1
|
Wali MH, Naif HM, Abdul Rahim NA, Yunus MA. Phylogenetic and Sequence Analyses of the Variable Region in the Glycoprotein Gene of the Respiratory Syncytial Virus Isolated from Iraqi Patients. Malays J Med Sci 2024; 31:133-147. [PMID: 39830110 PMCID: PMC11740820 DOI: 10.21315/mjms2024.31.6.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/22/2024] [Indexed: 01/22/2025] Open
Abstract
Background Respiratory syncytial virus (RSV) is a common aetiological agent that causes respiratory infections, especially among infants. Identifying circulating RSV genotypes is an essential strategy for understanding the spread of the virus in a certain area. Sequencing the variable regions of the attachment glycoprotein (G) gene of RSV is a quick and direct approach for identifying the genotypes. Methods This study was aimed to sequence the G gene region of RSV isolated from patients admitted to hospitals in Baghdad, Iraq, during the autumn of 2022 and winter of 2023. To achieve this goal, 150 patients with lower respiratory symptoms were screened for RSV infections. RSV-positive samples were detected and confirmed using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) approach, which involved the use of specific TaqMan primer sets targeting RSV subgroups. Then, a G gene region that included hypervariable region 2 (HVR2) was amplified and sequenced using the Sanger sequencing method. Furthermore, molecular and phylogenetic analyses were performed on the G gene region to determine the variability profile of the tested specimens. Results There were 41 (26.6%) RSV-positive cases. Of these, the RSV-B subgroup was the most prevalent (82.90%), while the RSV-A subgroup incidence rate was 17.07%. The phylogenetic analysis showed that the RSV-B isolates were related to the BA genotype and shared nucleotide sequence similarities with isolates from India, Australia and the UK. The RSV-A isolates belonged to the ON genotype and had some degree of similarities with isolates from Italy, Tunisia, and France. Conclusion Seasonal tracking of the RSV isolates would facilitate a better understanding of virus evolution, viral pathogenesis, and genetic diversity.
Collapse
Affiliation(s)
- Mohammed Hussein Wali
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Hassan Mohammad Naif
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Nur Arzuar Abdul Rahim
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Muhammad Amir Yunus
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Tramuto F, Maida CM, Randazzo G, Guzzetta V, Santino A, Li Muli R, Costantino C, Graziano G, Amodio E, Mazzucco W, Vitale F. Whole-Genome Sequencing and Genetic Diversity of Human Respiratory Syncytial Virus in Patients with Influenza-like Illness in Sicily (Italy) from 2017 to 2023. Viruses 2024; 16:851. [PMID: 38932144 PMCID: PMC11209242 DOI: 10.3390/v16060851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Monitoring the genetic variability of human respiratory syncytial virus (hRSV) is of paramount importance, especially for the potential implication of key antigenic mutations on the emergence of immune escape variants. Thus, to describe the genetic diversity and evolutionary dynamics of hRSV circulating in Sicily (Italy), a total of 153 hRSV whole-genome sequences collected from 770 hRSV-positive subjects between 2017 and 2023, before the introduction of expanded immunization programs into the population, were investigated. The phylogenetic analyses indicated that the genotypes GA.2.3.5 (ON1) for hRSV-A and GB.5.0.5a (BA9) for hRSV-B co-circulated in our region. Amino acid (AA) substitutions in the surface and internal proteins were evaluated, including the F protein antigenic sites, as the major targets of immunoprophylactic monoclonal antibodies and vaccines. Overall, the proportion of AA changes ranged between 1.5% and 22.6% among hRSV-A, whereas hRSV-B varied in the range 0.8-16.9%; the latter was more polymorphic than hRSV-A within the key antigenic sites. No AA substitutions were found at site III of both subgroups. Although several non-synonymous mutations were found, none of the polymorphisms known to potentially affect the efficacy of current preventive measures were documented. These findings provide new insights into the global hRSV molecular epidemiology and highlight the importance of defining a baseline genomic picture to monitor for future changes that might be induced by the selective pressures of immunological preventive measures, which will soon become widely available.
Collapse
Affiliation(s)
- Fabio Tramuto
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Carmelo Massimo Maida
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Giulia Randazzo
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Valeria Guzzetta
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Arianna Santino
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Rita Li Muli
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Claudio Costantino
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Giorgio Graziano
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Emanuele Amodio
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
| | - Walter Mazzucco
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Francesco Vitale
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| |
Collapse
|
3
|
Avadhanula V, Agustinho DP, Menon VK, Chemaly RF, Shah DP, Qin X, Surathu A, Doddapaneni H, Muzny DM, Metcalf GA, Cregeen SJ, Gibbs RA, Petrosino JF, Sedlazeck FJ, Piedra PA. Inter and intra-host diversity of RSV in hematopoietic stem cell transplant adults with normal and delayed viral clearance. Virus Evol 2023; 10:vead086. [PMID: 38361816 PMCID: PMC10868550 DOI: 10.1093/ve/vead086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024] Open
Abstract
Respiratory syncytial virus (RSV) infection in immunocompromised individuals often leads to prolonged illness, progression to severe lower respiratory tract infection, and even death. How the host immune environment of the hematopoietic stem cell transplant (HCT) adults can affect viral genetic variation during an acute infection is not understood well. In the present study, we performed whole genome sequencing of RSV/A or RSV/B from samples collected longitudinally from HCT adults with normal (<14 days) and delayed (≥14 days) RSV clearance who were enrolled in a ribavirin trial. We determined the inter-host and intra-host genetic variation of RSV and the effect of mutations on putative glycosylation sites. The inter-host variation of RSV is centered in the attachment (G) and fusion (F) glycoprotein genes followed by polymerase (L) and matrix (M) genes. Interestingly, the overall genetic variation was constant between normal and delayed clearance groups for both RSV/A and RSV/B. Intra-host variation primarily occurred in the G gene followed by non-structural protein (NS1) and L genes; however, gain or loss of stop codons and frameshift mutations appeared only in the G gene and only in the delayed viral clearance group. Potential gain or loss of O-linked glycosylation sites in the G gene occurred both in RSV/A and RSV/B isolates. For RSV F gene, loss of N-linked glycosylation site occurred in three RSV/B isolates within an antigenic epitope. Both oral and aerosolized ribavirin did not cause any mutations in the L gene. In summary, prolonged viral shedding and immune deficiency resulted in RSV variation, especially in structural mutations in the G gene, possibly associated with immune evasion. Therefore, sequencing and monitoring of RSV isolates from immunocompromised patients are crucial as they can create escape mutants that can impact the effectiveness of upcoming vaccines and treatments.
Collapse
Affiliation(s)
| | | | - Vipin Kumar Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roy F Chemaly
- Departments of Infectious Diseases, Infection Control & Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dimpy P Shah
- Department of Population Health Sciences, Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anil Surathu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Harshavardhan Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ginger A Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara Javornik Cregeen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Computer Science, Rice University, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Yan Y, Wang D, Li Y, Wu Z, Liu H, Shi Y, Lu X, Liu D. Prevalence, variation, and transmission patterns of human respiratory syncytial virus from pediatric patients in Hubei, China during 2020-2021. Virol Sin 2023; 38:363-372. [PMID: 37146717 PMCID: PMC10311268 DOI: 10.1016/j.virs.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is a severe threat to children and a main cause of acute lower respiratory tract infections. Nevertheless, the intra-host evolution and inter-regional diffusion of RSV are little known. In this study, we performed a systematic surveillance in hospitalized children in Hubei during 2020-2021, in which 106 RSV-positive samples were detected both clinically and by metagenomic next generation sequencing (mNGS). RSV-A and RSV-B groups co-circulated during surveillance with RSV-B being predominant. About 46 high-quality genomes were used for further analyses. A total of 163 intra-host nucleotide variation (iSNV) sites distributed in 34 samples were detected, and glycoprotein (G) gene was the most enriched gene for iSNVs, with non-synonymous substitutions more than synonymous substitutions. Evolutionary dynamic analysis showed that the evolutionary rates of G and NS2 genes were higher, and the population size of RSV groups changed over time. We also found evidences of inter-regional diffusion from Europe and Oceania to Hubei for RSV-A and RSV-B, respectively. This study highlighted the intra-host and inter-host evolution of RSV, and provided some evidences for understanding the evolution of RSV.
