1
|
Yuan X, Wang T, Sun L, Qiao Z, Pan H, Zhong Y, Zhuang Y. Recent advances of fermented fruits: A review on strains, fermentation strategies, and functional activities. Food Chem X 2024; 22:101482. [PMID: 38817978 PMCID: PMC11137363 DOI: 10.1016/j.fochx.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Fruits are recognized as healthy foods with abundant nutritional content. However, due to their high content of sugar and water, they are easily contaminated by microorganisms leading to spoilage. Probiotic fermentation is an effective method to prevent fruit spoilage. In addition, during fermentation, the probiotics can react with the nutrients in fruits to produce new derived compounds, giving the fruit specific flavor, enhanced color, active ingredients, and nutritional values. Noteworthy, the choice of fermentation strains and strategies has a significant impact on the quality of fermented fruits. Thus, this review provides comprehensive information on the fermentation strains (especially yeast, lactic acid bacteria, and acetic acid bacteria), fermentation strategies (natural or inoculation fermentation, mono- or mixed-strain inoculation fermentation, and liquid- or solid-state fermentation), and the effect of fermentation on the shelf life, flavor, color, functional components, and physiological activities of fruits. This review will provide a theoretical guidance for the production of fermented fruits.
Collapse
Affiliation(s)
- Xinyu Yuan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province 463000, China
| | - Hongyu Pan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yujie Zhong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Román-Camacho JJ, García-García I, Santos-Dueñas IM, García-Martínez T, Mauricio JC. Latest Trends in Industrial Vinegar Production and the Role of Acetic Acid Bacteria: Classification, Metabolism, and Applications-A Comprehensive Review. Foods 2023; 12:3705. [PMID: 37835358 PMCID: PMC10572879 DOI: 10.3390/foods12193705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Vinegar is one of the most appreciated fermented foods in European and Asian countries. In industry, its elaboration depends on numerous factors, including the nature of starter culture and raw material, as well as the production system and operational conditions. Furthermore, vinegar is obtained by the action of acetic acid bacteria (AAB) on an alcoholic medium in which ethanol is transformed into acetic acid. Besides the highlighted oxidative metabolism of AAB, their versatility and metabolic adaptability make them a taxonomic group with several biotechnological uses. Due to new and rapid advances in this field, this review attempts to approach the current state of knowledge by firstly discussing fundamental aspects related to industrial vinegar production and then exploring aspects related to AAB: classification, metabolism, and applications. Emphasis has been placed on an exhaustive taxonomic review considering the progressive increase in the number of new AAB species and genera, especially those with recognized biotechnological potential.
Collapse
Affiliation(s)
- Juan J. Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, 14014 Córdoba, Spain;
| | - Inés M. Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, 14014 Córdoba, Spain;
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| | - Juan C. Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| |
Collapse
|
3
|
Sombolestani AS, Bongaerts D, Depoorter E, Cleenwerck I, Wieme AD, Britton SJ, Weckx S, De Vuyst L, Vandamme P. Brytella acorum gen. nov., sp. nov., a novel acetic acid bacterium from sour beverages. Syst Appl Microbiol 2023; 46:126440. [PMID: 37429096 DOI: 10.1016/j.syapm.2023.126440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Polyphasic taxonomic and comparative genomic analyses revealed that a series of lambic beer isolates including strain LMG 32668T and the kombucha isolate LMG 32879 represent a novel species among the acetic acid bacteria, with Acidomonas methanolica as the nearest phylogenomic neighbor with a valid name. Overall genomic relatedness indices and phylogenomic and physiological analyses revealed that this novel species was best classified in a novel genus for which we propose the name Brytella acorum gen. nov., sp. nov., with LMG 32668T (=CECT 30723T) as the type strain. The B. acorum genomes encode a complete but modified tricarboxylic acid cycle, and complete pentose phosphate, pyruvate oxidation and gluconeogenesis pathways. The absence of 6-phosphofructokinase which rendered the glycolysis pathway non-functional, and an energy metabolism that included both aerobic respiration and oxidative fermentation are typical metabolic characteristics of acetic acid bacteria. Neither genome encodes nitrogen fixation or nitrate reduction genes, but both genomes encode genes for the biosynthesis of a broad range of amino acids. Antibiotic resistance genes or virulence factors are absent.
