Front Microbiol 2018; 9:309. [PMID: 29551997 PMCID: PMC5840216 DOI: 10.3389/fmicb.2018.00309] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM) there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT) are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.
Collapse
Affiliation(s)
- Angeliki Marietou
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Hans Røy
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Bo B Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper U Kjeldsen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
Shivani Y, Subhash Y, Sasikala C, Ramana CV. Halodesulfovibrio spirochaetisodalis gen. nov. sp. nov. and reclassification of four Desulfovibrio spp. Int J Syst Evol Microbiol 2017; 67:87-93. [PMID: 27902290 DOI: 10.1099/ijsem.0.001574] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An antibiotic-producing, obligate anaerobic, Gram-stain-negative, catalase- and oxidase-negative strain (JC271T) was isolated from a marine habitat and identified, based on 16S rRNA gene sequence analysis, as a novel member of the family Desulfovibrionaceae. The closest phylogenetic relatives of strain JC271T were found to be Desulfovibrio marinisediminis C/L2T (99.2 %), Desulfovibrio acrylicus W218T (98.7 %), Desulfovibrio desulfuricans subsp. aestuarii (98.6 %), Desulfovibrio oceani subsp. oceani (98.0 %), Desulfovibrio oceani subsp. galatae (98.0 %) and other members of the genus Desulfovibrio (≤91.9 %). To resolve its full taxonomic position, the genomic sequence of strain JC271T was compared to available genomes of the most closely related phylogenetic members. Average Nucleotide Identity scores and DNA-DNA hybridization values confirmed that strain JC271T represents a novel genomic species. Iso-C17 : 0, iso-C17 : 1ω9c, and iso-C15 : 0 were found to be the major (comprising >10 % of the total present) fatty acids of strain JC271T. Phosphatidylglycerol, phosphatidylethanolamine and unidentified lipids (L1-8) were the polar lipids identified. The G+C content of strain JC271T was 46.2 mol%. Integrated genomic and phenotypic data supported the classification of strain JC271T as a representative of a novel genus, for which the name Halodesulfovibrio spirochaetisodalis gen. nov., sp. nov. is proposed. The type strain is JC271T (=KCTC 15474T=DSM 100016T). It is also proposed that Desulfovibrio acrylicus W218T is the latter heterotypic synonym of Desulfovibrio desulfuricans subsp. aestuarii Sylt 3T. Desulfovibrio desulfuricans subsp. aestuarii Sylt 3T should also be elevated as Halodesulfovibrio aestuarii comb. nov. and Desulfovibrio marinisediminisreclassified as Halodesulfovibrio marinisediminis comb. nov. Desulfovibrio oceani subsp. oceanishould be reclassified as Halodesulfovibrio oceani subsp. oceani comb. nov. and Desulfovibrio oceani subsp. galateae as Halodesulfovibrio oceani subsp. galateae comb. nov.
Collapse
Affiliation(s)
- Y Shivani
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University Hyderabad, Kukatpally, Hyderabad 500 085, India
| | - Y Subhash
- Present address: Department of Life Science, College of Natural Science, Kyonggi University, 94-6 Iui- 6 dong Yeongtong-gu, Suwon 443-760, Republic of Korea.,Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Ch Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University Hyderabad, Kukatpally, Hyderabad 500 085, India
| | - Ch V Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| |
Collapse
|
37
|
Genome Sequence of the Piezophilic, Mesophilic Sulfate-Reducing Bacterium Desulfovibrio indicus J2T. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00214-16. [PMID: 27056223 PMCID: PMC4824256 DOI: 10.1128/genomea.00214-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The complete genome sequence of Desulfovibrio indicus J2T, a member of the family Desulfovibrionaceae, consists of 3,966,573-bp in one contig and encodes 3,461 predicted genes, 5 noncoding RNAs, 3 rRNAs operons, and 52 tRNA-encoding genes. The genome is consistent with a heterotrophic, anaerobic lifestyle including the sulfate reduction pathway.
Collapse
|