Collapse
Affiliation(s)
- Yi Yan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Decheng Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ying Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 101408, China; Department of Respiratory Medicine, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China; Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhiyong Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yue Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaoxia Lu
- Department of Respiratory Medicine, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China; Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
5
|
Morens DM, Taubenberger JK, Fauci AS. Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell Host Microbe 2023; 31:146-157. [PMID: 36634620 PMCID: PMC9832587 DOI: 10.1016/j.chom.2022.11.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023]
Abstract
Viruses that replicate in the human respiratory mucosa without infecting systemically, including influenza A, SARS-CoV-2, endemic coronaviruses, RSV, and many other "common cold" viruses, cause significant mortality and morbidity and are important public health concerns. Because these viruses generally do not elicit complete and durable protective immunity by themselves, they have not to date been effectively controlled by licensed or experimental vaccines. In this review, we examine challenges that have impeded development of effective mucosal respiratory vaccines, emphasizing that all of these viruses replicate extremely rapidly in the surface epithelium and are quickly transmitted to other hosts, within a narrow window of time before adaptive immune responses are fully marshaled. We discuss possible approaches to developing next-generation vaccines against these viruses, in consideration of several variables such as vaccine antigen configuration, dose and adjuventation, route and timing of vaccination, vaccine boosting, adjunctive therapies, and options for public health vaccination polices.
Collapse
Affiliation(s)
- David M. Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding author
| | - Anthony S. Fauci
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Rios Guzman E, Hultquist JF. Clinical and biological consequences of respiratory syncytial virus genetic diversity. Ther Adv Infect Dis 2022; 9:20499361221128091. [PMID: 36225856 PMCID: PMC9549189 DOI: 10.1177/20499361221128091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common etiological agents of global acute respiratory tract infections with a disproportionate burden among infants, individuals over the age of 65, and immunocompromised populations. The two major subtypes of RSV (A and B) co-circulate with a predominance of either group during different epidemic seasons, with frequently emerging genotypes due to RSV's high genetic variability. Global surveillance systems have improved our understanding of seasonality, disease burden, and genomic evolution of RSV through genotyping by sequencing of attachment (G) glycoprotein. However, the integration of these systems into international infrastructures is in its infancy, resulting in a relatively low number (~2200) of publicly available RSV genomes. These limitations in surveillance hinder our ability to contextualize RSV evolution past current canonical attachment glycoprotein (G)-oriented understanding, thus resulting in gaps in understanding of how genetic diversity can play a role in clinical outcome, therapeutic efficacy, and the host immune response. Furthermore, utilizing emerging RSV genotype information from surveillance and testing the impact of viral evolution using molecular techniques allows us to establish causation between the clinical and biological consequences of arising genotypes, which subsequently aids in informed vaccine design and future vaccination strategy. In this review, we aim to discuss the findings from current molecular surveillance efforts and the gaps in knowledge surrounding the consequence of RSV genetic diversity on disease severity, therapeutic efficacy, and RSV-host interactions.
Collapse
Affiliation(s)
- Estefany Rios Guzman
- Department of Medicine, Division of Infectious
Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL,
USA
- Center for Pathogen Genomics and Microbial
Evolution, Institute for Global Health, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| | - Judd F. Hultquist
- Robert H. Lurie Medical Research Center,
Northwestern University, 9-141, 303 E. Superior St., Chicago, IL 60611,
USA
- Department of Medicine, Division of Infectious
Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL,
USA
- Center for Pathogen Genomics and Microbial
Evolution, Institute for Global Health, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| |
Collapse
|
7
|
Lee CY, Fang YP, Wang LC, Chou TY, Liu HF. Genetic Diversity and Molecular Epidemiology of Circulating Respiratory Syncytial Virus in Central Taiwan, 2008-2017. Viruses 2021; 14:v14010032. [PMID: 35062237 PMCID: PMC8777914 DOI: 10.3390/v14010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, we investigated the molecular evolution and phylodynamics of respiratory syncytial virus (RSV) over 10 consecutive seasons (2008–2017) and the genetic variability of the RSV genotypes ON1 and BA in central Taiwan. The ectodomain region of the G gene was sequenced for genotyping. The nucleotide and deduced amino acid sequences of the second hypervariable region of the G protein in RSV ON1 and BA were analyzed. A total of 132 RSV-A and 81 RSV-B isolates were obtained. Phylogenetic analysis revealed that the NA1, ON1, and BA9 genotypes were responsible for the RSV epidemics in central Taiwan in the study period. For RSV-A, the NA1 genotype predominated during the 2008–2011 seasons. The ON1 genotype was first detected in 2011 and replaced NA1 after 2012. For RSV-B, the BA9 and BA10 genotypes cocirculated from 2008 to 2010, but the BA9 genotype has predominated since 2012. Amino acid sequence alignments revealed the continuous evolution of the G gene in the ectodomain region. The predicted N-glycosylation sites were relatively conserved in the ON1 (site 237 and 318) and BA9 (site 296 and 310) genotype strains. Our results contribute to the understanding and prediction of the temporal evolution of RSV at the local level.
Collapse
Affiliation(s)
- Chun-Yi Lee
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua 505029, Taiwan; (C.-Y.L.); (Y.-P.F.)
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yu-Ping Fang
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua 505029, Taiwan; (C.-Y.L.); (Y.-P.F.)
| | - Li-Chung Wang
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsin-Fu Liu
- Department of Medical Research, Mackay Memorial Hospital, Taipei 25160, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 25245, Taiwan
- Correspondence:
| |
Collapse
|
8
|
Sahu U, Biswas D, Prajapati VK, Singh AK, Samant M, Khare P. Interleukin-17-A multifaceted cytokine in viral infections. J Cell Physiol 2021; 236:8000-8019. [PMID: 34133758 PMCID: PMC8426678 DOI: 10.1002/jcp.30471] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Viral infections are a major threat to the human population due to the lack of selective therapeutic measures. The morbidity and mortality reported worldwide are very alarming against viral pathogens. The proinflammatory environment is required for viral inhibition by initiating the host immune response. The host immune response fights these pathogens by secreting different cytokines. Interleukin-17 (IL-17) a proinflammatory cytokine mainly produced by T helper type 17 cells, plays a vital role in the regulation of host immune response against various pathogens, including viruses. However, dysregulated production of IL-17 induces chronic inflammation, autoimmune disorders, and may lead to cancer. Recent studies suggest that IL-17 is not only involved in the antiviral immune response but also promotes virus-mediated illnesses. In this review, we discuss the protective and pathogenic role of IL-17 against various viral infections. A detailed understanding of IL-17 during viral infections could contribute to improve therapeutic measures and enable the development of an efficient and safe IL-17 based immunotherapy.