Collapse
Affiliation(s)
- Atena Sadat Sombolestani
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Dries Bongaerts
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Eliza Depoorter
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Ilse Cleenwerck
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Anneleen D Wieme
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Scott J Britton
- Department of Research & Development, Brewery Duvel Moortgat, 2870 Puurs-Sint-Amands, Belgium; International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
4
|
New insights into the role of key microorganisms and wooden barrels during lambic beer fermentation and maturation. Int J Food Microbiol 2023; 394:110163. [PMID: 36913841 DOI: 10.1016/j.ijfoodmicro.2023.110163] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
Belgian lambic beers are still produced through traditional craftsmanship. They rely on a spontaneous fermentation and maturation process that is entirely carried out in wooden barrels. The latter are used repetitively and may introduce some batch-to-batch variability. The present systematic and multiphasic study dealt with two parallel lambic beer productions carried out in nearly identical wooden barrels making use of the same cooled wort. It encompassed a microbiological and metabolomic approach. Further, a taxonomic classification and metagenome-assembled genome (MAG) investigation was based on shotgun metagenomics. These investigations provided new insights into the role of these wooden barrels and key microorganisms for this process. Indeed, besides their role in traditionality, the wooden barrels likely helped in establishing the stable microbial ecosystem of lambic beer fermentation and maturation by acting as an inoculation source of the necessary microorganisms, thereby minimizing batch-to-batch variations. They further provided a microaerobic environment, which aided in achieving the desirable succession of the different microbial communities for a successful lambic beer production process. Moreover, these conditions prevented excessive growth of acetic acid bacteria and, therefore, uncontrolled production of acetic acid and acetoin, which may lead to flavor deviations in lambic beer. Concerning the role of less studied key microorganisms for lambic beer production, it was shown that the Acetobacter lambici MAG contained several acid tolerance mechanisms toward the harsh environment of maturing lambic beer, whereas genes related to sucrose and maltose/maltooligosaccharide consumption and the glyoxylate shunt were absent. Further, a Pediococcus damnosus MAG possessed a gene encoding ferulic acid decarboxylase, possibly contributing to 4-vinyl compound production, as well as several genes, likely plasmid-based, related to hop resistance and biogenic amine production. Finally, contigs related to Dekkera bruxellensis and Brettanomyces custersianus did not possess genes involved in glycerol production, emphasizing the need for alternative external electron acceptors for redox balancing.
Collapse
|
5
|
Guzman J, Won M, Poehlein A, Sombolestani AS, Mayorga-Ch D, Laureys D, Clippeleer JD, Kämpfer P, Daniel R, Vilcinskas A, Vandamme P, Kwon SW. Aristophania vespae gen. nov., sp. nov., isolated from wasps, is related to Bombella and Oecophyllibacter, isolated from bees and ants. Int J Syst Evol Microbiol 2023; 73. [PMID: 36749681 DOI: 10.1099/ijsem.0.005699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acetic acid bacteria (family Acetobacteraceae) are found in the gut of most insects. Two clades are currently recognized: Commensalibacter-Entomobacter and Bombella-Oecophyllibacter. The latter group is only found in hymenopteran insects and the described species have been isolated from bees and ants. In this study, two new strains DDB2-T1T (=KACC 21507T=LMG 31759T) and DM15PD (=CCM 9165=DSM 112731=KACC 22353=LMG 32454) were isolated from wasps collected in the Republic of Korea and Germany, respectively. Molecular and phenotypic analysis revealed that the strains are closely related, with 16S rRNA gene sequences showing 100 % identity and genomic average nucleotide identity (ANI) values ≥99 %. The closest related species based on type strain 16S rRNA gene sequences are Swingsia samuiensis, Acetobacter peroxydans, Bombella favorum and Bombella intestini (94.8-94.7% identity), whereas the closest related species based on type strain genome analysis are Saccharibacter floricola and Bombella intestini (ANI values of 68.8 and 68.2 %, respectively). The reconstruction of a phylogenomic tree based on 107 core proteins revealed that the branch leading to DDB2-T1T and DM15PD is localized between Oecophyllibacter and Saccharibacter-Bombella. Further genomic distance metrics such as ANI, percentage of conserved proteins and alignment fraction values were consistent with these strains belonging to a new genus. The key phenotypic characteristics were one MALDI-TOF-MS peak (m/z=4601.9±2.0) and the ability to produce acid from d-arabinose. Based on this polyphasic approach, including phylogenetics, phylogenomics, genome distance calculations, ecology and phenotypic characteristics, we propose to name the novel strains Aristophania vespae gen. nov., sp. nov., with the type strain DDB2-T1T (=KACC 21507T=LMG 31759T).
Collapse
Affiliation(s)
- Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Miyoung Won
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Atena Sadat Sombolestani
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Daniela Mayorga-Ch
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - David Laureys
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jessika De Clippeleer
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Kämpfer
- Institute for Applied Microbiology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
6
|
Heo J, Sombolestani AS, Laureys D, De Clippeleer J, Won M, Vandamme P, Kwon SW. Acetobacter vaccinii sp. nov., a novel acetic acid bacterium isolated from blueberry fruit ( Vaccinium corymbosum L.). Int J Syst Evol Microbiol 2022; 72. [PMID: 36748597 DOI: 10.1099/ijsem.0.005614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Strain C17-3T was isolated from blueberry fruits collected from a farmland located in Damyang-gun, Jeollanam-do, Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences allocated strain C17-3T to the genus Acetobacter, where it occupied a rather isolated line of descent with Acetobacter ghanensis 430AT and Acetobacter lambici LMG 27439T as the nearest neighbours (98.9 % sequence similarity to both species). The highest average nucleotide identity and digital DNA-DNA hybridization values were 76.3 % and 21.7 % with Acetobacter garciniae TBRC 12339T; both values were well below the cutoff values for species delineation. Cells are strictly aerobic, Gram-stain-negative rods, catalase-positive and oxidase-negative. The DNA G+C content calculated from the genome sequence was 59.2 %. Major fatty acids were summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) and C19 : 0cyclo ω8c. The major isoprenoid quinone was ubiquinone 9. On the basis of the results of phylogenetic analyses, phenotypic features and genomic comparisons, it is proposed that strain C17-3T represents a novel species of the genus Acetobacter and the name Acetobacter vaccinii sp. nov. is proposed. The type strain is C17-3T (= KACC 21233T = LMG 31758T).
Collapse
Affiliation(s)
- Jun Heo
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Atena Sadat Sombolestani
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - David Laureys
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Jessika De Clippeleer
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Miyoung Won
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|