Collapse
Affiliation(s)
- Utkarsha Sahu
- Department of MicrobiologyAll India Institute of Medical SciencesBhopalMadhya PradeshIndia
| | - Debasis Biswas
- Department of MicrobiologyAll India Institute of Medical SciencesBhopalMadhya PradeshIndia
| | | | - Anirudh K. Singh
- Department of MicrobiologyAll India Institute of Medical SciencesBhopalMadhya PradeshIndia
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of ZoologyKumaun UniversityAlmoraUttarakhandIndia
| | - Prashant Khare
- Department of MicrobiologyAll India Institute of Medical SciencesBhopalMadhya PradeshIndia
| |
Collapse
|
9
|
Ruiz-Gómez X, Vázquez-Pérez JA, Flores-Herrera O, Esparza-Perusquía M, Santiago-Olivares C, Gaona-Bernal J, Gómez B, Mejía-Nepomuceno F, Méndez C, Rivera-Toledo E. Steady-state persistence of respiratory syncytial virus in a macrophage-like cell line and sequence analysis of the persistent viral genome. Virus Res 2021; 297:198367. [PMID: 33684421 DOI: 10.1016/j.virusres.2021.198367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 03/01/2021] [Indexed: 01/06/2023]
Abstract
Long-term infection by human respiratory syncytial virus (hRSV) has been reported in immunocompromised patients. Cell lines are valuable in vitro model systems to study mechanisms associated with viral persistence. Persistent infections in cell cultures have been categorized at least as in "carrier-state", where there exist a low proportion of cells infected by a lytic virus, and as in "steady-state", where most of cells are infected, but in absence of cytophatic effect. Here, we showed that hRSV maintained a steady-state persistence in a macrophage-like cell line after 120 passages, since the viral genome was detected in all of the cells analyzed by fluorescence in situ hybridization, whereas only defective viruses were identified by sucrose gradients and titration assay. Interestingly, eight percent of cells harboring the hRSV genome revealed undetectable expression of the viral nucleoprotein N; however, when this cell population was sorted by flow cytometry and independently cultured, viral protein expression was induced at detectable levels since the first post-sorting passage, supporting that sorted cells harbored the viral genome. Sequencing of the persistent hRSV genome obtained from virus collected from cell-culture supernatants, allowed assembling of a complete genome that displayed 24 synonymous and 38 nonsynonymous substitutions in coding regions, whereas extragenic and intergenic regions displayed 12 substitutions, two insertions and one deletion. Previous reports characterizing mutations in extragenic regulatory sequences of hRSV, suggested that some mutations localized at the 3' leader region of our persistent virus might alter viral transcription and replication, as well as assembly of viral nucleocapsids. Besides, substitutions in P, F and G proteins might contribute to altered viral assembly, budding and membrane fusion, reducing the cytopathic effect and in consequence, contributing to host-cell survival. Full-length mutant genomes might be part of the repertoire of defective viral genomes formed during hRSV infections, contributing to the establishment and maintenance of virus persistence.
Collapse
Affiliation(s)
- Ximena Ruiz-Gómez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| | | | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| | - Mercedes Esparza-Perusquía
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| | - Carlos Santiago-Olivares
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| | - Jorge Gaona-Bernal
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Beatriz Gómez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| | | | - Carmen Méndez
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| | - Evelyn Rivera-Toledo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
10
|
Lu L, Robertson G, Ashworth J, Pham Hong A, Shi T, Ivens A, Thwaites G, Baker S, Woolhouse M. Epidemiology and Phylogenetic Analysis of Viral Respiratory Infections in Vietnam. Front Microbiol 2020; 11:833. [PMID: 32499763 PMCID: PMC7242649 DOI: 10.3389/fmicb.2020.00833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Acute respiratory infections (ARIs) impose a major public health burden on fragile healthcare systems of developing Southeast Asian countries such as Vietnam. The epidemiology, genetic diversity and transmission patterns of respiratory viral pathogens that circulate in this region are not well characterized. We used RT-PCR to screen for 14 common respiratory viruses in nasal/throat samples from 4326 ARI patients from 5 sites in Vietnam during 2012-2016. 64% of patients tested positive for viruses; 14% tested positive multiple co-infecting viruses. The most frequently detected viruses were Respiratory syncytial virus (RSV, 23%), Human Rhinovirus (HRV, 13%), Influenza A virus (IAV, 11%) and Human Bocavirus (HBoV, 7%). RSV infections peaked in July to October, were relatively more common in children <1 year and in the northernmost hospital. IAV infections peaked in December to February and were relatively more common in patients >5 years in the central region. Coinfection with IAV or RSV was associated with increased disease severity compared with patients only infected with HBoV or HRV. Over a hundred genomes belonging to 13 families and 24 genera were obtained via metagenomic sequencing, including novel viruses and viruses less commonly associated with ARIs. Phylogenetic and phylogeographic analyses further indicated that neighboring countries were the most likely source of many virus lineages causing ARIs in Vietnam and estimated the period that specific lineages have been circulating. Our study illustrates the value of applying the state-of-the-art virus diagnostic methods (multiplex RT-PCR and metagenomic sequencing) and phylodynamic analyses at a national level to generate an integrated picture of viral ARI epidemiology.
Collapse
Affiliation(s)
- Lu Lu
- Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gail Robertson
- Statistical Consultancy Unit, School of Mathematics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jordan Ashworth
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Anh Pham Hong
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Ting Shi
- Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Guy Thwaites
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mark Woolhouse
- Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Wilmschen S, Schneider S, Peters F, Bayer L, Issmail L, Bánki Z, Grunwald T, von Laer D, Kimpel J. RSV Vaccine Based on Rhabdoviral Vector Protects after Single Immunization. Vaccines (Basel) 2019; 7:E59. [PMID: 31277325 PMCID: PMC6790003 DOI: 10.3390/vaccines7030059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
The respiratory syncytial virus (RSV) is one major cause of lower respiratory tract infections in childhood and an effective vaccine is still not available. We previously described a new rhabdoviral vector vaccine, VSV-GP, a variant of the vesicular stomatitis virus (VSV), where the VSV glycoprotein G is exchanged by the glycoprotein GP of the lymphocytic choriomeningitis virus. Here, we evaluated VSV-GP as vaccine vector for RSV with the aim to induce RSV neutralizing antibodies. Wild-type F (Fwt) or a codon optimized version (Fsyn) were introduced at position 5 into the VSV-GP genome. Both F versions were efficiently expressed in VSV-GP-F infected cells and incorporated into VSV-GP particles. In mice, high titers of RSV neutralizing antibodies were induced already after prime and subsequently boosted by a second immunization. After challenge with RSV, viral loads in the lungs of immunized mice were reduced by 2-3 logs with no signs of an enhanced disease induced by the vaccination. Even a single intranasal immunization significantly reduced viral load by a factor of more than 100-fold. RSV neutralizing antibodies were long lasting and mice were still protected when challenged 20 weeks after the boost. Therefore, VSV-GP is a promising candidate for an effective RSV vaccine.
Collapse
Affiliation(s)
- Sarah Wilmschen
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sabrina Schneider
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Felix Peters
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lea Bayer
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Leila Issmail
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Grunwald
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Dorothee von Laer
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
12
|
Choi SH, Park KS, Kim YJ. Analysis of respiratory syncytial virus fusion protein from clinical isolates of Korean children in palivizumab era, 2009–2015. J Infect Chemother 2019; 25:514-519. [DOI: 10.1016/j.jiac.2019.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/07/2019] [Accepted: 02/20/2019] [Indexed: 02/07/2023]
|
13
|
La Vincente SF, von Mollendorf C, Ulziibayar M, Satzke C, Dashtseren L, Fox KK, Dunne EM, Nguyen CD, de Campo J, de Campo M, Thomson H, Surenkhand G, Demberelsuren S, Bujinlkham S, Do LAH, Narangerel D, Cherian T, Mungun T, Mulholland EK. Evaluation of a phased pneumococcal conjugate vaccine introduction in Mongolia using enhanced pneumonia surveillance and community carriage surveys: a study protocol for a prospective observational study and lessons learned. BMC Public Health 2019; 19:333. [PMID: 30898094 PMCID: PMC6429832 DOI: 10.1186/s12889-019-6639-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/08/2019] [Indexed: 11/17/2022] Open
Abstract
Background Streptococcus pneumoniae causes substantial morbidity and mortality among children. The introduction of pneumococcal conjugate vaccines (PCV) has the potential to dramatically reduce disease burden. As with any vaccine, it is important to evaluate PCV impact, to help guide decision-making and resource-allocation. Measuring PCV impact can be complex, particularly to measure impact on one of the most common and significant diseases caused by the pneumococcus, namely pneumonia. Here we outline the protocol developed to evaluate the impact of 13-valent PCV (PCV13) on childhood pneumonia in Mongolia, and a number of lessons learned in implementing the evaluation that may be helpful to other countries seeking to undertake pneumonia surveillance. Methods From 2016 PCV13 was introduced in a phased manner into the routine immunisation programme with some catch-up by the Government of Mongolia. We designed an evaluation to measure vaccine impact in children aged 2–59 months with hospitalised radiological pneumonia as a primary outcome, with secondary objectives to measure impact on clinically-defined pneumonia, nasopharyngeal carriage of S. pneumoniae among pneumonia patients and in the community, and severe respiratory infection associated with RSV and/or influenza. We enhanced an existing hospital-based pneumonia surveillance system by incorporating additional study components (nasopharyngeal swabbing using standard methods, C-reactive protein, risk factor assessment) and strengthening clinical practices, such as radiology as well as monitoring and training. We conducted cross-sectional community carriage surveys to provide data on impact on carriage among healthy children. Discussion Establishing a robust surveillance system is an important component of monitoring the impact of PCV within a country. The enhanced surveillance system in Mongolia will facilitate assessment of PCV13 impact on pneumonia, with radiological confirmed disease as the primary outcome. Key lessons arising from this evaluation have included the importance of establishing a core group of in-country staff to be responsible for surveillance activities and to work closely with this team; to be aware of external factors that could potentially influence disease burden estimates; to be flexible in data collection processes to respond to changing circumstances and lastly to ensure a consistent application of the pneumonia surveillance case definition throughout the study period.
Collapse
Affiliation(s)
- S F La Vincente
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Australia. .,Department of Paediatrics, The University of Melbourne, Melbourne, Australia. .,Telethon Kids Institute, Perth, Australia.
| | - C von Mollendorf
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - M Ulziibayar
- National Center of Communicable Diseases, Ulaanbaatar, Mongolia
| | - C Satzke
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia.,Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - L Dashtseren
- National Center of Communicable Diseases, Ulaanbaatar, Mongolia
| | - K K Fox
- World Health Organization Western Pacific Regional Office, Manila, Philippines
| | - E M Dunne
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - C D Nguyen
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - J de Campo
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Radiology, The University of Melbourne, Melbourne, Australia
| | - M de Campo
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Radiology, The University of Melbourne, Melbourne, Australia
| | - H Thomson
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Australia
| | - G Surenkhand
- National Center of Communicable Diseases, Ulaanbaatar, Mongolia
| | - S Demberelsuren
- World Health Organization Country Office, Ulaanbaatar, Mongolia
| | - S Bujinlkham
- National Center of Communicable Diseases, Ulaanbaatar, Mongolia
| | - L A H Do
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | | | - T Cherian
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - T Mungun
- National Center of Communicable Diseases, Ulaanbaatar, Mongolia
| | - E K Mulholland
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia.,London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
14
|
Huang SW, Hung SJ, Wang JR. Application of deep sequencing methods for inferring viral population diversity. J Virol Methods 2019; 266:95-102. [PMID: 30690049 DOI: 10.1016/j.jviromet.2019.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/11/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022]
Abstract
The first deep sequencing method was announced in 2005. Due to an increasing number of sequencing data and a reduction in the costs of each sequencing dataset, this innovative technique was soon applied to genetic investigations of viral genome diversity in various viruses, particularly RNA viruses. These deep sequencing findings documented viral epidemiology and evolution and provided high-resolution data on the genetic changes in viral populations. Here, we review deep sequencing platforms that have been applied in viral quasispecies studies. Further, we discuss recent deep sequencing studies on viral inter- and intrahost evolution, drug resistance, and humoral immune selection, especially in emerging and re-emerging viruses. Deep sequencing methods are becoming the standard for providing comprehensive results of viral population diversity, and their applications are discussed.
Collapse
Affiliation(s)
- Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Su-Jhen Hung
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan.
| |
Collapse
|
15
|
Pichon M, Picard C, Simon B, Gaymard A, Renard C, Massenavette B, Malcus C, Monneret G, Morfin-Sherpa F, Valette M, Javouhey E, Millat G, Lina B, Josset L, Escuret V. Clinical management and viral genomic diversity analysis of a child's influenza A(H1N1)pdm09 infection in the context of a severe combined immunodeficiency. Antiviral Res 2018; 160:1-9. [DOI: 10.1016/j.antiviral.2018.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022]
|
16
|
Dong YW, Dai LH, Ye WJ, Chen XF, Dong L. [A molecular epidemiological study of respiratory syncytial virus circulating in southern Zhejiang Province, China, from 2009 to 2014]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:904-910. [PMID: 30477620 PMCID: PMC7389031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To find out the prevalence of respiratory syncytial virus (RSV) genotypes in southern Zhejiang Province, China, and to study the genetic characteristics of G protein from subtype A of RSV. METHODS The lower respiratory tract secretions of children under 5 years of age who were hospitalized for pneumonia and bronchiolitis in three hospitals in southern Zhejiang Province from July 2009 to June 2014 were collected. Direct immunofluorescence assay was used to detect RSV antigens from the collected secretions. A total of 200 samples were randomly selected from RSV-positive specimens in each prevailing year (from July of a specific year to June of the next year). RT-PCR was used to determine RSV subtypes, and the near-full length gene sequence of G protein from subtype A was amplified and sequenced to identify the genotype. RESULTS A total of 25 449 samples of lower respiratory tract secretions were collected from 2009 to 2014, among which 6 416 (25.21%) samples were RSV-positive. Among the 1 000 RSV-positive specimens randomly sampled, 462 strains (46.2%) were subtype A, and 538 strains (53.8%) were subtype B. Subtype A accounted for 22.5%, 74.5%, 84.5%, 19.0%, and 30.5% of the total strains in each year from 2009 to 2014. A total of 25 RSV subtype A strains were randomly sampled and sent out for bidirectional sequencing in each year, which confirmed 52 positive subtype A strains. Four genotypes of subtype A strains were obtained from the above strains, including NA1 (39 strains), NA4 (1 strain), ON1 (10 strains), and GA2 (2 strains). NA1 was the dominant genotype between 2009 and 2012, and ON1 was the only genotype of subtype A during 2013-2014. The nucleotide homology and amino acid homology between the G protein of subtype A and the prototype strain A2 were 80.7%-89.3% and 74.4%-82.6%, respectively. The nucleotide homology and amino acid homology between the isolates of subtype A were 81.5%-100% and 80.2%-100%, respectively. CONCLUSIONS In southern Zhejiang Province from 2009 to 2014, there was a co-circulation of RSV subtypes A and B, as well as a co-circulation of several different genotypes of RSV subtype A, which had highly variable G protein genes.
Collapse
Affiliation(s)
- Yi-Wei Dong
- Department of Pulmonology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | | | | | | | | |
Collapse
|
17
|
Dong YW, Dai LH, Ye WJ, Chen XF, Dong L. [A molecular epidemiological study of respiratory syncytial virus circulating in southern Zhejiang Province, China, from 2009 to 2014]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:904-910. [PMID: 30477620 PMCID: PMC7389031 DOI: 10.7499/j.issn.1008-8830.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To find out the prevalence of respiratory syncytial virus (RSV) genotypes in southern Zhejiang Province, China, and to study the genetic characteristics of G protein from subtype A of RSV. METHODS The lower respiratory tract secretions of children under 5 years of age who were hospitalized for pneumonia and bronchiolitis in three hospitals in southern Zhejiang Province from July 2009 to June 2014 were collected. Direct immunofluorescence assay was used to detect RSV antigens from the collected secretions. A total of 200 samples were randomly selected from RSV-positive specimens in each prevailing year (from July of a specific year to June of the next year). RT-PCR was used to determine RSV subtypes, and the near-full length gene sequence of G protein from subtype A was amplified and sequenced to identify the genotype. RESULTS A total of 25 449 samples of lower respiratory tract secretions were collected from 2009 to 2014, among which 6 416 (25.21%) samples were RSV-positive. Among the 1 000 RSV-positive specimens randomly sampled, 462 strains (46.2%) were subtype A, and 538 strains (53.8%) were subtype B. Subtype A accounted for 22.5%, 74.5%, 84.5%, 19.0%, and 30.5% of the total strains in each year from 2009 to 2014. A total of 25 RSV subtype A strains were randomly sampled and sent out for bidirectional sequencing in each year, which confirmed 52 positive subtype A strains. Four genotypes of subtype A strains were obtained from the above strains, including NA1 (39 strains), NA4 (1 strain), ON1 (10 strains), and GA2 (2 strains). NA1 was the dominant genotype between 2009 and 2012, and ON1 was the only genotype of subtype A during 2013-2014. The nucleotide homology and amino acid homology between the G protein of subtype A and the prototype strain A2 were 80.7%-89.3% and 74.4%-82.6%, respectively. The nucleotide homology and amino acid homology between the isolates of subtype A were 81.5%-100% and 80.2%-100%, respectively. CONCLUSIONS In southern Zhejiang Province from 2009 to 2014, there was a co-circulation of RSV subtypes A and B, as well as a co-circulation of several different genotypes of RSV subtype A, which had highly variable G protein genes.
Collapse
Affiliation(s)
- Yi-Wei Dong
- Department of Pulmonology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | | | | | | | | |
Collapse
|
18
|
Snoeck CJ, Ponghsavath V, Luetteke N, Kaufmann S, Sausy A, Samountry B, Jutavijittum P, Weber B, Muller CP. Etiology of viral respiratory infections in Northern Lao People's Democratic Republic. J Med Virol 2018; 90:1553-1558. [PMID: 29896913 PMCID: PMC7167017 DOI: 10.1002/jmv.25237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/05/2018] [Indexed: 12/01/2022]
Abstract
In Lao People's Democratic Republic (PDR), acute respiratory infections overburden the health care system, but viral etiology, genetic diversity, and seasonality, especially in light of the introduction of influenza vaccination in the country, are poorly understood. From August 2010 to April 2011, 309 outpatients were recruited at the Luang Prabang Provincial Hospital covering highland Lao communities. Nasopharyngeal swabs were screened for the presence of 13 respiratory viruses. At least one virus was detected in 69.6% and dual/triple viral infections in 12.9%/1.9% of the patients. Influenza A and B viruses combined were the most frequently detected pathogens, followed by human adenovirus and respiratory syncytial virus (RSV). The other viruses were detected in less than 10% of the patients. Phylogenetic analyses on a representative set of RSV strains revealed that, while otherwise very rare, the RSV‐B CB1/THB genotype cocirculated with other common genotypes. A single wave of influenza virus and RSV activity was observed during the rainy season, providing further support to influenza vaccination before the onset of the rains. This study provides recommendations for influenza vaccination that still needs optimization and highlights the need for revised guidelines for treatment and prevention of respiratory infections in Lao PDR, as well as for increased surveillance efforts.
Collapse
Affiliation(s)
- Chantal J Snoeck
- Infectious Disease Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Nina Luetteke
- Infectious Disease Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Aurélie Sausy
- Infectious Disease Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Bounthome Samountry
- Department of Pathology, Faculty of Medicine, University of Health Sciences, Vientiane, Lao PDR
| | - Prapan Jutavijittum
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Claude P Muller
- Infectious Disease Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Lao-Lux-Laboratory, Institut Pasteur du Laos, Vientiane, Lao PDR.,Laboratoire National de Santé, Dudelange, Luxembourg
| |
Collapse
|
19
|
Haider MSH, Khan WH, Deeba F, Ali S, Ahmed A, Naqvi IH, Dohare R, Alsenaidy HA, Alsenaidy AM, Broor S, Parveen S. BA9 lineage of respiratory syncytial virus from across the globe and its evolutionary dynamics. PLoS One 2018; 13:e0193525. [PMID: 29694383 PMCID: PMC5919079 DOI: 10.1371/journal.pone.0193525] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/13/2018] [Indexed: 11/29/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an important pathogen of global significance. The BA9 is one of the most predominant lineages of the BA genotype of group B RSV that has acquired a 60bp duplication in its G protein gene. We describe the local and global evolutionary dynamics of the second hyper variable region in the C- terminal of the G protein gene of the BA9 lineage. A total of 418 sequences (including 31 study and 387 GenBank strains) from 29 different countries were used for phylogenetic analysis. This analysis showed that the study strains clustered with BA (BA9 and BA8) and SAB4 genotype of group B RSV. We performed time-scaled evolutionary clock analyses using Bayesian Markov chain Monte Carlo methods. We also carried out glycosylation, selection pressure, mutational, entropy and Network analyses of the BA9 lineage. The time to the most recent common ancestor (tMRCA) of the BA genotype and BA9 lineage were estimated to be the years 1995 (95% HPD; 1987–1997) and 2000 (95% HPD; 1998–2001), respectively. The nucleotide substitution rate of the BA genotype [(4.58×10−3 (95% HPD; 3.89–5.29×10−3) substitution/site/year] was slightly faster than the BA9 lineage [4.03×10−3 (95% HPD; 4.65–5.2492×10−3)]. The BA9 lineage was categorized into 3 sub lineages (I, II and III) based on the Bayesian and Network analyses. The local transmission pattern suggested that BA9 is the predominant lineage of BA viruses that has been circulating in India since 2002 though showing fluctuations in its effective population size. The BA9 lineage established its global distribution with report from 23 different countries over the past 16 years. The present study augments our understanding of RSV infection, its epidemiological dynamics warranting steps towards its overall global surveillance.
Collapse
Affiliation(s)
| | - Wajihul Hasan Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Farah Deeba
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Centre for Excellence in Biotechnology Research, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Irshad H. Naqvi
- Dr. M. A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | | | | - Shobha Broor
- Department of Microbiology, Faculty of Medicine and Health Science, Shree Guru Gobind Singh Tricentenary University, Gurgaon, Haryana, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- * E-mail: ,
| |
Collapse
|
20
|
Pangesti KNA, Abd El Ghany M, Walsh MG, Kesson AM, Hill-Cawthorne GA. Molecular epidemiology of respiratory syncytial virus. Rev Med Virol 2018; 28. [PMID: 29377415 DOI: 10.1002/rmv.1968] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 01/10/2023]
Abstract
Respiratory syncytial virus (RSV) is a major cause of viral acute respiratory tract infections in young children. The virus is characterised by distinct seasonality that is dependent upon the latitude and its ability to cause reinfection. Respiratory syncytial virus demonstrates a complex molecular epidemiology pattern as multiple strains and/or genotypes cocirculate during a single epidemic. Previous studies have investigated the relationship between RSV genetic diversity, reinfection, and clinical features. Here, we review the evidence behind this relationship together with the impact that the advancement of whole genome sequencing will have upon our understanding and the need for reconsidering the classification of RSV genotypes.
Collapse
Affiliation(s)
| | - Moataz Abd El Ghany
- Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| | - Michael G Walsh
- Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| | - Alison M Kesson
- Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia.,Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, Australia
| | - Grant A Hill-Cawthorne
- School of Public Health, The University of Sydney, Sydney, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| |
Collapse
|
21
|
Hibino A, Saito R, Taniguchi K, Zaraket H, Shobugawa Y, Matsui T, Suzuki H. Molecular epidemiology of human respiratory syncytial virus among children in Japan during three seasons and hospitalization risk of genotype ON1. PLoS One 2018; 13:e0192085. [PMID: 29377949 PMCID: PMC5788364 DOI: 10.1371/journal.pone.0192085] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/16/2018] [Indexed: 12/25/2022] Open
Abstract
We investigated the genetic diversity, the circulation patterns, and risk for hospital admission of human respiratory syncytial virus (HRSV) strains in Japan between 2012 through 2015. During the study period, 744 HRSV-positive cases were identified by rapid diagnostic test. Of these, 572 samples were positive by real-time PCR; 400 (69.9%) were HRSV-A, and 172 (30.1%) were HRSV-B. HRSV-A and -B alternated as the dominant strain in the subsequent seasons. Phylogenetic tree analysis of the second hyper-variable region of the G protein classified the HRSV-A specimens into NA1 (n = 242) and ON1 (n = 114) genotypes and the HRSV-B specimens into BA9 (n = 60), and BA10 (n = 27). The ON1 genotype, containing a 72-nucleotide duplication in the G protein’s second hyper-variable region, was first detected in the 2012–2013 season but it predominated and replaced the older NA1 HRSV-A in the 2014–2015 season, which also coincided with a record number of HRSV cases reported to the National Infectious Disease Surveillance in Japan. The risk of hospitalization was 6.9 times higher for the ON1 genotype compared to NA1. In conclusion, our data showed that the emergence and predominance of the relatively new ON1 genotype in Japan was associated with a record high number of cases and increased risk for hospitalization.
Collapse
Affiliation(s)
- Akinobu Hibino
- Division of International Health (Public Health), Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Reiko Saito
- Division of International Health (Public Health), Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- * E-mail:
| | | | - Hassan Zaraket
- Division of International Health (Public Health), Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Pathology, Immunology, and Microbiology, Faculty of Medicine American University of Beirut, Beirut, Lebanon
- Center for Infectious Disease Research, Faculty of Medicine American University of Beirut, Beirut, Lebanon
| | - Yugo Shobugawa
- Division of International Health (Public Health), Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tamano Matsui
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Suzuki
- School of Nursing, Niigata Seiryo University, Niigata, Japan
| | | |
Collapse
|
22
|
Thongpan I, Mauleekoonphairoj J, Vichiwattana P, Korkong S, Wasitthankasem R, Vongpunsawad S, Poovorawan Y. Respiratory syncytial virus genotypes NA1, ON1, and BA9 are prevalent in Thailand, 2012-2015. PeerJ 2017; 5:e3970. [PMID: 29085762 PMCID: PMC5661434 DOI: 10.7717/peerj.3970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/09/2017] [Indexed: 01/04/2023] Open
Abstract
Respiratory syncytial virus (RSV) causes acute lower respiratory tract infection in infants and young children worldwide. To investigate the RSV burden in Thailand over four consecutive years (January 2012 to December 2015), we screened 3,306 samples obtained from children ≤5 years old with acute respiratory tract infection using semi-nested reverse-transcription polymerase chain reaction (RT-PCR). In all, 8.4% (277/3,306) of the specimens tested positive for RSV, most of which appeared in the rainy months of July to November. We then genotyped RSV by sequencing the G glycoprotein gene and performed phylogenetic analysis to determine the RSV antigenic subgroup. The majority (57.4%, 159/277) of the RSV belonged to subgroup A (RSV-A), of which NA1 genotype was the most common in 2012 while ON1 genotype became prevalent the following year. Among samples tested positive for RSV-B subgroup B (RSV-B) (42.6%, 118/277), most were genotype BA9 (92.6%, 87/94) with some BA10 and BA-C. Predicted amino acid sequence from the partial G region showed highly conserved N-linked glycosylation site at residue N237 among all RSV-A ON1 strains (68/68), and at residues N296 (86/87) and N310 (87/87) among RSV-B BA9 strains. Positive selection of key residues combined with notable sequence variations on the G gene contributed to the continued circulation of this rapidly evolving virus.
Collapse
Affiliation(s)
- Ilada Thongpan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - John Mauleekoonphairoj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Preeyaporn Vichiwattana
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sumeth Korkong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rujipat Wasitthankasem
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
23
|
Ogimi C, Greninger AL, Waghmare AA, Kuypers JM, Shean RC, Xie H, Leisenring WM, Stevens-Ayers TL, Jerome KR, Englund JA, Boeckh M. Prolonged Shedding of Human Coronavirus in Hematopoietic Cell Transplant Recipients: Risk Factors and Viral Genome Evolution. J Infect Dis 2017; 216:203-209. [PMID: 28838146 PMCID: PMC5853311 DOI: 10.1093/infdis/jix264] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
Background Recent data suggest that human coronavirus (HCoV) pneumonia is associated with significant mortality in hematopoietic cell transplant (HCT) recipients. Investigation of risk factors for prolonged shedding and intrahost genome evolution may provide critical information for development of novel therapeutics. Methods We retrospectively reviewed HCT recipients with HCoV detected in nasal samples by polymerase chain reaction (PCR). HCoV strains were identified using strain-specific PCR. Shedding duration was defined as time between first positive and first negative sample. Logistic regression analyses were performed to evaluate factors for prolonged shedding (≥21 days). Metagenomic next-generation sequencing (mNGS) was conducted when ≥4 samples with cycle threshold values of <28 were available. Results Seventeen of 44 patients had prolonged shedding. Among 31 available samples, 35% were OC43, 32% were NL63, 19% were HKU1, and 13% were 229E; median shedding duration was similar between strains (P = .79). Bivariable logistic regression analyses suggested that high viral load, receipt of high-dose steroids, and myeloablative conditioning were associated with prolonged shedding. mNGS among 5 subjects showed single-nucleotide polymorphisms from OC43 and NL63 starting 1 month following onset of shedding. Conclusions High viral load, high-dose steroids, and myeloablative conditioning were associated with prolonged shedding of HCoV in HCT recipients. Genome changes were consistent with the expected molecular clock of HCoV.
Collapse
Affiliation(s)
- Chikara Ogimi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Pediatrics, University of Washington.,Pediatric Infectious Diseases Division, Seattle Children's Hospital
| | - Alexander L Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Laboratory Medicine, University of Washington
| | - Alpana A Waghmare
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Pediatrics, University of Washington.,Pediatric Infectious Diseases Division, Seattle Children's Hospital
| | - Jane M Kuypers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Laboratory Medicine, University of Washington
| | - Ryan C Shean
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Laboratory Medicine, University of Washington
| | - Hu Xie
- Clinical Research Division, Fred Hutchinson Cancer Research Center
| | - Wendy M Leisenring
- Clinical Research Division, Fred Hutchinson Cancer Research Center.,Biostatistics
| | | | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Laboratory Medicine, University of Washington
| | - Janet A Englund
- Department of Pediatrics, University of Washington.,Pediatric Infectious Diseases Division, Seattle Children's Hospital
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Clinical Research Division, Fred Hutchinson Cancer Research Center.,Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
24
|
Complete Genome Sequence of Human Respiratory Syncytial Virus from Lanzhou, China. GENOME ANNOUNCEMENTS 2017; 5:5/34/e00739-17. [PMID: 28839014 PMCID: PMC5571400 DOI: 10.1128/genomea.00739-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A complete genome of human respiratory syncytial virus was sequenced and analyzed. Phylogenetic analysis showed that the full-length human respiratory syncytial virus (HRSV) genome sequence belongs to gene type NA1. We sequenced the genome in order to create the full-length cDNA infectious clone and develop vaccines against HRSV.
Collapse
|
25
|
Preclinical Characterization of PC786, an Inhaled Small-Molecule Respiratory Syncytial Virus L Protein Polymerase Inhibitor. Antimicrob Agents Chemother 2017; 61:AAC.00737-17. [PMID: 28652242 PMCID: PMC5571287 DOI: 10.1128/aac.00737-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/15/2017] [Indexed: 12/14/2022] Open
Abstract
Although respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in infants and young children, attempts to develop an effective therapy have so far proved unsuccessful. Here we report the preclinical profiles of PC786, a potent nonnucleoside RSV L protein polymerase inhibitor, designed for inhalation treatment of RSV infection. PC786 demonstrated a potent and selective antiviral activity against laboratory-adapted or clinical isolates of RSV-A (50% inhibitory concentration [IC50], <0.09 to 0.71 nM) and RSV-B (IC50, 1.3 to 50.6 nM), which were determined by inhibition of cytopathic effects in HEp-2 cells without causing detectable cytotoxicity. The underlying inhibition of virus replication was confirmed by PCR analysis. The effects of PC786 were largely unaffected by the multiplicity of infection (MOI) and were retained in the face of established RSV replication in a time-of-addition study. Persistent anti-RSV effects of PC786 were also demonstrated in human bronchial epithelial cells. In vivo intranasal once daily dosing with PC786 was able to reduce the virus load to undetectable levels in lung homogenates from RSV-infected mice and cotton rats. Treatment with escalating concentrations identified a dominant mutation in the L protein (Y1631H) in vitro. In addition, PC786 potently inhibited RSV RNA-dependent RNA polymerase (RdRp) activity in a cell-free enzyme assay and minigenome assay in HEp-2 cells (IC50, 2.1 and 0.5 nM, respectively). Thus, PC786 was shown to be a potent anti-RSV agent via inhibition of RdRp activity, making topical treatment with this compound a novel potential therapy for the treatment of human RSV infections.
Collapse
|
26
|
Lau JW, Kim YI, Murphy R, Newman R, Yang X, Zody M, DeVincenzo J, Grad YH. Deep sequencing of RSV from an adult challenge study and from naturally infected infants reveals heterogeneous diversification dynamics. Virology 2017; 510:289-296. [PMID: 28779686 DOI: 10.1016/j.virol.2017.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022]
Abstract
As RNA virus mutation occurs during replication within host cells, we hypothesized that viral evolution during acute infections in healthy hosts reflects host immune pressure. We therefore investigated the within-host diversification of human respiratory syncytial virus (RSV), a highly prevalent cause of acute respiratory infections. We evaluated healthy adults experimentally infected with an identical inoculum and infants hospitalized with naturally acquired infections. In aggregate, viral diversification in adults peaked at day 3, with overrepresentation of diversity in the matrix protein 2 (M2) and non-structural protein 2 (NS2) genes. In one subject, delayed viral clearance was accompanied by a late peak of diversity at day 10 in known and predicted B and T cell epitopes. In contrast, infant infections showed much less viral diversity. Our findings suggest multiple overlapping mechanisms for early control of acute viral infections, which may differ between age groups and host immune responses.
Collapse
Affiliation(s)
- Jessica W Lau
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA 02115, United States
| | - Young-In Kim
- Department of Pediatrics, University of Tennessee School of Medicine, Memphis, TN 38103, United States; Children's Foundation Research Institute at LeBonheur Children's Hospital, Memphis, TN 38103, United States
| | - Ryan Murphy
- Department of Pediatrics, University of Tennessee School of Medicine, Memphis, TN 38103, United States
| | - Ruchi Newman
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, United States
| | - Xiao Yang
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, United States
| | - Michael Zody
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, United States
| | - John DeVincenzo
- Department of Pediatrics, University of Tennessee School of Medicine, Memphis, TN 38103, United States; Children's Foundation Research Institute at LeBonheur Children's Hospital, Memphis, TN 38103, United States; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee School of Medicine, Memphis, TN 38103, United States
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA 02115, United States; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
27
|
Agoti CN, Munywoki PK, Phan MVT, Otieno JR, Kamau E, Bett A, Kombe I, Githinji G, Medley GF, Cane PA, Kellam P, Cotten M, Nokes DJ. Transmission patterns and evolution of respiratory syncytial virus in a community outbreak identified by genomic analysis. Virus Evol 2017; 3:vex006. [PMID: 28458916 PMCID: PMC5399923 DOI: 10.1093/ve/vex006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Detailed information on the source, spread and evolution of respiratory syncytial virus (RSV) during seasonal community outbreaks remains sparse. Molecular analyses of attachment (G) gene sequences from hospitalized cases suggest that multiple genotypes and variants co-circulate during epidemics and that RSV persistence over successive seasons is characterized by replacement and multiple new introductions of variants. No studies have defined the patterns of introduction, spread and evolution of RSV at the local community and household level. We present a whole genome sequence analysis of 131 RSV group A viruses collected during 6-month household-based RSV infection surveillance in Coastal Kenya, 2010 within an area of 12 km2. RSV infections were identified by regular symptom-independent screening of all household members twice weekly. Phylogenetic analysis revealed that the RSV A viruses in nine households were closely related to genotype GA2 and fell within a single branch of the global phylogeny. Genomic analysis allowed the detection of household-specific variation in seven households. For comparison, using only G gene analysis, household-specific variation was found only in one of the nine households. Nucleotide changes were observed both intra-host (viruses identified from same individual in follow-up sampling) and inter-host (viruses identified from different household members) and these coupled with sampling dates enabled a partial reconstruction of the within household transmission chains. The genomic evolutionary rate for the household dataset was estimated as 2.307 × 10 − 3 (95% highest posterior density: 0.935–4.165× 10 − 3) substitutions/site/year. We conclude that (i) at the household level, most RSV infections arise from the introduction of a single virus variant followed by accumulation of household specific variation and (ii) analysis of complete virus genomes is crucial to better understand viral transmission in the community. A key question arising is whether prevention of RSV introduction or spread within the household by vaccinating key transmitting household members would lead to a reduced onward community-wide transmission.
Collapse
Affiliation(s)
- Charles N Agoti
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya.,School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - Patrick K Munywoki
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya.,School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - My V T Phan
- The Wellcome Trust Sanger Institute, Cambridge, UK.,Virosciences Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - James R Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya
| | - Everlyn Kamau
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya
| | - Anne Bett
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya
| | - Ivy Kombe
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya
| | - George Githinji
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya
| | - Graham F Medley
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
| | - Patricia A Cane
- Virus Reference Department, Public Health England, London, UK
| | - Paul Kellam
- The Wellcome Trust Sanger Institute, Cambridge, UK.,Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Matthew Cotten
- The Wellcome Trust Sanger Institute, Cambridge, UK.,Virosciences Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - D James Nokes
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya.,School of Life Sciences and WIDER, University of Warwick, Coventry, UK
| |
Collapse
|
28
|
Lam TTY, Zhu H, Guan Y, Holmes EC. Genomic Analysis of the Emergence, Evolution, and Spread of Human Respiratory RNA Viruses. Annu Rev Genomics Hum Genet 2016; 17:193-218. [PMID: 27216777 DOI: 10.1146/annurev-genom-083115-022628] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The emergence and reemergence of rapidly evolving RNA viruses-particularly those responsible for respiratory diseases, such as influenza viruses and coronaviruses-pose a significant threat to global health, including the potential of major pandemics. Importantly, recent advances in high-throughput genome sequencing enable researchers to reveal the genomic diversity of these viral pathogens at much lower cost and with much greater precision than they could before. In particular, the genome sequence data generated allow inferences to be made on the molecular basis of viral emergence, evolution, and spread in human populations in real time. In this review, we introduce recent computational methods that analyze viral genomic data, particularly in combination with metadata such as sampling time, geographic location, and virulence. We then outline the insights these analyses have provided into the fundamental patterns and processes of evolution and emergence in human respiratory RNA viruses, as well as the major challenges in such genomic analyses.
Collapse
Affiliation(s)
- Tommy T-Y Lam
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China; , ,
- Joint Influenza Research Center and Joint Institute of Virology, Shantou University Medical College, Shantou 515041, China
- State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China; , ,
- Joint Influenza Research Center and Joint Institute of Virology, Shantou University Medical College, Shantou 515041, China
- State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China; , ,
- Joint Influenza Research Center and Joint Institute of Virology, Shantou University Medical College, Shantou 515041, China
- State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China
- Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia;
| |
Collapse
|
29
|
Zou L, Yi L, Wu J, Song Y, Huang G, Zhang X, Liang L, Ni H, Pybus OG, Ke C, Lu J. Evolution and Transmission of Respiratory Syncytial Group A (RSV-A) Viruses in Guangdong, China 2008-2015. Front Microbiol 2016; 7:1263. [PMID: 27574518 PMCID: PMC4983572 DOI: 10.3389/fmicb.2016.01263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial viruses (RSVs) including subgroups A (RSV-A) and B (RSV-B) are an important cause of acute respiratory tract infections worldwide. RSV-A include major epidemic strains. Fundamental questions concerning the evolution, persistence and transmission of RSV-A are critical for disease control and prevention, yet remain unanswered. In this study, we generated 64 complete G gene sequences of RSV-A strains collected between 2008 and 2015 in Guangdong, China. Phylogenetic analysis was undertaken by incorporating 572 publicly available RSV-A sequences. Current data indicate that genotypes GA1, GA4, and GA5 are endemic with limited epidemic activity. In contrast, the GA2 genotype which likely originated in 1980 has spread rapidly and caused epidemics worldwide. By analyzing GA2 genotype sequences across epidemic seasons within Guangdong, we find that RSV-A epidemics in Guangdong are caused by a combination of virus importation and local persistence, although the magnitude of the latter is likely overestimated due to infrequent sampling in other regions. Our results provide new insights into RSV-A evolution and transmission at global and local scales and highlights the rapid and wide spread of genotype GA2 compared to other genotypes. In order to control RSV transmission and outbreak, both local persistence and external introduction should be taken into account when designing optimal strategies.
Collapse
Affiliation(s)
- Lirong Zou
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Lina Yi
- Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China
| | - Jie Wu
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Yingchao Song
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Guofeng Huang
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Xin Zhang
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Lijun Liang
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Hanzhong Ni
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | | | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Jing Lu
- Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; Department of Zoology, University of OxfordOxford, UK
| |
Collapse
|
30
|
Do LAH, Bryant JE, Tran AT, Nguyen BH, Tran TTL, Tran QH, Vo QB, Tran Dac NA, Trinh HN, Nguyen TTH, Le Binh BT, Le K, Nguyen MT, Thai QT, Vo TV, Ngo NQM, Dang TKH, Cao NH, Tran TV, Ho LV, Farrar J, de Jong M, van Doorn HR. Respiratory Syncytial Virus and Other Viral Infections among Children under Two Years Old in Southern Vietnam 2009-2010: Clinical Characteristics and Disease Severity. PLoS One 2016; 11:e0160606. [PMID: 27500954 PMCID: PMC4976934 DOI: 10.1371/journal.pone.0160606] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022] Open
Abstract
Background Despite a high burden of respiratory syncytial virus (RSV) infections among children, data on demographic and clinical characteristics of RSV are scarce in low and middle income countries. This study aims to describe the viral etiologies, the demographic, epidemiological, and clinical characteristics of children under two years of age who were hospitalized with a lower respiratory tract infections (LRTI), focusing on RSV (prevalence, seasonality, subgroups, viral load) and its association with disease severity. Methods A prospective study among children under two years of age, hospitalized with LRTI was conducted in two referral pediatric hospitals in Ho Chi Minh City, Vietnam, from May 2009 to December 2010. Socio-demographic, clinical data and nasopharyngeal swabs were collected on enrolment and discharge. Multiplex real-time RT-PCR (13 viruses) and quantitative RSV RT-PCR were used to identify viral pathogens, RSV load and subgroups. Results Among 632 cases, 48% were RSV positive. RSV infections occurred at younger age than three other leading viral infections i.e rhinovirus (RV), metapneumovirus (MPV), parainfluenza virus (PIV-3) and were significantly more frequent in the first 6 months of life. Clinical severity score of RSV infection was significantly higher than PIV-3 but not for RV or MPV. In multivariate analysis, RV infection was significantly associated with severity while RSV infection was not. Among RSV infections, neither viral load nor viral co-infections were significantly associated with severity. Young age and having fever at admission were significantly associated with both RSV and LRTI severity. A shift in RSV subgroup predominance was observed during two consecutive rainy seasons but was not associated with severity. Conclusion We report etiologies, the epidemiological and clinical characteristics of LRTI among hospitalized children under two years of age and risk factors of RSV and LRTI severity.
Collapse
Affiliation(s)
- Lien Anh Ha Do
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
- Murdoch Children’s Research Institute, Melbourne, Australia
- * E-mail:
| | - Juliet E. Bryant
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Anh Tuan Tran
- Children Hospital 1, 341 Su Van Hanh, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Bach Hue Nguyen
- Children Hospital 1, 341 Su Van Hanh, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Thi Thu Loan Tran
- Children Hospital 2, 14 Ly Tu Trong, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Quynh Huong Tran
- Children Hospital 2, 14 Ly Tu Trong, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Quoc Bao Vo
- Children Hospital 2, 14 Ly Tu Trong, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Nguyen Anh Tran Dac
- Children Hospital 2, 14 Ly Tu Trong, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Hong Nhien Trinh
- Children Hospital 1, 341 Su Van Hanh, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Thi Thanh Hai Nguyen
- Children Hospital 1, 341 Su Van Hanh, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Bao Tinh Le Binh
- Children Hospital 1, 341 Su Van Hanh, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Khanh Le
- Children Hospital 1, 341 Su Van Hanh, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Minh Tien Nguyen
- Children Hospital 1, 341 Su Van Hanh, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Quang Tung Thai
- Children Hospital 1, 341 Su Van Hanh, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Thanh Vu Vo
- Children Hospital 1, 341 Su Van Hanh, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Ngoc Quang Minh Ngo
- Children Hospital 1, 341 Su Van Hanh, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Thi Kim Huyen Dang
- Children Hospital 2, 14 Ly Tu Trong, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Ngoc Huong Cao
- Children Hospital 2, 14 Ly Tu Trong, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Thu Van Tran
- Children Hospital 2, 14 Ly Tu Trong, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Lu Viet Ho
- Children Hospital 2, 14 Ly Tu Trong, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
| | - Menno de Jong
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - H. Rogier van Doorn
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Respiratory Syncytial Virus whole-genome sequencing identifies convergent evolution of sequence duplication in the C-terminus of the G gene. Sci Rep 2016; 6:26311. [PMID: 27212633 PMCID: PMC4876326 DOI: 10.1038/srep26311] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/03/2016] [Indexed: 11/25/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) is responsible for considerable morbidity and mortality worldwide and is the most important respiratory viral pathogen in infants. Extensive sequence variability within and between RSV group A and B viruses and the ability of multiple clades and sub-clades of RSV to co-circulate are likely mechanisms contributing to the evasion of herd immunity. Surveillance and large-scale whole-genome sequencing of RSV is currently limited but would help identify its evolutionary dynamics and sites of selective immune evasion. In this study, we performed complete-genome next-generation sequencing of 92 RSV isolates from infants in central Tennessee during the 2012–2014 RSV seasons. We identified multiple co-circulating clades of RSV from both the A and B groups. Each clade is defined by signature N- and O-linked glycosylation patterns. Analyses of specific RSV genes revealed high rates of positive selection in the attachment (G) gene. We identified RSV-A viruses in circulation with and without a recently reported 72-nucleotide G gene sequence duplication. Furthermore, we show evidence of convergent evolution of G gene sequence duplication and fixation over time, which suggests a potential fitness advantage of RSV with the G sequence duplication.
Collapse
|